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Abstract In the current practice of Answer Set Programming (ASP), evaluable
functions are represented as special kinds of relations. This often makes the resulting
program unnecessarily large when instantiated over a large domain. The extra
constraints needed to enforce the relation as a function also make the logic program
less transparent. In this paper, we consider adding evaluable functions to answer
set logic programs. The class of logic programs that we consider here is that of
weight constraint programs, which are widely used in ASP. We propose an answer set
semantics to these extended weight constraint programs and define loop completion
to characterize the semantics. Computationally, we provide a translation from loop
completions of these programs to instances of the Constraint Satisfaction Problem
(CSP) and use the off-the-shelf CSP solvers to compute the answer sets of these
programs. A main advantage of this approach is that global constraints implemented
in such CSP solvers become available to ASP. The approach also provides a new
encoding for CSP problems in the style of weight constraint programs. We have
implemented a prototype system based on these results, and our experiments show
that this prototype system competes well with the state-of-the-art ASP solvers. In
addition, we illustrate the utilities of global constraints in the ASP context.

This is an extension of a preliminary version that appeared in the Proceedings of LPNMR’09
[43] drawing some results from [26].

Y. Wang (B)
Department of Computer Science, Guizhou University, Guiyang, China
e-mail: yswang168@gmail.com

J.-H. You · L. Y. Yuan
Department of Computing Science, University of Alberta, Edmonton, AB, Canada

F. Lin
Department of Computer Science and Engineering, Hong Kong University of Science
and Technology, Kowloon, Hong Kong

M. Zhang
Guizhou Academy of Sciences, Guiyang, China



342 Y. Wang et al.

Keywords Answer set programming · Weight constraints · Evaluable functions ·
Constraint satisfaction problem

Mathematics Subject Classifications (2010) 68T20 · 68T27 · 68T30

1 Introduction

Logic programming based on the stable model/answer set semantics, commonly
called answer set programming (ASP), has proved to be a promising paradigm for
declarative knowledge representation. The general idea is to encode a problem by a
logic program such that the answer sets of the program correspond to the solutions
of the problem [1, 20, 31, 34]. One particular class of such logic programs, called
weight constraint programs (sometimes also called lparse programs) [40], has been
developed, and found applications in a number of application areas such as diagnosis,
scheduling, planning and so on (see, e.g., [15]). Some efficient ASP solvers, such as
smodels,1 cmodels,2 and clasp,3 have been developed for these programs.

In the current practice of ASP, mappings from their given domains to ranges are
represented by special kinds of relations. For instance, to encode the graph coloring
problem, instead of a unary function, say color(x) that maps vertices to colors, one
uses a binary relation, say color(x, c), to represent that the vertex x is assigned the
color c. For this to work, one needs to add some axioms saying that the predicate
color(x, c) is in fact functional. In general, the approach of encoding functions by
relations tends to increase the sizes of instantiated programs, both in terms of the
number of atoms and the number of rules. For lack of a standard terminology, let us
call these functions evaluable functions.

Syntactically, functions have been allowed in logic programming from the very
beginning [30]. However, they are normally interpreted under the Herbrand universe
of a given language. For instance, in Prolog, one cannot declare a fact like “ f (a) = a”.
In fact, the query “ f (a) = a” will always receive a “no” answer. In other words,
functions have a fixed interpretation and their values cannot be changed by the user.
The same holds for most of the work in ASP where function symbols are allowed
(see, e.g. [2, 4, 9, 14]). These approaches aim at increasing the expressive power
of ASP by adding the capacity of defining recursive data structures over infinite
Herbrand domains. While the language of lparse allows function symbols, terms
constructed of these functions are just names standing for constants. One noticeable
exception is the pure functional language studied in [6, 7], where programs are built
from evaluable functions, excluding predicates.

In this paper, we consider adding evaluable functions into weight constraint
programs, called weight constraint programs with evaluable functions, along the
line of extending normal logic programs with evaluable functions [26]. For these
programs we propose an answer set semantics and the notion of completion and loop
formulas that are a generalization to that of weight constraint programs respectively,

1http://www.tcs.hut.fi/Software/smodels/
2http://userweb.cs.utexas.edu/users/tag/cmodels.html
3http://www.cs.uni-potsdam.de/clasp/

http://www.tcs.hut.fi/Software/smodels/
http://userweb.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.uni-potsdam.de/clasp/
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and show that answer sets of a weight constraint program with evaluable functions
can be characterized by the models of its loop completion. Thus, a weight constraint
program with evaluable functions can be translated to an instance of the Constraint
Satisfaction Problem (CSP) [39], whose solutions correspond exactly to the answer
sets of the original program.

The above results provide a basis for extending fasp,4 a prototypical implementa-
tion for normal logic programs with evaluable functions, to compute answer sets of
weight constraint programs with evaluable functions. This approach possesses two
main advantages. One is that the CSP facilities such as global constraints can be
readily brought into the ASP language, since programs in this language are translated
into CSP instances. In this sense, this approach can be seen as another attempt to
integrate CSP with ASP (cf. [12, 19, 21, 33]). Another advantage of this approach
is that the sizes of grounded programs sometimes can be substantially smaller than
those of the standard ASP encodings.

We conducted experiments on five benchmarks to evaluate the computational
effectiveness of our approach. First, we tested fasp on the magic square problem
encoded by a weight constraint program with evaluable functions. We use a top
ranked CSP solver from the 3rd CSP Solver Competition: Mistral, as a black box to
fasp. The experimental results show that fasp substantially outperforms the popular
state-of-the-art ASP solvers. The results may be contributed by the grounding
sizes and the use of the global constraint “allDifferent”. We also tested fasp with
other four benchmarks: the traveling salesperson problem, the weighted N-queens
problem, the weighted Latin square problem, and the weight-bounded dominating
set problem. The first three above are obtained from the website of pbmodels and
the last one is adopted from the 2nd ASP competition. For these benchmarks, fasp
is competitive with the current ASP solvers.

The paper is organized as follows. In the next section we recall the basic notations
of weight constraint programs, for which we prove the splitting-set theorem and
propose the notion of a loop formula. In Section 3 we add evaluable functions to
weight constraint programs, define their semantics, and formulate loop formulas for
these programs. In Section 4 we briefly describe the implementation of fasp, followed
by a report of experimental results. Section 5 discusses related work, and Section 6
concludes the paper with final remarks.

2 Weight constraint programs

In this section, we first recall the basic notations of weight constraint programs
(without functions) [35]. We then present two characterizations of these programs,
one being the splitting-set theorem and the other the notions of loops and loop
formulas. The former is an extension of splitting a logic program by Lifschitz and
Turner [25] for normal logic programs, while the latter improves the result of Liu
and Truszczyński [29] for weight constraint programs, which only allow monotone
and convex weight constraints. The loop formulas given here will serve as the basis
for the extension of adding functions into these programs in a later section.

4http://www.cse.ust.hk/fasp/

http://www.cse.ust.hk/fasp/
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2.1 Preliminary definitions

We assume an underlying propositional language LP. A rule element is an atom
(positive rule element) or an atom prefixed with not (negative rule element). A
weight constraint is an expression of the form

l ≤ {c1 : w1, . . . , cn : wn} ≤ u (1)

where

– each of l and u is a real number or one of the symbols +∞, −∞; if l (resp. u) is
−∞ (resp. +∞) then “l ≤” (resp. “≤ u”) can be omitted.

– c1, . . . , cn are rule elements, and
– w1, . . . , wn are nonnegative integers, called weights.5

We denote the weight constraint (1) by l ≤ S ≤ u, where l or u may be omitted as
defined above and S = {c1 : w1, . . . , cn : wn}.

Let C = (l ≤ S ≤ u) be a weight constraint. We define the notation, Atoms+(C) =
{a | (a : wa) ∈ S} and Atoms(C) = Atoms+(C) ∪ {b | (not b : wb ) ∈ S}. Let K be a
set of weight constraints. By Atoms(K), we mean the set

⋃
C∈KAtoms(C) and by

Atoms+
(K) we mean the set

⋃
C∈KAtoms+

(C). A weight constraint program (or
simply a program) is a finite set of weight constraint rules (simply weight rules or
rules) of the form

C0 ← C1, . . . , Cn (2)

where Ci (0 ≤ i ≤ n) are weight constraints. Let r be a rule of the form (2). Then
C0 and {C1, . . . , Cn} are called its Head and Body, respectively. Alternatively, for
convenience we may write r in the form of Head ← Body. A weight rule is a Horn
rule if its head is a positive rule element and every member of its body has the form
l ≤ S, where S does not mention any negative rule elements. We denote by Atoms(P)

the union of Atoms(C) where C is a weight constraint occurring in P.
Let Z be a set of atoms, a an atom and C a weight constraint of the form (1).

We say that Z satisf ies a, written Z |= a, if a ∈ Z ; Z satisf ies not a if a /∈ Z ; and Z
satisf ies C, written Z |= C, if the sum of the weights w j for all j such that Z satisfies
c j is not less than l and not greater than u; and Z satisf ies a logic program P if, for
every rule of the form (2) in P, Z satisfies C0 whenever Z satisfies C1, . . . , Cn.

Given a weight constraint C = l ≤ S ≤ u and a set of atoms Z , the reduct of C
with respect to Z , denoted CZ , is the weight constraint l′ ≤ S′, where

– S′ is obtained from S by dropping all pairs (not b : w), and
– l′ is l minus the sum of the weights w for all pairs (not b : w) in S such that b �∈ Z .

Since the reduct of C no longer mentions u, we will simply write (l ≤ S)Z instead of
(l ≤ S ≤ u)Z . The reduct of a weight rule

C0 ← l1 ≤ S1 ≤ u1, . . . , ln ≤ Sn ≤ un (3)

5We consider only nonnegative weights in this paper, as negative weights can be replaced by negative
rule elements [32, 40]. It is also known that negative weights may cause some unintuitive results [17].
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with respect to Z is the set of rules

{a ←(l1 ≤ S1)
Z , . . . , (ln ≤ Sn)

Z | a ∈ Atoms+(C0) ∩ Z and

Z |= Si ≤ ui for all i (0 ≤ i ≤ n)}
The reduct PZ of a weight constraint program P with respect to Z is the union of the
reducts of the rules of P with respect to Z . Clearly, PZ consists of Horn rules only.

If a weight constraint program P consists of Horn rules then it has a unique
minimal set S of atoms such that S |= P. The set is called the deductive closure of
P and denoted by cl(P). Given a weight constraint program P and a set of atoms S,
we say that S is an answer set of P if and only if S |= P and cl(PS) = S. In particular,
if C0 in a rule of the form (2) is equivalent to ⊥ then the rule is called a constraint.
In this case, we usually omit C0 in (2). With constraints, the definition of answer set
above can be extended to: A set of atoms M is an answer set of a weight constraint
program P if M is an answer set of P′ and M satisfies the constraints in P, where P′
is obtained from P by eliminating all constraints of P.

Example 1 Consider the weight constraint program P = {a ← 1 ≤ {a : 1, not a : 1}}.
Suppose S1 = ∅ and S2 = {a}. It is clear that S1 �|= P, so that S1 is not an answer set
of P. As an exercise, note that PS1 = {a ← 0 ≤ {a : 1}} and cl(PS1) = {a}. Meanwhile,
since S2 |= P, PS2 = {a ← 1 ≤ {a : 1}}, and cl(PS2) = ∅ ( �= S2), S2 is not an answer set
of P either. It follows that P has no answer set.6

2.2 The splitting-set theorem for weight constraint programs

The general idea of splitting is that a logic program may be partitioned into two lay-
ers, the “bottom” part and the “top” part, for the computation and characterization
of answer sets. We generalize this idea from normal logic programs [25] to weight
constraint programs. We define the notion of a splitting set and prove the splitting-set
theorem. The result will be used later in the proof of Theorem 3, but it is apparently
of independent interest.

Let M be a set of atoms and S = {c1 : w1, . . . , cn : wn}, where ci (1 ≤ i ≤ n) are rule
elements and wi (1 ≤ i ≤ n) are weights. We denote �(S, M) = ∑

(α:w)∈S and M|=α w.
Let V and M be two sets of atoms such that M ⊆ V, and C = l ≤ S ≤ u a weight

constraint. We use eV(C, M) to denote the following weight constraint

l − �(�1(S, V), M) ≤ �2(S, V) ≤ u − �(�1(S, V), M)

where �1(S, V) = {c : w | (c : w) ∈ S and c mentions an atom in V} and �2(S, V) =
S \ �1(S, V). In another words, eV(C, M) is obtained from C by

– removing every pair (c : w) from S if c mentions an atom in V; and
– replacing l and u with l − W and u − W respectively, where W = ∑

i wi such that
(ci : wi) ∈ S, M |= ci and ci mentions an atom in V.

6Another way to look at the semantics of program P is via semantics-preserving transformations. In
[32] P is transformed to a weight constraint program P′ = {ā ← 0 ≤ {a : 1} ≤ 0; a ← 1 ≤ {a : 1, ā :
1}}, and in [17] to a logic program with nested expressions P′′ = {a ← a; not a}. In terms of normal
logic programs, the corresponding program is P′′′ = {a ← a; a ← not a}.
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For example, consider the weight constraint C

2 ≤ {a : 1, b : 2, not c : 3, not d : 4} ≤ 7.

