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Abstract

Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful
formalism for the integration of answer set programming with description logics, for the Semantic
Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to
description logic programs and show that the answer sets of a dl-program can be precisely captured
by the models of its completion and loop formulas. Furthermore, we propose a new, alternative
semantics for dl-programs, called thecanonical answer set semantics, which is defined by the models
of completion that satisfy what are called canonical loop formulas. A desirable property of canonical
answer sets is that they are free of circular justifications. Some properties of canonical answer sets
are also explored.
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1 Introduction

Logic programming under the answer set semantics (ASP) is a nonmonotonic reasoning
paradigm for declarative problem solving (Marek and Truszczynski 1999; Niemelä 1999).
Recently, there have been extensive interests in combining ASP with other computational
and reasoning paradigms. One of the main interests in this direction is the integration of
ASP with ontology reasoning, for the Semantic Web.

The Semantic Web is an evolving development of the World Wide Web in which the
meaning of information and services on the web are defined, so that the web content can
be precisely understood and used by agents (Berners-Lee et al. 2001). For this purpose, a
layered structure including the Rules Layer built on top of the Ontology Layer has been
recognized as a fundamental framework. Description Logics (DLs) (Baader et al. 2007)
provide a formal basis for the Web Ontology Language which is the standard of the Ontol-
ogy Layer (W3C OWL Working Group 2009).

Adding nonmonotonic rules to the Rules Layer would allow default reasoning with on-
tologies. For example, we know that mostnatural kinds do not have a clear cut definition.
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For instance, a precise definition ofscientist seems to be difficult by enumerating what
a scientist is, and does. Though we can say that a scientist possesses expert knowledge
on the subject of his or her investigation, we still need a definition of expert knowledge,
which cannot be defined quantitatively. Using nonmonotonic rules, we can perform de-
fault, typicality reasoning over categories, concepts, and roles. The integration of DLs and
(nonmonotonic) rules has been extensively investigated as a crucial problem in the study
of the Semantic Web, such asSemantic Web Rule Language (SWRL) (Horrocks and Patel-
Schneider 2004),MKNF knowledge base (Motik and Rosati 2010), andDescription Logic
Programs (dl-programs) (Eiter et al. 2008).

There are different approaches to the integration of ASP with description logics. The
focus of this paper is on the approach based on dl-programs. Informally, a dl-program is a
pair (O ,P), whereO is a DL knowledge base andP is a logic program whose rule bodies
may contain queries, embedded indl-atoms, to the knowledge baseO . The answer to such
a query depends on inferences by rules over the DL knowledge baseO . In this way, rules
are built on top of ontologies. On the other hand, ontology reasoning is also enhanced,
since it depends not only onO but also on inferences using (nonmonotonic) rules. Two
semantics for dl-programs have been proposed, one of which is based onstrong answer
sets and the other based onweak answer sets.

In this paper, we generalize the notions of completion and loop formulas of logic pro-
grams (Lin and Zhao 2004) to dl-programs and show that weak and strong answer sets
of a dl-program can be captured precisely by the models of its completion and the cor-
responding loop formulas. This provides not only a semantic characterization of answer
sets for dl-programs but also an alternative mechanism for answer set computation, using
a dl-reasoner and a SAT solver.

As commented by (Eiter et al. 2008), the reason to introduce strong answer sets is be-
cause some weak answer sets seem counterintuitive due to “self-supporting” loops. Re-
cently however, one of the co-authors of this paper, Yi-Dong Shen, discovered that strong
answer sets may also possess self-supporting loops, and a detailed analysis leads to the
conclusion that the problem cannot be easily fixed by an alternative definition ofreduct,
since the reduct of dl-atoms may not be able to capture dynamically generated self-supports
arising from the integrated context.

The solution proposed in this paper is to use loop formulas as a way to define answer sets
for dl-programs that are free of self-supports. Thus, we define what are calledcanonical
loops andcanonical loop formulas. Given a dl-program, the models of its completion sat-
isfying the canonical loop formulas constitute a new class of answer sets, calledcanonical
answer sets, that are minimal and noncircular.

The paper is organized as follows. In the next section, we recall the basic definitions of
description logics and dl-programs. In Section 3, we define completion, weak and strong
loop formulas for dl-programs. The new semantics of dl-programs based on canonical
loop formulas is given in Section 4. Section 5 discusses related work, and finally Section 6
gives concluding remarks. The proofs of the main theorems can be found athttp://
webdocs.cs.ualberta.ca/˜you/papers/iclp2010-full-paper.pdf .

http://webdocs.cs.ualberta.ca/~you/papers/iclp2010-full-paper.pdf
http://webdocs.cs.ualberta.ca/~you/papers/iclp2010-full-paper.pdf
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2 Preliminaries

In this section, we briefly review the basic notations for description logics and description
logic programs (Eiter et al. 2008).

2.1 Description logics

In principle, the description logics employed in description logic programs can be arbi-
trary, with the restriction that the underlying entailment relation is decidable. Due to space
limitation, we introduce the basic description logicALC (Baader et al. 2007), instead of
the description logicsSHIF andSHOIN described in (Eiter et al. 2008). The nota-
tions introduced here will be used throughout the paper, particularly the entailment relation
O |= F , given at the end of this subsection.

