
International Conference on Internet Studies
August 16-17,2014, Singapore

CORRELATED TABLES FOR NESTED QUERY
EVALUATION

Li-Yan Yuan

Department of Computing Science
University of Alberta
Edmonton Canada

yuan@cs.ualberta.ca

————————————————
ABSTRACT

In this paper, we first define the correlated table of an SQL query without nested sub-
queries which extends the result set of an SQL query to a set of result sets, one for
each distinct binding tuple. We then present an algorithm to convert any SQL query
with nested subqueries to a correlated query without nested subqueries. The proposed
algorithm provides a simple but very effective method unnest nested queries and thus
can be used to efficiently evaluate nested queries in distributed database systems.
Keyword: query evaluation, distributed databases, nested queries
————————————————

1 Introduction

We have developed a big database management system , named RubatoDB, for both
OLTP and OLAP applications that uses a collection of commodity servers and support
both ACID and BASE properties. The extensive experimental tests of RubatoDB shows
that it outperforms several major database products and no SQL systems [1].

However, RubatoDB faces the challenges of evaluating nested queries for OLAP
applications, and consequently, we propose and implement a new framework for nested
query evaluation. In this paper, we specify the new framework and demonstrate its
advantages over the existing technologies for nested query evaluation.

Traditionally, two approaches have been used to evaluate nested queries: the de-
correlation (unnesting) strategy [2, 3] and the nested iteration with optimization [4, 5, 6].

1

A naive iteration plan for nested queries can be very inefficient as the nested subquery
is evaluated for every distinct binding of the correlation attributes in the outer query.
De-correlation techniques have been extensively studied and applied to enable traditional
optimizers generate more efficient set oriented plans for nested queries. However, de-
correlation is not always applicable, and even if applicable may not be the best choice
in all situations since decorrelation carries a materialization overhead [6].

The nested iteration strategy has been greatly improved by two simple but very
effective technologies, that is, (1) caching the results of the inner query [5] and (2) sorting
the result tuples of the outer block [4]. As argued by Guravannavar, Ramanujam and
Sudarshan that it is these two techniques that make the nested iteration a valid choice
[6].

The query optimization algorithm presented in [6] is used to choose either the de-
correlation or the nested iteration algorithms for efficient evaluation of nested queries.

Evaluation of nested queries in distributed (grid) database systems, like RubatoDB,
and many other NoSQL systems, represents a new challenge in that the aforementioned
two strategies cannot be used directly, mainly because the nested iteration suffers a great
deal if either one or both the outer-inner blocks are distributed over different grid nodes.
An efficient evaluation algorithm based on the de-correlation has been reported [7], but
it does not work if the de-correlation is not available.

In this paper, we first define the correlated table of an SQL query without nested
subqueries which extends the result set of an SQL query to a set of result sets, one for
each distinct binding tuple. Assume Q is a query that (1) has no nested subqueries, and
(2) contains a set of correlated (free) variables simulating the correlated variables of the
outer query block. Given a set of distinct binding tuple values Tin for the correlated
variable, the correlated table is defined as a set of result set, one for each binding tuple
tinTin.

The correlated result set is specified based on the following simple but very effective
ideas.
• The correlated table utilizes the two key technologies in the optimized nested

iteration: Sorting and Caching [5, 4].

• The correlated table can be constructed using any query evaluation algorithms for
distributed database systems, as the underline query has no nested subqueries.

We then present an algorithm to convert any SQL query Q into a query Qct without
nested subqueries using the correlated tables, and show that Q and Qct are equivalent
in that both generated the same result set.

The proposed framework enjoys the following advantages over the existing technolo-
gies for nested query evaluation.

1. Similar to the unnesting technique, the correlated queries can be evaluated using
existing optimization techniques developed for distributed databases.

2. Unlike the unnesting technology, the proposed proposed algorithm can convert any
query into a query without nested subqueries.

2

3. The conversion is straightforward and is universally applicable, regardless different
types of nested queries.

4. The correlated table utilizes the key optimization techniques of the nested iteration.

This paper reports a preliminary result and we are currently conduct experimental tests
on RubatoDB.

The paper is organized as follows. Section 2 reviews the existing nested query eval-
uation algorithms. Section 3 defines a the correlated table and the algorithm used to
convert any nested queries into the correlated queries without nested subqueries. The
query evaluation algorithm is discussed in Section 4, and the conclusion is offered in
Section 5.

2 Related Works

The nested query evaluation uses two different approaches, that is, the de-correlation
(unnesting) strategy [2, 3] and the nested iteration with optimization [4, 5, 6].

De-correlation techniques have been extensively studied, but it is generally agreed
that it is very difficult, if not impossible, to unnest queries with multiple and/or nested
blocks [8, 6].

