Under consideration for publication in Theory and Practice of Logic Programming 1

Loop Formulas for Description Logic Programs

YISONG WANG

Department of Computer Science, Guizhou University, Guiyang, China
Department of Computing Science,University of Alberta, Canada

JIA-HUAI YOU, LI YAN YUAN
Department of Computing Science,University of Alberta, Canada

YI-DONG SHEN

State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences, China

submitted ; revised ; accepted

Abstract

Description Logic Programs (dI-programs) proposed by Eiter et al. constitute an elegant yet powerful
formalism for the integration of answer set programming with description logics, for the Semantic
Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to
description logic programs and show that the answer sets of a dl-program can be precisely captured
by the models of its completion and loop formulas. Furthermore, we propose a new, alternative
semantics for dl-programs, called ttonical answer set semantics, which is defined by the models

of completion that satisfy what are called canonical loop formulas. A desirable property of canonical
answer sets is that they are free of circular justifications. Some properties of canonical answer sets
are also explored.

KEYWORDS: Semantic web, description logic programs, answer sets, loop formulas

1 Introduction

Logic programming under the answer set semantics (ASP) is a honmonotonic reasoning
paradigm for declarative problem solvirig (Marek and Truszczynski|1999; Nieh®&9).
Recently, there have been extensive interests in combining ASP with other computational
and reasoning paradigms. One of the main interests in this direction is the integration of
ASP with ontology reasoning, for the Semantic Web.

The Semantic Web is an evolving development of the World Wide Web in which the
meaning of information and services on the web are defined, so that the web content can
be precisely understood and used by agents (Berners-Lee et al. 2001). For this purpose, a
layered structure including the Rules Layer built on top of the Ontology Layer has been
recognized as a fundamental framework. Description Logics (DLs) (Baader et al. 2007)
provide a formal basis for the Web Ontology Language which is the standard of the Ontol-
ogy Layer (W3C OWL Working Group 2009).

Adding nonmonotonic rules to the Rules Layer would allow default reasoning with on-
tologies. For example, we know that megtural kinds do not have a clear cut definition.

2 Y. Wang et al.

For instance, a precise definition afientist seems to be difficult by enumerating what

a scientist is, and does. Though we can say that a scientist possesses expert knowledge
on the subject of his or her investigation, we still need a definition of expert knowledge,
which cannot be defined quantitatively. Using honmonotonic rules, we can perform de-
fault, typicality reasoning over categories, concepts, and roles. The integration of DLs and
(nonmonotonic) rules has been extensively investigated as a crucial problem in the study
of the Semantic Web, such &smantic Web Rule Language (SWRL) (Horrocks and Patél-
Schneider 2004 MKNF knowledge base (Motik and Rosati 2010), anBescription Logic
Programs (dI-programs) (Eiter et al. 2008).

There are different approaches to the integration of ASP with description logics. The
focus of this paper is on the approach based on dl-programs. Informally, a dl-program is a
pair (O, P), whereO is a DL knowledge base arfdis a logic program whose rule bodies
may contain queries, embeddediiratoms, to the knowledge bas@. The answer to such
a query depends on inferences by rules over the DL knowledge®akethis way, rules
are built on top of ontologies. On the other hand, ontology reasoning is also enhanced,
since it depends not only o@ but also on inferences using (nonmonotonic) rules. Two
semantics for dl-programs have been proposed, one of which is basecban answer
sets and the other based oveak answer sets.

In this paper, we generalize the notions of completion and loop formulas of logic pro-
grams [(Lin and Zhao 2004) to dl-programs and show that weak and strong answer sets
of a dl-program can be captured precisely by the models of its completion and the cor-
responding loop formulas. This provides not only a semantic characterization of answer
sets for dI-programs but also an alternative mechanism for answer set computation, using
a dl-reasoner and a SAT solver.