Suppose V = {a, c, d} and M = {a, d}. Then we have that eV(C, M) is the weight
constraint, −2 ≤ {b : 2} ≤ 3, by seeing that �1(S, V) = {a : 1, not c : 3, not d : 4} and
�(�1(S, V), M) = 4, where S = {a : 1, b : 2, not c : 3, not d : 4}.

Let P be a weight constraint program. A set V of atoms is a splitting set for P if,
for every rule r in P, Atoms(Head(r)) ∩ V �= ∅ implies Atoms(r) ⊆ V. The set of rules
r ∈ P such that Atoms(r) ⊆ V is called the bottom of P relative to V and denoted by
b V(P).

Let P be a weight constraint program P, V a splitting set of P and M a set of
atoms. We denote by eV(P, M) the weight constraint program obtained from P by
replacing each rule in P of the form (2) with

eV(C0, M) ← eV(C1, M), . . . , eV(Cn, M).

Theorem 1 Let V be a splitting set of a weight constraint program P. A set of atoms
M is an answer set of P if and only if M = M1 ∪ M2 where M1 and M2 are answer sets
of b V(P) and eV(P \ b V(P), M1), respectively.

We note that a notion of modularization has been proposed for the class of
programs composed of basic constraint rules [36], which can be viewed as a gen-
eralization of splitting set. A basic constraint rule is either a choice rule whose head is
a choice constraint and whose body is a conjunction of literals, or a weight constraint
rule whose head is an atom and whose body is a weight constraint free of upper
bound. It is argued in [36] that these basic rules provide a reasonable coverage of
weight constraint programs, since they are the internal representations of weight con-
straint programs in the smodels system. In other words, weight constraint rules can
be translated to basic constraint rules. However, such a translation introduces new
symbols. A module theorem, which is a generalization of the splitting set theorem
for the same class of programs, has been proved [36]. Apparently, Theorem 1 above
does not follow from this module theorem, due to the more general form of weight
constraint programs in our case and a direct characterization without using extra
symbols.

2.3 Completion and loop formulas

Following [29], to define the completion we first introduce an extension LPwc of the
language LP. A formula in LPwc is an expression built from weight constraints by
means of boolean connectives ∧, ∨, ⊃, and ¬. The notion of a model of a formula
extends in a standard way to the class of formulas in LPwc.

Given a weight constraint program P, the completion of P, denoted COMP(P), is
defined as follows:

1. For every rule Head ← Body in P we include in COMP(P) an LPwc formula
(∧

Body
)

⊃ Head (4)
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2. For every atom a ∈ Atoms(P), we include in COMP(P) an LPwc formula

a ⊃
∨

1≤i≤n

(∧
Bodyi

)
(5)

where (Head1 ← Body1), . . . , (Headn ← Bodyn) are all the rules of P such that
a ∈ Atoms+(Headi), for all 1 ≤ i ≤ n. Please note that

∨∅ = ⊥ (“false”) and
∧ ∅ =

�(“true”).
Let P be a weight constraint program. The positive dependency graph of P, written

GP, is the directed graph (V, E), where

– V = Atoms(P),
– (a, b) ∈ E if there a rule of the form (2) in P such that a ∈ Atoms+

(C0) and
b ∈ Atoms+(Ci) for some i (1 ≤ i ≤ n).

Let L be a nonempty subset of Atoms(P). We say that L is a loop of P if there is a
non-zero length cycle in GP that goes through only and all the nodes in L. A loop L
of P is maximal if there is no loop L′ of P such that L ⊂ L′. A maximal loop L of P
is terminating if there is no other maximal loop L′ of P such that GP has a path from
some node in L to some one in L′.

Let C = l ≤ S ≤ u be a weight constraint and L a set of atoms. The restriction of
C to L, written C|L, is the following LPwc formula

(l ≤ S′) ∧ (S ≤ u) (6)

where S′ is obtained from S by removing every pair (ci : wi) from S if ci ∈ L. The
intended meaning is that l ≤ S is independent of L, similar to the notion of external
support of [22]. The loop formula for a loop L of P, written LF(L, P), is the
following LPwc formula

∨
L ⊃

⎛

⎝
∨

1≤i≤n

∧

C∈Bodyi

C|L

⎞

⎠

where (Head1 ← Body1), . . . , (Headn ← Bodyn) are all the rules of P such that, for
each 1 ≤ i ≤ n, Atoms+

(Headi) ∩ L �= ∅.

Example 2 Let P = {a ← 1 ≤ {a : 1} ≤ 1} and Z = {a}. We have that COMP(P)

consists of

a ⊃ 1 ≤ {a : 1} ≤ 1 and 1 ≤ {a : 1} ≤ 1 ⊃ a.

Clearly, Z |= COMP(P). But Z does not satisfy the loop formula for the loop L = {a}
of P, since LF(L, P) is the formula

a ⊃ (1 ≤ {}) ∧ ({a : 1} ≤ 1)

which is not satisfied by Z due to Z �|= 1 ≤ {}. The interested readers can check that
∅ is the unique answer set of P.

Example 3 (Continued from Example 1) The completion of P, COMP(P), consists
of the following formulas

a ⊃ (1 ≤ {a : 1, not a : 1}) and (1 ≤ {a : 1, not a : 1}) ⊃ a.
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It is clear that ∅ �|= COMP(P) but {a} |= COMP(P). Note that P has exactly one loop
L = {a} whose loop formula LF(L, P) is

a ⊃ (1 ≤ {not a : 1})

which is obviously not satisfied by {a}.

Theorem 2 Let P be a weight constraint program. A set M is an answer set of P if and
only if M is a model of COMP(P) ∪ LF(P), where LF(P) is the set of loop formulas
of P.

Since a literal l can be regarded as the weight constraint 1 ≤ {l = 1} ≤ 1, normal
logic programs can be seen as special cases of weight constraint programs. Note
further that, given a set L of atoms and a literal l, if l is an atom in L then l|L is
1 ≤ {} ≤ 1 which is equivalent to ⊥, and l itself otherwise. In this way, the above
definitions of loops and loop formulas can be regarded as a generalization of those
for normal logic programs [27].

It is known that a weight constraint program can be transformed into a logic
program with nested expressions [17]. The rules of logic programs with nested
expressions have a normal form of

H ← B, F

where H is a disjunction of atoms, B a conjunction of atoms, and F a negative
formula. Lee and Lifschitz proposed the notion of loop completion for such logic
programs [23].

Liu and Truszczyński formulated the loop completion of logic programs with
monotone and convex constraints and showed that, given such a program, the
models of its loop completion are precisely its answer sets. Since a weight constraint
program can be easily transformed into one that mentions only positive rule elements
by introducing new propositional variables, a weight constraint program can be
regarded as a convex constraint program that can be transformed into a monotone-
constraint program. Accordingly, by translating the completion and loop formulas
into pseudo-Boolean constraints and using solvers of pseudo-boolean constraints,
they implemented a system, called pbmodels, to compute the answer sets of weight
constraint programs [29]. Later, You and Liu generalized these concepts for logic
programs with arbitrary abstract constraint atoms [44].

For the approaches proposed in [23, 29], loop formulas can be obtained for
(arbitrary) weight constraint programs, indirectly via some transformations, i.e.,
from weight constraint programs to logic programs with nested expressions for the
former, and to monotone-convex-constraint programs for the latter. In the latter
case, new atoms are introduced. Here in this paper, the notions of completion and
loop formulas do not depend on such a transformation. Another definition of loop
formulas for weight constraint programs is formulated independently by Liu and You
[28], which does not introduce new atoms as well.



Weight constraint programs with evaluable functions 349

3 Weight constraint programs with evaluable functions

In this section, we introduce evaluable functions into weight constraint programs,
simply called weight programs, give their syntax and semantics, and show how such
evaluable functions in weight programs may be replaced with predicates. We then
present the completion, loops and loop formulas for weight programs. Finally, we
present a translation from weight programs to instances of the Constraint Satisfaction
Problem.

3.1 Syntax and semantics

We assume a many-sorted first-order language L. In such a language, every predicate
has an arity that specifies the number of arguments the predicate has and the type
(sort) of each argument, and similarly for constants and functions. Variables also
have types associated with them, and when they are used in a formula, their types are
normally clear from the context. A function of the type τ1 × ... × τn → τ is evaluable
if the domains for the types τ1, . . . , τn and τ are finite and fixed. The language L may
have pre-interpreted symbols such as the standard arithmetic functions “ + ”, “ − ”,
. . ., as well as the standard arithmetic relations “>”, “≥”, “<”, “≤”, etc. Note that
the symbol “≤” has been used in weight constraints. When it is used as a standard
arithmetic relation, it is in the form t ≤ t′ where both t and t′ are numeric terms.
Informally, numeric terms contain numbers and functions of the form f (t) where f is
an evaluable function whose range is a set of numbers and t is a tuple of terms. Thus
the role of “≤” should be clear from its context. Arithmetic atoms are expressions
of the form t1 � t2 where t1 and t2 are numeric terms and � is a standard arithmetic
relation.

By predicates we mean proper predicates that do not mention equality and the
standard arithmetic relations. By an atom we mean an atomic formula that mentions
a proper predicate, an equality atom is a formula of the form t = t′, where t and t′ are
terms of L. Unless stated otherwise, by functions we mean proper functions (whose
arities are greater than 0). Extended rule elements are defined to be atoms, arithmetic
atoms and equality atoms (positive rule elements), and their negations (negative rule
elements). For convenience, we write inequality t �= t′ for not t = t′.

An extended weight constraint is an expression of the form (1), that is,

l ≤ {c1 : w1, . . . , cn : wn} ≤ u

in which each ci is an extended rule element where 1 ≤ i ≤ n. A weight rule (or simply
a rule) is an expression of the form (2) in which each Ci (0 ≤ i ≤ n) is an extended
weight constraint. A (weight) program P is a finite set of weight rules together with
a set of type def initions, one for each type τ used in the rules of P. A type definition
takes the form

τ : D (7)

where D is a finite nonempty set of objects, called the domain of τ . The notations
about sets of atoms labeled by the symbols Atoms+(.) and Atoms(.) are extended to
the case of weight programs (note that they denote sets of non-equality atoms and
non-arithmetic atoms).
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Informally, a type definition defines a domain for a type (sort). This is like in
a first-order structure for a many-sorted language, there is a domain for each type.
Here we require that if a constant c of type τ occurs in the rules of P, then the domain
D of τ as specified in the type definitions of P must contain c (but is called an object
in D).

Let P be a weight program. An atom p(c1, . . . , ck) is said to reside in P if p is a
predicate of type τ1 × . . . × τk in P, and ci ∈ Di, where Di is the domain of the type
τi, for each i. We denote by At(P) the set of atoms residing in P.

Borrowing the familiar notation of conditional literals [40], the traveling sales-
person problem and the weighted N-queen problems can be encoded as follows (as
“:” is already used as part of a weight rule, below we will use “|” instead of “:” for
conditional literals).

Example 4 (The TSP problem (TSP)) Recall that the traveling salesperson problem
(also called the weighted Hamiltonian circuit problem) is to find a path in a graph
such that every vertex of the graph occurs exactly once in the path. In addition,
the sum of the weights on the arcs in the path must be no more than a bound. The
problem can be formalized by the following weight rules:

← not reached(x), reached(hc(x)) ← initial(x),

← not arc(x, hc(x)), reached(hc(x)) ← reached(x),

{hc(x) = y : wt(arc(x, y)) | vertex(x; y)} ≤ weight.

Here, reached and initial are unary predicates over the domain vertex, arc is a binary
predicate of the type vertex × vertex, hc is a unary function of the type vertex →
vertex, wt(arc(x, y)) is the predefined weight of arc(x, y), and weight is a given upper
bound of a solution. An instance of the problem is specified by a domain for vertex, a
set of facts for arc(x, y) and their weights (given by wt(arc(x, y))), a fact for initial(x),
and an upper bound weight. Apparently, since hc is a function and we start with
exactly one vertex, there is no need to constrain that, for each vertex, there is no more
than one incoming arc nor more than one outgoing arc (which we would otherwise
have to specify if represented by a relation). This program is more or less a direct
“functionalization” of Niemelä’s encoding of the weighted version of Hamiltonian
circuit problem [34], and is also similar to Cabalar’s encoding of the problem in his
functional action language.7

Example 5 (The weighted N-queens problem (WNQ)) The weighted N-queens
problem is a variant of the N-queens problem by assigning a weight to each cell and
requiring the sum of weights where queens were placed is no more than a bound.
This problem can be formalized by the following weight rules:

← q(x) = q(y), x �= y,

← |q(x) − q(y)| = |x − y|, x �= y,

{q(x) = y : wt(position(x, y)) | pos(x; y)} ≤ weight.

7http://www.dc.fi.udc.es/∼cabalar/fal/

http://www.dc.fi.udc.es/~cabalar/fal/
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Here, q is a function of the type pos → pos, q(i) is the column where the ith-queen
(the one in row i) is to be placed, position is of the type pos × pos, wt(position(x, y))

is the predefined weight of position(x, y), and weight is the upper bound of a solution.
The expression x �= y in a rule stands for not x = y. There are actually two types
here: pos, whose domain is 1..N, and int, whose domain is −N..N, for the N-queens
problem. The pre-interpreted function “−” is of the type pos × pos → int and “|.|”
of int → int. These two functions have their standard meanings. The first two rules
in the program consist of the encoding of the queens problem that are essentially the
same as Cabalar’s encoding of 8-queens problem in his functional action language.
An instance of the problem is specified by a domain of pos, the facts position(x, y)

and their weights (given by wt(position(x, y))), and an upper bound weight.