The nested iteration strategy has been greatly improved by two simple but very
effective technologies, that is, (1) caching the results of the inner query [5] and (2) sorting
the result tuples of the outer block [4]. As argued by Guravannavar, Ramanujam and
Sudarshan that it is these two techniques that make the nested iteration a valid choice
[6].

The query optimization algorithm presented in [6] is used to choose either the de-
correlation or the nested iteration algorithms for efficient evaluation of nested queries.
Example 2.1 Consider the query Q2.1 below [6].

SELECT o orderkey

FROM ORDERS

WHERE o orderdate NOT IN (SELECT l shipdate

FROM LINEITEM

WHERE l orderkey = o orderkey);
Suppose the LINEITEM table is stored sorted on l orderkey column and the plan for
the outer query-block guarantees to produce the bindings for the correlation variable,
o orderkey, in sorted order. The clustered table scan can stop as soon as a value greater
than the value of the correlation variable is found and restart from this point on the next
invocation, thus retaining state.

We believe that the restartable segment scan is a very efficient technique for general
query evaluation, not necessarily for nested queries. Another example in [6] demon-
strates that the restartable segment scan may not as efficient as the de-correlation if the
number of rows to be scanned is small. However, this is due to inappropriate uses of the
technique, not the problem associated with the nested iteration with optimization.

3

3 Correlated tables

In this section, we first specify the correlated table which extends the result set into
a set of results, one for each distinct binding value. First a motivation example below.
Example 3.1 Consider the query Q2.1 in Example 2.1 again. The restartable segment
scan is used to evaluate the inner query block with a given set of o orderkey efficiently.
That is, the evaluation of the inner block can be described logically as the evaluation of
the query, denoted as Q1 below:

SELECT l_shipdate

FROM LINEITEM

WHERE l_orderkey = o_orderkey;

with a set of o orderkey values. The output of the evaluation is then a set of sets of
l shipdate values. Let T1 denotes a set of o orderkey, then, the evaluation of this
query block can be described as

cr({l orderkey}T1 , Q1) (1)

which returns a result set of two columns 1 {o orderkey, {l orderkey}}, one for each
distinct value in T1. If T1 is empty, it will then return a null value.

The outer block of Q2.1 is then simplified as Q2 below.

SELECT o_orderkey

FROM ORDERS

Then the evaluation of the Q2 is then defined as cr(∅, Q2) which returns a result set
of o orderkey as usual. This is simply because the Q2 has no correlated variables. For
simplicity we use cr(Q2) to denote cr(∅, Q2).

The nested query Q2.1 can then be evaluated by nested-join the outer block with the
inner block, that is, by evaluating the modified (de-correlated) query Qcr2.1 below.

SELECT o orderkey

FROM ORDERS, cr({o orderkey}cs(Q2), Q1) as rcr
WHERE o orderkey =set rcr

where =set denotes the set-equation, that is, o orderkey value satisfies the condition if
and only if there exists a tuple < t, s >∈ rcr such that o orderkey = t and o orderkey ∈
s.

The correlation table is specified similar to the temporary table used in the de-
correlation operation but with the following three distinct features.

1. it is constructed regardless the various types of nested queries,

2. it can be applied to any type of nested queries, including queries with nested store
procedures.

1It consists of the two group of columns in general.

4

3. it needs not consider the query optimization strategy as the optimization will be
considered by the evaluation of the correlation table. This is especially important
if the tables of the block are distributed over different grid nodes.

The idea of the correlation table is based on the caching and sorting techniques
proposed in [5, 4], as it is evaluated by taking in a set of distinct values (to be sorted if
needed) and store each corresponding result set as its 2nd part in the correlation table.
However, it can also be evaluated using other optimization techniques. Now we are in
the position to formally defined the basic operators for nested query evaluation.

Let Q be an SQL query. A variable in Q is a symbol representing either a column
of a base table, called a column variable, Q or a value to be specified, called a free
variable. For example, l orderkey and o orderkey in Q1 of Example 3.1 are a column
variable and a free variable respectively. Q is called a quantified query if it has no free
variable, and a free query if otherwise. All SQL queries to be evaluated are quantified
queries while a subquery in a nested block with correlation variables is a free query.

Assume v1, . . . , vn, n ≥ 0, are the set of all the free variables in Q. A binding

tuple is a tuple t of values, one for each free variable in Q. Given a binding tuple t,
the evaluation of Q will return a set of tuples, RSETt(Q), called the result set with
binding T .

Definition 3.1 Let Q be a query with the set V of free variables, and T be a set of
distinct binding tuples for V in Q. Then the correlation table, denoted as cr(VT , Q), is
defined as

cr(VT , Q) = {〈t, RSETtQ〉|t ∈ T} (2)

The evaluation of the correlation table represents a working horse of nested query eval-
uation, and it can be implemented using various optimization techniques, such as key
search, index search, cost-based optimization, and restart segment scan, etc. Since the
correlation table has no nested sub-queries, any optimization algorithms for distributed
database systems can be readily extended to evaluate correlation tables.

