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Abstract

This paper studies the stable model semantics of logic programs with (abstract) constraint

atoms and their properties. We introduce a succinct abstract representation of these constraint

atoms in which a constraint atom is represented compactly. We show two applications.

First, under this representation of constraint atoms, we generalize the Gelfond–Lifschitz

transformation and apply it to define stable models (also called answer sets) for logic

programs with arbitrary constraint atoms. The resulting semantics turns out to coincide with

the one defined by Son et al. (2007), which is based on a fixpoint approach. One advantage of

our approach is that it can be applied, in a natural way, to define stable models for disjunctive

logic programs with constraint atoms, which may appear in the disjunctive head as well as in

the body of a rule. As a result, our approach to the stable model semantics for logic programs

with constraint atoms generalizes a number of previous approaches. Second, we show that our

abstract representation of constraint atoms provides a means to characterize dependencies

of atoms in a program with constraint atoms, so that some standard characterizations and

properties relying on these dependencies in the past for logic programs with ordinary atoms

can be extended to logic programs with constraint atoms.

KEYWORDS: answer set programing, abstract constraint atoms, stable model semantics,

Gelfond–Lifschitz transformation

1 Introduction

Answer set programing (ASP) as an alternative logic programing paradigm has been

demonstrated to be an effective knowledge representation formalism for solving

combinatorial search problems arising in many application areas such as planning,

reasoning about actions, diagnosis, abduction, and so on (Marek and Truszczynski

1999; Niemela 1999; Gelfond and Leone 2002; Lifschitz 2002; Baral 2003). In

recent years, researchers have paid particular attention to extensions of ASP with

means to model aggregate constraints in particular, and constraints on sets in

general (Denecker et al. 2001; Simons et al. 2002; Dell’Armi et al. 2003; Pelov et al.
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2003; Elkabani et al. 2004; Faber et al. 2004; Marek and Remmel 2004; Marek

and Truszczynski 2004; Pelov 2004; Pelov and Truszczynski 2004; Calimeri et al .

2005; Elkabani et al. 2005; Ferraris 2005; Liu and Truszczynski 2005; Liu and

Truszczynski 2006; Son et al. 2006; Liu et al. 2007; Pelov et al. 2007; Shen and You

2007; Son and Pontelli 2007; Son et al. 2007; Marek et al. 2008). Logic programs

with constraint atoms were introduced as a general framework for representing, and

reasoning with, sets of atoms (Marek and Remmel 2004; Marek and Truszczynski

2004; Marek et al. 2008). This is in contrast with traditional logic programs, which

are used primarily to reason with individuals.

The abstract form of a constraint atom takes the form (D,C), where D is a finite

set of atoms and C a collection of subsets from the power set of D, which expresses

a constraint on the domain D with the collection C of admissible solutions.

By allowing constraint atoms to appear anywhere in a rule, the framework of

logic programs has become a highly expressive knowledge representation language.

For example, many constraints can be conveniently and compactly represented with

constraint atoms such as weight and cardinality constraints and aggregates (see,

e.g., Denecker et al. 2001; Simons et al. 2002; Dell’Armi et al. 2003; Faber et al.

2004; Marek and Truszczynski 2004; Pelov 2004; Calimeri et al. 2005). In fact, any

constraint studied in the context of constraint satisfaction problem (CSP) can be

represented by a constraint atom. In this way, the framework of logic programs

with constraint atoms can express complex constraint satisfaction problems, such

as those involving conditional constraints (Mittal and Falkenhainer 1990) (called

dynamic CSPs), which are useful in modeling configuration and design problems.

When the head of a rule is allowed to be a disjunction of constraint atoms, logic

programs become capable of expressing, not only conditional constraints, but also

disjunctive constraints, both of which have been investigated by the constraint

programing community outside of logic programing (see, e.g., Baptistie and Pape

1996; Cohen et al. 2000; Marriott et al. 2001). For example, disjunctive constraints

have been widely used in scheduling to ensure that the time intervals over which

activities require the same resource do not overlap in time (Baptiste and Pape

1996). Although practical ASP languages and systems typically incorporate concrete,

predefined constraint atoms, such as weight constraint atoms (Simons et al. 2002)

and aggregate atoms (Dell’Armi et al. 2003), the adoption of the abstract form of

constraint atoms has made it possible to study the semantics and properties of these

programs in an abstract setting.

In this paper, we characterize and define stable models for logic programs with

constraint atoms by introducing a succinct abstract representation of constraint

atoms. In the current literature as mentioned above, a constraint atom is expressed

as a pair (D,C), where D is a finite set of ground atoms and C a collection of sets

of atoms in D. We call this a power set form representation (w.r.t. D) of constraint

atoms, as C may involve the whole power set 2D of D. This is the case even for

special classes of constraint atoms such as monotone constraint atoms (a constraint

atom (D,C) is monotone if for any S ⊂ D, whenever S ∈ C all of its supersets in 2D

are in C).
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For instance, suppose we have a monotone constraint atom A1 = (D, 2D).

Semantically, this constraint atom is a tautology, since for any set I of atoms,

it is a fact that I satisfies A1, in the sense that I ∩ D ∈ 2D . A clever representation

would just need to express two pieces of information, the “bottom element” ∅ and the

“top element” D; two elements together implicitly cover all the sets in between. So,

instead of using the power set representation to express all the admissible solutions

of this constraint atom, we could use a pair of sets. As another example, consider

a monotone constraint atom A2 = (D, 2D \ {∅}). A minimal element (set inclusive)

in 2D \ {∅} is a singleton in 2D . In this case, any minimal element B in 2D and D

form a pair with B being the bottom element and D being the top. So, we could

represent this constraint atom by a collection of pairs, one for each singleton in D.

The number of such pairs in this case equals to the size of D.

In this paper, we introduce such an abstract representation. In general, the abstract

representation of a constraint atom (Ad, Ac) is expressed as (Ad, A
∗
c), where A∗c consists

of what will be called abstract prefixed power sets, denoted W �V , with W,V ⊆ Ad

and W ∩V = ∅. Intuitively, W �V represents a collection of sets of the form W ∪ S
with S ∈ 2V , all of which are in Ac.

The abstract representation of constraint atoms not only yields a compact

representation, but also captures the essential information embodied in constraint

atoms appearing in the bodies of rules. To substantiate this claim, we show two

applications.

In the first application, we restore the power of the Gelfond–Lifschitz transfor-

mation by generalizing it for logic programs with constraint atoms. The key idea

is that given an interpretation I , each constraint atom A = (Ad, A
∗
c) under our

abstract representation can be concisely characterized by a set of abstract satisfiable

sets of the form W � V ∈ A∗c such that W � V covers I ∩ Ad. Therefore, the

standard Gelfond–Lifschitz transformation can be naturally generalized to logic

programs with constraint atoms by representing each constraint atom by its abstract

satisfiable sets. We then use the generalized Gelfond–Lifschitz transformation to

define stable models for disjunctive logic programs with constraint atoms. It turns

out that, for nondisjunctive logic programs with arbitrary constraint atoms, the

stable models defined this way are precisely those defined by Son et al. (2006, 2007)

for logic programs with arbitrary constraint atoms, and the equivalent semantics,

called the ultimate stable semantics, for aggregate logic programs (Denecker et al.

2001). These semantics are defined by a substantially different approach, the fixpoint

approach.

One advantage of our approach is that the semantics is defined for disjunctive

programs where a constraint atom can appear anywhere in a disjunctive rule. This

is due to the power of the Gelfond–Lifschitz transformation. Roughly speaking,

for a nondisjunctive program with constraint atoms, a stable model M is just

the least model of the reduct by the generalized Gelfond–Lifschitz transformation,

while for a disjunctive program with constraint atoms, a stable model M is a

minimal model of the reduct. We show that logic programs whose constraint

atoms appearing in disjunctive rule heads are elementary possess the minimality

property; i.e., for such logic programs, all stable models under the generalized
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Gelfond–Lifschitz transformation are minimal models. Thus, by the known relation-

ships among different definitions of stable models, the stable model semantics defined

in this paper extends the semantics of conventional disjunctive logic programs

(Gelfond and Lifschitz 1991), the semantics defined by Marek and Truszczynski

(2004) for nondisjunctive logic programs with monotone constraint atoms, the

semantics by Son et al. (2006, 2007), and others equivalent to it (Denecker et al.

2001; Pelov et al. 2003).

We note that disjunctive programs with aggregates have been studied previously

by Faber et al. (2004) and Pelov and Truszczynski (2004), where aggregates do not

appear in the heads of program rules.

In the second application, we show that our abstract representation of constraint

atoms provides a means to characterize the dependency relation among ordinary

atoms in a program with constraint atoms. This dependency relation in the past is

defined using a dependency graph. One question for logic programs with constraint

atoms is how this dependency graph may be constructed so that the means to

characterize the properties of programs by odd cycles, even cycles, call-consistency,

acyclic programs in the traditional context is applicable to the new context. We

show that the information captured in our abstract representation is essential in

constructing the dependency graph for a program with constraint atoms. As we will

see, this is due to a simple way to represent a logic program with constraint atoms

by a normal logic program.

To summarize, the main contributions of this paper are:

• We introduce an abstract representation of constraint atoms, independently of

any programs in which they appear.

• Using this abstract representation, we present a generalized form of Gelfond–

Lifschitz transformation and apply it to define stable models for disjunctive

logic programs with constraint atoms. For nondisjunctive programs, the

semantics defined this way coincides with the one based on conditional

satisfaction (Son et al. 2006, 2007), and with the ones equivalent to it (Denecker

et al. 2001).

• We show that our abstract representation of constraint atoms encodes the

information needed to capture the atom dependency relation in a given

program, thus the means to characterize the properties for normal programs

can still be applied to programs with constraint atoms, and in the process, the

unfolding approach (Son and Pontelli 2007) is made simple.

The paper is structured as follows. Following the preliminaries in the next

section, in Section 3 we present our abstract representation of constraint atoms.

In Section 4, we show some characterization of constraint atoms under this

abstract representation. In Section 5, we introduce a generalized Gelfond–Lifschitz

transformation and apply it to define stable models for disjunctive logic programs

with constraint atoms. In Section 6, we prove the relationship of our approach with

Son et al. (2006)’s fixpoint approach. Then in Section 7, we show that our abstract

representation of constraint atoms encodes precisely the needed information to

define the dependency graph of a program with constraint atoms. In Section 8, we
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discuss the related approaches. Finally in Section 9, we provide conclusions and

discuss future work.

Proofs of theorems and lemmas will be delayed to Appendix.

Some results of this paper have been reported in (Shen and You 2007). The

current paper, however, contains substantial new results.

2 Preliminaries

We consider propositional (ground) logic programs and assume a fixed propositional

language with a countable setV of propositional atoms (atoms for short). Any subset

I of V is called an interpretation. A literal is an atom A (a positive literal) or its

negation not A (a negative literal). For a set S = {A1, . . . , Am} of atoms, we use not S

to denote {not A1, . . . , not Am} and |S | to denote the size of S . For convenience, when

S appears in a logic expression, it represents a conjunction A1∧ . . .∧Am; when not S

appears in a logic expression, it represents a conjunction not A1 ∧ . . . ∧ not Am.

An abstract constraint atom (or c-atom following Son et al. 2006, 2007) A is a pair

(D,C), where D is a finite set of atoms in V and C a collection of sets of atoms in

D, i.e., C ⊆ 2D . For convenience, we use Ad and Ac to refer to the components D

and C of A, respectively. As a general framework, c-atoms can be used to represent

any constraints with a finite set Ac of admissible solutions over a finite domain Ad.

A c-atom A is elementary if it is of the form ({a}, {{a}}), where a is an atom. Due

to the equivalence in satisfaction, an elementary c-atom may be simply written by

the atom in it. A is monotone if it has the property that for any S ⊂ Ad, if S ∈ Ac

then all of its supersets in 2Ad are in Ac. A is nonmonotone if it is not monotone. A is

antimonotone if Ac is closed under subsets, i.e., for every X,Y ⊆ Ad, if Y ∈ Ac and

X ⊆ Y then X ∈ Ac. A is convex if for any S1, S , S2 ⊆ Ad such that S1 ⊆ S ⊆ S2 and

S1, S2 ∈ Ac, we have S ∈ Ac.

