Xregion: A New Approach to Storing XML Data in
Relational Databases

Li-Yan Yuan® and Meng Xue
University of Alberta, Canada

Abstract

In this paper, we propose a new structure-based approach,
called Xregion, to storing XML data in relational databases.
Our approach first partitions an XML document into sev-
eral disjoint regions according to the cardinality of element
nodes, and then maps these regions into separate relations.
The experimental results demonstrate that the proposed ap-
proach dramatically improves the performance of queries on
the XML data over the generic mapping approaches.

Key words: XML, DBMS, XQuery

1 Introduction

With increasing popularity of XML documents, it is
crucial to store and query XML documents efficiently
in order to exploit the full power of this new technol-
ogy. A motivated application of this research can be
an XML repository system that stores millions hetero-
geneous XML documents, which are well-formed but
have no DTD or the DTDs of which are not known
beforehand.

One promising approach to managing XML docu-

ments is to store and query them in a relational database.

In this approach, XML data must be converted into a
set of tuples and stored in relational tables, due to the
difference between relational database structure and
the hierarchical structure of XML documents. Queries
posed on XML documents then need to be translated
into SQL statements against those relational tables,
and the query results need to be constructed in the
desired XML format. Thus, the problem of query effi-
ciency over XML documents shifts to the effectiveness
of the database schemas in terms of query performance
by SQL.

The database schema for XML storage varies among
different XML-to-Relation mapping techniques. One
of the mapping techniques, called generic mapping, is
to design relational database schemas for XML docu-
ments without the knowledge of DTD or XML Schema
information. Multiple generic mapping techniques have
been studied, such as Edge Mapping [6] and Path Based

*Computing Science Department
Edmonton, Canada T6G 2H1
yuan@cs.uaberta.ca

Mapping [10] [14] [7].

The basic idea behinds existing XML generic map-
ping approaches is to model an XML document as a
tree, and record the parent-child relationships among
nodes in the XML tree as tuples in relational tables,
with each tuple representing an edge or a node in the
XML data tree. As a result of this decomposition, the
hierarchical structure of an XML document is flattened
to binary relationships scattered in the database tables.
Although the generic mapping approach can be used
to store any XML documents, with or without schema,
into current relational database, querying performances
of existing generic mapping approaches are still far from
satisfactory, especially for large XML documents.

There are two main reasons of this inefficiency. First,
XML data are scattered in relation schemas with a very
high degree of fragmentation. At the query process-
ing time, a great amount of join or # join operations
are required to restore the hierarchical structure of an
XML document. Second, only parent-child binary re-
lationships are stored in relation schemas, so it is very
expensive to search ancestor information.

In this paper, we propose a new generic mapping
technique, called Xregion, to store XML data in rela-
tional databases. Our solution for reducing the frag-
mentation is simple, but very effective. We first par-
tition an XML document into several disjoint regions
according to the cardinality of node occurrences, and
then store these regions, including their parent informa-
tion, into separate tables. An example for our mapping
approach is given below.

The graph in the Figure 1 can be interpreted as a
structure summary of a sample XML document for a
university registration system. Each ellipse represents a
node in the document while a double ellipse represents
a node with repeated occurrences, i.e. set-valued node.
For example, each course has one course number and
one title, but many sections and many TAs. Therefore,
both “section” and “TA” node are represented by a
double ellipse.

Each set-valued node represents a distinct region
in the structure summary, and each distinct node in a
region is represented by a separate field in the table for
the region. For example, Ro; in Figure 1 is the region
represented by the “course” node, and its corresponding

Figure 1: An example for Xregion.

relation schema is

course_table (course, @Qcno, title, sections).

The advantages to partition and store XML documents
based on cardinality of node occurrences are as follows.
First, since each region contains no further nested struc-
ture, i.e. no other set-valued nodes, it can be stored a
set of tuples in one table. Second, we avoid the very
expensive join operations required for query evaluation
by other approaches, because all children nodes, ex-
cept for the set-valued child nodes, of an element are
stored in the same relation as the element. Since reg-
ular relations do not support set-valued attributes, we
create a separate relation for each set-valued element
and all its descendants with one-to-one relationships to
the element. So in our system, XML documents are
decomposed according to the nested level of the data,
rather the binary relationships between nodes, which
are widely used in the existing generic mapping meth-
ods.

We have implemented Xregion and several other ex-
isting generic mapping techniques, including XParent
[7], Edge Mapping[6] and Xrel[14]. We have conducted
extensive experiments using above approaches to stor-
ing two XML documents (200 MB and 2GB) into an Or-
acle database, and then compare their performance by
evaluating 7 and 5 typical queries respectively. Figure2
describes the elapsed time for querying the database
storing an XML document with size 2GB.

The figure demonstrates that the proposed approach
dramatically improves the performance of queries on
the XML data over the existing generic mapping tech-
nologies, by the order of one or two magnitudes. The
improvement is particularly striking for large XML doc-
uments.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the current state of generic mapping
approaches. In Section 3, we give formal definitions of
the XML data models used in our approach. Section 4

O Xregion B Xparent O Edge

Elapsed Time (Second)

0.01

0.001
Ql Q2 Q3 Q4 Q5

Figure 2: Elapsed time for querying evaluation us-
ing Xregion, XParent and Edge on an XML docu-
ment(2GB)

formalizes the proposed approach, Xregion. Section 5
goes into the implementation details of the XML bulk
loader system. The experimental setup and results are
described in Section 6. Finally, in Section 7 we provide
a summary and present future work.

2 Background

XML is becoming the standard for data interchange and
representation on the Web and elsewhere. Its nested
and self-describing nature makes its transmission, and
presentation more intuitive than any other data stan-
dard. Figure 3 is an example XML document describ-
ing courses information.

An XML documents may have a DTD (Document
Type Definition) or an XML Schema, which can be used
to define and validate the data structure of the docu-
ment. In this paper, we focus on the problem of storing
XML documents into relational database without the
knowledge of the DTDs or XML schemas.

The nested and self-describing nature of XML pro-
vides simple and flexible means for exchanging data
among applications. However, it is not designed to fa-
cilitate efficient data storage or retrieval.

One method to store XML data is to employ current
Relational Database Management Systems (RDBMS)
for XML storage and retrieval. This takes advantage
of the mature technologies already provided in current
database systems, such as concurrency control, power-
ful query optimizers and indexing techniques.

When we look at mapping XML to a relational
database, we are considering the difference between re-
lational database structures and XML data structures.
Conventional relational database systems do not sup-

<catalogue>
<univ>ABC</univ>
<course cno="291">
<title>Database Systems</title>
<sections>
<section sno="H1" >
<instructor>Dr.
</section>
<section sno="H2" >
<instructor>Dr. Dean</instructor>
</section>
</sections>
</course>
<course cno="539">
<title>Programming</title>

Lin</instructor>

<sections>
<section sno="H1" >
<instructor>Dr. Hanks</instructor>
</section>
</sections>

<TA sid="123"> <1ab>D01</lab> </TA>

<TA sid="112"> <1ab>D02</lab> </TA>
</course>
</catalogue>

Figure 3: An example XML document for university
courses

port the inherent hierarchical and semi structured for-
mat of XML data. Instead, the nested XML data need
to be transformed into tables according to the database
schemas generated by mapping approaches.

The design of database schema is crucial to the per-
formance of query processing and result publishing, be-
cause it stipulates how XML data are stored into the
underlying relational database systems. In the case
that XML documents are very large or they are in huge
numbers, it is imperative to convert those data to a for-
mat where they can be retrieved effectively.

To further understand XML relational storage mod-
els and their effectiveness in terms of query process-
ing, we will now describe existing generic mapping ap-
proaches.