Let Q be a quantified SQL query (i.e., a query without free variables). Then the
result set of Q can be specified by cr(null, Q), or cr(Q) for short.

Further, the correlation table can be easily used to unnest any subqueries without
semantic problems, as demonstrated below.

Example 3.2 Consider the following query Q3.2 in the well-known count bug below:

SELECT pnum

FROM parts

WHERE qoh = (SELECT count(shipdate)

FROM supply

WHERE supply.pnum = parts.pnum AND

shipdate < to_date(’1980-01-01’)

);

5

Now we demonstrate how the correlation table avoids such trouble. The following unnested
query fails to return a correct result set if the table contains duplicated values on column
pnum [SIGMOD87], and thus a more sophisticated unnest query is needed.

SELECT p1.pnum

FROM parts p1,

(SELECT p2.pnum s.pnum,count(s.shipdate) ct

FROM parts p2 left join supply s on p2.pnum=s.pnum

WHERE s.shipdate < to_date(’1980-01-01’)

GROUP BY p2.pnum

) s2

WHERE p1.qoh = s2.ct AND

p1.pnum = s2.spnum;

Let Q3 and Q4 represent the two queries below.

SELECT DISTINCT pnum

FROM parts;

and

SELECT count(shipdate)

FROM supply

WHERE supply.pnum = p_pnum AND

shipdate < to_date(’1980-01-01’)

where p pnum is a free variable in Q4. Using the correlation table, the unnesting can be
easily accomplished, as shown below.

SELECT p1.pnum

FROM parts p1, cr({p pnum}cr(Q3), Q4) as r3.2
WHERE p1.qoh =set r3.2

It is not difficult to see how the correlation table resolves the count bug:

For each pnum as a binding p ∈ cr(Q3), if p has no shipdate in supply

that satisfies the where clause of Q4 the corresponding count(shipdate) is
0, that is, < p, {0} >∈ r3.2 which effectively eliminate the count bug.

Now, we define the set operator used in our algorithm to be presented later. An SQL
set comparison is a comparison operator of the form

∃, < any,< all,=, > any,> all,=< any,=< all, >= any,>= all

Definition 3.2 Let t be a binding tuple, R be a subquery, cr be the result set of the
correlation table, and op be a set comparison. Then for any value v corresponding to the
binging tuple t,

vt opset r if and only if 〈t, s〉 ∈ r ∧ v op s (3)

6

v is absent if op is ∃.
As a matter of fact, it is not difficult to see that v op R represents the same condition

of vt opset r. Consequently, the new set comparison opset can be readily used to transform
any set comparison with the newly specified correlation table. The operator =set, given
Examples 3.1 and 3.2, is a sample of such a set operator.

Using these two definitions, we are ready to convert any SQL queries with nested
subquery to the one without nested subquery.

The first such an example is given Example 3.2, and the example below shows how
to convert a query with three blocks, two of which are nested.

Example 3.3 Consider a three-block nested query given in [8]
Q3.3 SELECT R.a

FROM R

WHERE R.b=any { SELECT COUNT(S.*)

FROM S

WHERE R.c=S.c AND

S.d =any { SELECT COUNT(T.*)

FROM T

WHERE S.e = T.e

R.f = T.f
First, consider the outer block, and let Q5 be the query below:

Q5 SELECT R.c

FROM R

The correlation table of Q5 is cr(Q5) as it has no free variables. One may also see that
each tuple in cr(Q5) provides two binding values, i.e., R.c and R.f correlated with the
nested two blocks in the query.

Now consider the middle block. Note that the middle block has not just one free
variable R.c provided by the outer block Q5, but also provide a binding value S.e to be
consumed by the inner block. For convenience we assume that all the binding values used
by the nested block will be accessible at the correlation table. Hence, the middle block can
be represented by the following query Q6.

Q6 SELECT COUNT(S.*)

FROM S

WHERE R.c = S.c
where R.c is a free variable, and S.e representing a binding value to be consumed by the
inner block. Therefore, it can be described by cr({R.c}cr(R5), R6).

The inner block can be represented by the following query Q7.
Q7 SELECT COUNT(T.*)

FROM T

WHERE S.e = T.e

R.f = T.f

As all the binding tuples are generated by the query of

the join of all previous (correlation) tables, consequently, we will omit the notation from
now on.

7

Then the query Q3.3 can be represented below.
Qcr3.3 SELECT R.a

FROM R, cr({R.c}, Q6) as r6,cr({R.f, S.e}, R7) as r7
WHERE R.b=any r6 AND r6.d = any r7.

Note that r6.d represents S.d within r6.