As commented by (Eiter et al. 2008), the reason to introduce strong answer sets is be-
cause some weak answer sets seem counterintuitive due to “self-supporting” loops. Re-
cently however, one of the co-authors of this paper, Yi-Dong Shen, discovered that strong
answer sets may also possess self-supporting loops, and a detailed analysis leads to the
conclusion that the problem cannot be easily fixed by an alternative definiticmlaft,
since the reduct of dl-atoms may not be able to capture dynamically generated self-supports
arising from the integrated context.

The solution proposed in this paper is to use loop formulas as a way to define answer sets
for dl-programs that are free of self-supports. Thus, we define what are calledical
loops and canonical loop formulas. Given a dI-program, the models of its completion sat-
isfying the canonical loop formulas constitute a new class of answer sets, caltaedcal
answer sets, that are minimal and noncircular.

The paper is organized as follows. In the next section, we recall the basic definitions of
description logics and dl-programs. In Sectign 3, we define completion, weak and strong
loop formulas for dl-programs. The new semantics of dl-programs based on canonical
loop formulas is given in Sectiqrj 4. Sect{dn 5 discusses related work, and finally $éction 6
gives concluding remarks. The proofs of the main theorems can be foumitpalt
webdocs.cs.ualberta.ca/ you/papers/iclp2010-tull-paper.pdt

http://webdocs.cs.ualberta.ca/~you/papers/iclp2010-full-paper.pdf
http://webdocs.cs.ualberta.ca/~you/papers/iclp2010-full-paper.pdf

Loop Formulas for Description Logic Programs 3

2 Preliminaries

In this section, we briefly review the basic notations for description logics and description
logic programs| (Eiter et al. 2008).

2.1 Description logics

In principle, the description logics employed in description logic programs can be arbi-
trary, with the restriction that the underlying entailment relation is decidable. Due to space
limitation, we introduce the basic description loghCC (Baader et al. 2007), instead of
the description logicSHZF and SHOZN described in[(Eiter et al. 2008). The nota-
tions introduced here will be used throughout the paper, particularly the entailment relation
O = F, given at the end of this subsection.

For the languagel £C, we assume a vocabulaly= (A U R, I), whereA, R andI are
pairwise disjoint (denumerable) setsabmic concepts, roles (including equality=~ and
inequality=), andindividuals respectively. Theoncepts of ALC are defined as follows:

C,D — A|T|L|~C|C N D|CUDIVR- C|3R - C

where A is an atomic concept anft is a role. Theassertions of ALC are of the forms
C(a)orR(b, ¢), whereC' is a conceptR is arole, ands, b, ¢ are individuals. Aninclusion
axiom of ALC has the formC' T D whereC andD are concepts. Mescription knowledge
base (or ontology) of ALC is a set of inclusion axioms and assertionsAgicC.

The semantics ol LC is defined by translating to first-order logic and then using clas-
sical first-order interpretations as its semantics. Informally, let the transformationbe
T(A) = A(z), 7(R) = R(x, y) whereA is an atomic concept an@arole; (2)r(VR-C) =
Vz-R(y,z) D 7(C)(z),andr(IR-C) = Jz-R(y, z)AT(C)(z); () 7(=C) = -7(C) (=),
T(CMD)=7(C)(z) AT(D)(z),andr(C U D) =7(C)(z) V 7(D)(z); (4) 7(A(a)) =
A(a), 7(R(b,¢)) = R(b,c); (6) 7(C C D) =Vz - 7(C)(z) D 7(D)(z). Then, the se-
mantics ofALC follows from that of first-order logic, so is the entailment relati@r= F,
for a description knowledge bageand an assertion or inclusive axiafh

2.2 Description logic programs

Let ® = (P,C) be a first-order vocabulary with nonempty finite sétandP of constant
symbols and predicate symbols respectively suchfhatdisjoint fromA U R andC C 1.
Atoms are formed from the symbols iR andC as usual.