Edge Based Mapping: Florescu and Kossmann
[6] proposed the Edge approach to modeling an XML
document as a set of atomic structure units, which are
edges on the data graph, and store each unit as a tu-
ple in a relational table of RDBMS. They represented
an XML document as an ordered and directed graph,
in which every node is assigned an identifier oid and
each edge is explicitly labeled by the name of incoming
element type or attribute. All edges of an XML data
graph are stored in a single table called the Edge table,
which has the following structure.

Edge(source,ordinal target,label flag,value).

Each tuple in the Edge table represents one edge in the
directed graph. An edge is defined by the Source and
Target fields, which are oids of the two nodes connected
by the edge. The Label field records the label of an edge.

Src Ord | Tgt Label Flag Value

&0 1 &1 catalogue | ref

&1 1 &2 univ string | ABC

&1 1 &3 course ref

&3 1 &4 @cno string | 291

&3 1 &5 title string | Database

Systems

&3 1 &6 sections ref

&6 1 &7 section ref

&7 1 &8 @sno string | H1

&7 1 &9 instructor | string | Dr. Lin

&6 2 &10 section ref

&10 | 1 &11 @sno string | H2

&10 | 1 &12 instructor | string | Dr. Dean

&1 2 &13 course ref

&13 | 1 &14 @cno string | 539

&13 | 1 &15 title string | Program.

&13 | 1 &16 sections ref

&16 | 1 &17 section ref

&17 | 1 &18 @sno string | H1

&17 | 1 &19 instructor | string | Dr. Hanks

&13 | 1 &20 TA ref

&20 | 1 &21 @sid string | 123

&20 | 1 &22 lab string | DO1

&13 | 2 &223 | TA ref

&23 | 1 &24 @sid string | 112

&23 | 1 &25 lab string | D02
Table 1: A relational storage example using Edge ap-
proach.

The local order of the edge among its siblings is stored
in the Ordinal field. The Flag field indicates whether
the target node is an internal node (“ref”) or a leave
node with a value (“string” or “int”). The data graph
for the example XML document is shown in Figure 4,
and Table 1 is its corresponding Edge table.

Independent to XML DTDs, edge mapping approach
can be applied to a wide range of XML documents or
other semi-structured documents that have arbitrary
graph structures. However, such a decomposition method
makes the query evaluation very inefficient. It needs a
number of self-join operations to restore the hierarchi-
cal structure of the XML data at query processing time,
due to the high fragmentation of the data in relations.
To improve the performance, Florescu and Kossmann
[6] also proposed another variant of the Edge mapping,
called Binary approach, though the result is not very
satisfactory.

XParent: XParent [7] is a four-table path-based
mapping system, which uses fixed schemas to store vari-
ant XML documents, according to the XPath model.
Element table and Data table, respectively, are cre-
ated for storing the element nodes and the values of
attribute nodes and text nodes. Each tuple in these
tables represents a node in the XML tree. The binary
relationships among nodes are stored in the DataPath
table. Another table, LabelPath table, stores all dis-
tinct label-paths and their depth. These four relational

catalogue

uniy course

"ABC"

@cng

@cno

titlg sections

course

sections TA

titlg

TA

"Database Systems,

" Programming"

"291" . ' "539" . , lab @sid
section section sectiq @sid lab
@ i 1712317 Y!112N
@sng jnstructor instructor sno instructor "DO1" "D02
@sno

(@ © @w W @

"HI" "Dr. Lin" NHZ” "Dr. Dean"

NH] ”

"Dr. Hanks"

Figure 4: An XML data graph of Edge mapping

tables are as follows.
LabelPath (ID, Len, Path)

DataPath (Parentid, Childid)
Element (PathID, Did, Ordinal)
Data (PathID, Did, Ordinal, Value)

Compared with Edge Mapping, the path based map-
ping speeds up the query processing on simple XML
queries by storing path expressions explicitly in rela-
tions. However, when processing queries with multiple
paths or multiple conditions on different branches they
still need a number of joins or self-joins to check nodes
connections.

XRel: XRel proposed by M. Yoshikawa and T. Am-
agasa et al [14] is a generic mapping approach, which
keeps both the simple path expressions and element
positions in relations. The position of an element is
recorded by the byte-offset of its start and end positions
in the XML document. For example, the positions of
node 1 (document root “catalogue”) and node 19 (“in-
structor”) in the XML tree shown in Figure 4 are (0,
450) and (299, 332) respectively. In addition to the El-
ement table, another two tables are created to store
attributes and text contents, i.e. Attribute table and
Text table. Same as Edge and XParent approaches,
each tuple in these relations represents one node in the
XML tree. The basic XRel schemas are as follows.

Text (docID, pathID, start, end, value)
Attribute (docID, pathID, start, end, value)
Element (docID, pathID, start, end, ordi-
nal, reverse_ord)

A contribution of XRel was that they introduced a
new format for representing paths by using two charac-
ters to separate steps in a path expression, e.g. ‘#/cata-
logue# /course’ instead of ‘/catalogue/course’. The ad-
vantage of this transformation is that it simplifies the
query translation process for simple queries on paths
with wildcards, and guarantees the correctness of string
matching in query processing.

In XRel schemas, the containment relationships among

nodes in an XML document can be captured by com-
parison between start and end positions. So for XRel,
sometimes, it does not need to verify all the interme-
diate edge connections one by one between two nodes,
e.g. node a—b—c—node d, and only need to check
whether one node (d) is reachable from the other node
(a). Thus XRel will use less join operations for search-
ing ancestors of a node. However, this simplification
in query processing does not improves the query per-
formance as expected, and sometimes it is even worse
especially for large documents.

Monet Model: Monet [10] is another path based
XML relational storage model proposed by Schmidt et

al. The basic idea is similar to the Edge mapping,
which identifies parent-child relations from the XML
data graph. At the mapping stage, they apply a dif-
ferent approach by creating separate relational tables
for every distinct path in the graph. Thus data stored
in the same table has a strong structural relation and
each table is relative small compared to Edge approach.
However, similar argument with the Binary approach of
Edge mapping, this approach might not be viable for
large collections of XML documents, due to the limit
of total number of tables in database systems. For ex-
ample, the Monet approach created 2587 tables for a
single XML document for Webster’s Dictionary [10].

Other Mapping Approaches: In addition to generi

mapping approach, several other XML-to-Relation map-
ping techniques have also been investigated recently.

Some of them use XML DTDs or XML schemas
information for generate relational schemas [11] [8][9].
Others construct the database schema according to anal-
ysis and statistics on frequent structure or query work
load, such as STORED system [4] and a cost based
system LegoDB [2]. But it is difficult for them to deal
with XML data that has irregular structures. In addi-
tion extra operations, such as gathering statistics and
analyzing query work load, are also required.

Cooper, Sample and Franklin et al pursue a different
direction to improve the performance of querying XML
data in database. To facilitate the navigation and se-
lection of nodes on the XML trees, they build a special
index, Index Fabric [3], on top of RDBMSs for stor-
ing path information. The experimental results show
that the fast index improves performance, but mainly
for refined paths, which are specialized paths for tuning
frequently occurring queries.

Xing, Guo and Wang use node grouping to map-
ping XML documents to databases which reduces the
index space and thus significantly improve the query
performance [13].

3 Xregion Data Model

In this section, we first formally define the XML data
tree, XML structure tree, region and nested level, which
forms the basis of the data model used in our mapping
approach.

Given an XML document, we use FEl to denote the
set of element names, Atir the set of attribute names,
Vert the set of node identifiers, Str the set of possible
string value of elements or attributes. (Note that the
symbol ‘Q’ is added as the prefix of all attribute names.)