A disjunctive constraint program, or a disjunctive (logic) program with c-atoms, is

a finite set of rules of the form

H1 ∨ . . . ∨Hk ← A1, . . . , Am, not B1, . . . , not Bn

where k � 1, m, n � 0 and Hi, Ai and Bi are either an atom or a c-atom (“←” is

omitted when m = n = 0). P is a normal constraint program if k = 1 for all of its

rules; P is a positive constraint program if n = 0 for all of its rules; P is a positive

basic program if n = 0 and k = 1 with H1 being an elementary c-atom for all of its

rules. As usual, P is a normal program if P is a normal constraint program where

all c-atoms are elementary; P is a disjunctive program if P is a disjunctive constraint

program where all c-atoms are elementary.

In the sequel, if not specifically quantified, a logic program (or simply a program)

refers to a disjunctive constraint program. To make it explicit, when a program

contains only elementary c-atoms, it may be called a program with ordinary atoms,

or just a program without c-atoms.

Let r be a rule of the above form. We define

head(r) = {H1, . . . , Hk}
body(r) = {A1, . . . , Am, not B1, . . . , not Bn}
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which will be referred to as the head and the body of the rule, respectively, where

body(r) denotes the conjunction of the elements in the set and head(r) the disjunction.

Without confusion, we may use the set notation in a rule to express the body as

well as the head. For example, given a rule r, we may write head(r)← body(r).

We will use At(P ) to denote the set of atoms that appear in a program P .

The satisfaction relation is defined as follows. An interpretation I ⊆ V satisfies

an atom a if a ∈ I; not a if a �∈ I . I satisfies a c-atom A if I ∩ Ad ∈ Ac; not A if

I ∩ Ad �∈ Ac. This relation extends to arbitrary expressions F mentioning negation

not, conjunction ∧ and disjunction ∨, in a usual way. We will use I |= F to denote

that I satisfies F , and I �|= F to denote that I does not satisfy F . We say F is true

(resp. false) in I if and only if I satisfies (resp. does not satisfy) F .

I satisfies a rule r if it satisfies head(r) or it does not satisfy body(r). I is a model

of a logic program P if it satisfies all rules of P . I is a minimal model of P if it is

a model of P and there is no proper subset of I which is also a model of P . I is

a supported model of P if for any a ∈ I , there is r ∈ P such that a ∈ head(r) and

I |= body(r).

As commented earlier, atoms can be viewed as elementary c-atoms. This is due to

the fact that for an atom a, an interpretation I satisfies a iff a ∈ I iff I |= ({a}, {{a}}).
Sometimes we say a model M restricted to the atoms appearing in a program P . By

this we mean M ∩ At(P ), and denote it by M|At(P ).

Note that c-atoms of the form (D, ∅) are not satisfied by any interpretation. We

will use a special symbol ⊥ to denote any such c-atom.

Following Son et al. (2007), for any c-atom A = (Ad, Ac), its negation not A is

interpreted by its complement, which is a c-atom (Ad, A
−
c ) where A−c = 2Ad \ Ac

1. So

a logic program with negated c-atoms can be rewritten to a logic program free of

negated c-atoms by replacing all occurrences of negated c-atoms with their respective

complement c-atoms. Due to this assumption, in the sequel we only consider logic

programs without negated c-atoms in rule bodies.

Given a disjunctive program P (where c-atoms are elementary) and an interpreta-

tion I , the standard Gelfond–Lifschitz transformation of P w.r.t. I , written as P I , is

obtained from P by performing two operations: (1) remove from P all rules whose

bodies contain a negative literal not A such that I �|= not A, and (2) remove from the

remaining rules all negative literals. Since P I is a positive constraint program where

c-atoms are elementary, it has a set of minimal models. I is defined to be a stable

model of P if it is a minimal model of P I (Gelfond and Lifschitz 1988; Gelfond

and Lifschitz 1991; Przymusinski 1991).

The cardinality and weight constraints can be represented by c-atoms. In some

of the example programs of this paper we may write weight constraints instead of

c-atoms. We will adopt the notation proposed in (Simons et al. 2002). A weight

constraint is an expression of the form

l{a1 = wa1
, . . . , an = wan , not b1 = wb1

, . . . , not bm = wbm}u

1 Note that this is consistent with our definition of satisfaction of negated c-atoms. But not all semantics
are based on the complement approach. A detailed comparison can be found in (Son et al. 2007).
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where ai and bj are atoms and wai is the weight of atom ai and wbj is the weight

of negative literal not bj . The numbers l and u are lower and upper bounds of the

constraint, respectively. A weight constraint is satisfied by a set of atoms S if the

sum of the weights of the literals in the set {a1, . . . , an, not b1, . . . , not bm} that are

satisfied by S is between l and u (inclusive).

A cardinality constraint is a special case of weight constraint where each weight is

one. In writing a cardinality constraint, we will omit the weights. A choice constraint

is a cardinality constraint of the form l{a1, . . . , an}u, where l = 0 and u = n. In

writing a choice constraint, we will omit the bounds.

3 Abstract representation of constraint atoms

In this section, we present a compact representation of c-atoms. In the current

literature, for any c-atom A its admissible solutions are all explicitly enumerated

and written in Ac. In many cases, Ac may involve a large portion of Ad. It is then

of great interest if we can represent Ac using some abstract structure so that its

size can be substantially compressed. We begin by introducing a notion of prefixed

power sets.

Definition 3.1

Let I = {a1, . . . , am} and J = {b1, . . . , bn} (m, n � 0) be two sets of atoms.

(1) The I-prefixed power set of J , denoted by I�J , is the collection {I∪Jsub|Jsub ∈
2J}; i.e., each set in the collection consists of all ais in I plus zero or more bis

in J . For any set of atoms S , we say S is covered by I � J (or I � J covers S)

if I ⊆ S and S ⊆ I ∪ J .

(2) For any two abstract prefixed power sets I � J and I ′ � J ′, I � J is included in

I ′ � J ′ if any set covered by I � J is covered by I ′ � J ′.

Theorem 3.1

When I � J is included in I1 � J1, we have I1 ⊆ I and I ∪ J ⊆ I1 ∪ J1. If I � J is

included in I1 � J1 and I1 � J1 is included in I2 � J2, then I � J is included in I2 � J2.

Given a c-atom A, let I ∈ Ac and J ⊆ Ad \ I . I �J is called I-maximal in A (or just

maximal) if all sets covered by I � J are in Ac and there is no J ′ with J ⊂ J ′ ⊆ Ad \ I
such that all sets covered by I � J ′ are in Ac.

Definition 3.2

Let A be a c-atom and S ∈ Ac. The collection of abstract S-prefixed power sets of A

is {S � J | S � J is S-maximal in A}.

For instance, consider a c-atom A, where

Ad = {a, b, c, d}
Ac = {∅, {b}, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}}.

For ∅ ∈ Ac, the collection of abstract ∅-prefixed power sets of A is {∅ � {b, c}}; for

{b} ∈ Ac, the collection is {{b}�{c}}; for {c} ∈ Ac, the collection is {{c}�{a, b}, {c}�
{b, d}}. Note that {b}�{c} is included in ∅�{b, c}. It is easy to check that all abstract
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prefixed power sets for {a, c}, {b, c}, {a, b, c} ∈ Ac are included in {c} � {a, b} and all

those for {b, c}, {c, d}, {b, c, d} ∈ Ac are included in {c} � {b, d}.
When a collection contains two abstract prefixed power sets, I �J and I ′ �J ′ with

I � J being included in I ′ � J ′, we say I � J is redundant in this collection.

For instance, consider I � J where I = {a, b} and J = {c}, and I ′ � J ′ where

I ′ = {a} and J ′ = {b, c}. Then, I �J is redundant in a collection that contains I ′ �J ′,
since every set covered by I � J is covered by I ′ � J ′.

Definition 3.3

The abstract representation A∗ of a c-atom A is a pair (Ad, A
∗
c) where A∗c is the

collection
⋃

S∈Ac
CS , where CS is the collection of abstract S-prefixed power sets of

A, with all redundant abstract prefixed power sets removed.

Observe that when W � V is in A∗c , all sets in the collection {W ∪ Vsub|Vsub ∈ 2V }
are in Ac. Conversely, when {W ∪Vsub|Vsub ∈ 2V } ⊆ Ac, there exist W ′, V ′ ⊆ Ad such

that W ′ ⊆ W and W ∪ V ⊆ W ′ ∪ V ′, and W ′ � V ′ ∈ A∗c , i.e., W � V is included

in W ′ � V ′ ∈ A∗c . In other words, A∗c is the collection of maximal sublattices of the

lattice (2Ad ,⊆), of which all elements are in Ac. For such a maximal sublattice W �V ,

the bottom element is W and the top element is W ∪ V .

Consider the above example c-atom A again. Its abstract representation is (Ad, A
∗
c)

with A∗c = {∅ � {b, c}, {c} � {a, b}, {c} � {b, d}}.

Theorem 3.2

Let A = (Ad, Ac) be a c-atom.

(1) A has a unique abstract form (Ad, A
∗
c).

(2) For any interpretation I , I |= A if and only if A∗c contains an abstract prefixed

power set W � V covering I ∩ Ad.

For some special classes of c-atoms, their abstract representations are much

simpler and can be stated more structurally.

We need a terminology: given a set S of sets, we say that I ∈ S is minimal (resp.

maximal) in S if there is no I ′ ∈ S such that I ′ ⊂ I (resp. I ′ ⊃ I).

Theorem 3.3

Let A be a c-atom.

(1) A is monotone if and only if A∗c = {B � Ad \ B : B is minimal in Ac} if and

only if |W |+ |V | = |Ad| for each W � V ∈ A∗c .

(2) A is antimonotone if and only if A∗c = {∅ � T : T is maximal in Ac} if and

only if W = ∅ for each W � V ∈ A∗c .

(3) A is convex if and only if A∗c = {B �T : B is minimal and B ∪T is maximal

in Ac}.

By this theorem, given A∗, to check if A is monotone (resp. antimonotone) it

suffices to check if |W | + |V | = |Ad| (resp. W = ∅) for each W � V ∈ A∗c . This

process takes linear time in the size of A∗c . Let S1 = {W | W � V ∈ A∗c} and

S2 = {W ∪ V | W � V ∈ A∗c}. To check if A is convex, it suffices to check (a) there

are no p, q ∈ S1 with p ⊂ q, and (b) there are no p, q ∈ S2 with p ⊂ q. Case (a)
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guarantees that W is minimal while case (b) guarantees W ∪ V is maximal in Ac,

for each W � V ∈ A∗c . The time for the two cases is bounded by O(|A∗c |2 ∗ |Ad|2),
where each subset check is assumed to take time |Ad|2. This leads to the following

complexity result.

Theorem 3.4

Given the abstract representation A∗ of a c-atom A, the time to check if A is

monotone or antimonotone is linear in the size of A∗c , while the time to check if A

is convex is bounded by O(|A∗c |2 ∗ |Ad|2).

We now discuss the issue of compactness. Given a c-atom A, its abstract

representation A∗ is more compact than A when Ac contains some relatively large

abstract prefixed power sets. This can be seen from the special classes of c-atoms in

Theorem 3.3. Since the admissible solutions in such a c-atom are tightly clustered

together, they easily form large abstract prefixed power sets. For example, since

a monotone c-atom is closed under its supersets in Ac, for any minimal set S

in Ac, all the sets in between S and Ad must be in Ac. Therefore, S � Ad \ S is

an abstract S-prefixed power set. The bigger is the difference between S and Ad,

the more information is captured compactly. As another example, we know that

weight constraints without negative literals or negative weights are convex. That is,

these constraints are of the form l{a1 = wa1
, . . . , an = wan}u, where wai � 0, for all

1 � i � n. Let A denote such a weight constraint. Then, Ad = {a1, . . . , an} and Ac

consists of all subsets of Ad where the sum of the weights of the atoms in such a

subset is between l and u. Thus, if the sets B and T are such that B ⊆ T ⊆ Ad, and

B is minimal and T is maximal in Ac, then B � T \ B forms an abstract B-prefixed

power set, representing all the sets in between.