For the languageALC, we assume a vocabularyΨ = (A ∪R, I), whereA,R andI are
pairwise disjoint (denumerable) sets ofatomic concepts, roles (including equality≈ and
inequality 6≈), andindividuals respectively. Theconcepts of ALC are defined as follows:

C ,D −→ A|>|⊥|¬C |C uD |C tD |∀R · C |∃R · C

whereA is an atomic concept andR is a role. Theassertions of ALC are of the forms
C (a) orR(b, c), whereC is a concept,R is a role, anda, b, c are individuals. Aninclusion
axiom ofALC has the formC v D whereC andD are concepts. Adescription knowledge
base (or ontology) of ALC is a set of inclusion axioms and assertions ofALC.

The semantics ofALC is defined by translating to first-order logic and then using clas-
sical first-order interpretations as its semantics. Informally, let the transformation beτ : (1)
τ(A) = A(x ), τ(R) = R(x , y) whereA is an atomic concept andR a role; (2)τ(∀R·C ) =
∀x ·R(y , x ) ⊃ τ(C )(x ), andτ(∃R·C ) = ∃x ·R(y , x )∧τ(C )(x ); (3) τ(¬C ) = ¬τ(C )(x ),
τ(C uD) = τ(C )(x ) ∧ τ(D)(x ), andτ(C tD) = τ(C )(x ) ∨ τ(D)(x ); (4) τ(A(a)) =
A(a), τ(R(b, c)) = R(b, c); (5) τ(C v D) = ∀x · τ(C )(x ) ⊃ τ(D)(x ). Then, the se-
mantics ofALC follows from that of first-order logic, so is the entailment relationO |= F ,
for a description knowledge baseO and an assertion or inclusive axiomF .

2.2 Description logic programs

Let Φ = (P, C) be a first-order vocabulary with nonempty finite setsC andP of constant
symbols and predicate symbols respectively such thatP is disjoint fromA ∪R andC ⊆ I.
Atoms are formed from the symbols inP andC as usual.

A dl-atom is an expression of the form

DL[S1 op1 p1, . . . ,Sm opm pm ;Q ](~t), (m ≥ 0) (1)

where

• eachSi is either a concept, a role or a special symbol in{≈, 6≈};
• opi ∈ {⊕,�,	};
• pi is a unary predicate symbol inP if Si is a concept, and a binary predicate symbol

in P otherwise. Thepis are calledinput predicate symbols;
• Q(~t) is adl-query, i.e., either (1)C (t) where~t = t ; (2) C v D where~t is an empty

argument list; (3)R(t1, t2) where~t = (t1, t2); (4) t1 ≈ t2 where~t = (t1, t2); or their
negations, whereC andD are concepts,R is a role, and~t is a tuple of constants.
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The precise meanings of{⊕,�,	} will be defined shortly. Intuitively,S ⊕ p (resp.
S � p) extendsS (resp.¬S ) by the extension ofp, andS 	 p constrainsS to p.

For example, suppose the interface is such that if any individualx is registered for a
course (the information from outside an ontology) thenx is a student (x may not be a
student by the ontology before this communication), and we query ifa is a student. We can
then write the dl-atomDL[Student ⊕ registered ;Student ](a). Similarly, DL[Student 	
registered ;¬Student u ¬Employed ](a) queries ifa is not a student nor employed, with
the ontology enhancement that if we cannot showx is registered, thenx is not a student.

A dl-rule (or simply arule) is an expression of the form

A← B1, . . . ,Bm ,not Bm+1, . . . ,not Bn , (n ≥ m ≥ 0) (2)

whereA is an atom, eachBi (1 ≤ i ≤ n) is an atom1 or a dl-atom. We refer toA as its
head, while the conjunction ofBi(1 ≤ i ≤ m) andnot Bj (m + 1 ≤ j ≤ n) is its body.
For convenience, we may abbreviate a rule in the form (2) as

A← Pos,not Neg (3)

wherePos= {B1, . . . ,Bm} andNeg= {Bm+1, . . . ,Bn}. Let r be a rule of the form (3).
If Neg= ∅ andPos= ∅, r is a fact and we may write it as “A” instead of “A ←”. A de-
scription logic program (dl-program) K = (O ,P) consists of a DL knowledge baseO and
a finite setP of dl-rules. In what follows we assume the vocabulary ofP is implicitly given
by the constant symbols and predicates symbols occurring inP , unless stated otherwise.

Given a dl-programK = (O ,P), theHerbrand base of P , denoted byHBP , is the set of
atoms formed from the predicate symbols inP occurring inP and the constant symbols
in C occurring inP . An interpretation I (relative toP ) is a subset ofHBP . Such anI is a
model of an atom or dl-atomA underO , writtenI |=O A, if the following holds:

• if A ∈ HBP , thenI |=O A iff A ∈ I ;
• if A is a dl-atomDL(λ;Q)(~t) of the form (1), thenI |=O A iff O(I ;λ) |= Q(~t)

whereO(I ;λ) = O ∪
⋃m

i=1 Ai(I ) and, for1 ≤ i ≤ m,

Ai(I ) =


{Si(~e)|pi(~e) ∈ I }, if opi = ⊕;
{¬Si(~e)|pi(~e) ∈ I }, if opi = �;
{¬Si(~e)|pi(~e) /∈ I }, if opi = 	;

where~e is a tuple of constants overC. The interpretationI is amodel of a dl-rule of the
form (3) iff I |=O B for anyB ∈ PosandI 6|=O B ′ for anyB ′ ∈ NegimpliesI |=O A. I
is amodel of a dl-programK = (O ,P), writtenI |=O K, iff I is a model of each rule ofP .
I is asupported model ofK = (O ,P) iff, for any h ∈ I , there is a rule (h ← Pos,not Neg)
in P such thatI |=O A for anyA ∈ PosandI 6|=O B for anyB ∈ Neg.

