
BASIC: an Alternative to BASE for Large-Scale
Data Management System

Lengdong Wu, Li-Yan Yuan, Jia-Huai You
Department of Computing Science

University of Alberta
Edmonton, Canada

{lengdong, yuan, you}@cs.ualberta.ca

Abstract—Big data applications demand and consequently
lead to developments of large-scale data management systems,
which provide high scalability by partitioning data across mul-
tiple servers. Since conventional transactional access is quite
expensive, many real world large-scale distributed systems eschew
transactional functionality and adopt semantics of atomic multi-
partition operations. Accordingly, BASE, a consistency model
weaker than ACID, is commonly used to guarantee availability.
In this work, we identify a new consistency model-BASIC (Basic
Availability, Scalability, Instant Consistency) that matches the
requirements where extra efforts are not needed to manipulate
inconsistent soft states. We present a timestamp-based formula
protocol for BASIC that can enforce Instant Consistency while
achieving linear scalability (via logical formula caching, dynamic
timestamp ordering) and achieve Basic Availability in the pres-
ence of partial failure and network partition (via partition inde-
pendence, genuine atomic commit). Our extensive experimental
results verify the scalability of BASIC and demonstrate that the
limited overhead induced by BASIC pays a reasonable price for
keeping all soft states consistent.

Keywords—Consistency; Concurrency Control; Scalability

I. INTRODUCTION

Faced with increasing amounts of data and unprecedented
query volume, large-scale data management systems partition
their data across multiple distributed servers, such that no
one single server contains an entire copy of the database [1],
[2], [3], [4], [5], [6], [7]. To minimize latency and remain
available during partial failure and network partition, many
modern large-scale distributed systems eschew transactional
functionality, and opt for strong semantic guarantees for
atomic non-transactional operations over multiple data par-
titions (atomic multi-partition operation) [2], [4], [8], [9].
Designing and implementing concurrency control protocols
for these systems is quite challenging, especially when high
scalability needs to be achieved without sacrificing consistency.
Based on the understanding that linearizability of traditional
ACID databases is not achievable with high availability in the
presence of network partitions [10], [11], [12], many large-
scale distributed systems have attempted to provide weaker
consistency guarantees for atomic multi-partition operations -
the most notable being BASE (Basic Availability, Soft State,
Eventual Consistency) [4], [5], [8]. Despite of its high concur-
rency and performance benefits, BASE has its own inevitable
problems resulting in incorrect behavior for use cases that
require consistent visibility for users. Therefore, BASE should
not overwhelmingly be the only default choice.

In this work, we present BASIC (Basic Availability, Scal-
ability, Instant Consistency), an alternatively higher level of
consistency than BASE, for a largely underserved class of
applications requiring multi-partition, partial-replication, atom-
ically non-transactional operational data access where none of
inconsistent (soft) states should be visible to clients. BASE
and BASIC provide different choices between the model that
is faster but requiring extra efforts to deal with inconsistent
results and the model that delivers consistent results but is
relatively slower with higher latency.

Our contribution in this paper is to demonstrate that BASIC
can be achieved with linear scalability, and the performance
decline induced by BASIC is acceptable comparing with the
extra efforts needed to manipulate inconsistent soft states
of BASE. Specifically, we present a timestamp-based for-
mula protocol with novel distributed timestamp management
schemes (i.e., logical formula caching, dynamic timestamp
ordering, partition independence, and genuine atomic commit)
for high scalability and basic availability. We compare the
performance and scalability between systems with BASE and
BASIC under the industrial standard YCSB benchmark. Across
a range of workload configurations, we show that BASIC
incurs limited overhead that pays a reasonable price for a
higher consistency level than BASE.

This paper proceeds as follows. In Section II, we exem-
plify the limitation of BASE with tangible examples, and
then propose BASIC within generalized CAP framework in
Section III. We present the timestamp-based formula protocol
for BASIC in Section IV. The performance experiments are
reported in Section V. Related work and conclusion are given
in Section VI, VII, respectively.

II. OVERVIEW AND MOTIVATION

Given the prevalence of partitioning for large-scale data
management systems, we consider a set of partitioned data
items spread over multiple servers, and partially replicated
where at least one server acts as a replica for a proper
subset of data items. In such distributed infrastructure, network
partition may prevent servers from communicating, and in the
absence of server failures, communicating messages may also
be delayed by factors such as network congestion and routing.

Consider an example of data items1 with three partitions
L, S, H distributed over three different servers N1, N2, N3,

1For simplicity, we consider only one data item but all the discussions are
valid for a set of data items.



respectively; and the following three atomic multi-partition
operations on the data item:

1) a(x): Wa(L = L+ x,H = H + x);
2) b(y): Wb(S = S + y,H = H − y);
3) check: Rc(L, S,H), assert(L− S = H).

The state of the data item transits from one consistent state
to another if and only if it is caused by the completion of an
atomic operation. We assume initial values in three columns
L, S, H are all 0.

Example 1. Consider a schedule with no R/W or W/W
overlap: S1 = {a(20), b(10), check} such that:

1) a(20) completes before b(10) starts;
2) check is issued after b(10) is done.

TABLE I: No R/W or W/W overlap schedule

schedule value

P1 P2 P3 L S H

t1 Wa1(L + 20) Wa3(H + 20) 20 0 20
t2 Wb2(S + 10) Wb3(H − 10) 20 10 10
t3 Rc1(L = 20) Rc2(S = 10) Rc3(H = 10)

Table I describes the schedule on each partition. Note that
Wai,Wbi, Rci represent the corresponding actions of opera-
tions a, b and check on the partition Pi(i = 1, 2, 3). The check
at t3 returns a consistent state according to BASE, since there
exists no overlap among operations on all partitions. However,
this is not always the case, as multi-partition operations can
overlap due to various reasons (e.g., network delay, transmis-
sion latency and etc.).

Example 2. Consider a schedule with R/W and/or W/W
overlap: S2 = {a(20), b(10), check, check} such that:

1) a(20) is incomplete at t2 when b(10) starts;
2) the first check is issued at t3 before b(10) is done;
3) the second check is issued after b(10) is done,

Table II describes the schedule on each partition. There exist
overlaps between a(20) and b(10); and b(10) and the first
check.