Apparently, c-atoms that are nearly monotone (or antimonotone or convex)

can greatly benefit from the abstract representation. For example, given a set S =

{a1, . . . , an}, a c-atom that expresses all subsets of S except some V in between ∅ and S

can easily fall outside of the above special classes. For instance, suppose S = {a, b, c}
and let A = (S, 2S\{{a, b}}). Then A∗ = (S, {∅�{a, c}, ∅�{b, c}, {a, c}�{b}, {b, c}�{a}}).

It should also be clear that there are situations where A∗ may not be strictly more

compact than A. This is typically the case where the admissible solutions in Ac are

largely unrelated. We say that two sets I and J are unrelated if either no one is a

subset of the other, or I ⊆ J and J \ I is not singleton.

For example, consider a c-atom A where Ac consists of all subsets of Ad with

an equal size. In this case, no set in Ac is a subset of another in Ac. The abstract

representation of such a c-atom A is (Ad, A
∗
c) where A∗c = {I � ∅ : I ∈ Ac}, which

trivially enumerates all admissible solutions in Ac. As another example, consider a

c-atom A = ({a, b, c, d}, {∅, {a, b}, {a, b, c, d}}). In this case, for any I, J ∈ Ac, if J is a

superset of I , then J \ I is not singleton. The abstract representation of A is (Ad, A
∗
c),

where A∗c = {∅�∅, {a, b}�∅, {a, b, c, d}�∅}. Again, A∗c essentially enlists all admissible

solutions in Ac.

Although all the evidence indicates that for any c-atom A the number of abstract

prefixed power sets in A∗c is less than or equal to the number of admissible solutions
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in Ac, i.e., |A∗c | � |Ac|, a rigorous proof for this claim seems challenging. We leave

this proof as an interesting open problem.

Finally in this section, we comment that for a c-atom A, it takes polynomial time in

the size of A to construct A∗. This result will be useful in determining the complexity

of the semantics defined by the generalized Gelfond–Lifschitz transformation later

in this paper.

Below, we give a bound for the construction.

Theorem 3.5

Let A be a c-atom. The time to construct A∗ from A is bounded by O(|Ac|4 ∗ |Ad|2).

4 Characterizations of c-atoms under abstract representation

In this section, we present some characterizations of c-atoms under the abstract

representation. Essentially, these characterizations are related to the fact that a

c-atom can be semantically represented by a propositional formula.

Recall that the standard semantics of a c-atom A is defined by its satisfaction: for

any set of atoms M, M |= A if and only if M ∩Ad ∈ Ac. For nonmonotone c-atoms,

a difficulty with this interpretation of the meaning of a c-atom is that the iterative

construction by the one-step provability operator (Liu and Truszczynski 2006; Marek

et al. 2008) may lead to an undesirable situation—there is no guarantee that once

a c-atom is satisfied by a set of atoms I , it remains to be satisfied by an extension

of I .

However, by definition, a set of atoms M satisfies a c-atom A if and only if

M satisfies the propositional formula that corresponds to the admissible solutions

in Ac. This formula is a disjunction of conjunctions, each of which represents an

admissible solution in Ac. As a propositional formula, it can be simplified to a

logically equivalent one. It turns out that this simplification process is significant

as it reveals the nature of the information encoded in our abstract representation.

Therefore, the main result of this section is to show that the abstract representation of

a c-atom encodes the “simplest” propositional formula, in the form of a disjunctive

normal form (DNF). We then use this insight to define what are called abstract

satisfiable sets, which make it possible to define a new form of Gelfond–Lifschitz

transformation.

Below, we make it precise as what the formula is, and state some facts which

easily follow from the definition.

Proposition 4.1

Let A = (Ad, Ac) be a c-atom with Ac = {S1, . . . , Sm}, and I be an interpretation. The

DNF C1 ∨ . . . ∨ Cm for A is defined as: each Ci is a conjunction Si ∧ not (Ad \ Si).

(1) I satisfies A if and only if C1 ∨ . . . ∨ Cm is true in I .

(2) I satisfies not A if and only if not (C1 ∨ . . . ∨ Cm) is true in I .

Given a c-atom A, the DNF C1∨ . . .∨Cm for A can be simplified. In propositional

logic, we have (S ∧ ¬F) ∨ (S ∧ F) ≡ S , for any formulas S and F .
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Example 4.1

Consider a monotone c-atom A = ({a, b}, {{a}, {b}, {a, b}}). Its corresponding DNF

is (a ∧ not b) ∨ (b ∧ not a) ∨ (a ∧ b), which can be simplified as follows:

(a ∧ not b) ∨ (b ∧ not a) ∨ (a ∧ b)

≡ (a ∧ not b) ∨ (a ∧ b) ∨ (b ∧ not a) ∨ (a ∧ b)

≡ a ∨ b.

Note that in the second line above, a disjunct in the previous DNF is added.

What is interesting is that the resulting propositional formula corresponds to the

abstract representation of A, where A∗c = {{a} � {b}, {b} � {a}}. This correspondence

is made precise in the following theorem.

Theorem 4.2

Let A be a c-atom and M be a set of atoms. M |= A if and only if M satisfies∨
W�V∈A∗c

W ∧ not (Ad \ (W ∪ V )). (1)

The proof of this theorem requires the following lemma.

Lemma 4.3

Let E = {a1, . . . , am} be a set of atoms and F be a DNF covering all possible

interpretations on the ais, i.e.,

F =
∨

1�i�m, Li∈{ai,not ai}

L1 ∧ ... ∧ Lm.

F can be simplified to true in propositional logic by applying the following rule:

For any S1 and S2, (S1 ∧ L ∧ S2) ∨ (S1 ∧ not L ∧ S2) ≡ S1 ∧ S2. (2)

Note that rule (2) is like the resolution rule in its underlying pattern, but it applies

to a DNF while resolution applies to CNFs.

Theorem 4.2 shows that the satisfaction of a c-atom A can be simplified to (1) in

terms of its abstract representation by applying rule (2).

As a slightly more involved example, consider a c-atom

B = ({a, b, c, d}, {{d}, {a}, {a, b}, {a, c}, {a, b, c}}).

The DNF for this c-atom is:

(d ∧ not a ∧ not b ∧ not c) ∨ (a ∧ not b ∧ not c ∧ not d)∨
(a ∧ b ∧ not c ∧ not d) ∨ (a ∧ c ∧ not b ∧ not d) ∨ (a ∧ b ∧ c ∧ not d).

which can be simplified to

(d ∧ not a ∧ not b ∧ not c) ∨ (a ∧ not d),

each disjunct of which corresponds to a prefixed power set in the abstract represen-

tation of B, i.e., B∗c = {{d} � ∅, {a} � {b, c}}.
We say that a DNF is maximally simplified if it cannot be further simplified by

applying rule (2).

The following theorem shows that (1) is maximally simplified.
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Theorem 4.4

The semantic characterization (1) of a c-atom A is maximally simplified.

Theorems 4.2 and 4.4 suggest that the satisfaction of c-atom A can be described

by its simplest DNF given in (1), independently of any interpretations. When we

generalize the standard Gelfond–Lifschitz transformation for constraint programs,

we can apply a given interpretation to further simplify this DNF. In the following,

and in the rest of the paper, given an interpretation I , for any c-atom A we use TI
A

to denote I ∩ Ad and FI
A to denote Ad \ TI

A.

We are ready to define abstract satisfiable sets.

Definition 4.1

Let A be a c-atom and I an interpretation. W � V ∈ A∗c is an abstract satisfiable set

of A w.r.t. I if W �V covers TI
A. In this case, W is called a satisfiable set of A w.r.t.

TI
A. We use AI

s to denote the set of abstract satisfiable sets of A w.r.t. I .

The next two theorems characterize some properties of abstract satisfiable sets as

well as satisfiable sets.

Theorem 4.5

Let A be a c-atom and I an interpretation. I |= A if and only if I |=
∨

W�V∈AI
s
W ∧

not (Ad \ (W ∪ V )).

Theorem 4.6

Let A be a c-atom and I an interpretation. If S is a satisfiable set of A w.r.t. TI
A,

then for every S ′ with S ⊆ S ′ ⊆ TI
A, we have S ′ ∈ Ac.

5 A generalization of the Gelfond–Lifschitz transformation

In this section we show that the characterizations of c-atoms presented in the last

section can be used to generalize the standard Gelfond–Lifschitz transformation for

logic programs with c-atoms.

In the following, special atoms of the forms θA, βA and ⊥ will be used, where A

is a c-atom. Unless otherwise stated, we assume that these special atoms will not

occur in any given logic programs or interpretations. Let Γθ and Γβ be the sets of

special atoms prefixed with θ and β, respectively. Let Γ = Γθ ∪ Γβ .

Definition 5.1

Given a logic program P and an interpretation I , the generalized Gelfond–Lifschitz

transformation of P w.r.t. I , written as P I , is obtained from P by performing the

following four operations:

(1) Remove from P all rules whose bodies contain either a negative literal not A

such that I �|= not A or a c-atom A such that I �|= A.

(2) Remove from the remaining rules all negative literals.

(3) Replace each c-atom A in the body of a rule with a special atom θA and

introduce a new rule θA ← A1, . . . , Am for each satisfiable set {A1, . . . , Am} of

A w.r.t. TI
A.
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(4) Replace each c-atom A in the head of a rule with ⊥ if I �|= A, or replace it

with a special atom βA and introduce a new rule B ← βA for each B ∈ TI
A, a

new rule ⊥ ← B, βA for each B ∈ FI
A, and a new rule βA ← TI

A.

In the first operation, we remove all rules whose bodies are not satisfied in I

because of the presence of a negative literal or a c-atom that is not satisfied in I .

In the second operation, we remove all negative literals because they are satisfied

in I . The last two operations transform c-atoms in the body and head of each rule,

respectively.

Each c-atom A in the body of a rule is substituted by a special atom θA. By

Theorem 4.5, θA can be defined by introducing a new rule θA ←W∧not (Ad\(W∪V ))

for each abstract satisfiable set W�V . Since the negative part not (Ad\(W∪V )) is true

in I , it can be removed from the rule body following the standard Gelfond–Lifschitz

transformation. Note that the remaining part W is a satisfiable set. Therefore, in the

third operation, θA is defined by introducing a new rule θA ← A1, . . . , Am for each

satisfiable set {A1, . . . , Am} of A w.r.t. TI
A.

When I |= A, each c-atom A in the head of a rule is replaced by a special atom

βA. Note that βA represents a conclusion that every B ∈ TI
A is true and every B ∈ FI

A

is false in I . Such a conclusion is formulated, in the fourth operation, by introducing

a new rule B ← βA for each B ∈ TI
A, a new rule ⊥ ← B, βA for each B ∈ FI

A, and

a new rule βA ← TI
A. ⊥ is a special atom meaning false. The last rule comes from

the rule βA ← TI
A ∧ not FI

A, where the negative part not FI
A is true in I and thus is

removed following the standard Gelfond–Lifschitz transformation. When I �|= A, we

replace A with ⊥. In the case that ⊥ appears in a disjunction B1 ∨ . . . ∨⊥∨ . . . ∨ Bm

with m > 0, ⊥ can be removed, as the satisfaction of the disjunction is determined

by the Bis.

Apparently, the generalized Gelfond–Lifschitz transformation coincides with the

standard Gelfond–Lifschitz transformation when P contains no c-atoms.

Since the generalized transformation P I is a positive logic program without c-

atoms, it has minimal models. We then define the stable model semantics of a

constraint program in the same way as that of a logic program with ordinary atoms.