A dl-atom A is monotonic relative to a dl-programK = (O ,P) if I |=O A implies
I ′ |=O A, for all I ⊆ I ′ ⊆ HBP , otherwiseA is nonmonotonic. It is clear that if a dl-atom
does not mention	 then it is monotonic. However, a dl-atom may be monotonic even if it
mentions	. E.g., the dl-atomDL[S�p,S	p;¬S ](a) is monotonic (which is a tautology).
Clearly, the	 operator is the only one that may cause a dl-atom to be nonmonotonic. Thus

1 Different from that of (Eiter et al. 2008), we consider ground atoms instead of literals for convenience.
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one has no reason to use	 in monotonic dl-atoms. It is a reasonable assumption that we
can rewrite a monotonic dl-atom into an equivalent one without using	 at all.

We useDLP to denote the set of all dl-atoms that occur inP , DL+
P ⊆ DLP to denote

the set of monotonic dl-atoms, andDL?
P = DLP \ DL+

P . A dl-programK = (O ,P) is
positive if (i) P is “not”-free, and (ii) every dl-atom is monotonic relative toK. It is evident
that if a dl-programK is positive, thenK has a (set inclusion) least model.

2.3 Strong and weak answer sets

Let K = (O ,P) be a dl-program. Thestrong dl-transform of K relative toO and an
interpretationI ⊆ HBP , denoted byKs,I , is the positive dl-program(O , sP I

O ), where
sP I

O is obtained fromP by deleting:

• the dl-ruler of the form (2) such that eitherI 6|=O Bi for some1 ≤ i ≤ m and
Bi ∈ DL?

P , or I |=O Bj for somem + 1 ≤ j ≤ n; and
• the nonmonotonic dl-atoms andnot A from the remaining dl-rules whereA is an

atom or dl-atom.

The interpretationI is astrong answer set of K if it is the least model ofKs,I .
Theweak dl-transform of K relative toO and an interpretationI ⊆ HBP , denoted by
Kw ,I , is the positive dl-program(O ,wP I

O), wherewP I
O is obtained fromP by deleting:

• the dl-rules of the form (2) such that eitherI 6|=O Bi for some1 ≤ i ≤ m and
Bi ∈ DLP , or I |=O Bj for somem + 1 ≤ j ≤ n; and
• the dl-atoms andnot A from the remaining dl-rules whereA is an atom or dl-atom.

The interpretationI is aweak answer set of K if I is the least model ofKw ,I .

Example 1
Consider the following dl-programs:

• K0 = (O ,P0) whereO = {c v c′} andP0 = {w(a)←DL[c⊕p; c′](a); p(a)←}.
For this dl-program to make some sense, let’s image this situation:c′ and c are
classes of good conference papers and ICLP papers respectively,p(x ) means that
x is a paper in the TPLP special issue of ICLP 2010,w(x ) means thatx is worth
reading, anda stands for “this paper”. Note thatc andc′ are concepts inO , and
p andw are predicates outside ofO . The communication is through the dl-rule,
w(a) ← DL[c ⊕ p; c′](a), which says that if “this paper” is a good conference
paper, given that any paper in the TPLP special issue of ICLP 2010 is an ICLP paper
and ICLP papers are good conference papers (by the knowledge inO), then it is
worth reading.K0 has exactly one strong answer set{p(a),w(a)}, which is also its
unique weak answer set.
• Now, suppose someone writesK1 = (O ,P1) whereO = {c v c′} andP1 =
{p(a) ← DL[c ⊕ p; c′](a)}. This program has a unique strong answer setI1 = ∅
and two weak answer setsI1 andI2 = {p(a)}. It can be seen that there is a circular
justification in the weak answer setI2: that “this paper” is in the TPLP special issue
of ICLP 2010 is justified by its being in it.
The interested reader may verify the following. By the definition of⊕, O(I2; c ⊕
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p) = O ∪{c(a)}, and clearlyO 6|= c′(a) and{c(a), c v c′} |= c′(a). So the weak
dl-transform relative toO andI2 is Kw ,I2

1 = (O , {p(a) ←}). SinceI2 coincides
with the least model of{p(a)←}, it is a weak answer set ofK1. Similarly, one can
verify that the strong dl-transform relative toO andI2 isKs,I2

1 = (O ,P1). Its least
model is the empty set, soI2 is not a strong answer set ofK1.
• K2 = (O ,P2) whereO = ∅ andP2 = {p(a) ← DL[c ⊕ p, b 	 q ; c u ¬b](a)}.