We now proceed to define an answer set semantics for weight programs.
Let P be a weight program. The grounding of P consists of type definitions in

P and the rules that are obtained by (1) replacing variables in the rules of P with
elements in their respective domains, and then (2) replacing each weight constraint
l ≤ S ≤ u with l′ ≤ S′ ≤ u′, where

(i) S′ is obtained from S by removing all of the pairs ([not]t = t′ : w) where t and t′
are two constants, and

(ii) l′ = l − T, u′ = u − T where T = ∑
(c=c:w)∈S w + ∑

(c�=c′ :w′)∈S w′, and c, c′ are
two distinct constants.

Generally speaking, the grounding of a program may cause an exponential blow-
up [41]. However, if the maximal number of distinct variables in a rule is fixed to
some constant d then grounding results in a polynomial increase in size. In other
words, grounding such a rule results in at most O(nd) number of instantiated rules
where n is the number of domain elements.

Please note that a ground rule may have symbols not in the original language L.
We let LP be the language that extends L by introducing a new constant for each
element in the domain of a type (the introduced new constants must be distinct from
each other and from all existing constants in L). Each of these new constants will
have the same type as the type of its corresponding element. In this case, the fully
instantiated rules will be in the languageLP. In the following, unless otherwise stated,
we shall equate a weight program with its grounding in the extended language LP.
Note that the language LP is related to the given program P.

Given a weight program P, the intended domains of interpretations for P are
exactly those specified in the type definitions of P. Thus, an interpretation I of P is a
first-order structure that defines a mapping such that all of the following conditions
are satisfied

– The domains of I are those specified in the type definitions of P.
– A constant is mapped to itself.
– If R is a relation of type τ1 × . . . × τn and the type definitions τi : Di, 1 ≤ i ≤ n,

are in P, then RI ⊆ D1 × . . . × Dn. A standard arithmetic relation should follow
its standard interpretation.

– If f is a function of type τ1 × . . . × τn → τn+1, n ≥ 1, and the type definitions
τi : Di,1 ≤ i ≤ n + 1, are in P, then f I is a function from D1 × . . . × Dn to Dn+1.
A pre-interpreted function should follow its standard interpretation.
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By Ia, we denote the set of atoms that are true under I, i.e., {p(c) | I |= p(c)},
where c is a tuple of constants matching the arity of relation symbol p. Note that
an interpretation is always associated with a weight program. The valuation of a term
t under an interpretation I, denoted by tI , is a constant defined as:

– tI = c if t = c;
– tI = c′ if t = f (s) and f I(sI) = c′, where s is a tuple of terms matching the type

of f , say s = (t1, . . . , tn), and sI stands for
(
tI
1, . . . , tI

n

)
.

Let I be an interpretation. We say that I satisf ies an atom p(t) if tI ∈ pI , i.e.,
p(tI) ∈ Ia. The interpretation I satisf ies an equality atom t1 = t2 if tI

1 = tI
2 . The

satisfaction (and model), written by |=, for literals, extended weight constraints and
weight programs can be defined accordingly in a straightforward way.

Let P be a weight program, I an interpretation for P, and l ≤ S ≤ u an extended
weight constraint occurring in P. The reduct of l ≤ S ≤ u with respect to I, written
[l ≤ S]I (again, since the reduct does not mention u, we will omit it), is the weight
constraint l(I,S) ≤ SI , where

– SI is obtained from S by

– replacing each functional term f (t) in a rule by d if f I(tI) = d;
– removing all pairs (c : w) whenever c is an equality atom or an arithmetic

atom or a negative extended rule element.

– l(I,S) = l − ∑
(c:wc)∈S and I|=c wc, where c is a negative rule element or an equality

atom or an arithmetic atom. In particular, equality is interpreted as an identity
relation, i.e., for any interpretation I, I |= (c = c), I �|= (c �= c), I |= (c �= c′), and
I �|= (c = c′) where c and c′ are two distinct constants.

The reduct of a rule of the form

l0 ≤ S0 ≤ u0 ← l1 ≤ S1 ≤ u1, . . . , ln ≤ Sn ≤ un

in P, with respect to an interpretation I, is the set of rules

{p(c) ← [l1 ≤ S1]I, . . . , [ln ≤ Sn]I | (p(c) : w) ∈ SI
0, I |= p(c) and

I |= Si ≤ ui for all i (0 ≤ i ≤ n)}.
The reduct of P under the interpretation I, written PI , is the union of the reducts

of the rules in P with respect to I. Clearly, PI is a weight constraint program
consisting of Horn rules only. Thus the least model cl(PI) of PI exists. We call the
interpretation I for P an answer set of P if I |= P and Ia = cl(PI).

Example 6 Consider the following weight program P:

f : τ → τ, p : τ, τ : {0, 1},
1 ≤ { f (0) �= f (1) : 1, p(0) : 2} ≤ 2 ← 1 ≤ {not p( f (1)) : 2, p( f (0)) : 1} ≤ 2.

Let us consider the interpretation I for P such that f I(0) = f I(1) = 0, I |= p(0) and
I �|= p(1). The reduct PI consists of a single rule: p(0) ← 1 ≤ {p(0) : 1}. Since ∅ is the
unique answer set of PI which is different from Ia = {p(0)}, it follows that I is not an
answer set of P.
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Note that any term t will be evaluated to a constant under an interpretation. Thus
if a weight program P does not mention predicate symbols then an interpretation I
for P is an answer set of P if and only if I satisfies every weight rule of P.

Example 7 Consider the weight program P consisting of

f : τ → τ, τ : {0, 1},
f (0) > f (1) ← f (0) �= f (1),

← f (0) = f (1).

It is easy to see that P has a unique answer set I such that f I(0) = 1 and f I(1) = 0.
In fact, the program P is a normal one as defined in [26].

3.2 Eliminating functions

As elluded to in the introduction, functions are not necessary theoretically speaking.
They can be eliminated by using relations. We now make this precise.

Let P be a weight program. For each function f : τ1 × · · · × τn → τ in P, we
introduce two corresponding relations fr and f r. They both have the type τ1 ×
· · · × τn × τ , and informally speaking fr(x1, ..., xn, y) stands for f (x1, ..., xn) = y and
f r(x1, ..., xn, y) for f (x1, ..., xn) �= y. Now let F(P) be the union of the rules obtained
by grounding the following rules for each function f in P using the domains in the
type definitions of P:

← fr(x1, . . . , xn, y1), fr(x1, . . . , xn, y2), y1 �= y2,

fr(x1, . . . , xn, y) ← not f r(x1, . . . , xn, y),

f r(x1, . . . , xn, y) ← fr(x1, . . . , xn, z), y �= z.

Let R(P) be the set of rules obtained from the rules in P by the following transfor-
mation:

– Repeatedly replace each functional term f (u1, . . . , un), where each ui is a simple
term in that it does not mention a function symbol, by a new variable x and add
fr(u1, . . . , un, x) to the body of the rule where the term appears.

– Ground all the variables introduced in the previous step.

For example, suppose the domain for the range of the function f is {c1, . . . , cm}.
The following rule in a weight program P:

l ≤ {p(a) : w1, f (a) = c1 : w2} ≤ u ← 1 ≤ {p(b) : w2}
will be transformed into the following rules in R(P)

l − w2 ≤ {p(a) : w1} ≤ u − w2 ← 1 ≤ {p(b) : w2}, fr(a, c1),

l ≤ {p(a) : w1} ≤ u ← 1 ≤ {p(b) : w2}, fr(a, ci) (2 ≤ i ≤ m).

Clearly F(P) ∪ R(P) is a weight constraint program which is equivalent to P:
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Theorem 3 Let P be a weight program. An interpretation I is an answer set of P if f
R(I) is an answer set of F(P) ∪ R(P), where

R(I) = Ia ∪ { fr(c, a) | fr(c, a) ∈ Atoms(F(P)) and f I(c) = a}
∪{ f r(c, a) | f r(c, a) ∈ Atoms(F(P)) and f I(c) �= a}.

It is evident that, given a weight program P, if the arities of both predicates and
functions are bounded by a constant then the size of of F(P) ∪ R(P) is polynomial in
the size of P. Recall that the problem of deciding if a set of a ground weight constraint
rules has an answer set if NP-complete (cf. Theorem 3.2 of [40]). Readers may
referr to [37] for the notations on complexity theory. Thus the following proposition
follows.

Proposition 1 If the arities of predicates and functions are bounded by a constant, then
the problem of deciding whether a weight program has an answer set is NP-complete.

Proof Membership: If the arities of both predicates and functions of a weight
program P are bounded by some constants then At(P) is in polynomial size of P and
the set of functional terms in which no functional term appears as their arguments is
also in polynomial size of P. It follows that we can guess an interpretation I of P and
check whether I is an answer set of P in polynomial time. Thus the problem is in NP.

Hardness: Since the class of ground weight constraint programs is a special case of
ground weight programs, and the problem of deciding if a ground weight constraint
program has an answer set is NP-hard (Theorem 3.2 of [40]), it implies that the same
problem for a ground weight program is NP-hard. ��

The following corollary directly follows from the above proposition.

Corollary 1 Give a weight program P in which the arities of both predicates and
functions are f ixed by some constant, and α an atom in At(P). Then we have that

– the problem if P has an answer set I such that α ∈ Ia is NP-complete, and
– the problem if α ∈ Ia for any answer set I of P is co-NP-complete.

3.3 Completion and loop formulas

Similar to Section 2.3, to accommodate logic formulas that may contain extended
weight constraints, we extend the language L to Lwc, in which an extended weight
constraint is regarded as an atomic formula of Lwc, and formulas of Lwc are
constructed in the normal way.

Let P be a weight program. The completion of P, written COMPf (P), consists of
the following formulas of the language Lwc:

1. For every rule (Head ← Body) in P, we include the following formula of Lwc in
COMPf (P)

(∧
Body

)
⊃ Head. (8)
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2. For each atom p(c) ∈ At(P), we include the following formula of Lwc in
COMPf (P)

p(c) ⊃
∨

1≤i≤n

⎡

⎣
∧

Bodyi ∧
⎛

⎝
∨

p(t)∈Atoms+(Headi)

t = c

⎞

⎠

⎤

⎦ (9)

where Headi ← Bodyi(1 ≤ i ≤ n) are the rules of P, t = c stands for the formula
t1 = c1 ∧ . . . ∧ tn = cn whenever t = (t1, . . . , tn) and c = (c1, . . . , cn).

Let P be a weight program. The positive dependency graph of P, written GP, is
the directed graph (V, E), where

– V = At(P) and
– (p(c), q(d)) ∈ E iff P has a weight rule of the form (2) such that, p(t) ∈

Atoms+(C0), q(s) ∈ Atoms+(Ci), for some i (1 ≤ i ≤ n), and there exists an
interpretation I for P with tI = c and sI = d.

Now, loops, maximal loops, and terminating loops are similarly defined. Formally, a
non-empty subset L of At(P) is a loop of P if there is a non-zero length cycle in GP

that goes through only and all the nodes in L. A loop L of P is maximal if there is
no loop L′ of P such that L ⊂ L′. A maximal loop L of P is terminating if there is no
other maximal loop L′ of P such that GP has a path from some node in L to some
one in L′.

In the following, to define loop formulas, we further extend the language Lwc to
Lwc

o such that, for any predicate p and a non-empty subset L of At(P), Lwc
o contains

a predicate pL with the same arity as that of p. The interpretations for P can be
similarly extended. Let p(t) be an atom and L ⊆ At(P). The L-irrelevant formula of
p(t), written IL(p(t), L), is defined as

pL(t) ≡
⎛

⎝p(t) ∧
∧

p(c)∈L

¬(c = t)

⎞

⎠ (10)

Intuitively, given an interpretation I of Lwc, we can talk about the truth of pL(t)
indirectly - “pL(t) is true under I” if and only if I |= p(t) and p(tI) /∈ L. Formally,
the truth of pL(t) has to be treated in the language of Lwc

o . In what follows, given
an interpretation I of Lwc, by o(I) we mean the interpretation of Lwc

o which is the
extension of I satisfying (10). In other words, o(I) is the same interpretation as I for
the signatures of Lwc, and it satisfies (10) for each predicate pL. It is clear that any
interpretation of Lwc

o that satisfies (10) corresponds to a unique interpretation of Lwc.
Let P be a weight program, L ⊆ At(P) and C = l ≤ S ≤ u be an extended weight

constraint. The restriction of C to L, written C‖L, is the following formula of Lwc
o :

(l ≤ S′) ∧ (S ≤ u) ∧
⎛

⎝
∧

p(t)∈Atoms+(C)

IL(p(t), L)

⎞

⎠ (11)

where S′ is obtained from S by replacing every pair (p(t) : w) in S with (pL(t) : w),
and p is a proper predicate. In particular, if C mentions only literals that contain no
function symbols, then C‖L coincides with C|L in the language Lwc since pL(t) ≡ p(t)
if p(t) /∈ L, and pL(t) ≡ ⊥ otherwise.
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Let L be a loop of a weight program P. The loop formula of L with respect to P,
written LFf (L, P), is the following Lwc

o formula:

∨
L ⊃

∨

1≤i≤n

⎡

⎢
⎣

⎛

⎜
⎝

∨

p(c)∈L
p(t)∈Atoms+(Headi )

t = c

⎞

⎟
⎠ ∧

⎛

⎝
∧

C∈Bodyi

C‖L

⎞

⎠

⎤

⎥
⎦ (12)

where Headi ← Bodyi (1 ≤ i ≤ n) are all the rules of P. One should note that, if L
and Atoms+(Headi) share no common predicate then it is unnecessary to compute∧

C∈Bodyi
C‖L since

⎛

⎜
⎝

∨

p(c)∈L
p(t)∈Atoms+(Headi )

t = c

⎞

⎟
⎠ ≡ ⊥.