TABLE II: W/W and R/W overlap schedule

schedule value

time P1 P2 P3 L S H

t1 Wa1(L + 20) 20 0 0
t2 Wb2(S + 10) Wa3(H + 20) 20 10 20
t3 Rc1(L = 20) Rc2(S = 10) Rc3(H = 20)
t4 Wb3(H − 10) 20 10 10
t5 Rc1(L = 20) Rc2(S = 10) Rc3(H = 10)

The schedule in Table II satisfies BASE, since though the
first check at t3 returns an inconsistent state, while at some later
time after t4, the second check eventually achieves a consistent
state. For such schedules, clients are required to reason about
the correctness of each state which can be consistent or not.

Analogical examples in reality include foreign-key con-
straints and bi-directional relationships in social networking

applications (e.g., the friend of relationship, likes and liked by
association) [8], [9], [13].

Now we consider a case for partial replication.

Example 3. Consider replicated columns R1, R2, R3 that are
distributed across different partition nodes; and atomic multi-
partition operations that are non-commutative:

1) a(x): Wa(R1 = R1 × (1 + %x), R2 = R2 × (1 +
%x), R3 = R3 × (1 + %x));

2) b(y): Wb(R1 = R1+y,R2 = R2+y,R3 = R3+y);
3) check: Rc(R1, R2, R3), assert(R1 = R2 = R3).

Consider a schedule S3 = {a(20), b(10), check, check}
with overlaps between a(20) and b(10); and a(20) and the
first check, as shown in Table III. We assume the initial value
for three replicas to be 100.

TABLE III: W/W and R/W overlap schedule for replicas

R1 R2 R3

t1 Wa1(R1 × (1 + 20%)) Wa2(R2 × (1 + 20%))
t2 Wb1(R1 + 10) Wb2(R2 + 10) Wb3(R3 + 10)
t3 Rc1(R1 = 130) Rc2(R2 = 130) Rc3(R3 = 110)
t4 Wa3(R3 × (1 + 20%))
t5 Rc1(R1 = 130) Rc2(R2 = 130) Rc3(R3 = 132)

Both checks in Table III return inconsistent states, even at
the time points after t4. Additional restriction is required for
applications to ensure the reconciliation of replicas.

It is the Example 2 and 3 that motivate us to propose
BASIC, since BASE has the following inevitable limitations:

• The eventual consistency makes only liveness rather
than safety guarantee, as it merely ensures the system
to be consistent in the future [14].

• The soft state presents challenges for developers,
which requires extremely complex and error-prone
mechanisms to reason about the correctness of the
system state at each single point [4], [8], [15].

• Additional restriction is required for the soft state to
converge to eventual consistency [16], [17], [18].

III. BASIC PROPERTIES

A. BASIC Specification

In order to resolve the inconsistency of soft state, we
propose BASIC standing for Basic Availability, Scalability and
Instant Consistency.

• Basic Availability: the system can response for all
continuously operations in a timely manner.

• Scalability: the system is able to scale out by adding
more resources for increasing workloads.

• Instant Consistency: all partitioned data seen by each
read operation reflects a consistent state. i.e., each
read operation returns the result that reflects write
operations which have been executed successfully
prior to the read.



Intuitively, a schedule satisfies instant consistency if its
equivalent schedule in the view of single operation transaction2

satisfies the snapshot isolation.

Assume the database is running on partitions
P1, P2, . . . , Pn. Two types of database operations are
considered: (1) READ (i.e., to read a set of data items from
multiple partitions) and (2) WRITE (i.e., to write a set of data
items into multiple partitions).

A sub-schedule Si on the partition Pi is a sequence of
operations, and a schedule S is the unite of sub-schedules on
all partitions. All sub-schedules are considered to be coincident
if the order of operations in each sub-schedule does not conflict
with each other.

Two sub-schedules Si, Sj are considered to be coincident,
if and only if Si, Sj hold the same execution history order of
respective conflicting operations.

For example, previous Tables I, II and III demonstrate
typical schedules on three partitions. The schedule S1 in
Example 1 has three sub-schedules:

S11 = {a(20), check},
S12 = {b(10), check},
S13 = {a(20), b(10), check}.

All three sub-schedule in S1 are coincident.

The schedule S2 in Example 2 also has three sub-schedules:

S21 = {a(20), check1, check2},
S22 = {b(10), check1, check2},
S23 = {a(20), check1, b(10), check2}.

S22 and S23 are not coincident since the execution order of
{b(10), check1} in S22 and S23 conflicts. Similarly, it is not
difficult to check that the sub-schedules in Example 3 are not
coincident either.

Now we are in the position to define instance consistency.
A consistent snapshot of a partitioned database represents a
complete copy of all the data items updated by a schedule of
which sub-schedules on all partitions coincide. A schedule of
a set of operations satisfies instant consistency if any READ
operation reads from a consistent snapshot.

By previous analysis, S1 in Example 1 satisfies instant
consistency but not S2 in Example 2 and S3 in Example 3.

The instant consistency, and thus the BASIC properties
guarantee that all reads will see a consistent snapshot of
the partitioned database, which can overcome the deficiencies
caused by inconsistent soft state in BASE.

B. CAP Theorem Generalization

The Brewer’s CAP Theorem [10], [11] asserts that any
networked distributed system can have only two of strong
consistency, availability and partition tolerance, that is, a highly
available system cannot provide strong consistency guaran-
tees in the presence of network partitions. Though strong

2Note that by the view of single operation transaction, we mean “start
transaction” and “commit” are added before and after each and every database
operation respectively.

transactional consistency models are not achievable with high
availability, many weak consistency models are feasible in the
highly available distributed environment.