Both∅ and{p(a)} are strong and weak answer sets of the dl-program.
• K3 = (∅,P3) whereP3 = {p(a)← DL[c � p, b 	 q ;¬c u ¬b](a)}. ∅ and{p(a)}

are both strong and weak answer sets of the dl-program.
• K4 = (∅,P4) whereP4 = {p(a) ← DL[c 	 p;¬c](a)}. K4 has no weak answer

set, and thus it has no strong answer set either.

These dl-programs show that strong (and weak) answer sets may not be (set inclusion)
minimal. It has been shown that if a dl-program contains no nonmonotonic dl-atoms then
its strong answer sets are minimal (Eiter et al. 2008). However, this does not hold for weak
answer sets as shown by the dl-programK1 above, even if it is positive. It is known that
strong answer sets are always weak answer sets, but not vice versa (Eiter et al. 2008).

3 Completion and Loop Formulas

In this section, we define completion, characterize weak and strong answer sets by loop
formulas, and outline an alternative method of computing weak and strong answer sets.

3.1 Completion

Given a dl-programK = (O ,P), we assume an underlying propositional languageLK,
such that the propositional atoms ofLK include the atoms and dl-atoms occurring inP .
The formulas of LK are defined as usual using the connectives¬,∧,∨,⊃ and↔. Thedl-
interpretations (or simplyinterpretations if it is clear from context) of the languageLK are
the interpretations relative toP , i.e., the subsets ofHBP . For a formulaψ of LK and an
interpretationI of LK, we sayI is amodel of ψ relative toO , denotedI |=O ψ, whenever
(i) if ψ is an atom, thenψ ∈ I ; (ii) if ψ is a dl-atom, thenI |=O ψ; and (iii) the above is
extended in the usual way to arbitrary formulas ofLK.

LetK = (O ,P) be a dl-program andh an atom inHBP . Thecompletion of h (relative
toK), writtenCOMP(h,K), is the following formula ofLK:

h ↔
∨

1≤i≤n

 ∧
A∈Posi

A ∧
∧

B∈Neg
i

¬B

 ,

where(h ← Pos1,not Neg1), . . . , (h ← Posn ,not Negn) are all the rules inP whose
heads are the atomh. Thecompletion of K, writtenCOMP(K), is the collection of com-
pletions of all atoms inHBP .

Recall that a modelM ⊆ HBP of a dl-programK = (O ,P) is asupported model if for
any atoma ∈ M , there is a rule inP whose head isa and whose body is satisfied byM .

Proposition 1
LetK = (O ,P) be a dl-program andI an interpretation ofP . ThenI is a supported model
of K if and only if I |=O COMP(K).
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Proposition 2

Every weak (resp. strong) answer set of a dl-programK is a supported model ofK.

3.2 Weak loop formulas

In order to capture weak answer sets of dl-programs using completion and loop formulas,
we define weak loops. Formally, letK = (O ,P) be a dl-program. Theweak positive
dependency graph of K, writtenGw

K , is the directed graph(V ,E ), whereV = HBP (note
that a dl-atom is not inV ), and(u, v) ∈ E if there is a dl-rule of the form (2) inP such
thatA = u andBi = v for somei (1 ≤ i ≤ m). A nonempty subsetL of HBP is aweak
loop of K if there is a cycle inGw

K which goes through only and all the nodes inL.
Given a weak loopL of a dl-programK = (O ,P), theweak loop formula of L (relative

toK), writtenwLF(L,K), is the following formula ofLK:

∨
L ⊃

∨
1≤i≤n

 ∧
A∈Posi

A ∧
∧

B∈Neg
i

¬B


where(h1 ← Pos1,not Neg1), . . . , (hn ← Posn ,not Negn) are all the rules inP such that
hi ∈ L andPosi ∩ L = ∅ for anyi (1 ≤ i ≤ n).

Theorem 1

LetK = (O ,P) be a dl-program andI an interpretation ofP . ThenI is a weak answer set
of K if and only if I |=O COMP(K) ∪ wLF(K), wherewLF(K) is the set of weak loop
formulas of all weak loops ofK.

3.3 Strong loop formulas

LetK = (O ,P) be a dl-program. Thestrong positive dependency graph of K, denoted by
Gs
K, is the directed graph(V ,E ), whereV = HBP and(p(~c), q(~c′)) ∈ E if there is a

rule of the form (2) inP such that, (1)A = p(~c) and, (2) for somei (1 ≤ i ≤ m), either

• Bi = q(~c′), or
• Bi is a monotonic dl-atom mentioning the predicateq and~c′ is a tuple of constants

matching the arity ofq . (If this condition is ignored then it becomes the definition of
weak positive dependency graph.)

A nonempty subsetL of HBP is astrong loop of K if there is a cycle inGs
K which passes

only and all the nodes inL.
To define strong loop formulas of a dl-programK = (O ,P), we need to extend the

vocabularyΦ, such that, for any predicate symbolp and a nonempty set of atomsL, Φ
contains the predicate symbolpL that has the same arity as that ofp.