3.1 XML Data Tree

Following previous work on XML data, we model an
XML document as a node-labeled tree, XML data tree,
which is defined below. The XML data tree used in our
approach is slight different from the XPath tree models
[5] discussed in Section 2. We model the text of an
element as the value of that element node, rather than
a separate text node on the tree. For this reason, we
adapt the formal definition of XML data tree from XNF
[1] by modifying the total function “ele” and adding a
new function “val”.

Definition 1 [1] An XML tree T is defined as a tree
C{V, lab, ele, val, attr, root):

e VCVert is a finite nonempty set of vertices.
e lab:V—EI

o cle:V—V*

o val: V—Strunull

e atir is a partial function Vx Attr— Str. For each
ve V,
the {ale Att | attr(v, al) is defined} is a finite set.

e rooteV is the root of XML data tree T.

Every element in the document is modeled as a node,
characterized by a unique node identifier. All attributes
of an XML document are modeled as children of their
associated element nodes. Given an XML data tree, a
path of a node is a sequence of ancestor labels starting
from the root to the node. Figure 5 is a graphic depic-
tion of the data tree for the sample XML document in
Figure 3.

3.2 XML Structure Tree

An XML document contains both meta data and data
itself, and its meta data, including all path and other in-
formation, can be described by the structure tree, which
is a summary of the XML data tree.

Definition 2 Let Pt be the set of paths in an XML
data tree. An XML structure tree S is defined as a tree
(Vs, Pt, multi, r):

o Vs:Pt—EIUAttr .
o multi: Pt—n.
o reVs(Pt) is the root of XML structure tree S.

multi(py1) shows the maximum cardinality of a node
identified by a path p; € Pt. The parent-child relation-
ship is captured by paths. Figure 6 shows an XML
structure tree for the example XML document. All
multi-valued nodes that occur repeatedly under their

"ABC"

"Database
Systems"

g1

gy 539"

"Dr. Dean"
"Dy Lin"
r. Lin

" Programming

"123" ‘112"
Cabr > Gab2 >
(@smo >

"DOI" "DO2

"Dr. Hanks"

Figure 5: An XML data tree for the example XML document

parent nodes,
{pt1€Pt| multi(p;1)>1}, are identified by a double el-
lipse in this structure tree. For example, each course

Figure 6: An XML Structure tree

has one course number and one title, but many sec-
tions and many TAs. Therefore, both course number
“@cno” and “title” are represented by a single ellipse
while “section” and “TA” are represented by a double
ellipse.

Features of the XML structure tree are:

1. It represents the complete structure of a given
XML document, i.e., it contains the structure of
every element type in the XML document.

2. It is exactly as deep as the corresponding XML
data tree.

3. Generally, the XML structure tree will be much
smaller than the XML data graph.

From this graph we can see that the structured infor-
mation for an XML document includes not just path
information, but also cardinality of node occurrences.
Because of the above features, we will use the struc-
ture tree as the basis for partitioning any given XML
documents.

3.3 Region

The key idea of the proposed approach is to partition
the input XML documents into disjoint regions accord-
ing to the cardinality of node occurrences. The defini-
tion of the region is given below.
Definition 3 A region in a structure tree is a subtree
R of the structure tree such that

1. the root of R is either a set-valued node (i.e., a
double ellipse) or the root of the structure tree,
and

2. all the subtrees of R rooted with set-valued node
(i.e., a double ellipse) are removed.

Obviously, a structure tree with N double ellipses
contains N 4 1 disjoint regions. Each region consists
of all and only those descendants that have one-to-one
relationships with the set-valued element (region root),
so we can map all nodes in a region into one relation
with every node in this region represented by a sepa-
rate field in the relation. The other feature of a region is
that all the nodes in a region share the same ancestors
and cousins outside of the region. Consequently, stor-
ing all the regions in separate tables may significantly

reduce the number of joins needed for query evaluation.
Figure 7 shows all the regions for the sample document,
and the responding relations for storing regions.
For example, the relation for the region “course” is:
Relation_course (course, @cno, title, sections)

3.4 Region Tree and Nested Level

In order to specify the table schema according to the
regions, we define the region tree of a given document as
the tree obtained from the structure tree by replacing
each region with one node. Since each node in a region
tree will be stored as one relation, a region tree is also
called a relation tree. Figure 7 (b) describes the relation
tree for the sample document.

Given a region tree Tr, the nested level of a region
is then defined as the height of its corresponding region
node in the region tree.

All nodes in a given region belong to the same nested
level, although they are on different depths of the XML
structure tree. For example, in Figure 7, while the node
“section”, “instructor” and “TA” are on different depths
in the structure tree, they are at the same nested level
— the nested level 3. Thus we transform the compli-
cated hierarchical structure of an XML document to a
relatively simple nested structure among regions (rela-
tions).

Based on its topological position in the region tree,
each region can then be labeled as R; ;, where ¢ denotes
its nested level, and j the order of regions in their re-
spective level, with the left most as 1. Consider Figure 7
(b) again. Relation “root” is labeled as R 1, Relation
“course” is labeled as Rs 1, Relation “section” is labeled
as Rs3 1, and Relation “TA” is labeled as R3 .

3.5 Region Instance

Once all regions are identified, the XML data tree will
be traversed to map all the instances of each region into
the corresponding tables specified by the region.

Definition 4 Let Pr, r_edge be the set of paths and
edges in a region R of an XML structure tree respec-
tively, and root be the path of the region root. An
instance I of the region R is defined as a tree (Pi, edge,
r, val), which is a subtree of the XML data tree.

1. PiCPr is a finite set of paths.
2. wal: Pi— Str U null.
3. edgeCr_edge is a finite set of edges.

4. r=root is the root of sub tree I that represents
the instance.

We call each occurrence of a region structure as an
instance of the region, because it instantiates the ab-
stract structure of a region with data in the XML docu-
ment. When loading XML document into the database,
each instance of a region is stored as one tuple in the
table of this region.

For example, the 1 and 5, marked on the XML
data tree shown in Figure 8, are two instances of the
region “course”.

4 Xregion Storage Schema

In this section, we specify the basic database schema of
our proposed approach, Xregion. The basic idea of Xre-
gion is to store all children nodes, including attributes,
of an element in the same relation with the element,
except its set-valued child nodes, in order to reduce the
fragmentation degree of XML data in relations.

Given an XML document, we first build an XML
document structure tree for it, partition the document
structure tree into several regions, and then map all
nodes of each region into a separate relational table.
After processing all the nodes on the XML document
structure tree of a given XML document, the mappings
from XML structure to database schema are recorded
in a database table as meta data. Because of the limit
on the size of region trees, a limited number of tables
are needed to store any number of XML documents.

The XML data tree is then traversed to load the
XML data into their corresponding tables in the
database system. Every query to the XML data will be
translated into a query to the underlying database, and
then the XML query result will be constructed from the
answer returned from the underlying database.

4.1 Basic Database Schema for Xregion

The underlying database for Xregion consists of one
meta table, used to store all the meta information, such
as paths, in the document structure trees and their cor-
responding mappings, and a limited number of data ta-
bles, named table_i_j for region R;;, where the upper
limit of both i and j depends on the size of regions trees
of stored XML documents.

Therefore, for an XML document with N regions,
we need only N + 1 tables. With the increase of N,
new data tables can be created accordingly.

For simplicity, we assume that the number of nodes
in any region is limited to n, say n = 20. Should the
number of nodes exceeds this limit, we can either in-
crease the number of columns of the table for the re-
gion or to create a new table to store information for
the extra nodes.