A dl-atom is an expression of the form

DL[S1 0p1 p1, - S 0Pm pm; Q)(E), (m >0) 1)
where

e eachgS; is either a concept, a role or a special symba]an #£1;

® op; € {@»Qa 9};

e p; isaunary predicate symbol i if S; is a concept, and a binary predicate symbol
in P otherwise. The;s are callednput predicate symbols;

e Q(%)is adl-query, i.e., either (1)C(t) wheret = t; (2) C C D wheret is an empty
argument list; (3R (t1, o) wheret = (11, t); (4) t; = t, wheret = (t,, t,); or their
negations, wher€' andD are conceptsR is a role, and is a tuple of constants.

4 Y. Wang et al.

The precise meanings ¢fp, ©, &} will be defined shortly. Intuitively,S ¢ p (resp.
S @ p) extendsS (resp.—S) by the extension op, and.S © p constrainsS to p.

For example, suppose the interface is such that if any individualregistered for a
course (the information from outside an ontology) thers a student{ may not be a
student by the ontology before this communication), and we querisifi student. We can
then write the dl-atonDL[Student & registered; Student](a). Similarly, DL[Student &
registered; —Student M - Employed](a) queries ifa is not a student nor employed, with
the ontology enhancement that if we cannot show registered, them is not a student.

A dl-rule (or simply arule) is an expression of the form

A« By,...,Bpn,not Byy1,...,n0t B, (n >m >0) (2)

where 4 is an atom, eaclB; (1 < i < n) is an atorfjor a dl-atom. We refer tol as its
head, while the conjunction oB;(1 < i < m) andnot B;(m + 1 < j < n) is its body.
For convenience, we may abbreviate a rule in the f¢jm (2) as

A «— Pos not Neg 3)

wherePos= {By,..., B,,} andNeg= {B,,+1, ..., B, }. Letr be a rule of the fornt(]3).
If Neg= () andPos= 0, r is a fact and we may write it as4” instead of “A «". A de-
scription logic program (dl-program) K = (O, P) consists of a DL knowledge bageand
a finite setP of dl-rules. In what follows we assume the vocabulary’ag implicitly given
by the constant symbols and predicates symbols occurrify imless stated otherwise.
Given a dl-progrank’ = (O, P), the Herbrand base of P, denoted byHBp, is the set of
atoms formed from the predicate symbolsfroccurring in P and the constant symbols
in C occurring inP. An interpretation I (relative toP) is a subset oHBp. Such an/ is a
model of an atom or dl-aton¥ underO, written = A, if the following holds:

o if Ac HBp,thenl =p Aiff A€ I;
o if Aisadl-atomDL(); Q)({) of the form [1), thenl =0 A iff O(I;)) = Q(7)
whereO(I;\) = O U, 4,(I) and, forl < i < m,

{S:(@)|pi(€) € I}, if opi = &;
Ai(I) = q {=Si(@)|pi(€) € I}, if op; = ©;
{=8:(@)|pi(€) ¢ I}, i opi =6;

where¥€ is a tuple of constants oveér. The interpretation is a model of a dl-rule of the
form () iff I =0 B forany B € Posand! [~ B’ forany B’ € Negimplies = A. I
is amodel of a dl-programiC = (O, P), written] }=o K, iff I is a model of each rule d@?.
I is asupported model of IC = (O, P) iff, forany h € I, there is arule/{ — Pos not Neg
in P suchthatl =p AforanyA € Posand! o B forany B € Neg

A dl-atom A is monotonic relative to a dl-prograniC = (O, P) if I =0 A implies
I' o A, forall I C I’ C HBp, otherwiseA is nonmonotonic. It is clear that if a dl-atom
does not mentiom then it is monotonic. However, a dl-atom may be monotonic even if it
mentionse. E.g., the dl-atonDL[S®p, S©p; —S](a) is monotonic (which is a tautology).
Clearly, thes operator is the only one that may cause a dl-atom to be nonmonotonic. Thus

I Different from that of|(Eiter et al. 2008), we consider ground atoms instead of literals for convenience.