Fig. 1: General Extension of CAP Theorem

Eventual Consistency is one of the most commonly used
weak consistency models. Many consistency models stronger
than eventual consistency provide differentiated, additional
guarantees for dependencies among operations. Causal con-
sistency guarantees that the execution in a cluster agrees
on the relative ordering of causally related operations [14],
[19]. Ordering consistency is an enhanced variation of causal
consistency ensuring global ordering of operations. Ordering
consistency provides the monotonicity guarantee of both read
and write operations to each record [8], [20]. Causal con-
sistency and ordering consistency are stronger than eventual
consistency. Furthermore, it is not difficult to see that instant
consistency is stronger than causal consistency and ordering
consistency in that a system that guarantees instant consistency
also guarantees causal consistency and ordering consistency,
but not vice versa.

Availability generally guarantees a response from each
non-failing server. High availability enforces the return value
of read includes the effect of the last completed write to a data
item as required in linearizability. Write operation will always
successfully commit eventually if the client does not explicitly
abort it [12]. Basic availability is relaxed where read can return
a version out of date and internal abort can be employed
to guarantee continuous response rather than blocking. Basic
availability ensures more liveness guarantee for operations at
the cost of safe response to operations [21].

Partition tolerance guarantees consistency is maintained
even when network failures prevent some servers from com-
municating with others. It depends on the policy of update
manipulation consisting of update initiation (write-to-one,
write-to-many) and update propagation (eager propagation,
lazy propagation) [22], [23]. In the write-to-one initiation,
all updates are firstly sent to one designate node. This node
resolves all conflicts, determines the order to perform updates
and broadcasts to other nodes with order preserving [24].
The propagation can be eager (i.e., each partition waits to
commit until all replicas have received the update, ensuring
consistent replicas) or be lazy (i.e., the update on each partition
is treated as if it were completed before being applied to all
replicas). The write-to-many mechanism is to have W replicas
acknowledged the write, thus allowing the write to survive



W-1 replica failures [4]. The system propagates updates to
the subset of replicas eagerly and the rest lazily. Quorum-
based protocol [25] is such a typical model of this pattern.
Quorum-based protocol is intrinsically partition tolerant; since
it depends on majority quorums, operations in any partition
that contains a majority quorum will succeed.

We classify a wide array of consistency and availability
models. In doing so, we extend the current understanding
of CAP theorem by characterizing precisely different degree
of dimensions that can be achieved rather than simply what
cannot be done. More specifically, in the CAP theorem, it
is required to pick only two of the three properties. Corre-
spondingly, as shown in Figure 1, the primary purpose of
the generalized CAP theorem is to find the optimal three
properties. Given the general extension of CAP theorem, a
system achievable in BASIC (the inner dashed line triangle)
provides stricter consistency level than BASE (the outer solid
line triangle).

IV. TIMESTAMP-BASED FORMULA PROTOCOL FOR
BASIC PROPERTIES

A. Timestamp-based Formula Protocol Overview

The Timestamp-based Formula Protocol (TFP) is a highly
scalable protocol that implements multi-version scheme on
multi-partition operations with the instant consistency. As in
the typical non-distributed multiversion concurrency control
protocol [26], version visibility for operations is determined by
associating with each version a scalar monotonic timestamp.
Moreover, TFP introduces novel distributed timestamp man-
agement schemes with the following optimization mechanisms:

• Logical formula caching simply stores transformation
formulas associated with each updated data item on
each partition, instead of storing multiple copies of
multiple versions of updated data items.

• Dynamic timestamp ordering is used to increase the
concurrency degree and reduce unnecessary blocking.

• Caching and delaying the update operations by for-
mulas within the commitment protocol guarantees the
atomicity of multi-partition operations on the post-
images.

• Partition independence ensures that a client never
contacts unrelated partitions that its operation does not
access.

The logical transformation formula caching approach has
the advantages over storing actual multiple versions of data
items mainly due to the following reasons. The conventional
implementation of multiversion uses the fine-grained page as
the minimal unit in the memory [27], [28]. The page size
can affect the latency since the bandwidth can only be fully
utilized when data is flushed in pages of relatively large
size(e.g. 4KB, 8KB) [28]. Multiple versions of different data
items are clustered into pages to save page space. Complex
and error-prone mechanism is required to ensure the multi-
partition update operation does not overwrite each other even
though they access different data items [27], [28]. Thus, the
manipulation based on the unit of formula can reduce the
complexity of storing multiple versions on the page-level.

In addition, formula enables us to use commutative
conflict-free operations [29] such as increment/decrement3,
which is much easier than if other wise, in terms of much less
conflict potential. For non-key updates, storing multiple ver-
sions need to maintain physical copies of numerous rows [30],
but the formula protocol still uses one simple formula. This
will significantly reduce overhead of multiple versions of all
update data items and simplify the garbage collect process.

The commit order of operations in the conventional times-
tamp protocol corresponds with the static timestamp initially
assigned to each operation. TFP allows an equivalent dynamic
schedule where operations with older (smaller) timestamp can
read the data item updated with a later (larger) timestamp
on condition that the instant consistency is respected. The
dynamic timestamp ordering can avoid unnecessary blocking
or waiting in order to increase the degree of concurrency.
Formulas no longer being used can also be cleared as early
as possible, similar to the conventional multi-version protocol
that removes any obsolete version of data as soon as it is not
needed.

The write operation in TFP relies on a genuine atomic
commit protocol that is a variation of the two-phase commit
protocol combined with the total order multicasting. The two-
phase commit protocol is used to validate each write operation
and guarantee the atomicity. The total order multicasting
facilitates to preserve the order the commit of write operation
among all the replicas of each data item [12], [31]. At the first
PREPARE phase, each write operation can be submitted to
any replica. At the second FORCE-WRITE phase, the write is
sent to all active replicas using the total order multicasting. All
replicas serialize in the identical way and completely executed
at each replica.

Partition independence ensures that one client’s operations
only contact partitions that its operation accesses. And if a
client can contact the partitions responsible for each data item
the operation accesses, the operation will proceed commit.
The partition independence can reduce the work burden of
partitions that are not directly involved in an operation’s
execution. And it is important in the presence of partial failure
that prevents one client’s operation from causing another to
block. Now, we present the formal TFP in detail.