Example 8 (Continued from Example 6) The completion of P, COMPf (P), consists
of the following formulas:

(1 ≤ {not p( f (1)) : 2, p( f (0)) : 1} ≤ 2) ⊃ (1 ≤ { f (0) �= f (1) : 1, p(0) : 2} ≤ 2),

p(0) ⊃ (1 ≤ {not p( f (1)) : 2, p( f (0)) : 1} ≤ 2) ∧ (0 = 0),

p(1) ⊃ ⊥.

It is easy to see that the interpretation I, i.e., f I(0) = f I(1) = 0 and I |= p(0) but
I �|= p(1), does satisfy COMPf (P). Note further that L = {p(0)} is a unique loop of
P. The loop formula LFf (L, P) is the following formula

p(0) ⊃
[

(0 = 0) ∧ (1 ≤ {not p( f (1)) : 2, pL( f (0)) : 1})∧
({not p( f (1)) : 2, p( f (0)) : 1} ≤ 2) ∧ IL(p( f (0)), L)

]

where IL(p( f (0)), L) is the formula

pL( f (0)) ≡ p( f (0)) ∧ (0 �= f (0)).

It is not difficult to verify that o(I) does not satisfy the loop formula LFf (L, P), since
pL( f (0)) ≡ ⊥.

The below theorem formally shows that answer sets of a weight program can be
characterized by the models of its loop completion.

Theorem 4 Let P be a weight program. An interpretation I for P is an answer set of
P if and only if o(I) is a model of COMPf (P) ∪ LFf (P), where LFf (P) is the set of
loop formulas of P and o(I) is the extension of I satisfying (10).

3.4 Translation to CSP

Formally, a CSP is a tuple (X ,D, C), where X is a set of variables, D a set of domains,
one for each variable in X , and C a set of constraints about the variables in X . A
solution to a CSP is an assignment that maps each variable in X to an element in its
domain such that under the assignment all constraints in C are satisfied. Abstractly,
a constraint can be thought of as a pair (x, S), where x is a tuple of variables, and
S a set of tuples of values in the domains of the variables in x. Thus an assignment
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satisfies a constraint (x, S) if under the assignment, the tuple of values taken by the
variables in x is in S [39].

In order to translate a weight program into a CSP in terms of its completion and
loop formulas, we need to assume a certain “normal form” for functional terms. Let
P be a weight program. We say that P is free of functions in arguments if all terms that
can be evaluated independently of interpretations have been replaced by constants
in LP, and none of the predicates or functions that are not pre-interpreted have a
functional term in their arguments. Given a weight program P, we can translate it
into one that is free of functions in arguments using the following procedure:

(1) evaluate all terms that mention only constants and pre-interpreted functions to
constants;

(2) for each rule in P, repeatedly replace every occurrence of a term f (u1, . . . , un)

in any argument of a predicate or a function that is not pre-interpreted in the
rule by a new fresh variable v of the same type as the range of f , and add
f (u1, . . . , un) = v to the body of the rule, where ui is a simple term; and

(3) ground the rules obtained in the above step.

It is evident that the original program and the transformed one are equivalent
in the sense that they have the same answer sets. In the following, without loss of
generality, we assume that weight programs are free of functions in arguments.

Accordingly, using completion and loop formulas, we can translate a weight
program to a CSP, denoted R(P) = 〈X ,D,C〉, as follows. The set X of variables
and their domains are

– for each atom in At(P), there is a variable for it whose domain is {0, 1}, and
– for each functional term f (u1, . . . , un) occurring in P such that f is not pre-

interpreted, there is a variable for it whose domain is the range of f .

The set C of constraints is: for each formula φ in COMPf (P) ∪ LFf (P), there is a
constraint c(φ) = 〈S, R〉 in C, where R is the constraint obtained from φ by replacing
atoms and functional terms in it by their corresponding variables, and S is the set of
variables occurring in R. In particular, for an extended weight constraint C of the
form (1), we transform C to the following constraint:

l ≤
(

n∑

i=1

if (ci, wi, 0)

)

≤ u

where ci = c if c is an atom or an equality atom or an arithmetic atom, and ¬c if
ci = not c, if (ψ, t1, t2) is an if-then-else term which means that the value of if (ψ, t, t′)
is t if ψ is true and t′ otherwise.

Under this formulation, the answer sets of a weight program P correspond to
the solutions to its corresponding CSP R(P) under the following mapping: let I be
an interpretation of P, the variable assignment corresponding to I, written v(I), is
defined as follows:

– if x ∈ X corresponds to an atom p, then v(I) assigns x the value 1 if and only if
p is true in I; and

– if x ∈ X corresponds to the term f (u1, . . . , un), then v(I) assigns x the value u if
and only if f I(u1, . . . , un) = u.
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Similarly, given a variable assignment of R(P), a corresponding interpretation of P
can be easily computed.

Theorem 5 Let P be a weight program that is free of functions in arguments and I
an interpretation of P. Then I is an answer set of P if and only if v(I) is a solution of
R(P).

4 Implementation and experimentation

Due to Theorem 5, the answer sets of a weight program can be computed using a
CSP search engine. In this section, we briefly introduce the implementation of fasp
for this purpose and report some experimental results.

4.1 Implementation

As we know, the current CSP encoding formalism under the name of XCSP 2.1,8

which is designed for the third CSP solvers’ competition, allows global constraints,
such as weightSum, allDif ferent, among, atleast, atmost, cumulative, etc. Our ap-
proach of using CSP solvers to compute answer sets allows us to make use of these
facilities. Therefore, we can incorporate global constraints into the ASP language for
weight constraint programs with functions, by introducing appropriate notations. For
example, we use the following notation

f : τ1 × . . . × τn → τ [allDif ferent]
to express not only the type of the function symbol f but also the requirement
that the function f (t) should produce different values for different t’s. In the
current version of fasp, invocation to the CSP global constraint allDif ferent has been
implemented.

Given our translation above from weight constraint programs with functions to
CSPs, we can compute the answer sets of such logic programs using an algorithm
that is similar to the one used by ASSAT [27], except that we now use a CSP solver
instead of a SAT solver.

First of all, notice that our translation from logic programs to CSPs actually
consists of two steps: it first transforms a logic program to a set of quantifier-
free sentences in the form of completions and loop formulas, and then from these
sentences to a CSP. The second part is actually quite general in that it works for any
quantifier-free sentences that do not have any functional terms in the arguments of
predicates and functions, provided the domain of each type is given and finite.

As noticed in [27], a logic program may have an exponential number of loops and
thus an exponential number of loop formulas. It is generally infeasible to add all of
the loop formulas of a weight program P at the beginning and call a CSP solver with
COMPf (P) ∪ LFf (P). The proposition below shows that if a model of COMPf (P)

is not an answer set of P then there must be a loop formula for some terminating
loop that is not satisfied by the model. Note that terminating loops are maximal ones

8www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf

www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf
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and it is known that finding maximal loops (strongly connected components) of a
given graph is tractable [42]. This motivates us to incrementally add loop formulas of
some maximal loops to COMPf (P) when calling a CSP solver with COMPf (P). The
process is very similar to that of assat [27]. Though in the worst case, it is generally
believed that an exponential number of loop formulas are theoretically necessary
[24], many practical benchmarks involve only a small number of maximal loops or no
loops at all.

Proposition 2 Let P be a weight program, I a set of atoms such that I |= COMPf (P).
If I is not an answer set of P then GP[I−] has at least one terminating loop and I �|=
LFf (L, P) for any terminating loop L of GP[I−] where I− = Ia \ cl(PI) and GP[I−]
is the induced subgraph of GP on I−.

Algorithm 1 FASP(X, P) - X stands for a CSP solver
Input: A weight program P
Output: An answer set of P if it has one, and report no otherwise.
Begin

(1) � ← COMP f (P).
(2) R(�) ← convert � to the format of X.
(3) Find a solution S of R(�) by X.
(4) If no solution, return no answer set.
(5) Map S to an interpretation I of P.
(6) Compute M− = Ia \ cl(PI), where cl(PI) is the least model of PI .
(7) If M− = ∅, return I as an answer set.
(8) Compute all the maximal loops under M−, add their loop formulas to �, and

goto step (2).

End

Proposition 3 Algorithm 1 is sound and complete if X is a complete CSP solver, i.e.,
given a weight program P, P has an answer set I if and only if FASP(X, P) returns I
as an answer set of P.

We can modify the algorithm FASP(X, P) slightly for the purpose of computing
all answer sets by resorting to a complete CSP solver X in two ways. One is to
compute all models of COMP f (P) in the first step, and then check if each model
of COMP f (P) is an answer set of P. The other is to call the algorithm iteratively:
once we get an answer set I of P, we add a constraint into P to prevent I from
being a model of COMP f (P) gain. In the case that P has an exponential number of
answer sets, the two approaches will exponentially blow up in space. We note that an
algorithm of answer set enumeration running in polynomial space was proposed and
implemented in clasp [18].9

9It is a nontrivial extension to adopt similar techniques for clasp, since we will likely have to modify
the structure of a CSP solver, and as such, treat it as a white box, instead of a black box.
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4.2 Experimental results

In what follows we report our experimental results for the benchmarks of magic
square program, TSP problem, weighted N-queens problem, weighted latin square
problem, and weight-bounded dominating set problem. The ASP encodings of first
four problems are obtained from the website of pbmodels while the last one is from
the website of the second ASP competition.10 For further details regarding these
benchmarks we refer the reader to [29]. All the experiments were done on a Dell
PowerEdge 50 server with a quad-core Intel Xeon E5506 (2.13GHz) CPUs, 2GB
RAM running Linux with kernel 2.6. We compare the time consumption in seconds
with a variety of the state-of-the-art ASP solvers: smodels 2.34, cmodels 3.79 (with
MiniSat 2.0 beta), clasp 1.3.5 and pbmodels 0.2 (with satzoo 1.02). The grounder for
these ASP solvers is lparse 1.1.1. We tested fasp with the CSP solver Mistral 1.331. It
should be noted that our current prototypical implementation accepts ground weight
programs only. Thus the instances being tested are grounded by ourselves.

4.2.1 The magic square problem

We first tested the magic N-square problem. The problem is to construct an N × N
array using each integer in {1, . . . , N2} as an entry in the array exactly once in such a
way that entries in each row, each column, and either of two main diagonals sum up
to N(N2 + 1)/2. The weight program for the problem contains the rules:

w ≤ {square(x, y) | num(y)} ≤ w ← num(x), (13)

w ≤ {square(x, y) | num(x)} ≤ w ← num(y), (14)

w ≤ {square(x, x) | num(x)} ≤ w ←, (15)

w ≤ {square(x, N − x + 1) | num(x)} ≤ w ← (16)

where square is a function of the type num × num → value[allDif ferent], the domain
of num is {1, 2, . . . , N}, the domain of value is {1, 2, . . . , N2}, w = N(N2 + 1)/2,
{square(x, y) | num(y)} stands for

∑
num(y) square(x, y), and the rule l ≤ t ≤ w ←

Body stands for the two rules l ≤ t ← Body and t ≤ w ← Body, where l, w are real
numbers and t is a numeric term. The intended meaning of lines (13)–(16) is that
the sum of the numbers in each column, each row and each diagonal are exactly
N(N2 + 1)/2.

Note that a predicate sqr/3 is used in the encoding of the problem [29], where
sqr(x, y, v) means that the value at the entry (x, y) is v. In [29] the following weight
rules are needed to ensure that all entries have distinct values from 1..N2 and each
entry has exactly one value from 1..N2, respectively

1{sqr(I, J, D) : num(I; J)}1 ← data(D).

1{sqr(I, J, D) : data(D)}1 ← num(I), num(J).

10http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml
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This is an explicit encoding of the allDif ferent constraint. In our encoding, if we do
not use AllDif ferent in the declaration of the function square, we will then need the
following rules

← square(x, y) = square(x′, y′), x �= x′,

← square(x, y) = square(x′, y′), y �= y′

to guarantee that the values at different entries be distinct.
We compare the time cost in seconds (excluding the grounding cost) with the

ASP solvers: smodels, cmodels using MiniSat, clasp, and pbmodels using satzoo.
In order to investigate the effectiveness of global constraints in fasp, we also tested
the magic square problem for which the weight program encoding does not use the
global constraint allDif ferent.

We also tested the encodings in constraint answer program for the problem
[12]. While translating these encodings into traditional logic programs, the global
constraint permutation is translated using directed encoding, supported encoding
and range encoding respectively. The experimental results show that the supported
encoding outperforms the other two, thus only the performance of the supported en-
coding approach is reported. All the experimental results are summarized in Table 1.

It is clear that fasp outperforms the other ASP solvers under consideration for
this benchmark. It also outperforms the best translational approach for the problem
[12] as illustrated in Table 1. One should also notice that using the global constraint
allDif ferent leads to better efficiency for the problem. The only one exception is for
N = 10. For grounding sizes, we also report the sizes of these ground programs in
lparse and in our fasp. The ground programs in lparse are generated using lparse
with the “-t” option. The result in Table 1 shows that using evaluable functions leads
to smaller ground program size than that of lparse.