(a) Regions

Nested Level:
-1

Relation "root"
(catalogue, univ)

€----

Relation "course"

(course, @cno, title, sections) -2
d \\
’ \\
4 ~
’ ~
/’ \\
4 Ay
4 N
¥ A

Relation "section" Relation "TA" |_3

(section, @sno, instructor)| | (TA, @sid, lab)

(b) Relation Tree

Figure 7: An example for regions. The structure tree is divided into four regions by its three set-valued nodes

course, section and TA.

4.1.1 Data Tables

Each data table is used to store all the instances of
the corresponding region, as well as the data needed
to identify the parent information of any node in the
region.

Since a region does not contain any set-valued node,
each instance of a region can be represented by a tuples
of n columns, one for the value of each node in the
region.

To uniquely identify each tuple in the region, we will
create one unique id, named tuple_id.

In Xregion, the parent of any node in a tuple of
a given region table, is either in the same table, or is
stored in the region table of upper level (parent of the
region root). Therefore, we also create a column, called
parent_id, or p_id for short, to store the tuple_id of the
parent instance of the a given tuple in a region.

In order to preserve the order among all sibling
nodes, we will introduce a column to record the or-
dinal position of the set-valued nodes, which are root
nodes of each region. Finally, since a data table will be
used to store multiple XML documents, we do need a
column to store the document name.

In summary, each table table_i_j is defined as a table
with n + 4 columns, that is,

table_i_j(doc_name, tuple_id, p_id, ordinal, coly, ...,
col,—1, coly).

Where doc_name is used to store the document name
of the XML document, tuple_id is used to store the
unique id of a tuple in the region, p_id is used to store
the tuple_id of the parent node, ordinal is used to store
the ordinal position of the tuple, and col;, for 1 <i < n,

are used to store the value of the corresponding node
in the region.

For convenience, we simplify the table for root re-
gion R; 1 by removing the p_id, ordinal, since the root
region does not have any parent and sibling. So the
structure of the root table is:

table_1_1(doc_name, tuple_id, coly, ..., col,,_1, coly,).

4.1.2 Meta Table

The meta table, named meta_table, is designed to store
all the meta information from the document structure
trees, one tuple for each path in the structure tree.

Since each path represents one node in the struc-
ture tree and each node is stored in the corresponding
column of its region relation, the tuple shall contain
the name of the region table, the column name in the
region table, and the parent table name of the region
table.

Of course, we shall also store, for each tuple, the
name of the XML document.

In summary, the meta table consists of five columns,
that is,

meta_table(doc_name, path, tablename, col_name,
p-table).

It is easy to see that the aforementioned N + I ta-
bles store all the information about an XML document.

4.2 Example

Given an XML document to be imported into a RDBMS
system, the database schemas generation process works
as follows. First, the XML document is parsed to get

T — .

- —

Cections > (@sia > |(@sid 3
"]123" ‘112"
Qabt > Gab2 5

"Dr. Dean" "Dr. Hanks"
"Dr. Lin"
Figure 8: Two instances of region “course”.
doc.name | tupledid | coll col2 docname | tupleid | pid | ord | coll | col2 | col3
course.xml | 1 catalogue | ABC course.xml | 7.0 50 |1 TA1 | 123 | Do1
course.xml | 8.0 5.0 TA2 | 112 | D02

Table 3: The table_1_1 (root)

the path summary of the document. Second, an XML
document structure tree is built and all set-valued nodes
are identified. Once the document structure tree is cre-
ated, it is partitioned into regions represented by set-
valued nodes. Then separate database schema is cre-
ated for each region, and the relational table assign-
ments are recorded in the meta_table.

After creating or assigning tables for each region on
the XML document structure tree, the XML data tree
is traversed in depth-first-order to load the XML data,
instances of each region, into their corresponding tables
in the database system.

All the data tables and meta table for the sample
document described in Figure 3 are shown in Tables 2
- 6.

As shown in the Table 4, the two instances, [; and
I, (Figure 8), of the “course” region are stored as two
tuples in table_2_1.

In this example, the values of “tuple_id” of all the
region instances are assigned based on the document
order. Figure 9 describes the tuple orders for the ex-
ample XML document. The “tuple_.id” together with
the “doc_name” field serves as the primary key of each

Table 5: The table_3_2 (TA)

‘sectlonl‘ ‘SCCII(;HZ‘ ‘sectlorﬁ‘ ‘ TAL H TA2 ‘

Figure 9: The tuple order.

data table. The “p_id” and “doc_name” field forms a
foreign key refer to the parent table in the upper level.

4.3 Discussion
4.3.1 Storing Different XML Documents

It is not feasible to create different schemas for every in-
dividual XML document in a system that store a large
number of XML documents, because some of the exist-
ing database systems still enforce a limit on the number
of tables that the database system can hold. So we pro-
pose to let different XML documents share a set of rela-
tional tables in the system, and only create a new table

when there is no corresponding table_i_j table existed in
the system. To distinguish data of different XML doc-
uments stored in the same table, we add a document
identifier attribute to all the tables in the system.

Although different XML documents may have het-
erogeneous structures, the concept of nested level is the
same. In Xregion, every data table conforms to the
same general structure, which make it feasible for dif-
ferent XML documents to share and reuse the existing
tables. So we can store XML data of different XML
documents into the same table as long as they are at
the same nested level of their own relation trees. Table
7 is a snapshot of table table_3_1, in which the data of
“course.xml” and “test.xml” are stored.

4.3.2 Query Evaluation and Result Publishing

The meta_table of Xregion provides a standard interface
for query processing and XML query result publishing.
The mapping information of all component of an XML
document are recorded as meta-data identified by paths
and document name in the meta_table. At query pro-
cessing time, the system looks up the meta_table and
translates XML queries to SQL statements against the
relational tables in the database system.

In Xregion, every instance of a region is stored as
a tuple in its corresponding region table, any non-set-
valued node in a instance is stored in the same tuple
with its parent, and the parent of a set-valued node is
stored in a record of its parent region table and is iden-
tified by the parent_id (p-id) of the set-valued node.
So compared with other existing generic mapping ap-
proaches, Xregion is much more efficient in evaluating
queries.

First, queries on nodes within a region is simplified
to one or a limit number of selections on one region ta-
ble, without the need of join operations, which are oth-
erwise required by other existing mapping approaches.
For example, SQL 4, 5 and 6 are translated SQL state-
ments of Xregion, Edge and Xparent, respectively, for
the XML query given below.

Example 1 Given the example XML document in
Figure 3, find the course title of the course with a course
number “291”.

Q3: /catalogue/course[@cno=“291"] /title

SQL 4: A translated SQL query statement for Q3
using Xregion.

SELECT col3
FROM table_2_1
WHERE col2=¢291"

SQL 5 A translated SQL query statement for Q3 using
Edge.

SELECT title.value

FROM edge root,edge crs,edge cno,edge title
WHERE root.label=‘catalogue’

AND crs.label=‘course’

AND title.label=‘title’

AND cno.label=‘@cno’

AND root.tgt=crs.src

AND crs.tgt=title.src

AND crs.tgt=cno.src

AND cno=‘291";

SQL 6 A translated SQL query statement for Q3 using
XParent.

SELECT title.value

FROM data cno, data title,
labelpath 1lp_cno, labelpath 1lp_title,
datapath dp_cno, datapath dp_title
WHERE 1p_title.path=°‘/catalogue/course/title’

AND
AND
AND
AND
AND
AND
AND

lp_ta.path=‘/catalogue/course/@cno’
cno.pathid=1p_cno.id
title.pathid=1p_title.id
cno.value=‘291"
title.did=dp_title.childid
cno.did=dp_cno.childid
dp_title.parentid=dp_cno.parentid;

As we can see, both Edge and XParent approaches
require join operations to ensure that the “@Qcno” nodes
and “title” nodes are belong to the same “course” ele-
ments. For Xregion, the “@Qcno” and its corresponding
“title” are stored in the same tuple with “course”, so it
only need a single selection on “@cno” and a projection
on “title”.