B. Timestamp-based Formula Protocol

Each atomic multi-partition operation op is assigned a
unique monotonically increasing timestamp, TS(op), when
it is initiated. To guarantee partition independence, the TFP
maintains a list of participating partitions for each active
operation op, denoted as P (op). P (op) involves only the
partitions that maintain replicas of the data op accessed. With
each data item x, on each relevant partition Pi, the following
pieces of information are stored:

(1) lrt(x,Ni): the largest timestamp of active read opera-
tion on x on the partition Pi;

(2) list(x, Pi): the list of update formulas in the form:
uf(x, op1, Pi), . . . , uf(x, opn, Pi). Each uf(x, opj , Pi) repre-

3The execution order of operations does not affect the result. Thus we
consider such operations conflict-free even though they write the same data
item.



sents an update formula on x by operation opj on the partition
Pi, and TS(op1) < TS(op2) < · · · < TS(opn).

Initially, lrt(x,Ni) and list(x, Pi) are set to 0 and ∅
respectively.

Read operation on a data item x on partition Pi,
read(x, Pi), needs to check whether x has already been
updated, returning in this case the value updated by the
write formulas. Next, the version visible by read(x, Pi) is
determined, as in conventional MVCC algorithms, by select-
ing the most recent version having timestamp smaller than
TS(read(x, Pi)). Particularly, read(x, Pi) will perform the
following action:

R. Let v0(x) be the value of x on the disk of Pi, and
uf(x, opu1, Pi), . . . , uf(x, opum, Pi) be the list of update for-
mulas in list(x, Pi) such that: (1) TS(opum) < TS(R(x, Pi))
and (2) TS(opu(m+1)) > TS(R(x, Pi)).

Let v1(x) be the value obtained by applying
uf(x, opu1, Pi) on v0(x), v2(x) be the value obtained
by applying uf(x, opu2, Pi) on v1(x) and so on, vum(x)
be the value obtained by applying uf(x, opum, Pi) on
vu(m−1)(x). vum(x) is the value to be retrieved by R(x, Pi).
Essentially, read(x, Pi) retrieves the value that is obtained
by sequentially applying all update formulas on x issued by
operations with older timestamps.

In order to enforce the correct tracking of the read-write de-
pendency, the protocol records read by(opuk, x,R(x, Pi)) in
metadata for all opuk in list(x, Pi) such that 1 < TS(opuk) <
TS(R(x, Pi)), indicating the value x updated by opuk is read
by R(x, Pi).

If there exists no read by fact, R(x, Pi) can return imme-
diately; otherwise, read by needs to wait the completion of
the opuk. In case opuk is successfully done, it will be ordered
before R(x, Pi) according to the timestamp and the version of
x created by opuk can be visible to R(x, Pi). If opuk aborted,
the formula uf(x, opuk, Pi) will be eliminated so that R(x, Pi)
can not see the updates.

At last, if TS(R(x, Pi)) > lrt(x, Pi), TS(R(x, Pi)) is
assigned to lrt(x, Pi).

TFP write operations proceed in a two-phase protocol:
a first round of communication places each time-stamped
write operation on its respective partitions. In this PREPARE
phase, the timestamp of the operation is checked, and update
formulas with dependency facts are added to each data item’s
local metadata. A second round of communication takes the
common action of operation on all P (op). In this FORCE-
WRITE phase, each partition updates the data item according
to formulas or revokes the operation by dropping the formulas
directly.

When a write operation is received on partition Pi in the
PREPARE phase, W (x, Pi) will perform the following action:

W1. If TS(W (x, Pi)) < lrt(x,Ni), there must exist
at least one read operation, which should follow W (x, Pi)
according to the serial timestamp order, has read the value of
x before W (x, Pi). Thus W (x, Pi) is too old to write x, and
must revoke and retry.

W2. If TS(W (x, Pi)) > lrt(x, Pi), the write operation is
processed as:

(a) Adding an update formula of W (x, Pi) into list(x, Pi);

(b) There must exist another operation Rk(x, Pi) such that:

1) TS(Rk(x, Pi)) < TS(W (x, Pi));
2) Rk(x, Pi) has read the value of x before.

Recording a fact read b4(Rk(x, Pi),W (x, Pi)) in the
metadata for all Rk(x, Pi) such that 1 < TS(Rk(x, Pi)) ≤
lrt(x, Pi), indicating Rk(x, Pi) has read the data item x before
W (x, Pi). W (x, Pi) must wait for commit until Rk(x) is done.

When all partitions in P (op) have proceeded op in the
PREPARE phase, one of the following action will be taken in
the FORCE-WRITE phase:

V. Revoke(op). If there exists any op(x, Pi) on Pi ∈ P (op)
such that op(x, Pi) is forced to revoke in W1 on Pi. The pro-
tocol performs revoke on all partitions in P (op) by removing
all relevant stored facts read by, read b4 and update formulas
uf involving op in list(x, Pi) directly.

F. Force-write(op). If there exists no op(x, Pi) on
Pi ∈ P (op) that is forced to revoke in W1 or any
read b4(Rk(x, Pi), op(x)) fact, force-write formula issued by
op(x) on all partitions in P (op).

When op(x) terminates (revoke or force-write), operations
that are waiting for op(x) will resume and all relevant metadata
facts read by, read b4 and update formulas uf involving op
are removed.

C. Dynamic Timestamp Ordering

In the classical multi-version timestamp protocol, the ex-
ecution order of operations conforms with the timestamp
initially assigned to each operation. This mechanism is con-
sidered to be static. However, our protocol respects the initial
timestamp ordering while permitting an equivalent schedule
that differs from the static timestamp ordering, as long as it
ensures instant consistency. This is called dynamic timestamp
ordering.

Now we use the previous examples to demonstrate how
TFP achieves instant consistency with dynamic timestamp
ordering.

Consider the schedule {a(20), b(10), check} in Example
2 and the timestamp for each operation is: {TS(a(20)) =
201, TS(b(10)) = 202, TS(check) = 203}.

Actions performed on each partition are illustrated in
Table IV. At t1, formulas issued by a(20) on partition P1 and
P2 are stored in the list of update formulas based on the writing
rule W2. At t2, formulas issued by b(10) on partition P1, P2

and P3 are stored based on the writing rule W2, and since
there exists no stored facts read by or read b4 associated
with b(10), formulas issued by b(10) are then allowed to be
force-written to update values for each column according to
the rule F. Even though the timestamp of b(10) (=202) is larger
than the timestamp of a(20) (=201), b(10) will take effect on
the value without waiting for a(20).