Definition 5.2

For any logic program P , an interpretation I is a stable model of P if I = M \ Γ,

where M is a minimal model of the generalized Gelfond–Lifschitz transformation

P I .

Immediately, if P is a normal constraint program, then I is a stable model

of P if I = M \ Γ and M is the least model of the generalized Gelfond–

Lifschitz transformation P I . In other words, the extension to disjunctive constraint

programs from normal constraint programs follows the same way as the extension

to disjunctive programs from normal programs.

Again, stable models of P under the generalized Gelfond–Lifschitz transformation

coincide with stable models under the standard Gelfond–Lifschitz transformation

when P has no c-atoms. In the following, unless otherwise stated, by stable models

we refer to stable models under the generalized Gelfond–Lifschitz transformation.
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Example 5.1

Consider the following program:

P1 : p(1).

p(−1)← p(2).

p(2)← SUM({X|p(X)}) � 1.

The aggregate constraint SUM({X|p(X)}) � 1 can be represented by a c-atom A

where

Ad = {p(−1), p(1), p(2)},
Ac = {{p(1)}, {p(2)}, {p(−1), p(2)}, {p(1), p(2)}, {p(−1), p(1), p(2)}}.

Its abstract representation is (Ad, A
∗
c) with

A∗c = {{p(1)} � {p(2)}, {p(2)} � {p(−1), p(1)}}.

Let us check if I = {p(−1), p(1), p(2)} is a stable model of P1 using the generalized

Gelfond–Lifschitz transformation. The first two operations do not apply. Since

I |= A with TI
A = I ∩ Ad = {p(−1), p(1), p(2)}, A has only one abstract satisfiable set

{p(2)} � {p(−1), p(1)}, and thus it has only one satisfiable set {p(2)} w.r.t. TI
A. So,

in the third operation A is replaced by a special atom θA, followed by a new rule

θA ← p(2). Hence we have

P I
1 : p(1).

p(−1)← p(2).

p(2)← θA.

θA ← p(2).

The only minimal model of P I
1 is {p(1)}, so I is not a stable model of P1.

It is easy to check that this program has no stable model.

Example 5.2

Consider a disjunctive constraint program:

P2 : A ∨ B.

a← b.

where A is a c-atom ({a}, {{a} � ∅}) and B = ({b}, {{b} � ∅}).

(1) Let I1 = {a, b}. After performing the fourth operation, we obtain

P I1
2 : βA ∨ βB.

a← βA.

βA ← a.

b← βB.

βB ← b.

a← b.

P I1
2 has only one minimal model, M = {a, βA}; hence, I1 is not a stable model

of P2.
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(2) Let I2 = {a}. After performing the fourth operation, we obtain

P I2
2 : βA.

a← βA.

βA ← a.

a← b.

P I2
2 has one minimal model, M = {a, βA}; hence, I2 is a stable model of P2.

The introduction of disjunction into the head of a rule increases the expressiveness

of the language, and allows natural representation using disjunction.

Example 5.3

In scheduling, combinatorial counting or grouping is often needed. For example, a

shift either has a in it, or not. If a is in it, then either a goes along with exactly one

in {b, c}, or any two in {d, e, f}. This can be represented by a disjunctive program

with cardinality constraints:

1{a, not a}1.
1{b, c}1 ∨ 2{d, e, f}2← a.

The semantics of this program can be understood by the semantics of the corre-

sponding constraint program:

({a}, {∅, {a}}).
({b, c}, {{b}, {a}}) ∨ ({d, e, f}, {{d, e}, {d, f}, {e, f}})← a.

This program has the following stable models: ∅, {a, b}, {a, c}, {a, d, e}, {a, d, f}, and

{a, f, e}.

Once c-atoms are allowed to appear in the disjunctive head of a rule, disjunctive

aggregates may be expressed.

Example 5.4

Suppose the set of atoms in our propositional language is {p(−1), p(1), p(2)}2.
Consider the following program:

p(1) ∨ p(−1).

SUM(X|p(X)) � 3 ∨ SUM(X|p(X)) � 0← COUNT(X|p(X)) � 1.

Its stable models are: {p(1), p(2)}, {p(−1), p(1)}, and {p(−1)}.

As commented in Simons et al. (2002), a weight constraint can be transformed to

one with negative weights but without negative literals. The weight constraints of this

kind in fact express linear inequations. Thus, a disjunction of weight constraints can

be viewed as specifying a disjunction of linear inequations. For instance, the second

rule in the above example can be expressed using weight constraints. To encode the

2 Note that we assume a fixed propositional language that includes all the atoms appearing in a given
program.
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SUM aggregate constraint above, let l Σ u denote l{p(−1) = −1, p(1) = 1, p(2) = 2}u,
where l and u are the lower and upper bounds, respectively. When l (resp. u) is

omitted, it means −∞ (resp. ∞). Then, we can write the following rule

3 Σ ∨ Σ 2← 1{p(−1) = 1, p(1) = 1, p(2) = 1}

where the right-hand side encodes the COUNT aggregate constraint.

We argue that disjunctive logic programing with constraint atoms provides a rich

knowledge representation language for modeling conditional as well as disjunctive

constraints, which have been studied in the past in constraint programing (see, e.g.,

Baptiste and Pape 1996; Cohen et al. 2000; Marriott et al. 2001)3.

5.1 Properties of stable models

We now show some properties of stable models.

Theorem 5.1

Any stable model M of a logic program P is a model of P .

A stable model may not be a minimal model for some constraint programs. To

illustrate, consider a logic program

P : ({a, b}, {{a} � {b}, {b} � {a}}).

It is easy to check that {a}, {b} and {a, b} are all stable models of P . We see that

{a, b} is not minimal.

It turns out that logic programs whose c-atoms appearing in rule heads are

elementary possess the minimality property.

Theorem 5.2

Let P be a logic program such that c-atoms appearing in the heads of its rules are

all elementary. Any stable model of P is a minimal model of P .

Recall that any atom A can be expressed as a c-atom A′ = ({A}, {{A}}) and any

negative literal not A can be expressed as a c-atom A′′ = ({A}, {∅}), such that for

any interpretation I , I |= A (resp. I |= not A) if and only if I |= A′ (resp. I |= A′′).

The following result further justifies our generalization of the standard stable model

semantics to logic programs with c-atoms.

Theorem 5.3

Let P be a logic program with ordinary atoms and P ′ be P with each positive literal

A replaced by a c-atom ({A}, {{A}}), and each negative literal not A replaced by a

c-atom ({A}, {∅}). An interpretation I is a stable model of P if and only if it is a

stable model of P ′.

If all c-atoms are coded in the abstract representation, the time complexity of the

generalized Gelfond–Lifschitz transformation is as follows.

3 But note that disjunction in rule heads is epistemic disjunction (Gelfond and Lifschitz 1991), not the
classic disjunction in propositional logic.
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Theorem 5.4

Let P be a logic program with n different c-atoms that are coded in the abstract

representation and I be an interpretation. Let A be a c-atom such that I |= A.

(1) The time complexity of computing all satisfiable sets of A w.r.t. TI
A is linear

in the size of A∗c .

(2) The time complexity of the generalized Gelfond–Lifschitz transformation is

bounded by O(|P | + n ∗ (2MA∗c + MAd
+ 1)), where MA∗c and MAd

are the

maximum sizes of A∗c and Ad of a c-atom in P , respectively.

The following result is immediate.

Corollary 5.5

The size of P I is bounded by O(|P |+ n ∗ (MA∗c + MAd
+ 1)).

Finally, we show the complexity of the major decision problem, namely the stable

model existence problem. In the following, we assume the explicit representation of

c-atoms A in the form (Ad, Ac) in a given program P .

Theorem 5.6

(1) The problem of deciding whether a stable model exists for a normal constraint

program P is NP-complete.

(2) The problem of deciding whether a stable model exists for a disjunctive

constraint program P is Σ2
P -complete.

6 Relationship to conditional satisfaction

Recently, Son et al. (2006) proposed a fixpoint definition of stable models for logic

programs with c-atoms. They introduce a key concept termed conditional satisfaction.

Definition 6.1 (Son et al. 2006 )

Let R and S be two sets of atoms. The set R conditionally satisfies a c-atom A w.r.t.

S , denoted R |=S A, if R |= A and for every S ′ such that R∩Ad ⊆ S ′ and S ′ ⊆ S ∩Ad,

we have S ′ ∈ Ac.

An immediate consequence operator TP (R, S) is introduced, which evaluates each

c-atom using the conditional satisfaction |=S instead of the standard satisfaction |=.

Definition 6.2 (Son et al. 2006 )

Let P be a positive basic logic program and R and S be two sets of atoms. Define

TP (R, S) =

{
A

∣∣∣∣ ∃r ∈ P : R |=S body(r),

head(r) = ({A}, {{A}})

}
.

When the second argument is a model of P , TP is monotone w.r.t. the first

argument. In particular, given a model M and let R ⊆ U ⊆ M, then TP (R,M) ⊆
TP (U,M) ⊆M. Thus, for any model I , the sequence T i

P (∅, I) with T 0
P (∅, I) = ∅ and

T i+1
P (∅, I) = TP (T i

P (∅, I), I), converges to a fixpoint T∞P (∅, I). I is defined to be a

stable model if it is the same as the fixpoint.

The following result reveals the relationship between conditional satisfaction and

satisfiable sets.
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Theorem 6.1

Let A be a c-atom and R and I be two interpretations with R ⊆ I . Let TI
A = I ∩Ad.

R |=I A if and only if A∗c has an abstract prefixed power set W � V such that

R ∩ Ad � TI
A \ (R ∩ Ad) is included in W � V (thus W is a satisfiable set of A w.r.t.

TI
A and W ⊆ R ∩ Ad).

Theorem 6.1 leads us to the conclusion that Son et al. (2006)’s fixpoint definition

and our definition of stable models are semantically equivalent for positive basic

programs, as stated formally by the following theorem.

Theorem 6.2

Let P be a positive basic program and I a model of P . I is a stable model under

Son et al. (2006)’s fixpoint definition if and only if it is a stable model derived from

the generalized Gelfond–Lifschitz transformation.

Note that by Theorem 5.2, any stable model of a positive basic program is a

minimal model.

When the head A of a rule r is not elementary, given an interpretation I , Son

et al. (2006) transform r into the following set of rules:

B ← body(r), for each B ∈ TI
A

⊥ ← B, body(r), for each B ∈ FI
A.

Under our generalized Gelfond–Lifschitz transformation, r is transformed into the

following set of rules:

βA ← body(r),

B ← βA, for each B ∈ TI
A

⊥ ← B, βA, for each B ∈ FI
A

βA ← TI
A.

Apparently, the two transformations are semantically equivalent in that when body(r)

is true, they derive the same conclusions except for the special atoms. Combining

with Theorem 6.2, we then conclude that Son et al.(2006)’s fixpoint definition and our

definition of stable models under the generalized Gelfond–Lifschitz transformation

are semantically equivalent for normal constraint programs.

Note that any normal constraint program can be transformed into a positive

basic program by replacing each negative literal not B with a c-atom ({B}, {∅})
and replacing each negative c-atom not A with the complement (Ad, 2

Ad \ Ac) of

A. Therefore, our approach with the generalized Gelfond–Lifschitz transformation

is semantically equivalent to Son et al. (2006)’s approach for normal constraint

programs, as stated by the following result.

Corollary 6.3

Let P be a normal constraint program and I a model of P . Let P ′ be P with

each negative literal not B being replaced by ({B}, {∅}) and each negative c-atom

not A replaced by (Ad, 2
Ad \ Ac). I is a stable model of P ′ under Son et al. (2006)’s

approach if and only if it is a stable model of P ′ derived from the generalized

Gelfond–Lifschitz transformation.
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7 Properties based on dependency relation

In normal logic programing, the dependency relation over the atoms in a program

is an essential notion based on which a number of important properties are

characterized (see, e.g., Sato 1990; Fages 1994; You and Yuan 1994). In this section,

we extend these characterizations to normal constraint programs. A central question

here is what should be the dependency graph for a given program. We will see that

our abstract representation of c-atoms in the bodies of rules is precisely what is

needed to construct such a dependency graph, for the semantics defined by (Son

et al. 2006).