Loop Formulas for Description Logic Programs 5

one has no reason to usein monotonic dl-atoms. It is a reasonable assumption that we
can rewrite a monotonic dl-atom into an equivalent one without usigall.

We useDLp to denote the set of all dl-atoms that occurin DL}, C DLp to denote
the set of monotonic dl-atoms, afell;, = DLp \ DL}. A dl-programk = (O, P) is
positive if (i) P is “not”-free, and (ii) every dl-atom is monotonic relativeXo It is evident
that if a dl-prograniC is positive, theriC has a (set inclusion) least model.

2.3 Strong and weak answer sets

Let £ = (O, P) be a dl-program. Thatrong di-transform of K relative to O and an
interpretation/ C HBp, denoted byk*:/, is the positive dl-prograniO, sP}), where
sPl, is obtained fromP by deleting:

e the dl-ruler of the form Q) such that either o B; for somel < i < m and
B, € DL, or I =¢ B; for somem +1 < j < n; and

e the nonmonotonic dl-atoms antht A from the remaining dl-rules wheré is an
atom or dl-atom.

The interpretation is astrong answer set of K if it is the least model ofC*:/.
The weak dl-transform of K relative toO and an interpretatiod C HBp, denoted by
K1, is the positive dlI-progrartO, wPl)), wherewP}, is obtained fromP by deleting:

e the dl-rules of the form@Z) such that eithérj=, B; for somel < i < m and
B; € DLp,orI =¢ B; forsomem + 1 < j < n;and
e the dl-atoms andot A from the remaining dl-rules wheté is an atom or dl-atom.

The interpretation is aweak answer set of K if I is the least model of /.

Example 1
Consider the following dI-programs:

e Ko =(0,Py)whereO = {cC ¢'}andPy = {w(a) — DL[c®p; c'](a); p(a) «}.
For this dl-program to make some sense, let's image this situatioand ¢ are
classes of good conference papers and ICLP papers respedtielymeans that
z is a paper in the TPLP special issue of ICLP 20&0z) means that: is worth
reading, andz stands for “this paper”. Note thatand ¢’ are concepts ir0, and
p and w are predicates outside @. The communication is through the dl-rule,
w(a) «— DL[c & p; c'](a), which says that if “this paper” is a good conference
paper, given that any paper in the TPLP special issue of ICLP 2010 is an ICLP paper
and ICLP papers are good conference papers (by the knowledgg, ithen it is
worth readingCy has exactly one strong answer égta), w(a)}, which is also its
unigue weak answer set.

e Now, suppose someone writdsg = (O, P;) whereO = {¢ C ¢’} and P, =
{p(a) « DL[c @ p; ¢'](a)}. This program has a unique strong answeriset {)
and two weak answer sefsandl, = {p(a)}. It can be seen that there is a circular
justification in the weak answer sgt that “this paper” is in the TPLP special issue
of ICLP 2010 is justified by its being in it.

The interested reader may verify the following. By the definitioneofO(Ly; ¢ ®

6 Y. Wang et al.

p) = OU{c(a)}, and clearlyO [~ ¢’'(a) and{c(a), c C ¢’} = ¢/(a). So the weak
dl-transform relative ta0 and I, is K> = (0, {p(a) <}). Sincel, coincides
with the least model ofp(a) <}, it is a weak answer set &, . Similarly, one can
verify that the strong dI-transform relative t and I is K> = (0, P,). Its least
model is the empty set, s is not a strong answer set &f; .

e [Cy = (0, P2) whereO = P and Py = {p(a) < DL[c® p,b S q;c M =b](a)}.
Both() and{p(a)} are strong and weak answer sets of the dl-program.

o K3 = (0, P3) whereP; = {p(a) — DL[c ® p,b & g; ~c11-b](a)}. D and{p(a)}
are both strong and weak answer sets of the dI-program.

o Ky = (0, Py) wherePy, = {p(a) «— DL[c & p;—c](a)}. K4 has no weak answer
set, and thus it has no strong answer set either.