This dynamic ordering does not comply with the timestamp
ordering associated with each operation, but it does permit



an equivalent schedule satisfying instant consistency. The
dynamic timestamp ordering avoids unnecessary blocking and
thus increases the degree of concurrency as well as reduces
overhead because it cleans the unneeded formulas as early as
possible.

At t3, check is suspended due to the existence of stored
fact read by. At t4, a(20) is revoked since TS(Wa3) = 201 <
lrt(H,N3) = 203, according to the writing rule W1. Upon
the removal of formula and read by facts of a(20), check
suspended at t3 is resumed by returning a consistent state
(Rc1 = Rc2 = Rc3).

TABLE IV: W/W and R/W overlap schedule with dynamic
timestamp ordering

schedule action value

P1 P2 P3 R1 R2 R3

t1 Wa1 Wa2 W2 : uf(L,Wa1, N1)→ list(L,N1)
W2 : uf(S,Wa2, N2)→ list(S,N2) 100 100 100

W2 : uf(L,Wb1, N1)→ list(L,N1)
t2 Wb1 Wb2 Wb3 W2 : uf(S,Wb2, N2)→ list(S,N2)

W2 : uf(H,Wb3, N3)→ list(H,N3)
F: Forcewrite(b) (dynamic ordering) 110 110 110

R:Rc1(uf(L,Wa1, N1)), read by(Wa1, L,Rc1)
t3 Rc1 Rc2 Rc3 R:Rc2(uf(S,Wa2, N2)), read by(Wa2, S, Rc2)

R:Rc3(H = 110), lrt(H,N3) = 203

W1: Revoke(Wa3), V: Revoke(a)
t4 Wa3 Remove: uf(L,Wa1, N1), read by(Wa1, L,Rc1)

uf(L,Wa2, N2), read by(Wa2, L,Rc2)
Rc1(L = 110), Rc2(S = 110), Rc3(H = 110) 110 110 110

D. Basic Availability Guarantee

TFP operates in a distributed environment, which needs
to deal with partial failure and network partitions. Partition
independence ensures that failed clients do not cause other
clients to fail. This provides fault tolerance and availability as
long as clients can access relevant working partitions.

TFP writes use a two-phase atomic commit protocol, which
will always complete the operation except when every relevant
partition has performed the first PREPARE phase, but none of
them has performed the second FORCE-WRITE phase. If a
partition Pr accessed by an operation op, has timed out while
waiting during the PREPARE phase, Pr can abort the operation
and safely discard its formula, since Pr can be certain to never
force-write op in the future. If a partition Pr has performed the
PREPARE phase but times out while waiting in the FORCE-
WRITE phase, Pr can check the status of operation op on any
other partitions to determine the outcome of the operation.
If another partition has executed force-write for op, then Pr

can force-write op. The coordinator unilaterally aborts the
operation if it times out while waiting for replies for the
prepare phase. Upon dealing with failure of the coordinator,
Paxos [32] or other consensus based abstractions [33] can be
applied to replicate the state of the coordinator across the
replicas.

Failures of write operations can lead to aborting itself, and
will not lead to blocking the execution of read operations.
However, the read operation may return stale but consistent
snapshot of data. Staleness return and aborting mechanism can
facilitate to achieve basic availability.

E. Instant Consistency Guarantee

Since TFP is a variation of multi-version implementation.
We still stick to the conventional notations in multi-version
protocol for the guarantee proof. We assume wi(xi) denotes a
new version xi issued by the write operation wi; and ri(xj)
denotes the read operation opi on the data version xj . The
multiversion history Hx defines a total order ≺x for each data
item x on all partitions. The total version order ≺ is the union
of the ≺x in Hx [26].

Given a multiversion history H and a total version order
≺, a direct multiversion graph (DMG) can be constructed by
setting a vertex for each operation opi in H , and a direct
edge opi → opj if one the following statements hold on any
partition:

(a) write-read dependency: wi → rj , wi produces a version
of xi, and rj reads xi.

(b) read-write dependency: ri → wj , ri reads a version of
xk, and wj produces a later version of xj that overwrites xk.

(c) write-write dependency: wi → wj , wi produces a
version of xi, and wj produces a later version of xj .

A multiversion history H can guarantee instant consistency
if and only if its direct graph does not contain any oriented
cycle. Our proof is based on establishing a mapping between
each vertex in the direct graph and its timestamp. We prove the
graph to be acyclic by illustrating that for each edge opi → opj
in the DMG, TFP can guarantee that TS(opi) < TS(opj).

• In the case (a), wi → rj means that rj has read a
version produced by wi. If wi with smaller timestamp
arrives later than rj , wi will abort and retry according
to the writing rule W1. Otherwise the read by fact
regulates TS(wi) < TS(rj) in the reading rule R.

• In the case (b), ri → wj means that a stored
fact read b4(ri, wj) will be generated and stored.
The read b4 fact in W2 guarantees that wj with a
larger timestamp can not be issued before ri with a
smaller timestamp. Therefore, we can have TS(ri) <
TS(wj).

• In the case (c), if there exists any rk such that wi →
rk → wj , we can have TS(wi) < TS(rk) < TS(wj)
based on case (a), (b). Otherwise, the dynamic times-
tamp ordering may alternate the timestamps to guar-
antee TS(wi) < TS(wj).

V. PERFORMANCE EVALUATION

In this section, we are going to conduct experiments on
the performance evaluation of BASIC. The main purpose of
experiments includes:

1) What are performance comparisons between systems
with BASE and systems with BASIC?

2) Is BASIC able to be achieved with high scalability?
3) How much will the latency of response increase for

systems with BASIC?



A. Experimental Setup and Benchmark

All the experiments use a collection of, up to 12, commod-
ity servers connected with a Gigabit LAN with low network
latency. More specifically, each server has dual quad-core Intel
Xeon CPUs, 32GB of main memory, SATA disks configured
in RAID0, running Linux Ubuntu 12.04 LTS.