In this section, a basic program P refers to a collection of rules of the form

H ← A1, . . . , An (3)

where H is either ⊥ or an elementary c-atom, and Ai are arbitrary c-atoms. Each

rule in a basic program is also called a basic rule.

To be consistent with the original definition of stable model (Gelfond and Lifschitz

1988), we assume that a rule of the form

⊥ ← body

in a basic program is already replaced by a rule with an elementary head

f ← body, ({f}, {∅})

where f is a new symbol representing the elementary c-atom ({f}, {{f}}) and the

c-atom ({f}, {∅}) in the body is its complement.

The proof of the main result of this section is based on a method of representing

a basic program by a normal program, directly using the abstract representation

of c-atoms, while preserving the stable model semantics. Since the material is of

interest on its own, we will first present it in the next subsection.

7.1 Representing basic programs by normal programs

The semantics of logic programs with c-atoms or aggregates have been studied by

the unfolding approach (Pelov et al. 2003; Son and Pontelli 2007). It turns out, under

our abstract representation of c-atoms, the unfolding approach can be made simple.

Let P be a basic program. The normal program translation of P , denoted Pn, is a

normal program defined as follows. For each rule in P

H ← A1, . . . , An, (4)

we have a rule

H ← θA1
, . . . , θAn

, (5)

in Pn, where θAi
are new symbols, plus the following rules: for each 1 � i � n,

θAi
←W, not d1, . . . , not dk for each W � V ∈ A∗ic ,

where {d1, . . . , dk} = Aid \W ∪ V .
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Example 7.1

Consider the program P2 in Example 5.1 again, which consists of the following rules

p(1).

p(−1)← p(2).

p(2)← SUM({X | p(X)}) � 1.

Let A denote the aggregate in P2. Recall that A∗c = {{p(1)} � {p(2)}, {p(2)} �
{p(−1), p(1)}}. Thus, Pn consists of

p(1).

p(−1)← p(2).

p(2)← θ.

θ ← p(1), not p(−1).

θ ← p(2).

It is clear that this normal program has no stable models.

A distinct feature of our translation, as compared with the previous unfolding

approach (Pelov et al. 2003; Son and Pontelli 2007), is that the abstract representation

of c-atoms is defined independently of any given program, while in (Pelov et al. 2003;

Son and Pontelli 2007), the translation to a normal program is an integrated process.

This difference contributes to the simplicity of our approach.

The use of the abstract representation of c-atoms is essential. The following

example shows that a simple enumeration of admissible solutions in a c-atom does

not work. This is the case even for logic programs with only monotone c-atoms.

Example 7.2

Suppose a program P that consists of a single rule

a← A

where A = ({a}, {∅, {a}}). Note that A is monotone, as well as a tautology, and P

has a unique stable model {a}. Since A∗c = {∅ � {a}}, Pn consists of

a← θ.

θ ← .

Without the information encoded in the prefixed power set above, it may appear that

a natural normal program encoding is to split admissible solutions as conditions into

different rules. If we adopt this strategy, we will get the following normal program:

a← θ.

θ ← not a.

θ ← a.

This program has no stable model.

We now show that our translation preserves the stable models semantics. Though

the result is presented as a lemma for proving Theorem 7.2 of the next subsection,

it is obviously of independent interest.

Below, given a program P , we denote by ST (P ) the set of stable models of P .
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Lemma 7.1

Let P be a basic program and Pn be its normal program translation. Then, ST (P ) =

{M|At(P )|M is a stable model of Pn}.

7.2 Dependency relation-based characterizations

We are now ready to extend some of the well-known characterizations for normal

programs to normal constraint programs. The key is the notion of a dependency

graph for normal constraint programs.

Definition 7.1

Let P be a basic program. The dependency graph GP is a graph (V , E), where

V = At(P ) and E is the set of positive and negative edges defined as the follows:

there is a positive edge from u to v, denoted u→+ v, if there is a rule r of the form

(3) in P such that head(r) = u, and for some Ai ∈ body(r) and W � V ∈ A∗ic , v ∈W ;

there is a negative edge from u to v, denoted u →− v, if there is a rule r of the

form (3) in P such that head(r) = u, and for some Ai ∈ body(r) and W � V ∈ A∗ic ,

v ∈ Aid \W ∪ V .

It is important to notice that, in the definition above, for an abstract prefixed

power set W �V ∈ A∗ic , although we know that for any I such that W ⊆ I ⊆W ∪V
we have I ∈ Aic , positive edges are only into atoms in W , not into any atom in I \W .

Also, in normal logic programing, negative edges are only into negative literals in

rule bodies, but here a negative edge may result from a positive c-atom in the body

of a rule.

Example 7.3

Suppose program P consists of a single rule

a← ({a, b, c}, {∅, {b}, {b, c}}).

Let A be the c-atom in the body of the above rule. Since A∗c = {∅ � {b}, {b} � {c}},
we have a→− a, a→− c, and a→+ b.

We say that P has an positive cycle if there is a path in GP from an atom to itself

via only positive edges. P has an odd cycle if there is a path in GP from an atom

to itself via an odd number of negative edges, and P has an even cycle if there is a

path in GP from an atom to itself via an even number of negative edges. P is said to

be call-consistent if P has no odd cycles. P is acyclic if it has no cycle of any kind.

We remark that our definition of dependency graph reduces to the standard one

for normal programs. Recall that the dependency graph for a normal program is

defined as: for each normal rule in a normal program P

a← b1, . . . , bk, not c1, . . . , not cm, (6)

there is a positive edge a →+ bi in GP for each i, and a negative edge a →− cj for

each j.

A normal program is in fact a basic program, in the sense that each positive

literal bi in the rule above is replaced by an elementary c-atom ({bi}, {{bi}}) and each



550 Y.-D. Shen et al.

negative literal not ci replaced by ({ci}, {∅}), i.e., the complement of ({ci}, {{ci}}). Let

the resulting program be P ′. Since if Ci = ({ci}, {∅}) then C∗i = ({ci}, {∅ � ∅}), by

Definition 7.1, there is a negative edge a→− ci in GP ′ .

The following theorem shows that the well-known properties based on the

dependency graphs for normal programs as shown in You and Yuan (1994) remain

to hold for normal constraint programs under the new definition of dependency

graph for the latter.

Theorem 7.2

Let P be a basic program.

(1) P has a stable model if P is call-consistent.

(2) P has more than one stable model only if P has an even loop.

(3) P has a unique stable model if P is acyclic.

(4) If P has no positive cycles, then every supported model of P is a stable model

of P .

Example 7.4

To illustrate the point (2) above, consider the following program.

p← .

a← ({p, b}, {{p}}).
b← ({p, a}, {{p}}).

The program has two stable models {p, a} and {p, b}. Then, according to the theorem,

there must exist an even loop in its dependency graph. Indeed, the edges a →− b

and b→− a form such an even cycle.

8 Related work

The notion of logic programs with c-atoms is introduced in Marek and Remmel

(2004) and Marek and Truszczynski (2004), and further developed in Liu and

Truszczynski (2005), Marek et al. (2008), Son and Pontelli (2007), and Son et al.

(2007). As we mentioned earlier, major existing approaches can be roughly classified

into three types: unfolding approaches, fixpoint approaches, and minimal model

approaches.

Representative unfolding approaches to handling c-atoms include Pelov et al.

(2003) and Son and Pontelli (2007), where a notion of aggregate solutions (or

solutions) is introduced. Informally, a solution of a c-atom A = (Ad, Ac) is a pair

〈S1, S2〉 of disjoint sets of atoms of Ad such that for every interpretation I , if S1 ⊆ I

and S2 ∩ I = ∅ then I |= A. This definition is given by Son and Pontelli (2007). Pelov

et al. (2003) define an aggregate solution A as a pair 〈S1, S2〉 with S1 ⊆ S2 ⊆ Ad such

that for every interpretation I , if S1 ⊆ I and (Ad \ S2) ∩ I = ∅ then I |= A. In the

following, we use the former definition.

It turns out that each W � V ∈ A∗c corresponds to a minimal solution 〈W,Ad \
(W ∪ V )〉 of A. A solution 〈S1, S2〉 of A is minimal if for no S3 ⊂ S1 nor S4 ⊂ S2,

〈S3, S2〉 or 〈S1, S4〉 is a solution of A. First, 〈W,Ad \ (W ∪ V )〉 is a solution of A; by
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Theorem 4.2 for any interpretation I , if W ⊆ I and (Ad \ (W ∪ V )) ∩ I = ∅ then

I |= A. Second, 〈W,Ad \ (W ∪ V )〉 is a minimal solution of A, as by Theorem 4.4,

W ∧ not (Ad \ (W ∪ V )) cannot be further simplified.

Representative fixpoint approaches include Liu et al. (2007), Marek et al. (2008),

Marek and Truszczynski (2004), Pelov (2004), Pelov and Truszczynski (2004),

and Son et al. (2006, 2007). Son et al. (2006; 2007) can handle arbitrary c-

atoms, while Marek et al. (2008), Marek and Truszczynski (2004), and Pelov and

Truszczynski (2004) apply only to monotone c-atoms. Liu et al. (2007) extend Liu and

Truszczynski (2005), Marek et al. (2008), Marek and Truszczynski (2004), and Pelov

and Truszczynski (2004) for arbitrary c-atoms based on a concept of computation.

Son et al. (2006, 2007) show that their fixpoint approach is semantically equivalent to

that of Marek and Truszczynski (2004) for normal logic programs with monotone c-

atoms; equivalent to that of Faber et al. (2004) and Ferraris (2005) for positive basic

logic programs with monotone c-atoms; equivalent to that of Denecker et al. (2001)

and Pelov et al. (2003) for positive basic logic programs with arbitrary c-atoms.

In Section 6, we show that our approach using the generalized Gelfond–Lifschitz

transformation is semantically equivalent to the approach of Son et al. (2007) for

normal logic programs with arbitrary c-atoms. Therefore, the stable model semantics

defined in this paper for disjunctive logic programs with arbitrary c-atoms extends

these existing semantics.

Faber et al. (2004) propose a minimal model approach. To check if an interpretation

I is a stable model of P , they first remove all rules in P whose bodies are not satisfied

by I , then define I to be a stable model if it is a minimal model of the simplified

program. They consider the class of disjunctive logic programs whose rule heads are

a disjunction of ordinary atoms. Stable models of P under this semantics are minimal

models of P . Ferraris (2005) defines a stable model semantics in a different way,

which (when negated c-atoms are treated as their complement c-atoms) agrees with

the minimal-model based one on this class of programs. Son et al. (2006) show that

for normal logic programs whose c-atoms appearing in rule heads are elementary,

stable models under their semantics are stable models under the semantics of Faber

et al. (2004) and Ferraris (2005). It immediately follows that for such normal logic

programs, stable models under our semantics are stable models under the semantics

of Faber et al. and Ferraris. However, the converse is not necessarily true, even for

positive basic logic programs. Consider the positive basic logic program P :

b← c.

c← d.

d← ({b, c}, {∅, {b}, {b, c}}).

P has only one model I = {b, c, d}. It is easy to check that I is not a stable model

under the semantics of Son et al. (2006) and ours. However, I is a stable model

under the semantics of Faber et al. (2004) and Ferraris (2005). Observe that the

truth of b, c, d can only be inferred via a self-supporting loop:

b→ d→ c→ b.
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This example program indicates that both the semantics of Faber et al. (2004) and

that of Ferraris allow self-supporting loops.

9 Conclusions and future work

In this paper we have introduced an abstract representation of c-atoms. To substan-

tiate the claim that the abstract representation captures the essential information

correctly and compactly, we showed two applications. In the first one, we show

that the semantics based on conditional satisfaction (Son et al. 2006; Son et al.