LetL be a nonempty set of atoms,A = DL[λ;Q ](~t) be a dl-atom. Theirrelevant formula
of A relative toL, written byIF(A,L), is the conjunction of (1)DL[λL;Q ](~t), whereλL is
obtained fromλ by replacing each predicate symbolp with pL wheneverp appears in both
λ andL and, (2) for each predicate symbolp mentioned in bothλ andL, the instantiation
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onC (Chen et al. 2006) of the formula:

∀~X ·

pL(~X )↔

p(~X ) ∧
∧

p(~c)∈L

~X 6= ~c

 (4)

where ~X is a tuple of distinct variables matching the arity ofp, and ~X 6= ~c stands for
¬(~X = ~c), i.e.,¬(x1 = c1 ∧ . . . ∧ xk = ck ) if ~X = (X1, . . . ,Xk ) and~c = (c1, . . . , ck ).
Please note that, the instantiation of a formula∀x · ψ on a finite setD of constants is the
formula

∧
d∈D ψ[x/d ], in whichc = c (resp.,c = c′) is replaced with> (true) (resp.,⊥

(false)), wherec andc′ are two distinct constants. In what follows, we identify the formula
(4) with its instantiation whenever it is clear from its context, unless otherwise stated.

For instance, letA = DL[c ⊕ p; c](a) andL = {p(a), p(b)}. ThenIF (A,L) is the
formula:

DL[c ⊕ pL; c](a) ∧ (pL(a)↔ p(a) ∧ a 6= a) ∧ (pL(b)↔ p(b) ∧ a 6= b)

which is equivalent to

DL[c ⊕ pL; c](a) ∧ ¬pL(a) ∧ (pL(b)↔ p(b))·

Intuitively, the irrelevant formula ofA relative toL says that the truth ofA only depends
on the truth of the atoms not inL.

We are now in a position to define strong loop formulas. LetL be a strong loop of
K = (O ,P). The strong loop formula of L (relative toK), written sLF(L,K), is the
following formula ofLK:

∨
L ⊃

∨
1≤i≤n

 ∧
A∈Posi

γ(A,L) ∧
∧

B∈Neg
i

¬B


where

• (h1 ← Pos1,not Neg1), . . . , (hn ← Posn ,not Negn) are all the rules inP such that
hi ∈ L andPosi ∩ L = ∅ for all i (1 ≤ i ≤ n),

• γ(A,L) = IF(A,L) if A is a monotonic dl-atom, andA otherwise.

In general, we have to recognize the monotonicity of dl-atoms in order to construct
strong loops of dl-programs. In this sense, the strong loops and strong loop formulas are
defined semantically. If a dl-atom does not mention the operator	 then it is obviously
monotonic. Thus for the class of dl-programs in which no monotonic dl-atoms mention	,
the strong loops and strong loop formulas are given syntactically, since it is sufficient to
determine the monotonicity of a dl-atom by checking whether it contains the operator	.

Example 2
LetK = (∅,P) be a dl-program whereP consists of

p(a)← DL[c ⊕ p; c](a); p(a)← not DL[c ⊕ p; c](a)·

The dl-programK has a unique strong loopL = {p(a)}, but doesn’t have any weak loops.
Its completion is the formula:

p(a)↔ DL[c ⊕ p; c](a) ∨ ¬DL[c ⊕ p; c](a)
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which equals to the formulap(a) ↔ >, i.e., p(a). Note that, the strong loop formula
sLF(L,K) is the formula:

p(a) ⊃
[

DL[c ⊕ pL; c](a) ∧ (pL(a)↔ p(a) ∧ a 6= a)
∨¬DL[c ⊕ p; c](a)

]
·

It is clear that the interpretationI = {p(a)} is a model ofCOMP(K) relative to the DL
knowledge baseO = ∅. However,I 6|=O sLF(L,K).

Theorem 2
LetK = (O ,P) be a dl-program andI an interpretation ofP . ThenI is a strong answer
set ofK if and only if I ′ |=O COMP(K) ∪ sLF(K), wheresLF(K) is the set of strong
loop formulas of all strong loops ofK andI ′ is the extension ofI satisfying (4).

Since a weak loop of a dl-programK is also a strong loop ofK, as a by-product, our
loop formula characterizations yield an alternative proof that strong answer sets are also
weak answer sets.

Proposition 3
LetK = (O ,P) be a dl-program,I an interpretation ofP andL a weak loop ofK. Then
we haveI ′ |=O sLF(L,K) ⊃ wLF(L,K), whereI ′ is the extension ofI satisfying (4).

3.4 An alternative method of computing weak and strong answer sets

Theorems 1 and 2 serve as the basis for an alternative method of computing weak and
strong answer sets using a SAT solver, along with a dl-reasonerR with the following
property:R is sound, complete, and terminating for entailment checking. LetK = (O ,P)
be a dl-program andT = COMP(K). We replace all dl-atoms inT with new propositional
atoms to produceT ′. Let ξA be the new atom inT ′, for the dl-atomA in T , andX be
the set of all such new atoms inT ′. Below, we outline an algorithm to compute the weak
answer sets ofK (here we only describe how to compute the first such an answer set). To
compute a strong answer set, replace the word weak with strong.

(i) Generate a modelI of T ; if there is none, then there is no weak answer set.
(ii) Check ifI is a weak answer set ofK,

(a) if yes, returnI as a weak answer set ofK.
(b) if no, add a weak loop formula intoT that is not satisfied byI relative toO ,

and goto (i).

To generate a model ofT , we compute a modelM of T ′ using a SAT solver, and then
useR to check the entailment: For any dl-atomA in T , if M |= ξA thenM |=O A
otherwiseM 6|=O A. Let M ′ = M /X . It is not difficult to verify thatM ′ is a model ofK.