As we noted earlier, grounding could be a bottleneck for ASP solvers. For in-
stance, using the well-known encoding for the N-queens problem, clasp outperforms
any known CSP solvers (to the best of our knowledge) for the problem size N ≤ 50;
when the ground program size becomes greater than one Gigabyte, clasp degrades
its performance severely [26]. However, for the magic square problem, it is clear that
grounding is not a serious problem for clasp as illustrated by the small sizes of the

Table 1 The magic N-square problem

N smodels cmodels clasp pbmodels inca-s FASP Size

allDiff No-allDiff lparse FASP

4 0.19 7.70 0.01 1.86 0.02 0.02 0.08 55K 832B
5 – 300.48 0.88 24.77 0.45 0.01 0.17 129K 1.2K
6 – – 15.09 87.55 101.07 0.03 0.38 259K 1.7K
7 – – 450.58 316.20 49.21 1.63 6.62 472K 2.2K
8 – – – – 613.93 1.50 150.59 796K 2.8K
9 – – – – – 0.30 66.30 1.3M 3.4K
10 – – – – – – 6.93 1.9M 4.2K

Legends: –: no result in 0.5 h; inca-s: clasp 1.35 for the translated constraint answer set programs
where global constraints are in support encoding; allDif f : with global constraint AllDif ferent; No-
allDif f : without global constraint AllDif ferent; lparse: the size in lparse encoding; FASP: the size in
fasp (for allDiff)
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ground programs in Table 1 (even though they are still substantially larger than those
of fasp). This makes us believe that it is the use of the global constraint allDif ferent
that contributed to the huge performance gap, especially for fasp with Mistral. Note
that a typical implementation of a global constraint in CSP involves some special data
structures and efficient and dedicated propagators. This is an advantage compared
with ASP encodings and solvers without global constraints. For the magic square
problem, allDif ferent is constrained on a much larger number than N, i.e., N2, which
appears to have made search space pruning very effective by the implementation of
the global constrain allDif ferent in the CSP solver Mistral.

We notice that, instead of relying on existing implementations of global con-
straints, one can decompose some global constraints into simple arithmetic con-
straints on which bound or range consistency can be achieved; in some cases even
greater pruning is possible [3]. This is also true for ASP as illustrated by Drescher and
Walsh [12]. Note that our approach does not depend on whether a global constraint
can be effectively decomposed to simple arithmetic constraints so that some standard
consistency techniques can be achieved; it however does depend on an existing
implementation of CSP. This is precisely what we are proposing in this paper—using
the off-the-shelf CSP solvers to compute answer sets.

4.2.2 The other problems

We report the experimental results on the benchmarks of TSP, weighted N-queens,
weighted Latin square, and weight-bounded dominating set problems below. The
weight programs for TSP and weighted N-queens were given earlier in Section 3.

Weighted Latin square problem (WLSQ) The problem is to place one number from
{1, . . . , n} to an n by n weighted board such that each number in {1, . . . , n} occurs
exactly once in each row and each column, and the weight of the placement in each
row (the sum of the weight of the cell times the number in that cell) is no more than
a bound. We can encode the problem by the following rules:

← latin(x, y) = latin(x, z), y �= z,

← latin(x, y) = latin(z, y), x �= x,

{latin(x, y) × wt(position(x, y)) |num(y)} ≤ w ← num(x).

where latin is a function of the type num × num → num, position is a predicate of
the type num × num, the domain of num is {1, 2, . . . , N}, wt(position(x, y)) is the
predefined weight for position(x, y), and w is the upper bound for a solution. The
intuitive meanings of the above rules should be clear.

Weight-bounded dominating set problem (WBDS) The problem deals with directed
graphs G = (V, E), where V is the set of vertices and E the set of edges, such that
every edge (x, y) in E is associated with a weight wt(edge(x, y)). Furthermore, we
consider a certain cardinality k and a minimum weight w. The problem is to find
a subset D of V such that |D| ≤ k and, for each vertex v in V, at least one of the
following conditions holds:

(i) v ∈ D,
(ii)

∑
x∈D and (x,v)∈E wt(edge(x, v)) ≥ w, or
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Table 2 Summary of instances

Instance smodels cmodels clasp pbmodels FASP

tsp–e (47,0)/153.94 (50,0)/30.36 (50,0)/1.75 (32,0)/514.61 (50,0)/4.77
tsp–h (17,0)/755.36 (35,14)/33.98 (36,14)/72.87 (6,1)/608.12 (35,12)/208.78
wnq–e (13,0)/585.88 (36,0)/403.04 (49,0)/232.28 (32,0)/732.49 (25,0)/543.17
wnq–h (2,0)/1613.34 (4,0)/686.71 (21,3)/816.64 (0,0)/ (3,0)/262.91
wlsq–e (23,0)/24.02 (45,5)/50.38 (45,5)/1.10 (45,5)/60.80 (45,5)/1.30
wlsq–h (0,0)/ (8,42)/135.18 (8,42)/5.27 (8,42)/306.66 (8,42)/34.18
wbds (5,0)/91.75 (16,0)/138.23 (19,0)/54.51 (15,0)/60.62 (11,0)/207.79

Total/avg (108,0)/298.42 (194,61)/125.21 (228,64)/123.51 (138,48)/431.11 (177,59)/120.67

Legends: (#1,#2)/#3: the number of solved SAT instances is #1, the number of solved UNSAT
instances is #2, the average time consumption for the total solved instances is #3

(iii)
∑

x∈D and (v,x)∈E wt(edge(v, x)) ≥ w.

We encode the problem by a weight program as below:

{in(x)|vtx(x)} ≤ k ←, (17)

← {in(x)}0, {in(y) × wt(edge(x, y))|edge(x, y)} ≤ w − 1,

{in(y) × wt(edge(y, x))|edge(y, x)} ≤ w − 1, vtx(x). (18)

where in is a function of the type vtx → dom, the domain of vtx consists of the
vertices of G, the domain of dom is {0, 1}, in(v) = 1 stands for v ∈ D, while in(v) = 0
for v /∈ D. An instance of the problem is specified by a domain for vtx, a set of facts
for edge(x, y) whose weight is predefined by wt(edge(x, y)), and two numbers k and w

for the cardinality of a dominating set and a minimal weight respectively. Intuitively,
the rule (17) requires the number of vertices in a set D to be less than or equal to
k, and the conjunction of the three extended weight constraints in (18) captures the
inverse of the conditions (i)–(iii) in the problem description, respectively.

The benchmark for each of the first three problems includes 50 easy instances and
50 hard instances, and 20 instances for the last one. For the instances in Table 2,
we use “–e” and “–h” to indicate they are easy and hard respectively. For each
tested solver, we report the number of solved satisfiable and unsatisfiable instances
in 30 minutes, besides the average running time for those solved instances. We also
summarize the total number of solved instances and the average running time for
each of the tested solvers. These results are summarized in Table 2.

It seems that the performance ordering over these solvers should look like clasp >

cmodels(MiniSat 2.0 beta) > fasp(Mistral) > pbmodels(satzoo) > smodels in terms
of the number of solved instances, and fasp(Mistral) > clasp > cmodels(MiniSat 2.0
beta) > pbmodels(satzoo) > smodels in terms of the average time cost for the solved
instances.

5 Related work

For adding functions into ASP, a majority of recent work support functions over the
Herbrand interpretations [2, 9, 14]. Quantified Equilibrium Logic (QEL) [38] and
the General Theory of Stable Models [16] allow non-Herbrand interpretations. In
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QEL, the equilibrium models are Kripke structures while the answer set semantics
for the General Theory of Stable Models is defined by translating a sentence into a
second-order one.

One noticeable exception is the work of [6, 7]. Cabalar and Lorenzo [7] introduced
a pure functional logic programming language. Relations are considered as functions
with only two possible values, true or false. There is no negation-as-failure operator
in the language. Instead, functions can take on default values. This language is
extended by Cabalar [6], and used as an action language.

A major difference between Cabalar and Lorenzo’s formalism and ours is that
functions can be partial in theirs but must be total in ours. For instance, consider the
following program

f : {1} → {a, b},
← f (1) = a.

According to our semantics, the unique answer set of this program is { f (1) = b}.
However, the unique model is the empty set according to theirs.

In a sense, one can see the language proposed here as a middle ground between
traditional logic programming languages, which encode functions as relations, and
the languages of [6, 7], which encode relations as functions.

Since we translate weight programs into CSPs based loop completion, the CSP
facilities such as global constraints can be readily brought into the ASP language
for weight programs. In this sense, weight programs can be seen as an attempt
to integrate CSP with ASP. Gebser et al. proposed constraint answer solving by
integrating Constraint Processing techniques into ASP in which function symbols are
also permitted [19]. But the functions are uninterpreted. Mellarkod et al. proposed a
knowledge representation language AC(C) which integrates answer set programming
and constraint logic programming, in which the purpose of constraints is to avoid
full grounding of logic programs [33]. In our approach, a program is translated in
its entirety into a CSP. We should also mention that Dovier et al. experimentally
compared ASP with constraint logic programming over finite domains on various
classes of combinational search problems [11].

6 Concluding remarks and future work

In this paper, we proved the splitting set theorem and formulated completion
and loop formulas for weight constraint programs, and then embedded evaluable
functions into weight constraint programs, called weight programs, for which we
defined answer set semantics, completion and loop formulas, and showed that
answer sets of such a weight program can be characterized by models of its loop
completion. This enables us to extend fasp to compute answer sets of a weight
program. We implemented such a prototype and tested it with the benchmarks for
the magic N-square problem, the TSP problem, the weighted N-queens problem, the
weighted Latin-square problem and the weight-bounded dominating set problem.
Comparing with the state-of-the-art ASP solvers, including smodels, cmodels, clasp
and pbmodels, fasp has a clear cut advantage over all of these ASP solvers for the
magic N-square problem, and performs competitively for the remaining benchmarks.
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There are two main benefits by allowing evaluable functions in ASP. One is the
natural yet compact encoding of some problems in ASP, which sometimes leads to
substantial size reduction in grounded programs. The other is the embedding of pre-
defined constraints into functions. This becomes especially convenient if a CSP solver
with global constraints is used to compute the answer sets of this type of programs.
Our past experience shows that, typically for scheduling benchmarks, CSP-based
solvers tend to be more efficient, sometimes they can be orders of magnitude faster
than the traditional ASP solvers. Although in this paper we have shown how to use
a CSP solver to compute answer sets, there are situations where the CSP approach
to constraint solving may not be the best choice [5]. Hence, integration of ASP with
CSP deserves more attention.

A number of theoretical and practical questions deserve further attention. First,
it is of theoretical interest to investigate the complexity and expressive power of
(non-ground) weight programs over finite structures, along the line of [8]. Another
question of interest is a generalization of the module theorem of [36] from a special
class of weight programs to the class of all weight programs directly, without relying
on a transformation. In this case, the splitting theorem given in this paper becomes
a special case. The third is from the perspective of practice. As we have mentioned,
our current implementation works only for ground weight programs. It is interesting
to design a grounder, like lparse for ASP solvers, or alternatively, to design a first-
order solver for weight programs with variables, like the effort on first-order logic
programs [10, 13]. This task is nontrivial. In addition, the problem of enumerating
answer sets for fasp should also be considered, following the approach given in [18]
to avoid an exponential blow-up. The challenge is whether we are still able to treat a
CSP solver as a black box, and if not, what are the minimum changes on a CSP solver
that must be done.

Acknowledgements We thank the reviewers for their detailed comments, which helped improve
the presentation of this paper. We also appreciate Dr. Jianyong Pi for providing us a server to run our
benchmarks. Yisong Wang, Fangzhen Lin and Mingyi Zhang were partially supported by the Natural
Science Foundation of China under grant 60963009, the Fund of Guizhou Science and Technology:
2008[2119]. Yisong was also partially supported by the Fund of Education Department of Guizhou
Province: 2008[011]. Jia-Huai You and Li Yan Yuan were supported in part by NSERC discovery
grants, and by the 863 Project of China under grant 2009AA01Z150.

Appendix: Proofs

Given a weight constraint l ≤ S ≤ u and a set M of atoms, where S = {c1 : w1, . . . , cn :
wn}, we define the following notations:

– �+
1 (S, M) = {p : w|p ∈ M and (p : w) ∈ S};

– �−
1 (S, M) = {not p : w|p ∈ M and (not p : w) ∈ S};

– �1(S, M) = �+
1 (S, M) ∪ �−

1 (S, M);
– �+

2 (S, M) = {p : w|p /∈ M and (p : w) ∈ S};
– �−

2 (S, M) = {not p : w|p /∈ M and (not p : w) ∈ S};
– �2(S, M) = �+

2 (S, M) ∪ �−
2 (S, M);

– �−(S) = {not p : w|(not p : w) ∈ S}.
– �+(S) = S \ �−(S);
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It is clear that, for any set M of atoms, �+(S) = �+
1 (S, M) ∪ �+

2 (S, M) and �−(S) =
�−

1 (S, M) ∪ �−
2 (S, M); and S = �+

1 (S, M) ∪ �−
1 (S, M) ∪ �+

2 (S, M) ∪ �−
2 (S, M). Intu-

itively, we use �1(S, M) and �2(S, M) to divide S into two parts such that rule
elements in one part mentions some atom in M, while the other part consists of the
remaining pairs in S. The following two lemmas are evident and we prove the third
one.