We applied the industrial standard Yahoo! Cloud Serving
Benchmark (YCSB) [34] to measure performance, which is
a data serving benchmark widely used to measure throughput
and latency for each set of operations with varying distribution.

B. Experimental Performance

We have implemented a large-scale database management
system RubatoDB [35] based on TFP protocol, to support
both BASIC and BASE. In our experiments, we compare
four different system configurations including: RubatoDB with
BASIC, RubatoDB with BASE, HBase4 with BASE, and
Cassandra5 with BASE.

According to the YCSB specification, we define a multi-
column structure for each data item, which consists of one
key column and 24 data columns. We use column partitioning
and distribute columns across multiple servers evenly. We test
the read-intensive workload (including 90% read operations
and 10% write operations) and the write-intensive workload
(including 50% read operations and 50% write operations).
Each operation accesses a random set of fields of a single
data item across the servers. The size of the data is set to 100
million 1KB records for each node, resulting around 120GB
of raw data per node. In the experiments, a continuous mixed
workload is submitted into the system, and the benchmark then
measures the performance in terms of throughput (i.e., the
number of operations per second) and latency of operations
in milliseconds.

1) Inconsistency Ratio: We first evaluate the inconsistent
soft states ratio of RubatoDB with BASE on the system with
the number of servers as 1, 2, 4, 8 and 12.

The inconsistent state of read operation is detected by
checking the update formula list on each participating nodes. If
the formulas employed by the read operation do not coincide,
then the state returned is inconsistent. Table V shows that the
inconsistent soft state ratio on the 1-node system is lower than
0.1%; however, the ratio increases gradually with the growth of
the system size, which is as high as 0.62% on the system with
12 nodes. This increasing tendency of inconsistency indicates
that more efforts are required to deal with the soft state as the
system scales out. As the system size becomes large, it is clear
that uncertainties in message communications may prevent all
relevant partitions from drawing accurate decision about the
instantaneous global state of the system. Another source of
inconsistency may also arise if all relevant partitions fail to
execute identical reactions, even though each partition evaluate
the same predicate.

2) Scalability: We then compare the performance in terms
of throughput and latency as per the YCSB specification.
In this group of experiments, we set up three replicas for

4http://hbase.apache.org/
5http://cassandra.apache.org/

TABLE V: Soft State Ratio

Nodes Number 1 2 4 8 12
Inconsistency %0.08 %0.15 %0.32 0.51% 0.62%

each data item, that is using HBase (replication factor=3) and
Cassandra (replication factor=3, consistency level=ANY).

Our results show that the throughput and latency of
RubatoDB with BASE is comparable with Cassandra and
HBase, but RubatoDB with BASIC has potentially lower the
performance. The throughput comparison for read-intensive
workload is plotted in Figure 2(a) and the corresponding
latency is shown in Figure 2(b). The throughput decreases
around 10% and the latency is nearly doubled due to the extra
cost for BASIC. In the write-intensive workloads, the potential
of operation overlap increases, causing a higher cost for ensur-
ing BASIC. As illustrated in Figure 2(c), (d), the throughput
reduces 25% on 12 nodes with the latency increasing nearly
one order of magnitude. The main source of the latency comes
from the presence of abundant dependencies between write
and read operations in the write-intensive workloads. The
numerous stored facts (i.e. read by, read b4) can cause one
operations to wait for commit until another operation is done6.

Though there is decline for the performance, RubatoDB
with BASIC properties still preserves near-linear scalability
with increasing throughput and flat latency, same as systems
with BASE.

3) Increasing Replication: The following experiments ex-
plore the response latency under increasing workloads of
partial and full replication. We increase the replication factor
from 2, 4, 6 for partial replicas, to 12 for full replicas. Figure 3
shows the latency of response time for 12-node RubatoDB with
BASIC under various replication factors.

The partial replication results (2, 4, and 6 replicas per data
item) show that the smaller the number of replicas is, the
higher throughput (operation per second) can be achievable
with flat low latency. Since read-intensive workload induces
less overhead for synchronization, the response time of full
replication stabilizes for 70% of maximum workloads, and
partial replication can achieve 85% of the maximum workloads
before the latency rockets (as shown in Figure 3(a)). The
latency of replication does not decline the performance of the
system quite much, since that results of any read distributed
across replications will be consistent.

In the write-intensive workload, a “safe” write operation
requiring multiple replications acknowledge the write before
it returns will incur higher latency, and/or may time out in
presence of network partition. Requiring confirmation of each
write operation has replicated to all partitions will effectively
guarantee that those replicated partitions have caught up
with the timestamp of this write. The partial replication can
scale significantly better than full replication (as shown in
Figure 3(b)), but still the more replicas are used, the more
dependency stored facts are involved causing higher latency.
This exhibits that the commit latency of operations increases

6RubatoDB is currently implemented as a research system in the university
lab, and its performance can still be improved comparing with other systems.



(a) Read Intensive Workload Throughput (b) Read Intensive Workload Latency

(c) Write Intensive Workload Throughput (d) Write Intensive Workload Latency

Fig. 2: Comparison between BASIC and BASE

(a) Read Intensive Workload (b) Write Intensive Workload

Fig. 3: Comparison of Latency for Replication

with high contention. The clients wait longer for the majority
response for either aborts or commits. When the number of
operations per second is low (< 40, 000), the latency does not
vary as much as the replications increases. This is because
when the contention is not that high, the replicated commit
latency can be maintained low with more rollback operations;
an abort operation exhibits lower latency due to its early
termination compared to a committed operation.

In summary, for the read-intensive workload or the write-
intensive workload without requiring extremely low response

latency, the cost induced by BASIC is acceptable comparing
with the extra efforts needed to manipulate inconsistent soft
states for BASE. That is, BASIC pays a reasonable price for
a higher consistency than BASE.

VI. RELATED WORK

One of the challenges in designing and implementing
large-scale data management systems is how to achieve high
scalability without sacrificing consistency. A broad spectrum



of consistency guarantees have been explored at varying costs
of scalability and availability.