The strong and weak answer set semantics of dl-programs have been implemented in a
prototype system called SWLP2, using the ASP solver DLV and a dl-reasoner. The main

2 https://www.mat.unical.it/ianni/swlp/; also see (Eiter et al. 2008) for the details of the implementation and
interesting dl-programs
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difference in the method outlined here is that we use a SAT solver to generate candidate
models, which allows to take the advantages of the state-of-the-art SAT technology.

For strong answer sets, the construction of a strong loop formula requires checking
monotonicity of dl-atoms. However, for the class of dl-programs mentioning no	, this
checking is not needed and the construction of a strong loop formula is hence tractable.

4 Canonical Answer Sets

4.1 Motivation: the problem of self-support

As commented by Eiteret al. (Eiter et al. 2008), some weak answer sets may be consid-
ered counterintuitive because of “self-supporting” loops. For instance, consider the weak
answer set{p(a)} of the dl-programK1 in Example 1. The evidence of the truth ofp(a) is
inferred by means of a self-supporting loop: “p(a) ⇐ DL[c ⊕ p; c′](a) ⇐ p(a)”, which
involves not only the dl-atomDL[c ⊕ p; c′](a) but the DL knowledge baseO . Thus the
truth ofp(a) depends on the truth of itself. This self-support is excluded by the strong loop
formula of the loopL = {p(a)}.

Let’s consider the dl-programK2 in Example 1 again. Note that{p(a)} is a strong
answer set ofK2. The truth of the atomp(a) depends on the truth of[c u ¬b](a) which
depends on the truth ofp(a) and¬q(a). Thus the truth ofp(a) depends on the truth of
itself. The self-supporting loop is: “p(a)⇐ DL[c⊕p, b	q ; cu¬b](a)⇐ (p(a)∧¬q(a))”.
In this sense, some strong answer sets may be considered counterintuitive as well.

The notion of “circular justification” was formally defined by (Liu and You 2008) to
characterize self-supports for lparse programs, which was motivated by the notion ofun-
foundedness for logic programs (Van Gelder et al. 1991) and logic programs with aggre-
gates (Calimeri et al. 2005). With slight modifications, we extend the concept of circular
justification to dl-programs. Formally, letK = (O ,P) be a dl-program andI ⊆ HBP be
a supported model ofK. I is said to becircularly justified (or simplycircular) if there is a
nonempty subsetM of I such that

I \M 6|=O

∧
A∈Pos

A ∧
∧

B∈Neg
¬B (5)

for any dl-rule (h ← Pos,not Neg) in P with h ∈ M andI |=O

∧
A∈PosA∧

∧
B∈Neg¬B .

Otherwise, we say thatI is noncircular. Intuitively speaking, Condition (5) means that the
atoms inM have no support from outside ofM , i.e., they have to depend on themselves.

Example 3
LetK = (∅,P) whereP consists of

p(a)← not DL[b 	 p;¬b](a)·

It is not difficult to verify thatK has two weak answer sets∅ and{p(a)}. They are strong
answer sets ofK as well. In terms of the above definition,{p(a)} is circular.

It is interesting to note that weak answer sets allow self-supporting loops involving
any dl-atoms (either monotonic or nonmonotonic), while strong answer sets allow self-
supporting loops only involving nonmonotonic dl-atoms and their default negations. These
considerations motivate us to define a new semantics which is free of circular justifications.
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4.2 Canonical answer sets by loop formulas

Let K = (O ,P) be a dl-program. Thecanonical dependency graph of K, written Gc
K, is

the directed graph(V ,E ), whereV = HBP and(u, v) ∈ E if there is a rule of the form
(2) in P such thatA = u and there exists an interpretationI ⊆ HBP such that either of the
following two conditions holds:

(1) I 6|=O Bi andI ∪{v} |=O Bi , for somei (1 ≤ i ≤ m). In this case, we say thatv is
a positive monotonic (resp.,nonmonotonic) dependency ofBi if Bi is a monotonic
(resp., nonmonotonic) dl-atom. Intuitively, the truth ofBi may depend on that ofv
while the truth ofu may depend on that ofBi . Thus the truth ofu may depend on
that ofv .

(2) I |=O Bj andI ∪ {v} 6|=O Bj , for somej (1 + m ≤ j ≤ n). Clearly,Bj must be
nonmonotonic. In this case, we say thatv is a negative nonmonotonic dependency
of Bj . Intuitively, the truth ofu may depend on that of “not Bj ”, while its truth may
depend on that ofv . Thus the truth ofu may depend on that ofv .

A nonempty subsetL of HBP is acanonical loop of K if there is a cycle inGc
K that goes

through only and all the nodes inL. It is clear that ifBi = v then the interpretationI = {v}
satisfiesv while I \ {v} does not. Thus the notion of canonical loops is a generalization of
that of weak loops given in Subsection 3.2, and a generalization of the notion of loops for
normal logic programs (Lin and Zhao 2004).