Furthermore, Xregion makes the searching for an-
cestor information more efficient than existing mapping
approaches. Xregion transforms the hierarchical struc-
ture of an XML document to a relatively simple nested
structure among regions (relations), which are normally
much shallower than the structure tree. So the process
for searching ancestor of nodes is converted to search
ancestor of regions, which reduces the number of join
operations for complicated queries. It is this feature
that makes efficient query evaluations possible.

As an example, SQL 7, 8 is a translated SQL state-
ment of Xregion and Xparent, respectively, for the ex-
ample XML query discussed in Section 2.

Example 2 Find the TAs who work with Dr. Hanks.

Q2:/catalogue/course[sections/section /instructor

=“Dr. Hanks”]/TA
SQL 7: A translated SQL query statement for Q2 using
Xregion.

SELECT ta.coll, ta.col2, ta.col3

FROM table_3_1 inst,table_3_2 ta

WHERE inst.col3=‘Dr. Hanks’ AND
ta.p_id=inst.p_id

SQL 8: A translated SQL query statement for Q2
using XParent.

SELECT ta.did
FROM data ta, data inst,
labelpath 1p_ta, labelpath lp_inst,
datapath dp_ta, datapath dp_inst,
datapath dp_section, datapath dp_sections
WHERE 1lp_inst.path=°/catalogue/course/
sections/section/instructor’
AND 1p_ta.path = ‘/catalogue/course/TA’
AND ta.pathid = 1lp_ta.id
AND inst.pathid = lp_inst.id
AND inst.value = ‘Dr. Hanks’
AND inst.did = dp_inst.childid
AND dp_inst.parentid=dp_section.childid
AND dp_section.parentid=
dp_sections.childid
AND ta.did = dp_ta.childid
AND dp_sections.parentid=dp_ta.parentid

Using Xregion, we only need to check whether the
“instructor” and “TA” are connected by same instances
of their parent region course, whereas Xparent requires
a number of joins to check the connection
instructor« section«—sections<— course— TA, in order
to make ensure that the pairs of nodes, “TA” and “In-
structor”, are connected by the same “course” nodes.
Figure 10 is a graph depiction for tracing the nearest
common ancestor “course” under Xregion and XParent
schemas, which shows that XParent needs to check two
more steps than Xregion for the example query.

XML query result publishing is another important
aspect for evaluating an XML-to-Relation mapping ap-
proach. Most XML query languages return the query
result in XML format, which consists of the value of
the satisfied element nodes together with all their de-
scendants.

Xregion also speeds up the XML query result pub-
lishing process. Because all children nodes, except for
the set-valued child nodes, of an element are stored
in the same relation as the element. So under Xre-
gion schema, transforming the answer from relational
database to XML format, does not involve expensive
operations. For example, shown in the SQL 7, all the
content of “TA” elements can be retrieved from a sin-
gle table. However, for other existing approaches, they
still need a number of join operations to construct the
query result in XML format, due to the high fragmen-
tation of the XML data stored in the database. For
example, four more joins on Data tables and DataPath

tables are involved for answering the above query by
XParent approach.

5 Implementation

We have implemented a prototype of an XML import-
ing system, called XML Loader, as per the mapping ap-
proach described in previous section, for storing XML
documents into relational databases. Figure 11 de-

XML Loader
XML _,\ XML
Document —/] Parser :>
g E iL XML Data Data Loader
B Module
Schema
Generator

Schema

Information

Updating Importing

meta_table f—2— 5 yMidaa
RDBMS

Figure 11: The prototype of the XML importing sys-
tem.

scribes the architecture of our XML importing system.
There are three main modules: XML Parser, Schema
Generator and XML Data Loader. The XML Parser
reads the input XML document(s), extracts XML tag
name and value of each node in the document, ma-
terializes the path for each node and detects all the
set-valued nodes. The Schema Generator identifies re-
gions for each set-valued node and creates the corre-
sponding mapping schemas for the XML document.
The Data Loader module takes the schema informa-
tion generated in the Schema Generator module, com-
poses tuples according to the relation assignment and
loads those tuples into their corresponding tables in the
underlying database. The whole programs have been
completely written by us using the JAVA program-
ming language(Java” 2 Platform, Standard Edition,
v 1.4.1) and JDBC (Java Database Connectivity 2.0).

XML Parser Module: our XML parser module
is implemented based on the SAX interface. The ma-
jor output of the XML Parser module is the completed
paths set and set-valued nodes set, i.e. the document
structure tree, of the input XML document. Since our
parser does one sequential scan over the input XML
document, we cannot navigate back and forth to re-
trieve the ancestor information of a given element node.
So in implementation, we introduce a path stack to
trace the local hierarchical structure and node occur-

(a) XParent

(b) Xregion

Figure 10: Ancestor tracing route for XParent VS Xregion

rence of an XML document. At any given time the
peak of the stack is the parent information of the in-
coming node.

Schema Generator Module The Schema Gener-
ator module is the core component of our XML Loader
system. Figure 12 shows a simplified view of the schema
generation procedure. First, the XML document struc-
ture tree obtained from XML Parser module is par-
titioned into regions by set-valued nodes. Then rela-
tional tables are assigned to all regions according to
their nested levels on the region tree. In the case that
there is no corresponding table for a given region ex-
isted in the underlying database, a new table repre-
senting the region will also be created in the schema
generating process. At the end of the schema genera-
tion procedure, the meta_data table will be updated for
this new XML document.

Data Loader Module The Data Loader module
reads the schema meta data generated by Schema Gen-
erator Module, identifies region instances and composes
tuples with tuple_id and parent information, and loads
the tuples into their corresponding tables.

In our system, an XML document is loaded into
database incrementally by one-pass sequential scan. So
it can process very large XML documents, as long as
the size of the document supported by the underlying
operating system.

The important feature of identifying region instance
is that the procedure of constructing one region tuple
may interleave the process of composing tuples of other
regions, due to the nested structure of XML documents
and sequential scan. For example, shown in Figure 14,
the construction of a course tuple, is interrupted by
that of two section tuples.

paths set
set-valued nodes set

partition the document
structure tree

A

build the region tree

A

assign or create a database
table for each region

Figure 12: Schema Generator

In implementation, we design a special stack to keep
all ongoing region instances, and only pop out a in-
stance from the stack when the file reader encounters
the end tag of its region root(the set-valued node),
which indicates the completeness of this instance. As
can be seen, the size of the stack is less than the depth
of the region tree, which is much shallower than the
XML data tree.

Update Structure Tree

New relation for the

region "section”

(a) Original Structure Tree

(b) New Structure Tree

Figure 13: Generating a relation for the deepest set-valued node section and update the structure tree by cutting

the section sub tree off.

<catalogue>

An instance of

course region

</section>
</sections>

</course>

</catalogue>

<course cno="291">
<sections>

<section sno="H1" >

An instance of

section region

<instructor>Dr. Lin</instructor> \4 @sno | instuctor
@cno | title sections . H1 Dr. Lin
</section> :
291 | DBMS <« .
<section sno="H2" >
<instructor>Dr. Dean</instructor>

<title>DBMSs</title>

Figure 14: An instance of course region split by two section region instances

6 Experiments

To evaluate the effectiveness and scalability of the pro-
posed XML generic mapping approach Xregion, exten-
sive experiments have been conducted. In this section,
we compare the performance of the Xregion with the
Edge mapping, and XParent approach. The capabil-
ity of storing and querying a large number of differ-
ent XML documents in a single database has also been
tested, and corresponding results will be discussed in

this section.