2007), and the one equivalent to it (Denecker et al. 2001), can be defined by

a generalized form of Gelfond–Lifschitz transformation, thus demonstrating that

Gelfond–Lifschitz transformation can still play an important role in the study of

semantics for logic programs with arbitrary c-atoms. In the second application, we

show that our abstract representation of c-atoms encodes the information needed to

define the atom dependency relation in a given program. As a result, the properties

known to normal programs can be extended to programs with c-atoms. In this

process, the unfolding approach (Son and Pontelli 2007) is made simple.

Several interesting tasks remain open. One is the possibility of showing that other

semantics may be characterized by our abstract representation of c-atoms. This is

because prefixed power sets identify “monotone components” of c-atoms. Another

task is to develop new algorithms for efficiently constructing the abstract form of

c-atoms from the power set form representation. Finally, methods for computing

the stable models (under our generalized Gelfond–Lifschitz transformation) of logic

programs with arbitrary c-atoms remain a challenging open problem.
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A Proof of theorems and lemmas

Proof of Theorem 3.1: Assume that I �J is included in I1�J1. We first prove I1 ⊆ I .

If on the contrary I1 �⊆ I , there is an atom a such that a ∈ I1 and a �∈ I . This

means that every S covered by I1 � J1 must contain a. Since I is covered by I � J ,

I is covered by I1 � J1. But I does not contain a, a contradiction. We now prove

I ∪ J ⊆ I1 ∪ J1. If on the contrary I ∪ J �⊆ I1 ∪ J1, I ∪ J is not covered by I1 � J1.

This means I � J is not included in I1 � J1, a contradiction.

Next, assume that I � J is included in I1 � J1 and I1 � J1 is included in I2 � J2. We

have I2 ⊆ I1 ⊆ I , and I ∪ J ⊆ I1 ∪ J1 ⊆ I2 ∪ J2. This means all sets covered by I � J
are covered by I2 � J2. That is, I � J is included in I2 � J2. �
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Proof of Theorem 3.2: (1) For each S ∈ Ac, the collection CS of abstract S-prefixed

power sets of A is uniquely defined by Definition 3.2, thus A∗c is uniquely defined by

Definition 3.3.

(2) Assume I |= A, i.e., I ∩ Ad = S ∈ Ac. By Definition 3.2, the collection CS of

abstract S-prefixed power sets of A contains S � Si covering S . By Definition 3.3, A∗c
has an abstract prefixed power set W �V such that either W �V = S � Si or S � Si
is included in W � V . This means that W � V covers S .

Conversely, assume that A∗c has an abstract prefixed power set W � V covering

I ∩ Ad. By Definition 3.3, W � V is an abstract W -prefixed power set of A with

W ∈ Ac. By Definition 3.2, all sets covered by W � V are in Ac. This means

I ∩ Ad ∈ Ac, and hence I |= A. �

Proof of Theorem 3.3: Let G =
⋃

S∈Ac
CS , where CS is the collection of abstract

S-prefixed power sets of A. By Definition 3.3, A∗c is G with all redundants removed.

(1) (=⇒) Assume that A is monotone. Then, all supersets of S ∈ Ac from 2Ad

are in Ac, so all abstract S-prefixed power sets in G must be of the form

S � Ad \ S . If S is not minimal in Ac, S � Ad \ S is redundant in G since

for some S ′ ⊂ S , which is minimal in Ac, S
′ � Ad \ S ′ is in G. Therefore,

A∗c = {B � Ad \ B : B is minimal in Ac}. Clearly, |W | + |V | = |Ad| for each

W � V ∈ A∗c .

(⇐=) Assume that for every W � V ∈ A∗c , we have |W | + |V | = |Ad|; i.e.,

V = Ad \W . Every abstract S-prefixed power set in G must be of the form

S�Ad\S , for otherwise, there is one W �V ∈ A∗c with W ⊆ S and V ⊂ Ad\W .

As shown above, in this case every S � Ad \ S in G is redundant unless S is

minimal in Ac. Therefore, A∗c is G with all S �Ad \ S removed, where S is not

minimal in Ac. That is, A∗c = {B � Ad \ B : B is minimal in Ac}. This shows

that for any S ′ which is minimal in Ac, all supersets of S ′ are in Ac. For any

S ∈ Ac, there is some S ′ ⊆ S , which is minimal in Ac. Since all supersets of S ′

are in Ac, all supersets of S are in Ac. This shows that A is monotone.

(2) (=⇒) Assume that A is antimonotone. Every abstract S-prefixed power set in

G must be of the form ∅ � T . By Definition 3.2, T is maximal in Ac. That is,

A∗c = {∅ � T : T is maximal in Ac}. Clearly, W = ∅ for each W � V ∈ A∗c .

(⇐=) Assume that every abstract prefixed power set in A∗c is of the form

∅ � T . By Definition 3.2, T is maximal in Ac. That is, A∗c = {∅ � T :

T is maximal in Ac}. Clearly, for any T ∈ Ac all subsets of T are in Ac. This

shows that A is antimonotone.

(3) (=⇒) Assume that A is convex. Consider B � T in G. If B is not minimal

in Ac, since A is convex B � T is included in B′ � T , where B′ ⊂ B is

minimal in Ac. For the same reason, if B ∪ T is not maximal in Ac, B � T

is included in B � T ′, where T ′ ⊃ T and B ∪ T ′ is maximal in Ac. In both

cases, B � T is redundant in G. Therefore, A∗c is G with all B � T removed,

where either B is not minimal or B ∪ T is not maximal in Ac. That is,

A∗c = {B � T : B is minimal and B ∪ T is maximal in Ac}.
(⇐=) Assume A∗c = {B � T : B is minimal and B ∪ T is maximal in Ac}.
Then, for any S1, S2 ∈ Ac with S1 ⊂ S2, there is some B�T in A∗c , which covers
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all S with B ⊆ S1 ⊆ S ⊆ S2 ⊆ B ∪ T . This means that all subsets in between

S1 and S2 are in Ac. That is, A is convex.
�

Proof of Theorem 3.5: Let A be a c-atom. We use a simple algorithm to construct

A∗c . The algorithm returns a set, say Π, which is set to ∅ at the beginning.

Note that for any p ∈ Ac, |p| � |Ad|. Therefore, for any p, q ∈ Ac it takes O(|Ad|2)
time to determine if p is a subset of q. Moreover, when p ⊂ q, there are at most

2|q\p| − 2 sets w such that p ⊂ w ⊂ q.

For each pair (p, q), where p, q ∈ Ac and p ⊂ q, let S be the set of all w ∈ Ac such

that p ⊂ w ⊂ q. If |S | = 2|q\p| − 2, we add p � q \ p to Π. Since there are at most

O(|Ac|2) such pairs to check, and for each, it takes O(|Ac| ∗ |Ad|2) time to perform

the test (i.e., for each w ∈ Ac we check if p ⊂ w ⊂ q), the time for the above process

is bounded by O(|Ac|3 ∗ |Ad|2). Note that |Π| is bounded by O(|Ac|2).
After the above process, all possible abstract prefixed power sets of A are in the

resulting Π. Then, we remove all (redundant) π from Π if π is included in some other

ξ ∈ Π. By Theorem 3.1, it takes O(|Ad|2) time to check if π is included in ξ. Therefore,

the time for this redundancy removing process is bounded by O(|Ac|4 ∗ |Ad|2).
As a result, Π consists of all nonredundant abstract prefixed power sets of A.

By Definition 3.3, Π is A∗c . In total, it takes O(|Ac|4 ∗ |Ad|2) time to construct A∗

from A. �

Proof of Proposition 4.1: (1) Assume that I satisfies A; i.e., Ad ∩ I = Si ∈ Ac. Then,

we have Ci = Si∧not (Ad \Si) with Si ⊆ I and (Ad \Si)∩ I = ∅. This means that both

Si and not (Ad \Si) are true in I . Hence, Ci is true in I and thus C1∨ ...∨Cm is true in

I . Conversely, assume that C1∨ . . .∨Cm is true in I . Some Ci = Si∧not (Ad \Si) must

be true in I , meaning that Si ⊆ I and (Ad \ Si) ∩ I = ∅. This shows that Ad ∩ I = Si.

Since Si ∈ Ac, I satisfies A.

(2) Assume that I satisfies not A; i.e., Ad∩I �∈ Ac. Then, every Ci = Si∧not (Ad \Si)
is false in I because either Si �⊆ I or (Ad \ Si) ∩ I �= ∅. Thus, not (C1 ∨ . . . ∨ Cm)

is true in I . Conversely, assume that not (C1 ∨ . . . ∨ Cm) is true in I; i.e., every

Ci = Si ∧ not (Ad \ Si) is false in I . This means that for each Si ∈ Ac, either Si �⊆ I

or (Ad \ Si) ∩ I �= ∅; therefore, Ad ∩ I �= Si. This shows Ad ∩ I �∈ Ac; thus I satisfies

not A. �

Proof of Lemma 4.3: The proof is by induction on k with 1 � k � m. When k = 1

(induction basis), F = a1 ∨ not a1 ≡ true. For the induction hypothesis, assume that

F =
∨

1�i�k, Li∈{ai,not ai} L1 ∧ . . .∧Lk can be simplified to true by applying rule (2) for

any k < m. This holds for k = m, as shown below:

F =
∨

1�i�m, Li∈{ai,not ai} L1 ∧ . . . ∧ Lm

≡ [
∨

1�i�(m−1), Li∈{ai,not ai}(L1 ∧ . . . ∧ Lm−1) ∧ am] ∨
[
∨

1�i�(m−1), Li∈{ai,not ai}(L1 ∧ . . . ∧ Lm−1) ∧ not am]

≡ am ∧ [
∨

1�i�(m−1), Li∈{ai,not ai} L1 ∧ . . . ∧ Lm−1] ∨
not am ∧ [

∨
1�i�(m−1), Li∈{ai,not ai} L1 ∧ . . . ∧ Lm−1]

≡ am ∨ not am (by the induction hypothesis)

≡ true �
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Proof of Theorem 4.2: By Theorem 3.2, Ac and A∗c express the same set of admissible

solutions to A in that for any S ⊆ Ad, S ∈ Ac if and only if A∗c contains an abstract

prefixed power set W �V covering S . Let V = {a1, . . . , am}. Note that each W �V in

A∗c exactly covers the set {W ∪ S |S ⊆ V } of items in Ac, and all items in A∗c exactly

cover all items in Ac. Since the semantics of each S ∈ Ac is S ∧ not (Ad \ S), the

semantics of each W � V in A∗c is

∨
1�i�m, Li∈{ai,not ai}W ∧ (L1 ∧ . . . ∧ Lm) ∧ not (Ad \ (W ∪ V ))

≡W ∧ not (Ad \ (W ∪ V )) ∧ [
∨

1�i�m, Li∈{ai,not ai} L1 ∧ . . . ∧ Lm]

which, by Lemma 4.3, can be simplified to W ∧ not (Ad \ (W ∪ V )) by applying

rule (2). Thus, we have

A ≡
∨

S∈Ac
S ∧ not (Ad \ S)

≡
∨

W�V∈A∗c
∨

1�i�m, Li∈{ai,not ai}W ∧ (L1 ∧ . . . ∧ Lm) ∧ not (Ad \ (W ∪ V ))

≡
∨

W�V∈A∗c W ∧ not (Ad \ (W ∪ V ))

�

Proof of Theorem 4.4: For any two W1 � V1,W2 � V2 ∈ A∗c , we distinguish between

three cases: (1) if W1 = W2, then the two conjunctions W1 ∧ not (Ad \ (W1 ∪ V1))

and W2 ∧ not (Ad \ (W2 ∪ V2)) have no conflicting literals, thus they cannot be

pairwise simplified using rule (2); (2) if W1 ⊂W2 with |W2|− |W1| = 1, then V1 �= V2

(otherwise, W1 �V1 ∪ (W2 \W1) should be in A∗c so that W1 �V1 is not in A∗c), which

means that the two conjunctions W1∧not (Ad\(W1∪V1)) and W2∧not (Ad\(W2∪V2))

have at least two different literals, one in their positive part and another in their

negative part, so that they cannot be pairwise simplified using rule (2); (3) otherwise

(i.e., W1 �= W2 and W1 �⊂ W2 and W2 �⊂ W1, or W1 ⊂ W2 with |W2| − |W1| > 1),

the two conjunctions W1 ∧ not (Ad \ (W1 ∪ V1)) and W2 ∧ not (Ad \ (W2 ∪ V2)) have

at least two different positive literals, thus they cannot be pairwise simplified using

rule (2). �

Proof of Theorem 4.5: By Proposition 4.1, I |= A if and only if I |=
∨

S∈Ac
S∧not (Ad\

S), and by Theorem 4.2, if and only if I satisfies
∨

W�V∈A∗c W ∧ not (Ad \ (W ∪ V )).