Note further that the canonical dependency graph is not a generalization of the strong
positive dependency graph, since some strong loops are not canonical loops. E.g., with
the dl-programK = (∅,P), whereP = {p(a) ← DL[c � p, c 	 p,¬c](a)}, the dl-
atomA = DL[c � p, c 	 p,¬c](a) is equivalent to>. So it is monotonic. It follows that
L = {p(a)} is a strong loop ofK. HoweverL is not a canonical loop ofK because there
is no interpretationI such thatI 6|=O A andI ∪ {p(a)} |=O A.

Due to the two kinds of dependencies in a canonical dependency graph defined above,
to define canonical loop formulas, we need two kinds of irrelevant formulas: LetL be a set
of atoms andA = DL[λ;Q ](~t) a nonmonotonic dl-atom. Thepositive canonical irrelevant
formula of A with respect toL, writtenpCF(A,L), is the conjunction of (1)DL[λL;Q ](~t),
whereλL is obtained fromλ by replacing each predicatep with pL if L contains an atom
p(~c) which is a positive nonmonotonic dependency ofA and, (2) for each predicatep
occurring inλ, the instantiation onC of the formula (4) ifL contains an atomp(~c) which
is a positive nonmonotonic dependency ofA. Thenegative canonical irrelevant formula of
A with respect toL, writtennCF(A,L), is the conjunction of (1)DL[λL;Q ](~t), whereλL

is obtained fromλ by replacing each predicatep with pL if L contains an atomp(~c) which
is a negative nonmonotonic dependency ofA and, (2) for each predicatep occurring inλ,
the instantiation onC of the formula (4) ifL contains an atomp(~c) which is a negative
nonmonotonic dependency ofA.

Let K = (O ,P) be a dl-program,M ⊆ HBP andL a loop ofK. Thecanonical loop
formula of L relative toK underM , writtencLF(L,M ,K), is the following formula:

∨
L ⊃

∨
1≤i≤n

 ∧
A∈Posi

δ1(A,L) ∧
∧

B∈Neg
i

¬δ2(B ,L)
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p(a2) p(a3)p(a4) p(a1)

q(a2) q(a3)q(a4) q(a1)

Fig. 1. The positive dependency relations onHBP

where

• (h1 ← Pos1,not Neg1), . . . , (hn ← Posn ,not Negn) are all the rules inP such that
hi ∈ L, Posi∩L = ∅ andM |=O

∧
A∈Posi A∧

∧
B∈Neg

i
¬B for eachi (1 ≤ i ≤ n),

• δ1(A,L) = pCF(A,L) if A is a nonmonotonic dl-atom,γ(A,L) otherwise,
• δ2(B ,L) = nCF(B ,L) if B is a nonmonotonic dl-atom, andB otherwise.

Given a dl-programK = (O ,P) and an interpretationI ⊆ HBP . We callI a canonical
answer set of K if I ′ is a model ofCOMP(K) ∪ cLF(I ,K) relative toO , whereI ′ is the
extension ofI satisfying (4) andcLF(I ,K) = {cLF(L, I ,K)|L is a canonical loop ofK}.
It is not difficult to prove that every canonical answer set of a dl-programK is a supported
model ofK.

Example 4
Consider the dl-programK2 in Example 1, i.e.,K2 = (∅,P2) whereP2 = {p(a) ←
DL[c⊕p, b	 q ; cu¬b](a)}. It is easy to see that the dl-atomDL[c⊕p, b	 q ; cu¬b](a)
is nonmonotonic,∅ 6|=O DL[c ⊕ p, b 	 q ; c u ¬b](a), and{p(a)} |=O DL[c ⊕ p, b 	
q ; c u¬b](a). ThusL = {p(a)} is a canonical loop ofK2. Let I = {p(a)}. The canonical
loop formulacLF(L, I ,K) is equivalent to

p(a) ⊃ DL[c ⊕ pL, b 	 q ; c u ¬b](a) ∧ (pL(a)↔ p(a) ∧ (a 6= a))

where the last conjunct is equivalent to¬pL(a). Thus, the loop formula is not satisfied by
the extension ofI satisfying (4) relative to the knowledge base∅. SoI is not a canonical
answer set ofK2, even ifI is a model ofCOMP(K2) relative to the knowledge base∅.

The next example demonstrates the difference among the positive dependency graphs of
dl-programs.

Example 5
LetK = (O ,P) be a dl-program whereO = ∅ andP consists of the following rules:

p(a1)← DL[c ⊕ p, c](a1), p(a3)← not DL[c 	 p,¬c](a3),
p(a2)← DL[c ⊕ p, b 	 q ; c u ¬b](a2), p(a4)← p(a4).

The only weak positive dependency onHBP is (p(a4), p(a4)), the strong positive depen-
dency includes(p(a1), p(a1)) besides the weak one, while the canonical positive depen-
dency contains(p(a2), p(a2)) and(p(a3), p(a3)) in addition to the strong ones. Figure 1
depicts the various dependency relations onHBP . The weak positive dependency graph
is Gw

K = (V ,E ) whereV = {p(ai), q(ai)|1 ≤ i ≤ 4} andE = {(p(a4), p(a4))},
while the strong one isGs

K = (V ,E ′) whereE ′ = E ∪ {(p(a1), p(a1))}. The canonical
dependency graph isGc

K = (V ,E ′′) whereE ′′ = E ′ ∪ {(p(a2), p(a2)), (p(a3), p(a3))}.
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Comparing with the previous definitions of loop formulas, in addition to the irrelevant
formulas of nonmonotonic dl-atoms, the definition of canonical loop formulas has a notable
distinction: it is given under a setM of atoms whose purpose is to restrict that the support of
any atom inL come from the rules whose bodies are satisfied byM (relative to a knowledge
base). The next proposition shows that the canonical loops and canonical loop formulas
for dl-programs are indeed a generalization of loops and loop formulas for normal logic
programs (Lin and Zhao 2004) respectively.