Lemma 1 Let l ≤ S be a weight constraint that mentions no negative rule element, M
and M′ be two sets of atoms with M′ ⊆ M. Then M′ |= l ≤ S implies M |= l ≤ S.

Lemma 2 Let l ≤ S be a weight constraint and M a set of atoms. We have that M |=
l ≤ S if f M |= (l ≤ S)M.

Lemma 3 Let C be a weight constraint, M1, M2 and V sets of atoms such that M2 ∩
V = ∅ and M1 ⊆ V. Then M2 |= eV(C, M1) if f M1 ∪ M2 |= C.

Proof Let C = l ≤ S ≤ u.

M2 |= eV(C, M1)

⇔ M2 |= l − �(�1(S, V), M1) ≤ �2(S, V) ≤ u − �(�1(S, V), M1)

⇔ l − �(�1(S, V), M1) ≤ �(�2(S, V), M2) ≤ u − �(�1(S, V), M1)

⇔ l ≤ �(�1(S, V), M1) + �(�2(S, V), M2) ≤ u

⇔ l ≤ �(�1(S, V), M1 ∪ M2) + �(�2(S, V), M2 ∪ M1) ≤ u

⇔ l ≤ �(�1(S, V) ∪ �2(S, V), M1 ∪ M2) ≤ u

⇔ l ≤ �(S, M1 ∪ M2) ≤ u

⇔ M1 ∪ M2 |= C.

��

Lemma 4 Let C = l ≤ S be a weight constraint, M1, M2 and V be sets of atoms such
that M1 ⊆ V and M2 ∩ V = ∅. Then for any set M∗ with M1 ⊆ M∗ ⊆ M1 ∪ M2, we
have that M∗ |= CM1∪M2 if f M∗ |= [eV(C, M1)]M2 .

Proof Let M = M1 ∪ M2.

M∗ |= [eV(C, M1)]M2

⇔ M∗ |= [l − �(�1(S, V), M1) ≤ �2(S, V)]M2

⇔ M∗ |= l − �(�+
1 (S, V) ∪ �−

1 (S, V), M1) − �(�−(�2(S, V)), M2) ≤ �+
2 (S, V)

⇔ l − �(�+
1 (S, V), M1) − �(�−

1 (S, V), M1) − �(�−
2 (S, V), M2)

≤ �(�+
2 (S, V), M∗)

⇔ l − �(�−
1 (S, V) ∪ �−

2 (S, V), M1 ∪ M2) ≤ �(�+
1 (S, V), M1)

+ �(�+
2 (S, V), M∗) (due to M1 ⊆ V, M2 ∩ V = ∅)
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⇔ l − �(�−(S), M) ≤ �(�+
1 (S, V), M1) + �(�+

2 (S, V), M∗)

⇔ l − �(�−(S), M) ≤ �(�+
1 (S, V), M∗) + �(�+

2 (S, V), M∗)

(due to M1 ⊆ M∗ and (M∗ \ M1) ∩ V = ∅)

⇔ l − �(�−(S), M) ≤ �(�+
1 (S, V) ∪ �+

2 (S, V), M∗)

⇔ l − �(�−(S), M) ≤ �(�+(S), M∗)

⇔ M∗ |= l − �(�−(S), M1 ∪ M2) ≤ �+(S)

⇔ M∗ |= (l ≤ S)M1∪M2

⇔ M∗ |= CM1∪M2 .

��

Lemma 5 Let P be a weight constraint program and the weight constraint program P′
is obtained from P by replacing each rule r of the form (2) by the following rules:

C0 ← n ≤ {p′
1 : 1, . . . , p′

n : 1},
p′

i ← Ci, (1 ≤ i ≤ n)

where p′
1, . . . , p′

n are distinct fresh propositional atoms. We have that a set Z of atoms
in Atoms(P) is an answer set of P if and only if Z ′ is an answer set of P′ where

Z ′ = Z ∪ {p′
i | p′

i is the introduced fresh atom in P′ for Ci such that Z |= Ci}.

Proof Firstly, it is obvious that Z |= P if and only if Z ′ |= P′.
Secondly, for any rule (r : C0 ← l1 ≤ S1 ≤ u1, . . . , ln ≤ Sn ≤ Sn) of P and any

atom a ∈ Atoms+(C0) ∩ Z , the rule
(
a ← (l1 ≤ S1)

Z , . . . , (ln ≤ Sn)
Z
)

obtained from
r by the reduct with respect to Z belongs to PZ if and only if P′Z ′

contains the
following rules:

p′
i ← (li ≤ Si)

Z ′
, (1 ≤ i ≤ n)

a ← n ≤ {p′
1 : 1, . . . , p′

n : 1}.
It is not difficult to see that cl(PZ ) = Atoms(P) ∩ cl

(
P′Z ′)

. Consequently, Z is an
answer set of P if and only if Z ′ is an answer set of P′. ��

In the following, for the sake of clarity, we assume that every rule of a weight
program has at most one weight constraint in its body, unless stated otherwise.

Given a set of atoms M and a weight constraint program P that consists of Horn
rules only, we define the immediate consequence operator TP as follows:

TP(M) = {q|(q ← l1 ≤ S1, . . . , ln ≤ Sn) in P and M |= l1 ≤ S1, . . . , M |= ln ≤ Sn}.
Evidently, TP is monotonic and it has the least fixpoint, written as lfp(TP), which is
the least model of P, i.e., the deductive closure of P. Clearly lfp(TP) = T∞

P , where

– T0
P = ∅;

– Tk+1
P = TP

(
Tk

P

)
for k ≥ 0.
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Proof of Theorem 1

(⇒) Let M1 = V ∩ M and M2 = M \ M1. It is evident that M1 ⊆ V and M2 ∩ V =
∅. Since b V(P) mentions no atoms in M2, we have that M1 ∪ M2 |= P
⇒ M1 ∪ M2 |= b V(P)

⇒ M1 |= b V(P).
Note that M1 ∪ M2 = cl(PM1∪M2) = cl(b V(P)M1∪M2 ∪ (P \ b V(P))M1∪M2), and
there is no rule in P \ b V(P) whose head mentions an atom in V. It follows that
[b V(P)]M1∪M2 = [b V(P)]M1 and M1 = cl([b V(P)]M1). Thus M1 is an answer set
of b V(P).
Let (r : C0 ← C1) be an arbitrary rule in P \ b V(P). By M1 ∪ M2 |= r, we
have that M1 ∪ M2 |= C1 implies M1 ∪ M2 |= C0. By Lemma 3, it is clear
that M2 |= eV(C1, M1) implies M2 |= eV(C0, M1), i.e., M2 |= eV({r}, M1). Thus
M2 |= eV(P \ b V(P), M1).
Let us consider the above rule r again. Suppose C1 = l1 ≤ S1 ≤ u1. Note that
the rule

r′ : q ← (l1 ≤ S1)
M1∪M2 (19)

belongs to {r}M1∪M2 if and only if the rule

r′′ : q ← [
eV(l1 ≤ S1, M1)

]M2 (20)

is in [eV({r}, M1)]M2 , since M1 ∪ M2 |= S1 ≤ u1 iff M2 |= eV(S1 ≤ u1, M1) by
Lemma 3. We prove M2 = cl([eV(P \ b V(P), M1)]M2) by showing that, for any
number k ≥ 0,

M2 ∩ Tk
(M1∪P\b V (P))M1∪M2 = Tk

eV (P\b V (P),M1)
M2 (21)

Please note that in (21), a set of atoms is understood as a set of facts.
Base: It is clear for k = 0.
Step: Suppose it holds for k ≤ n. For any atom q,

q ∈ M2 ∩ Tn+1
(M1∪P\b V (P))M1∪M2

iff there is a rule of the form (19) in (P \ b V(P))M1∪M2 such that

Tn
(M1∪P\b V (P))M1∪M2 |= (l1 ≤ S1)

M1∪M2

iff Tn
[eV (P\b V (P),M1)]M2

|= (l1 ≤ S1)
M1∪M2 by the inductive assumption

iff there is a rule of the form (20) in
[
eV(P \ b V(P), M1)

]M2 such that

Tn
[eV (P\b V (P),M1)]M2 |= [

eV(l1 ≤ S1, M1)
]M2

by Lemma 4
iff q ∈ Tn+1

[eV (P\b V (P),M1)]M2
.

Note that M1 ∪ M2 = T∞
(M1∪P\b V (P))M1∪M2

, thus cl([eV(P \ b V(P), M1)]M2) =
M2. Then M2 is an answer set of eV(P \ b V(P), M1).

(⇐) Let M = M1 ∪ M2, where M1 and M2 are answer sets of b V(P) and eV(P \
b V(P), M1) respectively. Firstly, we have that M1 |= b V(P) implies M1 ∪
M2 |= b V(P), since b V(P) mentions no atom in M2; and M2 |= eV(P \
b V(P), M1) implies M1 ∪ M2 |= P \ b V(P) by Lemma 3. Thus M1 ∪ M2 |= P.
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Secondly, for any rule in eV(P \ b V(P), M1), if its reduct relative to M2 has a
rule of the form (20) in eV(P \ b V(P), M1)

M2 , then there is a corresponding
rule of the form (19) in (P \ b V(P))M1∪M2 , by Lemma 3 again. From (21), we
have

M2 ∩ cl
(
M1 ∪ (P \ b V(P))M1∪M2

)

= cl
(
eV(P \ b V(P), M1)

M2
)

= M2.

Notice that there is no rule in (P \ b V(P))M1∪M2 whose head mentions an atom
in M1. Thus

M1 ∪ M2 = cl
(
M1 ∪ (P \ b V(P))M1∪M2

)

= cl
(
b V(P)M1 ∪ (P \ b V(P))M1∪M2

)

= cl
(
b V(P)M1∪M2 ∪ (P \ b V(P))M1∪M2

)

= cl
(
PM1∪M2

)
.

Consequently, M1 ∪ M2 is an answer set of P. ��

The following lemma is evident.

Lemma 6 Let P be a weight constraint program and a set M ⊆ Atoms(P) satisfying
COMP(P). Then for any a ∈ M, there is a rule (a ← CM) in PM such that M |= CM.

Let M be a set of atoms and r a rule of the form (2). The rule r is M-applicable if
M satisfies every weight constraints in the body of r. For a weight constraint program
P, by AP(P, M) we denote the set of all M-applicable rules in P. A model M of P is
supported if M ⊆ ⋃

r∈AP(P,M) Atoms+(Head(r)).

Proposition 4 Let P be a weight constraint program and M a set of atoms. Then M is
a supported model of P if and only if M is a model of COMP(P).

Proof

(⇒) Note that M is model of P implies that M satisfies all formulas in COMP(P)

of the type (4). For any atom a ∈ M, we have a ∈ Atoms+
(C′) for some rule

(C′ ← C) in AP(P, M). Thus M |= C. It follows that M satisfies the second
type (5) formulas in COMP(P).

(⇐) It is clear that M |= P since M satisfies the first type (4) formulas in COMP(P).
For any atom a ∈ M, since M satisfies the second type (5) formulas in
COMP(P), thus there is at least one rule (C′ ← C) in P such that M |= C.
Consequently, (C′ ← C) is M-applicable and a ∈ ⋃

r∈AP(P,M) Atoms+(C′), i.e.,
M is a supported model of P. ��

Lemma 7 Let l ≤ S be a weight constraint, M and L be two sets of atoms. Then we
have

[
(l ≤ S)M

]
|L = [

(l ≤ S)|L
]M

.
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Proof
[
(l ≤ S)|L

]M = [
l ≤ �2(S, L) ∪ �−

1 (S, L)
]M

= l − �(�−(�−
1 (S, L) ∪ �2(S, L)), M) ≤ �+

2 (S, L)

= l − �(�−(�−
1 (S, L) ∪ �+

2 (S, L) ∪ �−
2 (S, L)), M) ≤ �+

2 (S, L)

= l − �(�−
1 (S, L) ∪ �−

2 (S, L), M) ≤ �+
2 (S, L)

= l − �(�−(S), M) ≤ �+
2 (S, L)

= [
l − �(�−(S), M) ≤ �+(S)

]
|L

= [
(l ≤ S)M]

|L.

��

Proposition 5 Let P be a weight constraint program and M an answer set of P. Then
(1) M is a model of COMP(P) and (2) M satisf ies LF(L, P) for any loop L of P.

Proof

(1) It is clear that M satisfies the formulas of the type (4) in COMP(P) since M |= P.
Suppose a ∈ M and

a ⊃
∨

1≤i≤n

Ci (22)

be the formula of the type (5) in COMP(P) where (C′
i ← Ci) are all the rules

of P such that a ∈ Atoms+(C′
i) for every 1 ≤ i ≤ n. Note that a ∈ cl(PM). Thus

there exists at least one rule (a ← [l1 ≤ S1]M) in PM such that M |= [l1 ≤ S1]M.
It follows that there is at least one rule: (C0 ← l1 ≤ S1 ≤ u1) in P such that
a ∈ Atoms+(C0) and M |= S1 ≤ u1. By Lemma 2, M |= l1 ≤ S1 ≤ u1. Thus M
satisfies the formula (22). Consequently, M |= COMP(P).