6.1 Experimental Setups

For the purpose of performance comparison, we also
implemented the Edge mapping and XParent mapping
approaches using Java programming language and SAX
parser API. All experiments were conducted on a

Name Size #paths
SHAKS | 7.65MB | 57
DBLP 200MB | 156
SYN2G | 2GB 156

Table 8: Data sets information

PIII/1GHz PC with 1G RAM running Red Hat Linux
release 7.1. The relational database system used in the
study was Oracle 91 Database Standard Edition release
2. We selected three different XML data collections,
with size of 7.65M, 200MB and 2GB respectively, as our
data sets, which contain XML documents with various
depths and sizes. In order to cover different aspects
of XML queries over XML data, queries were selected
carefully for the corresponding data collections. Table
8 summaries the features of three XML collections in
our experiments.

6.1.1 Data Sets

e SHAKS
SHAKS consists of 37 Shakespeare plays in XML
document format with the average size of 277kB
and 30,000 words. The maximum depth of nested
XML tags is 5 (Play/Act/Scene/Speech/Line).
The whole collection, created by Jon Bosak, is
available at

http://metalab.unc.edu/bosak/xml/eg
/shaks200.zip.

e DBLP (200MB)
The DBLP data set is a large XML document
downloaded from the DBLP server

(http://dblp.uni-trier.de/xml/). The DBLP data
set used in our experiment contained the data till
Jan, 2004, which listed more than 470,000 arti-
cles. The size of this DBLP XML document is
200M.

e SYN2G (2GB)
To test the scalability of these three XML rela-
tional mapping approaches, Xregion, Edge and
XParent, we generated a synthetic XML docu-
ment with the size of 2GB from the DBLP data
set.

The SYN2G XML document used in this experiment
is constructed by concatenating 9 modified DBLP with
the original DBLP. The whole process is one sequential
scan of the DBLP file using SAX for Java.

The rule used in modification is to keep numeric
values unchanged, and only modify letters. In order to

simulate the real distribution of authors and their pub-
lications, we also keep the values of “author” elements
unchanged. A randomly generated 5-letter dictionary
is used to translate each occurrence of any letter speci-
fied in the dictionary to its corresponding letter, at ev-
ery time creating a new version of DBLP. For example,
a title “An Object-Based Approach to the B Formal
Method” is translated into “An Objezt-Based Ajjroazr
to tre B Formal Metrod” based on the following 5-letter
dictionary.

letter | new value
C h

h r

k o)

p j

v f

6.1.2 Query Set

For experiment on the DBLP and SYN2G XML doc-
uments, we used the queries from XParent and those
presented by F. Tian et al [12] as query templates. The
queries experimented in Xrel [14] was selected for test-
ing the SHAKS data set. These queries test a variety
aspect of query performance. In all, we test eighteen
different queries in our benchmark.

All benchmark XML queries in the experiment were
translated by us into a set of SQL statements, one for
each XML query, and executed in ORACLE with ses-
sion setting SQLTRACE enabled.

6.1.3 Performance Measurement

We compare the Xregion with Edge and XParent ap-
proaches with respect to query performance, such as
query elapsed times and I/O blocks, as well as the size
of resulting database for these mapping schemas.

In all our experiments, the size of the database buffer
is set to 32 MB, which is much less than the size of
DBLP and SYN2G XML documents, while four times
larger than the size of SHAKS. Indexes are built prop-
erly on relational tables for all three mapping approaches.
For Edge and XParent, we created indexes as proposed
in [6] [7]. For Xregion, major indexes are composite in-
dexes on table_i_j(doc_name, tuple_id), table_i_j(doc_name,
p-id) and meta_table(doc_name, path).

All benchmark data, such as total elapsed time and
I/0 blocks of the translated SQL queries, are obtained
from Oracle database trace file and formatted with the
TKPROF utility provided by Oracle RDBMS. The sizes
of database tables and indexes are calculated from the
statistics generated by the Oracle database.

6.2 Experiment Results

In this paper we present experimental results of XML
queries on three different XML collections with size of
7.65M, 200MB and 2GB respectively. In order to get
reproducible experimental results, all the benchmark
queries are executed for 5 times before timing. All
the results reported are obtained after warming up the
database buffer, and are based on the average elapsed
times of 10 to 40 executions. The experiment results
and discussion are given below for each data set.

6.2.1 Experiment on SHAKS

The SHAKS data set was experimented by many XML
Relational mapping approaches in literature. We also
experimented on SHAKS using the same queries used in
Xrel[14] and XParent [7], in order to compare the query
performance of our proposed approach Xregion with
the other three mapping approaches, Edge, XParent
and Xrel, on small XML documents, as well as check
the correctness of our system by comparing the query
results published in other papers[14].

The queries for the SHAKS XML collection are as
follows.

e SQI /PLAY/ACT

e SQ2 /PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR
e SQ3 //SCENE/TITLE

e SQ4 //ACT//TITLE

e SQ5 /PLAY/ACT/SCENE/SPEECH
[SPEAKER=*“CURIO”]

e SQ6 /PLAY/ACT/SCENE[//SPEAKER="“Steward”]/
TITLE

The elapsed times of all queries for SHAKS are shown
in the Figure 15 in logarithmic scale. All queries
were executed 40 times to get a better precision. Be-
cause the size of SHAKS (7.65MB) is far less than the
database buffer size (32MB), all mapping approaches
do not require physical reads for evaluating all bench-
mark queries. Table 9 shows the number of logical I/Os,
which are the database buffer cache reads, involved in
each query for all three mapping approaches.

For all queries, Xregion outperforms other mapping
approaches, and the elapsed time for each query is less
than 0.01 sec. XParent performs similarly for SQI,
SQ2, SQ3 and SQ4, which queries only contain one path
expression. However, for SQ5 and SQ6, which contain
more than one simple path expressions, Xrel is much
slower compared with other mapping approaches, be-
cause non-equijoins on element start and end positions
are involved for evaluating these two queries. Edge ap-
proach consumes much time for SQ2 and SQ4, which

#of element nodes 179,689
#of attribute nodes 0
#of text nodes 147,442
#of simple paths 57

Table 10: Test data details for SHAKS XML collec-
tion(8MB)

Approach | Database size | #rows | #tables
Xrel 10.1MB 327131 3
Xp 11.13MB 506820 4
edge 8.45MB 179689 1
xregion 8.37TMB 177655 26

Table 11: Sizes of resulting database tables for Xre-
gion, XParent and Edge schema of SHAKS XML col-
lection(7.65MB)

either query on a long path expression or contains a
“//” in the middle of a path expression, since it need a
lot of joins to check the connection of all possible steps
on the path expressions.

Table 11 shows the size of the resulting relational
database tables for each mapping schema.

6.2.2 Experiment on DBLP

For testing the DBLP, we adopted the queries from
XParent and those presented by F. Tian et al [12] as
query templates, which test a variety aspect of query
performance. The followings are 6 query templates for
the DBLP XML document.

e Q1 Select title of inproceedings by year and a key-
word, such as “XML”.

e Q2 Select articles written by author A.

e Q3 Select papers written by author A or author
B.

e Q4 Select titles of papers published between year
a and year b, with titles starting with a keyword,
e.g. “Database”.

e Q5 Select journal papers by a label of a cite entry.

e Q6 Select journal papers by author A quoted by
papers published in a given year.

e Q7 Select journal papers by author M that are
quoted by author N.