Serializability. At the strong end of the consistency spec-
trum is the transactional ACID. Serializability is the highest
isolation level. A range of techniques can enforce serializabil-
ity in distributed databases such as distributed locking [1],
[32] and optimistic protocol [36]. However, these mechanisms
may limit the scalability. Serializability has been known to be
unachievable under the environment where network partition
or partial failure can be normal rather than rare [37], [15], [38],
[39].

Snapshot isolation is a multi-version concurrency control
protocol based on optimistic reads and writes. A data snapshot
is taken when the snapshot transaction starts, and remains
consistent for the duration of the transaction. However, reading
from a snapshot means that a transaction never sees the partial
results of other concurrent transactions and write skew may
occur [40]. TFP deals with read/write conflicts using a list of
metadata facts per data item, similar to the recent work [40],
[41] on snapshot isolation where dependencies are detected for
serialization.

The lower end of the spectrum consists of various weak
consistency models. Weak consistency is an alternative set
of transactional semantics that are still useful for distributed
multi-partition semantics, but do not violate requirements for
high availability or low latency.

Eventual consistency, one of the fundamental weak con-
sistency models, guarantees that if no new updates are made
to a given data item, eventually all accesses to that data item
will return the last updated value [18], [42].

Recent systems proposals such as Eiger [43], and Bolt-on
Causal Consistency [19] provide causal consistency guaran-
tees with varying availability. Causal consistency ensures exe-
cution ordering of operations which are causally related [44].
Implementation of causal consistency usually involves de-
pendency tracking [14], [19], [43]. Different from causal
consistency, the dependency tracking is restrained within the
minimal interval so that the tracking complexity is minimized
in the instant consistency.

Instead of merely ensuring partial orderings between
causality dependent operations, ordering consistency is an
enhanced variation of causal consistency ensuring global or-
dering of operations. The monotonic ordering guarantee can
be enforced by ensuring that write operation can be accepted
only if all writes made by the same user are incorporated in the
same node [45]. It can be achieved by designating one node as
the primary node for every record; and then all updates to that
record are first directing to the primary node [8], [14], [46].

We can categorize prevailing systems into the consistency
taxonomy, as shown in Figure 4.

Spanner [37], [15], Megastore [1] and Spinnaker [32]
provide serializable transactions using strict two-phase locking
protocol and two-phase commit, running on top of the Paxos-
replicated log mechanism for fault-tolerance. Such layered
combination, in which protocols that guarantee transactional
atomicity and isolation are separated from the mechanism
that guarantees fault-tolerant replication, has the advantages
of modularity and clear semantics.

Fig. 4: Taxonomy of Consistency Model

Microsoft Azure [47] and SAP HANA [48] relies on
MVCC as the underlying concurrency control mechanism to
synchronize multiple writers, and provide distributed snapshot
isolation.

Hyperdex [20] provides ordering consistency with a chain-
ing structure, in which nodes are arranged into a value-
dependent chain. PNUTS [8] provides a per-record timeline
model that preserves ordering consistency by introducing a
pub/sub message broker. Chubby [49] is a distributed locking
mechanism with a leasing agreement, based on which muta-
tions are applied in the same grant order.

COPS [14], [46] and Eiger [43] track dependencies on
versions of keys or operations to enforce causal consistency.
An operation does not take effect until verifying that the
operation’s dependencies are satisfied. Bolt-on [19] provides
a shim layer that upgrades the eventual consistency of an
underlying general-purpose data store to the causal consistency
for the application.

Dynamo [4] and Cassandra [5] provide eventual con-
sistency for allowing applications with “always writeable”
property, that is, write operations can always be accepted
by any node. Vector clock, also named as version vector, is
associated with data to determine the eventual consistent state
during reconciliation.

BASIC is inspired by recent work on PACELC [50] which
expands CAP theorem by considering the relationship between
weak consistency and low latency, and HAT [12] which
exposes a broad design space of highly available distributed
systems. We believe the design space for the consistency
model is not limited to merely ACID which is too strong and
BASE which is too weak, but rather that there is a spectrum
between these two extremes, and it is possible to build a set of
semantics guarantees combining different consistency models
and availability for various use case requirements.

VII. CONCLUSION

In this paper we have introduced BASIC (Basic Availabil-
ity, Scalability, Instant Consistency), an alternative consistency
model stronger than BASE while weaker than ACID. To
compare BASIC with BASE, we extend the CAP theorem



by finding the optimal degree on properties of consistency,
availability and partition tolerance, rather than picking only
two of them. We also presented a timestamp-based formula
protocol that enforces instant consistency with linear scala-
bility and fault tolerance. Novel techniques including logical
formula caching, dynamic timestamp ordering, partitioning
independence and genuine atomic commit are employed for
efficiency and effectiveness. Extensive experiments on indus-
trial standard benchmark verify that BASIC can be achieved
with high scalability, and the limited overhead induced by
BASIC is acceptable comparing with the extra efforts required
to maintain the inconsistency of soft states.

REFERENCES

[1] J. Baker, C. Bond, and etc, “Megastore: Providing scalable, highly
available storage for interactive services,” in CIDR, 2011, pp. 223–234.

[2] F. Chang, J. Dean, S. Ghemawat, and etc, “Bigtable: a distributed
storage system for structured data,” in TOCS, vol. 26, 2008, pp. 1–26.

[3] S. Das and etc, “G-store: a scalable data store for transactional multi
key access in the cloud,” in SoCC, 2010, pp. 163–174.

[4] G. DeCandia, D. Hastorun, and etc, “Dynamo: Amazon’s highly avail-
able key-value store,” in SOSP, 2007, pp. 205–220.

[5] A. Lakshman, “Cassandra: a decentralized structured storage system,”
in SIGOPS, 2010, pp. 35–40.

[6] R. Kallman and etc, “H-store: a high-performance, distributed main
memory transaction processing system,” in VLDB, 2008, pp. 1496–
1499.

[7] A. Thomson, T. Diamond, and etc, “Calvin: fast distributed transactions
for partitioned database systems,” in SIGMOD, 2012, pp. 1–12.