(2) Let L = {a1, . . . , am} be an arbitrary loop of P and LF(L, P) be the following
formula

∨
L ⊃

∨

1≤i≤n

Ci|L (23)

where (C′
i ← Ci) are the rules of P such that Atoms+(C′

i) ∩ L �= ∅ for every 1 ≤
i ≤ n. Suppose M |= ∨

L and M �|= Ci|L for each 1 ≤ i ≤ n. The former implies
that there exists an atom a ∈ M ∩ L. Without loss of generality, let us assume
that a = a1.
Note that M = cl(PM). Thus there is the least number k1(k1 > 0) such that
a1 ∈ Tk1

PM , i.e., there is a rule (r′
1 : a1 ← (l1 ≤ S1)

M) in PM such that Tk1−1
PM |=

(l1 ≤ S1)
M. It follows that M |= (l1 ≤ S1)

M by Lemma 1. Suppose the rule r′
1

is obtained from the rule (r1 : C ← l1 ≤ S1 ≤ u1) of P by reduction relative to
M. By M |= S1 ≤ u1, we have M |= (S1 ≤ u1)|L. Thus M �|= (l1 ≤ S1)|L by M �|=
(l1 ≤ S1 ≤ u1)|L. It implies that there exists an atom in Tk1−1

PM ∩ Atoms+(l1 ≤
S1) ∩ L which is different from the atom a1. Let us assume the atom is a2.
Similarly, there exists the least number k2 such that a2 ∈ Tk2

PM . Clearly, a2 ∈
L \ {a1} and k2 < k1. By this iterative construction, we have the sequence
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a1, a2, . . . , ai, . . . , am such that for any ai where 1 ≤ i ≤ m, there exists the least
number ki such that ai ∈ Tki

PM . Now let us consider the atom am, we have the
least integer km such that

am ∈ Tkm

PM .

Thus there is a rule r′
m:

am ← (lm ≤ Sm)M

in PM such that

Tkm−1
PM |= (lm ≤ Sm)M.

Since M �|= (lm ≤ Sm)|L, it implies that there is an atom b in

Tkm−1
PM ∩ Atoms+(lm ≤ Sm) ∩ L.

However, b ∈ L \ {a1, . . . , am}. It is absurd. Consequently, M satisfies
LF(L, P). ��

Proposition 6 Let P be a weight constraint program and M a set of atoms such that
M |= COMP(P) ∪ LF(P) where LF(P) is the set of loop formulas of P. Then M is an
answer set of P.

Proof Let � be the set of rules in PM such that both their head and body are satisfied
by M. By Proposition 4 and Lemma 6, M is a supported model of P and for any atom
a ∈ M there exists a rule (a ← [l ≤ S]M) in � such that M |= [l ≤ S]M.

Let M∗ = cl(PM) and M− = M \ M∗. It is clear that M∗ ⊆ M and M∗ = cl(�)

since M |= PM. If M is not an answer set of P then M− �= ∅. Let �M− be the set
of rules of � whose head is an atom in M−. We claim that the positive dependency
graph of �M− has at least one loop.

Consider an arbitrary atom a ∈ M−. Suppose (r′ : a ← l′ ≤ S′) is an arbitrary rule
in �M− such that r′ is obtained from (r : C ← l ≤ S ≤ u) of P by the reduction relative
to M where a ∈ Atoms+(C), M |= S ≤ u, (l′ ≤ S′) = [l ≤ S]M, l′ = l − �(�−(S), M),
and S′ = �+(S). Note that M∗ �|= [l ≤ S]M and M |= [l ≤ S]M. Thus we have

l′ ≤ �(S′, M∗) + �(S′, M \ M∗) (24)

and

l′ > �(S′, M∗) (25)

It follows that M− ∩ Atoms+(S′) �= ∅. In this way, we can construct a sequence
(a0(= a), a1, . . . , ai, . . .) of atoms such that ai ∈ M− and ai depends on ai+1 in the
sense that there is a rule (ai ← C) in �M− such that ai+1 ∈ Atoms+(C) ∩ M−. Since
�M− is finite, and the sequence mentions only finite number of atoms. Thus the above
constructed sequence must contain a loop. It also implies that �M− has at least one
terminating loop.

Now let L be a terminating loop of �M− and a ∈ L. It is evident that L ⊆ M−. We
claim that for such above rule

(
r′ : a ← l′ ≤ S′) of �M− ,

M− ∩ Atoms+(l′ ≤ S′) ⊆ L. (26)
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Otherwise, suppose b ∈ M− ∩ Atoms+(l′ ≤ S′) but b /∈ L. In terms of the above
construction, we can construct a sequence (b 0 = (b), . . . , bi, . . .) of atoms in M− such
that no bi is in L for any i ≥ 0, otherwise it contradicts with L being a maximal loop.
Again this sequence must contain a loop from which we can construct a maximal
one of �M− . It contradicts with L is a terminating loop of �M− since there is a path
(a, b , . . .) from L to the newly constructed maximal loop.

From (25), we have

l − �(�−(S), M) > �(�+(S), M∗)

⇒ l > �(�−(S), M) + �(�+(S), M \ M−)

⇒ l > �(�−(S), M) + �(�+(S), M \ L) (by (26))

⇒ l > �(�−(S), M) + �(�+
2 (�+(S), L), M)

⇒ l > �(�−(S), M) + �(�+
2 (S, L), M).

It follows that M �|= [l ≤ S]|L, otherwise l ≤ �(�−(S), M) + �(�+
2 (S, L), M). Thus

M �|= [l ≤ S ≤ u]|L.
Note that for any rule (C0 ← C) of P with a ∈ Atoms+

(C0) ∩ L but (a ← CM)

does not belong to PM, we have that M �|= C and then M �|= C|L. For any rule
(a ← CM) in PM, if a ∈ L then this rule must belong to �M− . It implies that M �|= C|L.
Consequently, M �|= LF(L, P), a contradiction. Thus M = M∗ = cl(�) = cl(PM)

and then M is an answer set of P. ��

From Propositions 5 and 6, we immediately have a proof of Theorem 2.

Proof of Theorem 3 Let I f = R(I) \ Ia and V = Atoms(F(P)). It is evident that V
splits R(P) ∪ F(P), b V(F(P) ∪ R(P)) = F(P) and I f is an answer set of F(P).

In the following, we show that PI is strongly equivalent to
[
eV(R(P), I f )

]Ia

. Recall
that a program X is strongly equivalent to a program Y if and only if the two programs
X ∪ Z and Y ∪ Z has the same answer sets for any program Z . For the sake of
clarity, we consider the following simple cases for a rule r in P:

(1) r is of the form

l ≤ {p( f (a)) : w} ≤ u ← C

where C mentions no function symbols. Suppose the range of f is {c1, . . . , cm}.
It follows that the corresponding rules in R(P) obtained from r, denoted by
R({r}), are

l ≤ {p(ci) : w} ≤ u ← C, fr(a, ci) (1 ≤ i ≤ m)

Without loss of generality, suppose f I(a) = cm. Note that eV(R({r}), I f ) con-
tains the following rules

l ≤ {p(ci) : w} ≤ u ← C, 1 ≤ {} ≤ 1, (1 ≤ i ≤ m − 1)

l ≤ {p(cm) : w} ≤ u ← C, 0 ≤ {} ≤ 0.

It is clear that
[
eV(R({r}), I f )

]Ia

is strongly equivalent to {r}I .
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(2) r is of the form

l ≤ { f (a) = c1 : w} ≤ u ← C

where C mentions no function symbols. Suppose the range of f is {c1, . . . , cm}.
It follows that the corresponding rules in R(P) are

l ≤ {} ≤ u ← C, fr(a, ci), (2 ≤ i ≤ m)

l − w ≤ {} ≤ u − w ← C, fr(a, c1)

It is easy to see that {r}I is strongly equivalent to
[
eV(R({r}), I f )

]Ia

as well.
(3) The other cases where a function symbol appears either in the body of rule r or

in negative form can be proved similarly.

We can extend the above proof to the case where a weight constraint contains
more than one element. Therefore, we conclude that PI and

[
eV(R(P), I f )

]Ia

are
strongly equivalent to each other.

We are now in the position to prove the statement in the theorem:

I is an answer set of P

iff Ia is an answer set of PI

iff Ia is an answer set of [eV(R(P), I f )]Ia

iff Ia is an answer set of eV(R(P), I f )

iff Ia ∪ I f is an answer set of R(P) ∪ F(P) (by Theorem 1)

iff R(I) is an answer set of R(P) ∪ F(P).

which completes the proof. ��

In the following, we denote F(P) ∪ R(P) by �(P) for convenience. Since �(P)

mentions no functions and equality, its loops and loop formulas are defined as usual
in Section 2.3.

Lemma 8 Let P be a weight constraint program with evaluable functions and I an
interpretation for P. Then R(I) |= COMP(�(P)) if and only if I |= COMPf (P).

Proof For any rule (r : C0 ← C1) of P where Ci = li ≤ Si ≤ ui(i = 0, 1), we firstly
prove that

R(I) |=
∧

(H←Body)∈R({r})

(∧
Body ⊃ H

)
if f I |= C1 ⊃ C0. (27)

We assume that both S0 and S1 contain only one element for clarity, i.e., Si(i = 0, 1)

are of the form {α : w} or {not α : w} where α is an atom or equality atom. Evidently,
the case for the latter form can be similarly proved as for the former. Equation (27)
holds trivially if S0 and S1 do not mention any function symbols at all.

Just for clarity, we consider only two simple cases for the above α, i.e., α is p( f (c))
and f (c) = c1, where f is a function symbol and c and c1 are two constants. Suppose f
is of the type τ0 → τ1, the domain of τ1 is {c1, . . . , cm} according to P. Let us assume
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that C0 mentions a function symbol while C1 does not. It is clear that I |= C1 iff
R(I) |= C1. Let us consider the following two cases:

(i) Let S0 = {p( f (c)) : w}. Note that R({r}) consists of the rules

l0 ≤ {p(ci) : w} ≤ u0 ← C1, fr(c, ci) (1 ≤ i ≤ m).

To prove (27), it is sufficient to show

R(I) |=
∧

1≤i≤m

(
fr(c, ci) ⊃ l0 ≤ {p(ci) : w} ≤ u0

)
if f I |= l0 ≤ {p( f (c)) : w} ≤ u0.

Recall that I is an interpretation for P. Thus there exists a unique c′ such that
fr(c, c′) ∈ R(I) where c′ ∈ {c1, . . . , cm}. It follows that the above equation holds.

(ii) Let S0 = { f (c) = c1 : w}. We have that R({r}) consists of the rules:

l0 ≤ {} ≤ u0 ← C1, fr(c, ci) (2 ≤ i ≤ m),

l0 − w ≤ {} ≤ u0 − w ← C1, fr(c, c1).

To prove (27), it is sufficient to show I |= l0 ≤ { f (c) = c1 : w} ≤ u0 iff

R(I) |= ( fr(c, c1) ⊃ l0 ≤ w ≤ u0) ∧
∧

2≤i≤m

( fr(c, ci) ⊃ l0 ≤ 0 ≤ u0).

The equation is easily proved by noticing that either f I(c) = c1 or f I(c) �= c1.

Recall that At(P) is the set of atoms that reside in P. It follows that Atoms(R(P)) \
Atoms(F(P)) ⊆ At(P). It is clear that for any atom p(c) ∈ At(P) \ Atoms(R(P)), the
formula (9) is equivalent to ¬p(c). Thus we only need to show that, for any atom
p(c) ∈ At(P) ∩ Atoms(R(P)), the formula (5) is satisfied by R(I) if and only if the
formula (9) is satisfied by I. Note that R(I) |= p(c) iff I |= p(c). It suffices to prove
that for any rule (r : C0 ← C1) in P and any atom p(c) ∈ At(P) ∩ Atoms(R(P)),

R(I) |=
∨

(H←Body)∈R({r})
and p(c)∈Atoms+(H)

(∧
Body

)
if f I |= C1 ∧

⎛

⎝
∨

p(t)∈Atoms+(C0)

t = c

⎞

⎠ . (28)

Let Ci = li ≤ Si ≤ ui(i = 0, 1). For clarity, we assume t is a single term t instead of
a tuple of terms where t may be a function or a constant, and Si (i = 0, 1) contain
only one element. Let f be a function of the type τ0 → τ1 and the domain of τ1 is
{c1, . . . , cm} according to P. Let us consider the following cases:

(i) S0 = {p(a) : w} and S1 = {q( f (b)) : w′}. If a �= c then (28) holds trivially. Sup-
pose a = c. In this case, R({r}) consists of the following rules:

l0 ≤ {p(a) : w} ≤ u0 ← l1 ≤ {q(ci) : w′} ≤ u1, fr(b , ci) (1 ≤ i ≤ m).

It is easy to see that

I |= l1 ≤ {q( f (b)) : w′} ≤ u1 if f R(I) |=
∨

1≤i≤m

l1 ≤ {q(ci) : w′} ≤ u1 ∧ fr(b , ci).

It follows that (28) holds as well.
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(ii) S0 = {p( f (b)) : w} and S1 = {q(a) : w′}. Note that R({r}) consists of

l0 ≤ {p(ci) : w} ≤ u0 ← l1 ≤ {q(a) : w′} ≤ u1, fr(b , ci) (1 ≤ i ≤ m).

Recall that I |= C1 iff R(I) |= C1. If there is no ci such that ci = c where 1 ≤ i ≤
m then (28) hold trivially. Suppose c = c1. There is a unique rule r′ in R({r}) such
that p(c) ∈ Atoms+

(Head(r′)) whose body is C1 ∧ fr(b , c1). Evidently, R(I) |=
fr(b , c1) iff I |= f (b) = c. It follows that (28) holds as well.