Query Retrieval

O Xregion B Xparent [Edge O Xrel

1
2 01
o
o
L)
% 0.01 -
H
2
2 0.001
=
m
0.0001

SQl1 SQ2

SQ3

SQ4 SQ5 SQ6

Figure 15: Query elapsed time for querying the SHAKS (size 7.65MB) using Xregion, XParent, Xrel and Edge

I/0 Blocks

Query | Xegion | XParent | Edge

Q1 267 1228683 182288

Q2 253 1373 2455

Q3 380 1975 3132

Q4 1426 113910 9730

Q5 6 26 19

Q6 1063 96668014 | 38809339

Q7 919 289021 19728401
Elapsed Times(Seconds)

Xregion | Xparent | Edge

Q1 | 0.03 17.18 4.44

Q2 | 0.003 0.01 0.02

Q3 | 0.005 0.02 0.03

Q4 | 0.11 1.82 0.16

Q5 | 0.002 0.003 0.003

Q6 | 0.01 1768.39 | 838.39

Q7 | 0.01 2.25 428.64

Table 12: I/O blocks and elapsed times for querying
the DBLP (size 200MB) using Xregion, XParent and
Edge

The elapsed times for all queries are shown in the
Figure 16 in logarithmic scale and the number of I/O
blocks involved together with elapsed times are shown
in Table 12. These results show that Xregion dramat-
ically improve the performance of query evaluation.

For simple queries that only contain simple path
expressions and key search, such as Q2, Q3 and Q5,
Edge and XParent performs comparably with Xregion,

10000
O Xregion
1000 B Xparent
5 0O Edge
s 100
o
5]
2 10
Q
£
= 1 r
el
2
E 0.1
m
0.01 |

0.001
Ql Q2 Q3 Q4 Q5 Q6 Q7

Figure 16: Query elapsed time for querying the DBLP
(size 200MB) using Xregion, XParent and Edge

in that all re in the same magnitude.

For query Q1, which requires text matching, e.g.
‘%XML%’, the performance of Edge and XParent are
very inefficient, because they need to search the entire
Data or Edge table for this matching operation. For
some other complicated query, such as Q6 and Q7, Xre-
gion outperforms the Edge and XParent significantly.

For Q6, XParent performs even worse than Edge.
Although XParent or other path based mapping ap-
proaches can locate a node in the XML tree directly
with the aid of path information stored in the relational
schemas, they still need a lot of joins tracing nearest

Approach | DB size | #rows F#tables | index

XParent 323MB | 16472978 4 416MB
Edge 237TMB | 5643462 1 296MB
Xregion 176MB | 2777916 47 115MB

Table 13: Sizes of resulting database tables and indexes
for Xregion, XParent and Edge schema of DBLP XML
document.

common ancestors for processing queries with multiple
paths and predicates specified on different branches.
For example, query Q6 that contains four paths and
three conditions. The following is Q6 using XQuery
syntax.

Q6 Select journal papers by author Jim Gray quoted
by papers published in 1995.

<result>

{

LET $cite:= document(dblp.xml)/dblp/article

[year=°€1995"]/cite

FOR $journal IN document(dblp.xml)/dblp/article

WHERE $journal/author=°‘Jim Gray" and
$journal/@key=$cite

RETURN
$journal

}
</result>

XParent uses 4 path selections and 10 joins to locate
and check the connections among nodes involved in the
query. Edge approach requires 7 selection on edge la-
bels and 6 self-joins for checking edge connections to
evaluate Q6. Because Xregion stores XML documents
by regions, which groups nodes with one to one rela-
tionships to each other in one relation, e.g. the “year”
and “cite” are stored in the same table with “article”,
so Xregion use only 2 joins for connecting “author” re-
lation with “article”.

6.2.3 Database Size

The resulting database sizes of mapping schemas are
also a critical issue, when storing large XML documents
into RDBMSs. Table 13 shows the size of the resulting
relational database tables and indexes for three map-
ping schemas.

The size of the DBLP XML document is 200 MB.
We see Xregion even use less spaces than the original
DBLP file. It is because that all non-set-valued nodes
of the XML document are stored in the same tuples as
their parents. The total number of rows in the database
of Edge schema shows that there are 5,643,462 nodes
in the XML document, and that of Xregion schema,
2,777,916, shows that more than 50% of the nodes are
inlined with their parent nodes.

Query | DBLP(200MB) | SYN2G(2GB) | Ratio
Q1 0.03 0.35 11.6
Q2 0.003 0.03 10
Q3 0.005 0.04 8

Q4 0.11 1.18 10.7
Q5 0.002 0.003 15

Table 14: Ratios of the elapsed times for querying the
DBLP vs SYN2G for Xregion schemas

The sizes of database for Xparent schemas is more
than 40% larger than the DBLP file, because it stores
element nodes and their text values separately, and
both tuples of an element nodes are bundled with po-
sition information. In addition, XParent also use an-
other table DataPath table to record the parent-child
relationships between element nodes, so the database
size of XParent is the largest among all three mapping
approaches.

Xregion also use less space for indexes, while XPar-
ent consumes more than 2 times of space for indexes.

6.2.4 Experiment on SYN2G

In order to inspect the scalability of our mapping ap-
proach, we generate a synthetic XML document SYN2G,
by enlarging the size of original DBLP XML document
to 2GB. In generating the new test XML document,
we take care to keep the ratio of different elements and
attributes in the original DBLP document.

We used the same query templates Q1 to Q5 of
DBLP data set, and the same set of author names, year
and paper types for experiment on the SYN2G XML
document for Xregion, Xparent and Edge approaches.
The sizes of the resulting databases of all these three
mapping approaches scaled about 10 times the sizes of
their corresponding database for DBLP data set.

Table 14 shows the query elapsed times ratio for
Xregion on DBLP and SYN2G XML documents. The
ratios for all queries except Q5 are around 10, which is
the ratio of the size of DBLP and SYN2G.

The elapsed times of Q1 to Q5 for all three mapping
approaches are shown in Figure 17 in logarithmic scale
and the corresponding I/Os involved are displayed in
Table 15.

These results show that the scalability of Xregion
approach is superior to that of XParent an Edge. Most
of the queries evaluated in Xregion schema were run-
ning within 1 second, whereas it took the other two
methods several minutes to execute a single query.

Figure 18 shows the ratio of query elapsed time for
DBLP and SYN2G using Xregion, XParent and Edge.
The performances of XParent and Edge degrade dra-

O Xregion B Xparent O Edge

10000
1000
100
10

0.1

Elapsed Time (Second)

0.01

0.001
Ql Q2 Q3 Q4 Q5

Figure 17: Query elapsed time for querying the DBLP
(size 2GB) using Xregion, XParent and Edge

Query | Xregion | XParent | Edge

Q1 4464 1439115 | 2486350
Q2 3560 113920 16345182
Q3 5209 226412 17040573
Q4 20567 9338007 | 18676595
Q5 26 109664 7728207

Table 15: I/O blocks for querying SYN2G (size 2GB)
using Xregion, XParent and Edge

O Xregion

B Xparent
O Edge

Ratio

Ql Q Q3 Q4 Q5

Figure 18: Query elapsed time ratios for DBLP and
SYN2G using Xregion, XParent and Edge.

Data set | Size Time
SHAKS | 7.65MB | 4.965 sec.
DBLP 200MB | 66.868 sec.
SYN2G | 2GB 412.569 sec.

Table 16: The elapsed time for schema generation

matically on large XML documents. It is because data
are scattered with a high fragmentation degree in rela-
tions, a number of joins are needed to tracing ancestor
information, and the data involved in the join opera-
tions are in very large volume.