For each W � V ∈ A∗c \ AI
s , since it does not cover TI

A, W ∧ not (Ad \ (W ∪ V )) is

false in I . This means that
∨

W�V∈A∗c W ∧ not (Ad \ (W ∪ V )) is true in I if and only

if
∨

W�V∈AI
s
W ∧ not (Ad \ (W ∪ V )) is true in I . Therefore, I |= A if and only if

I |=
∨

W�V∈AI
s
W ∧ not (Ad \ (W ∪ V )). �

Proof of Theorem 4.6: When S is a satisfiable set, there is an abstract S-prefixed

power set S � S1 in A∗c such that TI
A is covered by S � S1. By the definition of an

abstract prefixed power set, every S ′ with S ⊆ S ′ ⊆ TI
A is covered by S � S1. By

Definition 3.2, every such S ′ is in Ac. �

Proof of Theorem 5.1: Let M be a stable model of P obtained by applying the

generalized Gelfond–Lifschitz transformation. Note that ⊥ is not in M. To prove

that M is a model of P is to prove that for any rule r in P we have M |= r. By

definition, if M |= head(r) or M �|= body(r) then M |= r. Assume that M �|= head(r)
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and, on the contrary, that M |= body(r). Let r take the form

H1 ∨ ... ∨Hk ← B1, . . . , Bm, A1, . . . , An, not C1, . . . , not Cl

where each Bi or Ci is an atom and each Ai is a c-atom. Hi can be an atom or a

c-atom. We then have M |= Bi, M |= Ai, M |= not Ci and M �|= Hi.

For every negative literal not Ci in body(r), since M |= not Ci it will be removed

in the second operation of the generalized Gelfond–Lifschitz transformation. For

every c-atom Ai in body(r), since M |= Ai it will be replaced in the third operation

by a special atom θAi
along with a new rule θAi

← D1, . . . , Dt for each satisfiable

set {D1, . . . , Dt} of Ai w.r.t. TM
Ai

. As a result, the generalized Gelfond–Lifschitz

transformation PM contains the following rules derived from r:

H ′1 ∨ . . . ∨H ′k ← B1, . . . , Bm, θA1
, . . . , θAn

,

θAi
← D1, . . . , Dt, for each c-atom Ai and each

satisfiable set {D1, . . . , Dt} of Ai w.r.t. TM
Ai

Here, H ′i is Hi if Hi is an atom; or when Hi is a c-atom, H ′i is ⊥ because M �|= Hi

(Hi is replaced by ⊥ in the fourth operation).

Let N be a minimal model of PM with M = N \ Γ (which leads to M being a

stable model of P ). For each c-atom Ai, we have M∩Aid = N∩Aid = TM
Ai

. Since each

satisfiable set {D1, . . . , Dt} of Ai is a subset of TM
Ai

, we have {D1, . . . , Dt} ⊆ M ⊆ N.

This means that for each Ai, the body of the rule

θAi
← D1, . . . , Dt

in PM is satisfied in N. Since N is a minimal model of PM , the head θAi
of the

above rule must be in N. As a result, the body of the rule

H ′1 ∨ . . . ∨H ′k ← B1, . . . , Bm, θA1
, . . . , θAn

in PM is satisfied in N, thus some H ′j in the head is in N. Since no H ′i is a special

atom prefixed with θ or β, H ′j is also in M. Since ⊥ is not in M, H ′j must be

Hj in the rule r. This means that M satisfies head(r), contradicting the assumption

M �|= head(r). We then conclude that M is a model of P . �

Proof of Theorem 5.2: Let I be a stable model of P and M be a minimal model of

the generalized Gelfond–Lifschitz transformation P I with I = M \ Γ. Let (P I )i be

obtained from P after performing the ith operation (i = 1, . . . , 4) in Definition 5.1.

Note that P I = (P I )4.

Since every c-atom A appearing in each rule head is an elementary c-atom of

the form ({a}, {{a}}), the semantics of P will not be changed if we replace A in

the head with a new symbol βA and define βA by the two rules βA ← a and

a← βA (expressing βA ≡ a). This means that when c-atoms in the rule heads are all

elementary, performing the fourth operation in Definition 5.1 does not change the

semantics of P . Therefore, since M is a minimal model of (P I )4, M \Γβ is a minimal

model of (P I )3.

Note that for each rule (introduced in the third operation) of the form θA ← W ,

where W = {A1, . . . , Am} is a satisfiable set, we have W ⊂M \ Γβ and θA ∈M \ Γβ .
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Let Q be the set of rules in (P I )3 whose heads are not special atoms prefixed with θ.

For any nonempty set S of M \Γ, M \ (Γβ ∪ S) will not satisfy Q; otherwise, M \Γβ

would not be a minimal model of (P I )3.

Let Q1 be (P I )3 such that all rules θA ← W with the same head θA are replaced

by a compact rule

θA ←
∨

W�V∈A∗c

W ∧ not (Ad \ (W ∪ V ))

Since M \ Γβ is a minimal model of (P I )3, M \ Γβ is a minimal model of Q1.

Now let Q2 be Q1 obtained by first replacing all occurrences of each θA in rule

bodies with the body of the above compact rule, then removing all compact rules.

Since M \ Γβ is a minimal model of Q1, M \ Γ is a minimal model of Q2. Note

I = M \ Γ.

By Theorem 4.2, we can replace each
∨

W�V∈A∗c W ∧ not (Ad \ (W ∪ V )) in Q2

with c-atom A without changing the semantics of Q2. This transforms Q2 into (P I )2.

Therefore, I is a minimal model of (P I )2.

(P I )2 is (P I )1 with all negative literals removed. Since all such negative literals are

satisfied by I , that I is a minimal model of (P I )2 implies I is a minimal model of

(P I )1.

(P I )1 is P with those rules removed whose bodies are no satisfied by I . Assume,

on the contrary, that some M ⊂ I is a model of P . Since I is a minimal model

of (P I )1, (P I )1 is not satisfied by M. Since (P I )1 ⊆ P , P is not satisfied by

M, a contradiction. As a result, I is a minimal model of P . This concludes the

proof. �

The following lemma is required for the proof of Theorem 5.3.

Lemma Appendix A.1

Let P be a positive logic program with ordinary atoms and A be a literal in P . Let

P ′ be P with each occurrence of A in rule bodies replaced by a special atom θA,

and each occurrence of A in rule heads replaced by a special atom βA, where θA is

defined in P ′ by a rule θA ← A, and βA is defined in P ′ by two rules A ← βA and

βA ← A. An interpretation I is a stable model of P if and only if M is a stable

model of P ′ with I = M \ {θA, βA}.

Proof: Since θA is used only to replace A in rule bodies, it can be derived from P ′

only by applying the rule θA ← A. That is, if θA is in a stable model of P ′, A must

be in the model. The converse also holds. Therefore, replacing θA with A does not

change the semantics of P ′.

For βA, the two rules A ← βA and βA ← A express A ≡ βA. Thus, replacing βA
with A does not change the semantics of P ′.

After the above replacement, we transform P ′ to P . Therefore, P ′ and P have the

same stable models. �

Proof of Theorem 5.3: Let not A be a negative literal in the body of a rule r of

P , which is replaced in P ′ by a c-atom A′ = ({A}, {∅}). When I �|= not A (i.e.,
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A ∈ I), we have I �|= A′; when I |= not A (i.e., A �∈ I), we have I |= A′. For the

former case, r will be removed in the first operation, from P under the standard

Gelfond–Lifschitz transformation, and from P ′ under the generalized Gelfond–

Lifschitz transformation. For the latter case, not A will be removed from r under

the standard Gelfond–Lifschitz transformation, while A′ will be replaced, under the

generalized Gelfond–Lifschitz transformation, by a special atom θA′ , where θA′ is

defined by a bodiless rule θA′ in P ′. In this case, θA′ can be removed from P ′. Let

P I be the standard Gelfond–Lifschitz transformation of P w.r.t. I . We can further

remove all rules from P I whose body contains a positive literal A �∈ I , since if I

is a stable model, A will not be derived from P I and thus these rules will not be

applicable. These rules will also be removed from P ′ in the first operation of the

generalized Gelfond–Lifschitz transformation, as A �∈ I implies I �|= ({A}, {{A}}). As

a result, the resulting standard transformation P I of P is the same as P ′I obtained

by applying to P ′ the first two operations of the generalized Gelfond–Lifschitz

transformation, except that each atom A in P I is replaced in P ′I by a c-atom

({A}, {{A}}). Then, after applying to P ′I the third and fourth operations of the

generalized Gelfond–Lifschitz transformation, P ′I becomes P I except that for each

literal A in P I , each occurrence of A in rule bodies are replaced by a special atom

θA, and each occurrence of A in rule heads replaced by a special atom βA, where θA
is defined in P ′I by a rule θA ← A, and βA is defined in P ′I by two rules A ← βA
and βA ← A. By Lemma A, I is a stable model of P I if and only if M is a stable

model of P ′I with I = M \ Γ. This means that I is a stable model of P if and only

if it is a stable model of P ′. �

Proof of Theorem 5.4: The first part of the theorem is straightforward, as all

satisfiable sets of A w.r.t. TI
A can be obtained simply by comparing each W � V in

A∗c with TI
A to see if it covers TI

A.

For the second part of the theorem, the time complexity of the generalized

Gelfond–Lifschitz transformation consists of the following three parts: (a) The time

complexity of the standard Gelfond–Lifschitz transformation of P with all c-atoms

ignored. This is linear in the number |P | of rules in P . (b) The time complexity of

computing all satisfiable sets of all n c-atoms. As just proved above, it is bounded

by O(n ∗MA∗c ). (c) The time complexity of introducing new rules for all n c-atoms.

Assume that it takes constant time to introduce a new rule for a special atom

θA or βA (see the third and fourth operations). Then, the time complexity of this

part is bounded by O(n ∗ (MA∗c + MAd
+ 1)), as the generalized Gelfond–Lifschitz

transformation introduces at most 2 ∗ n special atoms (one θA and one βA for each

c-atom A), each accompanied by at most MA∗c (for θA) or MAd
+1 (for βA) new rules.

The total time complexity of the generalized Gelfond–Lifschitz transformation is

then bounded by O(|P |+ n ∗ (2MA∗c + MAd
+ 1)). �

Proof of Theorem 5.6: For normal constraint programs, since our stable model

semantics coincides with that of Son et al. (2007), the complexity of the latter

semantics applies, which is known to be NP-complete (stated in Liu et al. 2007 as

part of computation-based semantics and proved in You et al. 2007).
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It is known that the decision problem for disjunctive programs (without c-atoms)

is Σ2
P -complete (Eiter and Gottlob 1993). Since disjunctive programs are disjunctive

constraint programs, the decision problem is at least as hard as for disjunctive

programs, i.e., it is Σ2
P -hard. To see that the problem is in Σ2

P , we first note that

replacing c-atoms by their abstract representations takes polynomial time, in the size

of P (cf. Theorem 3.5), so does the generalized Gelfond–Lifschitz transformation (cf.

Theorem 5.4) for a given interpretation I . Then, to determine whether M is a minimal

model of the generalized Gelfond–Lifschitz transformation P I (cf. Definition 5.2)

is to determine whether M is a minimal model of a positive disjunctive program.