For the other cases that the element of S1 mentions a negative literal, the proofs
are quite similar to the above two cases. And we can similarly extend the above
statements for the cases where a weight constraint contains more than one element.
Thus we have completed the proof. ��

Lemma 9 Let P be a weight constraint program with evaluable functions and L ⊆
At(P). Then L is a loop of P if and only if L is a loop of R(P).

Proof Recall that, when translating P into R(P), equality symbols were removed in
the process of instantiation. But it is different from translating normal logic programs
with functions, where we do not delete any rules at all. The reason is that we regard
an equality literal c = c′ as the weight constraint 1 ≤ {c = c′ : 1} ≤ 1. Instantiating a
rule containing c = c′ is just to replace c = c′ with 1 ≤ {} ≤ 1 if c �= c′, and 0 ≤ {} ≤ 0
otherwise.

Note that (p(c), q(d)) is an edge of GP iff there exists a rule (C0 ← C1) in P such
that, p(t) ∈ Atoms+(C0), q(s) ∈ Atoms+(C1) and there is a functional assignment θ

with tθ = c and sθ = d. It is obvious that there is at least one rule r′ in R(P) such that
p(c) ∈ Head(r′) and q(d) ∈ Body(r′). The other direction is obvious. Consequently,
L is a loop of P if and only if L is a loop of R(P). ��

Lemma 10 Let P be a weight constraint program with evaluable functions and I
an interpretation for P such that I |= COMPf (P) and L a loop of P. Then o(I) |=
LFf (L, P) if and only if R(I) |= LF(L, R(P)).

Proof It is sufficient to show that, for any rule (r : C0 ← C) of P,

o(I) |=
⎛

⎜
⎝

∨

p(c)∈L
p(t)∈Atoms+(C0)

t = c

⎞

⎟
⎠ ∧ C‖L ⇔ R(I) |=

∨

(H←Body)∈R({r})
L∩H �=∅

⎛

⎝
∧

C′∈Body

C′
|L

⎞

⎠ . (29)

Let C0 = l0 ≤ S0 ≤ u0 and C = l ≤ S ≤ u. Equation (29) holds trivially if there is no
atom p(t) ∈ Atoms+(C0) and p(c) ∈ L such that I |= (t = c). It what follows, let us
assume p(c) ∈ L and p(t) ∈ Atoms+

(C0) such that tI = c for convenience. For clarity,
we assume both S0 and S contain only one element. Suppose f is a function of the
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type τ0 → τ1, domain of τ1 is {c1, . . . , cm} in terms of P, and f I(a) = c1, f I(b) = cm.
Let us consider the following four cases:

(i) S0 = {p(c) : w}, S = {q(c′) : w′}. It is clear that R({r}) = {r}. We have that C‖L

is the following formula

l ≤ {qL(c′) : w′} ∧ {q(c′) : w′} ≤ u ∧
⎡

⎣qL(c′) ≡
⎛

⎝q(c′) ∧
∧

q(c∗)∈L

c′ �= c∗
⎞

⎠

⎤

⎦ .

Note that C|L is the formula l ≤ {} ∧ {q(c′) : w′} ≤ u if q(c′) ∈ L and l ≤ {q(c′) :
w′} ∧ {q(c′) : w′} ≤ u otherwise. It is easy to see that o(I) |= C‖L iff R(I) |= C|L.
Thus (29) holds.

(ii) S0 = {p( f (a)) : w} and S = {q(c′) : w′}. We have that R({r}) consists of the
rules

l0 ≤ {p(ci) : w} ≤ u0 ← C, fr(a, ci) (1 ≤ i ≤ m).

In this case, C‖L and C|L are the same as those of the first case. It implies
that o(I) |= C‖L iff R(I) |= C|L. We have that { fr(a, ci)|1 ≤ i ≤ m} ∩ R(I) =
fr(a, c1) by f I(a) = c1. Recall that p(c1) ∈ L. Consequently, (29) holds since
fr(a, ci)|L ≡ fr(a, ci).

(iii) S0 = {p(c) : w} and S = {q( f (b)) : w′}. We have that R({r}) consists of the
rules

C0 ← l ≤ {q(ci) : w′} ≤ u, fr(b , ci) (1 ≤ i ≤ m).

Note that f I(b) = cm. Under the interpretation o(I), we have that C‖L is
equivalent to

l ≤ {qL(cm) : w′} ∧ {q(cm) : w′}

≤ u ∧
⎡

⎣qL(cm) ≡
⎛

⎝q(cm) ∧
∧

q(c∗)∈L

cm �= c∗
⎞

⎠

⎤

⎦

which is equivalent to, under the interpretation o(I), l ≤ {q(cm) : w′} ∧ {q(cm) :
w′} if q(cm) /∈ L and l ≤ {} ∧ {q(cm) : w′} ≤ u otherwise.
Under the interpretation R(I), the formula

∨
1≤i≤m[l ≤ {q(ci) : w′} ≤

u]|L ∧ fr(b , ci) is equivalent to l ≤ {q(cm) : w′} ≤ u]|L ∧ fr(b , cm)|L since
{ fr(b , ci)|1 ≤ i ≤ m} ∩ R(I) = fr(b , cm), which is further equivalent to
l ≤ {q(cm) : w′} ∧ {q(cm) : w′} ≤ u if q(cm) /∈ L, and l ≤ {} ∧ {q(cm) : w′} ≤ u
otherwise. It follows that (29) holds.

(iv) S0 = {p( f (a)) : w} and S = {q( f (b)) : w′}. We have that R({r}) consists of

l0 ≤ {p(ci) : w} ≤ u0 ← l

≤ {q(c j) : w′} ≤ u, fr(a, ci), fr(b , c j) (1 ≤ i, j ≤ m).

Note that C‖L is the same as that of the third case. Since { fr(a, ci)|1 ≤ i ≤
m} ∩ R(I) = fr(a, c1) and { fr(b , ci)|1 ≤ i ≤ m} ∩ R(I) = fr(b , cm), it implies
that, under the interpretation R(I), the right hand of (29) is equivalent to

[
l ≤ {q(cm) : w′} ≤ u

]
|L ∧ fr(a, c1) ∧ fr(b , cm)



Weight constraint programs with evaluable functions 377

which is further equivalent to l ≤ {q(cm) : w′} ∧ {q(cm) : w′} ≤ u if q(cm) /∈ L
and l ≤ {} ∧ {q(cm) : w′} ≤ u otherwise. It follows that (29) holds.

We can similarly prove the cases where S mentions a negative literal and we can
similarly extend the above statements for the cases where S0 and S1 contains more
than one elements. Thus the proof is completed. ��

Proof of Theorem 4 I is an answer set of P

iff R(I) is an answer set of �(P) (Theorem 3)

iff R(I) is an answer set of COMP(�(P)) ∪ LF(�(P)) (Theorem 2)

iff o(I) is an answer set of COMPf (P) ∪ LFf (P) (Lemmas 8–10).

��

Lemma 11 Let ψ be a ground formula without function symbols occurring in ψ as an
argument and I an interpretation. Then I |= ψ if f v(I) is a solution of c(ψ).

Proof It is clear by induction on structures of formulas. ��

Proof of Theorem 5 I is an answer set of P

iff I |= COMPf (P) ∪ LFf (P) (Theorem 4)

iff v(I) is a solution of c(COMPf (P) ∪ LFf (P)) (Lemma 11)

iff v(I) is a solution of R(P).

��

Let us extend the following notations to extended weight constraints. Given
an extended weight constraint l ≤ S ≤ u and I an interpretation, where S = {c1 :
w1, . . . , cn : wn}, we define:

– �+
2 (S, I) = {p(t) : w|I �|= p(t) and (p(t) : w) ∈ S};

– �+(S) = {p(t) : w|(p(t) : w) ∈ S};
– �−(S) = S \ �+(S);

where p is a predicate symbol and t a tuple of terms.

Proof of Proposition 2 We assume P is free of functions in arguments (if not we
transform it to be so). Let � be the set of rules in PI such that both their head and
body are satisfied by I. Note that I is a supported model of P by I |= COMP f (P). It
implies that there exists a rule (a ← [l ≤ S]I) in � such that I |= [l ≤ S]I for any atom
a ∈ Ia.

Let I∗ = cl(PI). Clearly, I∗ ⊆ I and I∗ = cl(�) since I |= PI . Clearly I− �= ∅. Let
�I− be the set of rules of � whose head is an atom in I−. We show that the positive
dependency graph of �I− has at least one loop. Let a be an arbitrary atom in I−
and (r′ : a ← l′ ≤ S′) an arbitrary rule in �I− such that r′ is obtained from (r : C ←
l ≤ S ≤ u) of P by the reduction relative to I where a ∈ Atoms+(C) ∩ I, I |= S ≤ u,
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l′ = l − �(�−(S), I), and S′ = �+(S). Note that a /∈ I∗ implies that I∗ �|= [l ≤ S]I .
Together with I |= [l ≤ S]I , we have

l′ ≤ �(S′, I∗) + �(S′, I−) and l′ > �(S′, I∗).

It follows that I− ∩ Atoms+(S′) �= ∅. Thus we can construct a sequence
(a0, a1, . . . , ai, . . .) of atoms such that ai ∈ I− and ai depends on ai+1 in the sense that
there is a rule (ai ← C) in �I− such that ai+1 ∈ Atoms+(C) ∩ I−. Since �I− is finite and
the sequence mentions only finite number of atoms, the above constructed sequence
must contain a loop. It also implies that �I− has at least one terminating loop.

Suppose L is a terminating loop of �I− and a ∈ L where a is the atom in the head
of the above rule r′. We show that

I− ∩ Atoms+(l′ ≤ S′) ⊆ L. (30)

Suppose this is not true. Then there is some b ∈ I− ∩ Atoms+(l′ ≤ S′) but b /∈ L. In
terms of the above construction, we can construct a sequence (b 0 = (b), . . . , bi, . . .)

of atoms in I− such that no bi is in L for any i ≥ 0, otherwise it contradicts with L
being a maximal loop. Again this sequence must contain a loop from which we can
construct a terminating one of �M− . It contradicts the fact that L is a terminating loop
of �M− since there is a path (a, b , . . .) from L to the newly constructed maximal loop.

Recall that l′ > �(S′, I∗) and S′ = �+(S). It follows that

l − �(�−(S), I) > �(�+(S), I∗)

⇒ l > �(�−(S), I) + �(�+(S), Ia \ I−)

⇒ l > �(�−(S), I) + �(�+(S), Ia \ L) (by (30))

⇒ l > �(�−(S), I) + �(�+
2 (�+(S), L), Ia)

⇒ l > �(�−(S), I) + �(�+
2 (S, L), Ia).

It follows that I �|= [l ≤ S]‖L, otherwise l ≤ �(�−(S), I) + �(�+
2 (S, L), Ia). Thus

I �|= [l ≤ S ≤ u]‖L.
Note that for any rule (C0 ← C) of P with a ∈ Atoms+

(C0) ∩ L and (a ← CI)

does not belong to PI , we have that I �|= C and then I �|= C‖L. For any rule (a ← CI)

in PI , if a ∈ L then this rule must belong to �I− . This implies that I �|= C‖L.
Consequently, I �|= LF f (L, P). ��

Proof of Proposition 3 Algorithm 1 is clearly terminating due to the fact that P has
only a finite number of loops. Its soundness is obvious, while its completeness follows
from Theorem 4. ��
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32. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint
atoms. Theory Pract. Log. Program. 8(2), 167–199 (2008)

33. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Ann. Math. Artif. Intell. 53(1–4), 251–287 (2008)

34. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

35. Niemelä, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Constraints,
Chapter 21, pp. 491–521. Kluwer, Dordrecht (2000)

36. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
smodels programs. Theory Pract. Log. Program. (TPLP) 8(5–6), 717–761 (2008)

37. Papadimitriou, C.H.: Computatioinal Complexity. Addison Wesley, Reading (1994)
38. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic reasoning. In:

Logics in Artificial Intelligence, 9th European Conference, Lisbon, Portugal, vol. 3229 of Lecture
Notes in Computer Science, pp. 147–160. Springer, New York (2004)

39. Rina, D.: Constraint Processing. Morgan Kaufmann, San Mateo (2003)
40. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.

Artif. Intell. 138(1–2), 181–234 (2002)
41. Syrjänen, T.: Omega-restricted logic programs. In: Proceedings of the Sixth International Con-

ference on Logic Programming and Nonmonotonic Reasoning, Vienna, Austria, pp. 267–279.
Springer, New York (2001)

42. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

43. Wang, Y., You, J.-H., Yuan, L.-Y., Zhang, M.: Weight constraint programs with functions. In:
Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR
2009, Potsdam, Germany, vol. 5753 of Lecture Notes in Computer Science, pp. 329–341. Springer,
New York (2009)

44. You, J.-H., Liu, G.: Loop formulas for logic programs with arbitrary constraint atoms. In:
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008),
Chicago, Illinois, USA, pp. 584–589. AAAI Press, Menlo Park (2008)


	Weight constraint programs with evaluable functions
	Abstract
	Introduction
	Weight constraint programs
	Preliminary definitions
	The splitting-set theorem for weight constraint programs
	Completion and loop formulas

	Weight constraint programs with evaluable functions
	Syntax and semantics
	Eliminating functions
	Completion and loop formulas
	Translation to CSP

	Implementation and experimentation
	Implementation
	Experimental results
	The magic square problem
	The other problems


	Related work
	Concluding remarks and future work
	Appendix: Proofs
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <>


    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