6.2.5 Schema Generation Time

Different from other existing approaches, which use fixed
schemas for storing XML documents, Xregion creates or
assigns database schema for an XML document at the
parsing time according to the structure of the underly-
ing document. In our experiment, we also measured the
schema generation times for Xregion ,which are shown
in Table 16. The results show that the schema creation
for XML documents using Xregion schema can be done
within several minutes, even for large documents.

7 Conclusions and Future Work

In this paper, we have presented a new generic map-
ping approach, called Xregion, to storing XML data in
relational database systems, based on reducing the frag-
mentation level of XML data in relations. Performance
study showed promising results that Xregion outper-
forms existing generic mapping

techniques, such as Edge mapping and Xparent, espe-
cially for large XML documents. For example, every
query on SYN2G in Xregion schema consumes less than
1.2 seconds, while it takes XParent or Edge several min-
utes to evaluate a single query. The new approach keeps
the nested structure of XML documents and stores all
non-set-valued nodes in the same tuples with their par-
ents, which in turn reduces the number of join opera-
tions for complicated queries in query processing.

The proposed mapping method is a meta-data driven
approach and no relational schema assignments are hard-
coded. In addition, our method can store different XML
documents in a limited number of tables. The mapping
information of all component of an XML document is
recorded as a meta-data identified by paths and docu-
ment name. Since the schema is not hard-coded, the
maintainability and flexibility are enhanced. Further-
more, this new mapping approach provides a standard
interface for query processing and XML publishing. All
changes of the relational schema assignments for an

XML document are transparent to the query process-
ing module, since the interface of query processing is
the meta-data stored in the meta_table.

We have implemented an XML importing system
based on proposed approach. This system can create
relational schema for any well-formed XML document,
with or without DTD information, and load its data
into the database automatically. The system can be
easily built on top of off-the-shell relational database
management systems.

References

[1] Marcelo Arenas and Leonid Libkin. A normal form
for xml documents. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART sympo-
stum on Principles of database systems, pages 85—
96. ACM Press, 2002.

[2] Philip Bohannon, Juliana Freire, Prasan Roy, and
Jme Simeon. From XML schema to relations: A
cost-based approach to XML storage. In ICDE,
2002.

[3] Brian Cooper, Neal Sample, Michael J. Franklin,
Gisli R. Hjaltason, and Moshe Shadmon. A fast in-
dex for semistructured data. In Proceedings of the
27th International Conference on Very Large Data
Bases, pages 341-350. Morgan Kaufmann Publish-
ers Inc., 2001.

[4] Alin Deutsch, Mary Fernandez, and Dan Suciu.
Storing semistructured data with STORED. pages
431-442, 1999.

[5] Mary Fernandez, Ashok Malhotra, and
et al Xquery 1.0 and xpath 2.0 data
model. in w3c working draft 12 november

2003,http: //www.w3.org/tr /xpath-datamodel,
2003.

[6] Daniela Florescu and Donald Kossmann. A perfor-
mance evaluation of alternative mapping schemes
for storing XML data in a relational database.
Technical report.

[7] Haifeng Jiang, Hongjun Lu, Wei Wang, and Jef-
frey Xu Yu. Path materialization revisited: An
efficient storage model for XML data. In Xiaofang
Zhou, editor, Thirteenth Australasian Database
Conference (ADC2002), Melbourne, Australia,
2002. ACS.

[8] Gerti Kappel, Elisabeth Kapsammer, S. Rausch-
Schott, and Werner Retschitzegger. X-ray - to-
wards integrating XML and relational database

systems. In International Conference on Concep-
tual Modeling / the Entity Relationship Approach,
pages 339-353, 2000.

9] S. Lu, Y. Sun, M. Atay, and F. Fotouhi. A
new inlining algorithm for mapping XML DTDs
to relational schemas. In Proc. of the 1st In-
ternational Workshop on XML Schema and Data
Management, Lecture Notes in Computer Science,
Chicago, Illinois, USA, October 2003. To appear.

[10] Albrecht Schmidt, Martin Kersten, Menzo Wind-
houwer, and Florian Waas. Efficient relational
storage and retrieval of XML documents. Lecture

Notes in Computer Science, 1997:137+, 2001.

[11]

Jayavel Shanmugasundaram, Kristin Tufte, Chun
Zhang, Gang He, David J. DeWitt, and Jeffrey F.
Naughton. Relational databases for querying XML
documents: Limitations and opportunities. In The
VLDB Journal, pages 302-314, 1999.

F. Tian, D. DeWitt, J. Chen, and C. Zhang. The
design and performance evaluation of alternative
xml storage strategies, 2000.

Guangming Xing, Jinhua Guo, and Ronghua
Wang. Managing xml documents using rdbms. In
SNPD 2005, 2005.

M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura. Xrel: A path-based approach to stor-
age and retrieval of xml documents using relational
databases. ACM Transactions on Internet Tech-
nology, 1(1):110-141, August 2001.

Li-Yan Yuan received his BS and MS
in Electric Engineering from Shanghai
Jiao-Tong University and Ph.D. in Com-
puter Science from Case Western Re-
serve University in 1978, 1981, and 1986
respectively. He is Professor in Depart-
ment of Computing Science at
University of Alberta. His research interests include
Database Management Systems, Knowledge Represen-
tation, and Logic Programing. He has published exten-
sively in ACM TODS, IEEE Transactions, AI Journal,
ACM PODS, ICLP.

doc_name Path table_name | col_-name | p_table
course.xml | /catalogue table_1_1 coll

course.xml | /catalogue/univ table_1-1 col2

course.xml | /catalogue/course table_2_1 coll table_1_1
course.xml | /catalogue/course/@cno table_2_1 col2 table_1_1
course.xml | /catalogue/course/title table_2_1 col3 table_1_1
course.xml | /catalogue/course/sections table_2_1 col4 table_1_1
course.xml | /catalogue/course/sections/section table_3-1 coll table_2_1
course.xml | /catalogue/course/sections/section/@sno table_3_1 col2 table_2_1
course.xml | /catalogue/course/sections/section/instructor | table_3_1 col3 table_2_1
course.xml | /catalogue/course/TA table_3_-2 coll table_2_1
course.xml | /catalogue/course/TA /@sid table_3_-2 col2 table_2_1
course.xml | /catalogue/course/TA /lab table_3_2 col3 table_2_1

Table 2: The meta_table.

doc_name tupledid | p4id | ord. | coll col2 | col3 cold
course.xml | 2.0 1 1 coursel | 291 | Database System | sectionsl
course.xml | 5.0 1 2 course2 | 539 | programming sections?2

Table 4: The table_2_1(course).

doc_name tuple.id | p4id | ordinal | coll col2 | col3
course.xml | 3.0 2.0 1 sectionl | H1 Dr. Lin
course.xml | 4.0 2.0 2 section2 | H2 Dr. Dean
course.xml | 6.0 5.0 1 sectiond | H1 Dr. Hanks

Table 6: The table_3_1 (section)

doc_name odd | pdd | ord | coll col2 | col3
course.xml | 3 2 1 sectionl | H1 Dr. Lin
course.xml | 4 2 2 section2 | H2 Dr. Dean
course.xml | 6 5 1 sectiond | H1 Dr. Hanks
test.xml 4 3 1 hl j1

test.xml 6 3 2 h2 j2

Table 7: Two different XML documents share the table_3_1.

Query | Xregion | Xparent | Edge | Xrel | #tupples returned
SQ1 20 202 598 18 185

SQ2 47 387 21685 | 49 618

SQ3 73 705 709 658 750

SQ4 96 930 29599 | 876 951

SQ5 10 33 64 116 4

SQ6 29 427 183 3952 6

Table 9: Logical I/O blocks for querying the SHAKS using Xregion, XParent, Xrel and Edge