Therefore, the fact that the latter is in Σ2
P implies that the former is also in

Σ2
P . �

Proof of Theorem 6.1: (=⇒) Assume R |=I A. By Definition 6.1, R |= A and for

every S ′ such that R ∩ Ad ⊆ S ′ and S ′ ⊆ TI
A, we have S ′ ∈ Ac. By Definition 3.2, the

collection of abstract (R ∩ Ad)-prefixed power sets of A contains R ∩ Ad � Si with

Si ⊇ TI
A \ (R ∩Ad), which covers all S ′ with R ∩Ad ⊆ S ′ ⊆ TI

A. By Definition 3.3, A∗c
contains an abstract prefixed power set W � V such that R ∩ Ad � Si is included in

W � V . Since Si ⊇ TI
A \ (R ∩ Ad), R ∩ Ad � TI

A \ (R ∩ Ad) is included in R ∩ Ad � Si,

hence R∩Ad�TI
A \ (R∩Ad) is included in W �V . Note that in this case, W ⊆ R∩Ad,

and since W � V covers TI
A, W is a satisfiable set of A w.r.t. TI

A.

(⇐=) Assume that A∗c has an abstract prefixed power set W � V such that

R∩Ad�TI
A \ (R∩Ad) is included in W �V . Then, W �V covers the whole collection

covered by R ∩ Ad � TI
A \ (R ∩ Ad). This means that W � V covers every S ′ with

R ∩ Ad ⊆ S ′ and S ′ ⊆ TI
A. Since W � V is in A∗c , this collection covered by W � V

is included in Ac and thus R |= A. By Definition 6.1, we have R |=I A. Note again

that in this case, W ⊆ R ∩ Ad and W is a satisfiable set of A w.r.t. TI
A. �

Proof of Theorem 6.2: Let P I be the generalized Gelfond–Lifschitz transformation.

Since P I is a positive normal logic program, it has a least model which is the fixpoint

T∞
P I (∅) with T 0

P I (∅) = ∅ and T i+1
P I (∅) = TPI (T i

P I (∅)), where the operator TPI is defined

by

TPI (R) =

{
A

∣∣∣∣ ∃r ∈ P I : R |= body(r),

head(r) = A

}
.

We want to prove, by induction on i � 0, that T i
P (∅, I) = T 3i

P I (∅) \ Γ. As induction

basis, when i = 0, T 0
P (∅, I) = T 3∗0

P I (∅) = ∅. For induction hypothesis, assume that for

any i � k we have T i
P (∅, I) = T 3i

P I (∅) \ Γ. Now consider i = k + 1.

(=⇒) Assume that I is a stable model under the fixpoint definition of Son et al.

(2007). We first prove that for each atom B derived in Tk+1
P (∅, I) (i.e., B ∈ Tk+1

P (∅, I)
but B �∈ Tk

P (∅, I)), we have B ∈ T
3(k+1)
P I (∅). By Definition 6.2, there is a rule r in P of

the form

r : ({B}, {{B}})← A1, . . . , Am

such that Tk
P (∅, I) |=I body(r). Consider an arbitrary c-atom Aj in body(r). Note that

Tk
P (∅, I) |=I Aj . By Theorem 6.1, there is a satisfiable set W of Aj w.r.t. TI

Aj
= I ∩Ajd
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such that W ⊆ Tk
P (∅, I) ∩ Ajd . Let W = {D1, . . . , Dt} ⊆ Tk

P (∅, I). The generalized

Gelfond–Lifschitz transformation P I must contain the following rules:

(1) βB ← θA1
, . . . , θAm

,

(2) B ← βB,

(3) θAj
← D1, . . . , Dt.

By the induction hypothesis, {D1, . . . , Dt} ⊆ T 3k
P I (∅). Due to this, rule (3) can be

applied, leading to θAj
∈ T 3k+1

P I (∅). This process applies to all c-atoms Aj in body(r) so

that θA1
, . . . , θAm

are all in T 3k+1
P I (∅). Rule (1) is then applied, leading to βB ∈ T 3k+2

P I (∅).
Then, rule (2) is applied, leading to B ∈ T 3k+3

P I (∅).
The above induction shows that for any atom B ∈ T i

P (∅, I), we have B ∈ T 3i
P I (∅).

When i→ ∞, T∞P (∅, I) ⊆ T∞
P I (∅). Since I is a stable model under Son et al.’s fixpoint

definition with T∞P (∅, I) = I and contains no special atoms, we have I ⊆ T∞
P I (∅) \ Γ.

Next, we prove that when I is a stable model under Son et al.’s fixpoint definition,

we have T∞
P I (∅) \ Γ ⊆ I . For any (nonspecial) atom B derived in T

3(k+1)
P I (∅), there

must be a rule r as above in P and a rule of form (2) in P I derived from r such

that βB is derived in T 3k+2
P I (∅) by applying rule (1) where each θAj

is satisfiable in

T 3k+1
P I (∅) and at least one θAj

is derived in T 3k+1
P I (∅) by applying rule (3) where each

atom Dj is satisfiable in T 3k
P I (∅). By the induction hypothesis, Tk

P (∅, I) = T 3k
P I (∅) \ Γ,

so Tk
P (∅, I) |= {D1, . . . , Dt}. Let W = {D1, . . . , Dt}. Since W comes from rule (3), it is

a satisfiable set of Aj w.r.t. TI
Aj

= I ∩Ajd . By Definition 4.1, A∗jc contains an abstract

W -prefixed power set W � V covering TI
Aj

. So, W � TI
Aj
\W is included in W � V .

Since Tk
P (∅, I) ⊆ T∞P (∅, I) = I , we have W ⊆ Tk

P (∅, I) ∩ Ajd ⊆ TI
Aj

. By Theorem 3.1,

Tk
P (∅, I) ∩ Ajd � TI

Aj
\ (Tk

P (∅, I) ∩ Ajd) is included in W � TI
Aj
\W , thus it is included

in W � V . By Theorem 6.1, Tk
P (∅, I) |=I Aj . This holds for all Aj in body(r). By

Definition 6.2, B is in Tk+1
P (∅, I). This induction shows that for any nonspecial atom

B ∈ T 3i
P I (∅), we have B ∈ T i

P (∅, I). When i→ ∞, T∞
P I (∅) \ Γ ⊆ T∞P (∅, I) = I .

The above proof concludes that when I is a stable model under Son et al.’s fixpoint

definition, T∞
P I (∅) \ Γ = I . Hence, by Definition 5.2 I is a stable model derived from

the generalized Gelfond–Lifschitz transformation.

(⇐=) Assume that I is a stable model, with T∞
P I (∅) \ Γ = I , derived from the

generalized Gelfond–Lifschitz transformation. Copying the same proof as the first

part above, we can prove that any nonspecial atom B derived in Tk+1
P (∅, I) is in

T
3(k+1)
P I (∅). That is, T∞P (∅, I) ⊆ T∞

P I (∅) \ Γ = I . Next, we prove the converse part:

I ⊆ T∞P (∅, I).
For any (nonspecial) atom B derived in T

3(k+1)
P I (∅), there must be a rule r as above

in P and a rule of form (2) in P I derived from r such that βB is derived in T 3k+2
P I (∅)

by applying rule (1) where each θAj
is satisfiable in T 3k+1

P I (∅) and at least one θAj
is

derived in T 3k+1
P I (∅) by applying rule (3) where each atom Dj is satisfiable in T 3k

P I (∅).
By the induction hypothesis, Tk

P (∅, I) = T 3k
P I (∅) \ Γ, so Tk

P (∅, I) |= {D1, . . . , Dt}. Let

W = {D1, . . . , Dt}. Since W comes from rule (3), it is a satisfiable set of Aj w.r.t.

TI
Aj

= I ∩ Ajd . By Definition 4.1, A∗jc contains an abstract W -prefixed power set

W �V covering TI
Aj

. So, W �TI
Aj
\W is included in W �V . Note that Tk

P (∅, I) ⊆ I

because T 3k
P I (∅) \ Γ ⊆ T∞

P I (∅) \ Γ = I . Then, we have W ⊆ Tk
P (∅, I) ∩ Ajd ⊆ TI

Aj
. By
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Theorem 3.1, Tk
P (∅, I)∩Ajd�TI

Aj
\(Tk

P (∅, I)∩Ajd ) is included in W �TI
Aj
\W , thus it is

included in W �V . By Theorem 6.1, Tk
P (∅, I) |=I Aj . This holds for all Aj in body(r).

By Definition 6.2, B is in Tk+1
P (∅, I). This induction shows that for any nonspecial

atom B ∈ T 3i
P I (∅), we have B ∈ T i

P (∅, I). When i → ∞, T∞
P I (∅) \ Γ ⊆ T∞P (∅, I). That

is, I ⊆ T∞P (∅, I).
The above proof concludes that when I is a stable model derived from the

generalized Gelfond–Lifschitz transformation, T∞P (∅, I) = I . Hence, I is also a stable

model under Son et al.’s fixpoint definition. �

Proof of Lemma 7.1: First, we note that, under the assumptions of basic programs

in this section, part 4 in Definition 5.2 can be omitted. Thus, that I is a stable

model of P if and only if M = I ∪Γθ is the least model of the generalized Gelfond–

Lifschitz transformation P I , if and only if M is the least model of the standard

Gelfond–Lifschitz transformation PM
n . �

Proof of Theorem 7.2: We know that the same claims hold for normal programs

((1), (3), and (4) are due to Fages 1994, and (2) due to You and Yuan 1994), where

the dependency graph is defined as: for each rule a ← b1, . . . , bm, not c1, . . . , not cn
in a normal program, there is a positive edge from a to each bi, 1 � i � m, and a

negative edge from a to each cj , 1 � j � n. Let us denote by GN
P the dependency

graph for a normal program P . Recall that we use GP to denote the dependency

graph for a basic program P .

Let P be a basic program and Pn be its normal program translation. By definition,

for any positive edge u→+ v in GP , there is a path u→+ θAi
→+ v in GN

Pn
, for some

new symbol θAi
, and vice versa. Similarly, for any negative edge u→− v in GP , there

is a path u →+ θAi
→− v in GN

Pn
, and vice versa. Therefore, for any loop L in GP ,

there is a loop L′ in GN
Pn

with some additional positive edges to new symbols, and

vice versa. Therefore, there is a one-to-one correspondence between loops in GP and

those in GN
Pn

, modulo the new symbols θAi
.

Notice that the extra positive edges have no effect on the type of the loops based

on negative dependency; i.e., for any odd cycle in GP , the same odd cycle with some

additional positive edges is in GN
Pn

, and vice versa; similarly for even cycles.

Let P be a basic program. Suppose P is call-consistent, i.e., P has no odd cycles in

GP . By the one-to-one correspondence between cycles, Pn has no odd cycles in GN
Pn

.

Thus, according to Fages (1994), a stable model, say M, exists for Pn. By Lemma 7.1,

M|At(P ) is a stable model of P . This proves claim (1). Now assume P has more than

one stable model, say M1 and M2 (and possibly others). By Lemma 7.1, Pn has

stable models S1 and S2 such that S1|At(P ) = M1 and S2|At(P ) = M2. Thus, according

to (You and Yuan 1994), Pn has an even loop in GN
Pn

, and it follows that P has an

even loop in GP . This proves claim (2). Now assume P is acyclic in GP . Then Pn is

acyclic in GN
Pn

. By Lemma 7.1 again, that Pn has a unique stable model implies the

same for P . This shows claim (3). Finally, suppose P has no positive cycles in GP .

Let M be a supported model of P . We can extend M to be a supported model of

Pn by adding extra symbols δAi
in the following way: whenever a rule of the form
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(4) in P supports atom H in M, add θAi
(1 � i � n) of the rule (5) in Pn to M. Let

the resulting set be S . That is, M = S|At(P ). Clearly, S is a supported model of Pn.

Since Pn has no positive cycle in GN
Pn

, S is a stable model of Pn, and by Lemma 7.1,

M is a stable model of P . This proves claim (4). �
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