Now we present the algorithm used to represent any SQL query with nested sub-
queries in the form of the aforementioned correlation tables and set comparisons.

Algorithm 3.1 Let Q be an SQL query. We assume that all the where clauses of
subqueries are in conjunctive normal form. Further for simplicity, we do not consider
the having clause in this paper, though the results can easily be extended to queries with
the having clause.

A query Qcr is the query using the correlation tables constructed from Q by the
following two modifications.

• Step 1. For each block with the nested subquery Qi, let Vi be the list of free variables
in Qi. Further, let Q′

i is constructed from Qi by removing all sub-formulas (i.e.
clauses in the CNF) containing nested subqueries.

Add one correlation table cr(Vi, Q
′
i) in the the from clause of the main (outer most)

block.

• Step 2.Replace each nested operator v op Qj with the set comparison v opset ri,
where ri is the corresponding correlation name for cr(Vi, Q

′
j).

• Step 3. Remove all the sub-formulas (i.e. clauses in the CNF) that used in a
correlation table.

Obviously, Qcr is a new query using correlated tables but without any nested subqueries.
The query Qcr3.3 in Example 3.3 is constructed from Q3.3 using the algorithm. The

following example presents another sample for using the algorithm.

Example 3.4 Consider the following query Q3.4 with the group by clause and a disjunc-
tion in the where clause.

SELECT d.budget
FROM dept d
WHERE d.budget > { SELECT SUM(e.salary)

FROM emp e
WHERE d.dno = eno } OR

d.e cap > { SELECT count(*)
FROM emp e
WHERE d.dno = eno }

GROUP BY d.budget
Let Q8 and Q9 be the following two queries:

8

SELECT SUM(salary) FROM emp and
SELECT COUNT(*) FROM emp.
The correlation query Qcr3.4 is given below.
SELECT d.budget
FROM dept d, cr({d.no}, Q8) as r8, cr({d.no}, Q9) as r9
WHERE d.budget >set r8 OR d.e cap >set r9
GROUP BY d.budget

Now we present the main result of this section, that is, the constructed Qcr is equiv-
alent to the given query Q.

Proposition 3.1 The query constructed from Algorithm represents the same result set
as the given query with nested subqueries.

The proof of the proposition follows the specification of the correlation tables and the
algorithm.

4 Evaluation strategies of Query Evaluation
Since a correlation table cannot be evaluated before all its binding values are avail-

able, the converted query Qcr must respect the calculation of the binding values.
Let Qcr be the correlation query, and its from clause contains the list of correlation

tables R1, R2, . . . , Rn, then the evaluation tree is a tree with n nodes such that
• each node is labeled with exactly one relation Ri, and

• if a free variable v of Ri refers to a column variable in Rj then Rj is an ancestor
node of Ri.

Obviously, the query Qcr must be evaluated top down in a evaluation tree.

Example 4.1 The following two evaluation trees are for Qcr3.3 and Qcr3.4 respectively.

���

���

���

���

��� ���
�
�
�
�

S
S
S
S

R

R6

R7

D

R8
R9

Tree3.3 Tree3.4

We are currently implementing the proposed framework in RubatoDB, and consider the
following following optimization strategies.

• Key and Index search

• Sorting of the output bindings and caching of the correlated tables.

• Restart segment scan

9

5 Conclusion and Future works

We have proposed the correlation table used for nested query evaluation and present
an algorithm to convert any query to the correlation queries without nested subqueries.
Our work provides a much needed approach to evaluate nested queries for distributed
database systems.

We are going to adapt various query optimization techniques and to conduct exper-
imental tests to further verify the proposed framework.

References

[1] L. Yuan, L. Wu, J. You, and C. Yan, “Rubato db: A highly scalable staged grid
database system for oltp and big data applications,” in Submitted for publication,
2014.

[2] W. Kim, “On optimizing an sql-like nested query,” ACM Trans. Database Syst.,
vol. 7, no. 3, pp. 443–469, 1982.

[3] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,” in
ICDE, pp. 450–458, 1996.

[4] G. Graefe, “Executing nested queries,” in BTW, pp. 58–77, 2003.

[5] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access path selection in a relational database management system,” in SIGMOD
Conference, pp. 23–34, 1979.

[6] R. Guravannavar, H. S. Ramanujam, and S. Sudarshan, “Optimizing nested queries
with parameter sort orders,” in VLDB, pp. 481–492, 2005.

[7] Y.-J. Kang, C.-H. Choi, K.-E. Yang, H.-G. Kim, and W.-S. Cho, “An efficient nested
query processing for distributed database systems,” in ICHIT (2), pp. 669–676, 2011.

[8] M. Muralikrishna, “Improved unnesting algorithms for join aggregate sql queries,”
in VLDB, pp. 91–102, 1992.

10