Proposition 4
Let P be a normal logic program,L ⊆ HBP andM a model of the completion ofP .

(1) L is a loop ofP if and only if L is a canonical loop ofK = (∅,P).
(2) M |= LF (L,P) if and only if M |=O cLF(L,M ,P), whereLF (L,P) is the loop

formula associated withL underP (Lin and Zhao 2004) andO = ∅.

Proposition 5
LetK = (O ,P) be a dl-program andI a canonical answer set ofK. ThenI is minimal in
the sense thatK has no canonical answer setI ′ such thatI ′ ⊂ I .

The following two propositions show that the canonical answer sets of dl-programs are
noncircular strong answer sets. Thus canonical answer sets are weak answer sets as well.

Proposition 6
Let K = (O ,P) be a dl-program andI ⊆ HBP a canonical answer set ofK. ThenI is
noncircular.

Proposition 7
LetK = (O ,P) be a dl-program andI ⊆ HBP a canonical answer set ofK. ThenI is a
strong answer set ofK.

The following proposition, together with Proposition 6, implies that the operator	 is
the only cause that a strong answer set of a dl-program is circular.

Proposition 8
Let K = (O ,P) be a dl-program in whichP does not mention the operator	. Then
I ⊆ HBP is a canonical answer set ofK if and only if I is a strong answer set ofK.

5 Related Work

Integrating ASP with description logics has attracted a great deal of attention recently. The
existing approaches can be roughly classified into three categories. The first is to adopt a
nonmonotonic formalism that covers both ASP and first-order logic (if not for the latter,
then extend it to the first-order case) (Motik and Rosati 2010; Bruijn et al. 2007), where
ontologies and rules are written in the same language, resulting in a tight coupling. The
second is a loose approach: An ontology knowledge base and the rules share the same con-
stants but not the same predicates, and the communication is via a well-defined interface,
such as dl-atoms (Eiter et al. 2008). The third is to combine ontologies with hybrid rules
(Rosati 2005; Rosati 2006; de Bruijn et al. 2007), where predicates in the language of on-
tologies are interpreted classically, whereas those in the language of rules are interpreted
nonmonotonically.
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Although each approach above has its own merits, the loose approach possesses some
unique advantages. In many situations, we would like to combine existing knowledge
bases, possibly under different logics. In this case, a notion of interface is natural and
necessary. The loose approach seems particularly intuitive, as it does not rely on the use
of modal operators nor on a multi-valued logic. One notices that dl-programs share simi-
lar characteristics with another recent interest,multi-context systems, in which knowledge
bases of arbitrary logics communicate throughbridge rules (Brewka and Eiter 2007).

However, the relationships among these different approaches are currently not well un-
derstood. For example, although we know how to translate a dl-program without the non-
monotonic operator	 to an MKNF theory while preserving the strong answer set seman-
tics (Motik and Rosati 2010), when	 is involved, no such a translation is known. Similarly,
although a variant of Quantified Equilibrium Logic (QEL) captures the existing hybrid ap-
proaches, as shown by (de Bruijn et al. 2007), it is not clear how one would apply the loop
formulas for logic programs with arbitrary sentences (Lee and Meng 2008) to dl-programs,
since, to the best of our knowledge, there is no syntactic, semantics-preserving translation
from dl-programs to logic programs with arbitrary sentences or to QEL.

In fact, the loop formulas for dl-programs are more involved than any previously known
loop formulas, due to mixing ASP with classical first-order logic. This is evidenced by the
fact that weak loop formulas permit self-supports, strong loop formulas eliminate certain
kind of self-supports, and finally canonical loop formulas remove all self-supports. This
seems to be a unique phenomenon that arises to dl-programs, not to any other known
extensions of ASP, including logic programs with arbitrary sentences.

6 Concluding Remarks

In this paper, we characterized the weak and strong answer sets of dl-programs by program
completion and loop formulas. Although these loop formulas also provide an alternative
mechanism for computing answer sets, building such a system presents itself as an inter-
esting future work. We also proposed the canonical answer sets for dl-programs, which
are minimal and noncircular in a formal sense. From the perspective of loop formulas, we
see a notable distinction among the weak, strong and canonical answer sets: the canonical
answer sets permit no circular justifications, the strong answer sets permit circular justifica-
tions involving nonmonotonic dl-atoms but not monotonic ones, whereas the weak answer
sets permit circular justifications that involve any dl-atoms but not atoms.

We remark that, for a given dl-programK = (O ,P), to decide if a setM ⊆ HBP is a
strong or canonical loop and to construct the strong or canonical loop formula ofM are
generally quite difficult, since we have to decide the monotonicity of the dl-atoms occurring
in P . The exact complexity of deciding if a set of atoms is a strong or canonical loop is
one of our ongoing studies, in addition to the complexity of deciding if a given dl-program
has a canonical answer set.
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