[8] B. F. Cooper and etc, “Pnuts: Yahoo!’s hosted data serving platform,”
in VLDB, 2008, pp. 1277–1288.

[9] L. Qiao, K. Surlaker, and etc, “On brewing fresh espresso: Linkedin’s
distributed data serving platform,” in ICMD, 2013, pp. 1135–1146.

[10] E. A. Brewer, “Towards robust distributed systems (abstract),” in PODC,
2000, pp. 7–10.

[11] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, pp. 51–59, 2002.

[12] P. Bailis, A. Davidson, and etc, “Highly available transactions: Virtues
and limitations,” PVLDB, vol. 7, no. 3, 2013.

[13] N. Bronson and etc, “Tao: Facebook’s distributed data store for the
social graph,” in Proceedings of the 2013 USENIX conference on Annual
Technical Conference, 2013, pp. 49–60.

[14] W. Lloyd and etc, “Don’t settle for eventual: scalable causal consistency
for wide-area storage with cops,” in SOSP, 2011, pp. 401–416.

[15] J. Shute, B. Samwel, and etc, “F1: A distributed sql database that
scales,” in VLDB Endowment, 2013, pp. 1068–1079.

[16] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” vol. 71, no. 3,
2011, pp. 354–368.

[17] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th international
conference on Stabilization, safety, and security of distributed systems,
2011, pp. 386–400.

[18] W. Vogels, “Eventually consistent,” in ACM Queue, vol. 6, no. 6, 2008,
pp. 14–19.

[19] P. Bailis and etc, “Bolt-on causal consistency,” in SIGMOD, 2013, pp.
761–772.

[20] R. Escriva and etc, “Hyperdex: a distributed, searchable key-value
store,” in SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, 2012,
pp. 25–36.

[21] M. Wiesmann and etc, “Understanding replication in databases and
distributed systems,” in ICDCS, 2000, pp. 464–474.

[22] B. Kemme and G. Alonso, “A new approach to developing and
implementing eager database replication protocols,” TODS, vol. 25,
no. 3, pp. 333–379, 2000.

[23] S. Wu and B. Kemme, “Postgres-r (si): Combining replica control with
concurrency control based on snapshot isolation,” in ICDE, 2005, pp.
422–433.

[24] X. Défago and etc, “Total order broadcast and multicast algorithms:
Taxonomy and survey,” ACM Comput. Surv., vol. 36, no. 4, pp. 372–
421, 2004.

[25] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter, “Fault detection
for byzantine quorum systems,” in IEEE Trans. Parallel Distrib. Syst.,
vol. 12, no. 9, Sep. 2001, pp. 996–1007.

[26] R. Thomas, “A solution to the concurrency control problem for multiple
copy databases,” in Digest IEEE COMPCON, 1984, pp. 56–62.

[27] S. Blott and etc, “An almost-serial protocol for transaction execution in
main-memory database systems,” in PVLDB, 2002, pp. 706–717.

[28] M. Brantner, D. Florescu, and etc, “Building a database on s3,” in
SIGMOD, 2008, pp. 251–264.

[29] P. Alvaro, N. Conway, and etc, “Consistency analysis in bloom: a calm
and collected approach.” in CIDR, 2011, pp. 249–260.

[30] K. Manassiev and etc, “Exploiting distributed version concurrency in a
transactional memory cluster,” in SIGPLAN. ACM, 2006, pp. 198–208.

[31] N. Schiper and etc, “P-store: Genuine partial replication in wide area
networks,” in Proceedings of the 2010 29th IEEE Symposium on
Reliable Distributed Systems, 2010, pp. 214–224.

[32] J. Rao and etc, “Using paxos to build a scalable, consistent, and highly
available datastore,” PVLDB, vol. 4, no. 4, pp. 243–254, 2011.

[33] J. Gray and L. Lamport, “Consensus on transaction commit,” TODS,
vol. 31, no. 1, pp. 133–160, 2006.

[34] B. F. Cooper and etc, “Benchmarking cloud serving systems with ycsb,”
in SoCC, 2010, pp. 143–154.

[35] L. Yuan, L. Wu, J. You, and Y. Chi, “Rubato db: a highly scalable staged
grid database system for oltp and big data applications,” in CIKM, 2014.

[36] P.-A. Larson, S. Blanas, and etc, “High-performance concurrency con-
trol mechanisms for main-memory databases,” in PVLDB, vol. 5, no. 4,
2011, pp. 298–309.

[37] J. C. Corbett and etc, “Spanner: Google’s globally-distributed database,”
in OSDI, 2012, pp. 251–264.

[38] H. Yu and A. Vahdat, “Minimal replication cost for availability,” in
PODC, 2002, pp. 98–107.

[39] H. Yu and etc., “The costs and limits of availability for replicated
services,” in Trans. Comput. Syst., vol. 24, no. 1, 2006, pp. 70–113.

[40] A. Fekete, D. Liarokapis, and etc, “Making snapshot isolation serializ-
able,” in TODS, vol. 30, no. 2, 2005, pp. 492–528.

[41] M. A. Bornea and etc, “One-copy serializability with snapshot isolation
under the hood,” in ICDE, 2011, pp. 625–636.

[42] D. Pritchett, “Base: An acid alternative,” in ACM Queue, vol. 6, no. 3,
2008.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in NSDI,
2013, pp. 313–328.

[44] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, “Causal
memory: definitions, implementation, and programming,” Distributed
Computing, vol. 9, no. 1, pp. 37–49, 1995.

[45] Y. Saito and M. Shapiro, “Optimistic replication,” in ACM Comput.
Surv., vol. 37, no. 1, 2005, pp. 42–81.

[46] S. Burckhardt and etc, “Eventually consistent transactions,” in ESOP,
2012, pp. 67–86.

[47] D. G. Campbell, G. Kakivaya, and N. Ellis, “Extreme scale with full
sql language support in microsoft sql azure,” in SIGMOD, 2010, pp.
1021–1024.

[48] V. Sikka and etc, “Efficient transaction processing in sap hana database:
The end of a column store myth,” in SIGMOD, 2012, pp. 731–742.

[49] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI, 2006, pp. 335–350.

[50] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–
42, 2012.