These dl-programs show that strong (and weak) answer sets may not be (set inclusion)
minimal. It has been shown that if a dl-program contains no nonmonotonic dl-atoms then
its strong answer sets are minimal (Eiter et al. 2008). However, this does not hold for weak
answer sets as shown by the dl-progrmabove, even if it is positive. It is known that
strong answer sets are always weak answer sets, but not vice|versa (Eiter et|al. 2008).

3 Completion and Loop Formulas

In this section, we define completion, characterize weak and strong answer sets by loop
formulas, and outline an alternative method of computing weak and strong answer sets.

3.1 Completion

Given a dl-progranmiC = (O, P), we assume an underlying propositional languége
such that the propositional atoms 6f include the atoms and dl-atoms occurringAn
The formulas of L are defined as usual using the connectives, VV, D and«. ThedI-
interpretations (or simply interpretations if it is clear from context) of the languagéc are
the interpretations relative B8, i.e., the subsets diBp. For a formulay of £ and an
interpretation/ of L, we sayl is amodel of ¢ relative toO, denoted =, 1, whenever
(i) if v is an atom, ther) € T; (ii) if ¢ is a dl-atom, thed =4 «; and (iii) the above is
extended in the usual way to arbitrary formulasCaf.

Let K = (O, P) be a dl-program anél an atom inHBp. The completion of h (relative
to KC), written COMP (h, K), is the following formula ofC:

he \/ A An A\ -BJ,

1<i<n \ AePos BeNeg

where (h — Pos, notNeg),...,(h — Pos,,not Neg,) are all the rules in? whose
heads are the atom The completion of I, written COMP(K), is the collection of com-
pletions of all atoms itHBp.

Recall that a model! C HBp of a dI-programC = (O, P) is asupported model if for
any atoma € M, there is a rule inP whose head is and whose body is satisfied By.
Proposition 1

LetK = (O, P) be adl-program and an interpretation of. Then! is a supported model
of Cifandonly if I =0 COMP(K).

Loop Formulas for Description Logic Programs 7

Proposition 2
Every weak (resp. strong) answer set of a dl-progkai a supported model &.

3.2 Weak loop formulas

In order to capture weak answer sets of dI-programs using completion and loop formulas,
we define weak loops. Formally, I&€ = (O, P) be a dI-program. Theveak positive
dependency graph of /C, written G, is the directed graphV, E'), whereV = HBp (note
that a dl-atom is not i), and(u, v) € E if there is a dl-rule of the forn{ {2) i® such
thatA = v andB; = v for somei (1 < i < m). A nonempty subsel of HBp is a weak
loop of K if there is a cycle inG which goes through only and all the nodedin
Given a weak loof. of a dI-programiC = (O, P), the weak loop formula of L (relative
to K), writtenwLF(L, K), is the following formula ofCx:

\/LD\/(/\A/\/\—'B)

1<i<n \ AcPos BeNeg

where(h; <« Pos, not Neg,),. .., (h, < P0s,, not Neg,) are all the rules irP such that
h; € LandPos N L =@ foranyi(1 < i < n).

Theorem 1

LetXC = (O, P) be a dl-program and an interpretation of. ThenI is a weak answer set
of Cifand only if I =o COMP(K) UWwLF(K), wherewLF(K) is the set of weak loop
formulas of all weak loops of’.

3.3 Strong loop formulas

Let X = (O, P) be a dI-program. Thetrong positive dependency graph of K, denoted by
GZ, is the directed graphV, E), whereV = HBp and(p(?), ¢(¢')) € E if thereis a
rule of the form[(2) inP such that, (14 = p(©) and, (2) for some (1 < i < m), either

e B, =¢(&),or

e B, is a monotonic dl-atom mentioning the predicatand¢’ is a tuple of constants
matching the arity of;. (If this condition is ignored then it becomes the definition of
weak positive dependency graph.)

A nonempty subset of HBp is astrong loop of K if there is a cycle inG§. which passes
only and all the nodes if.

To define strong loop formulas of a dl-progrdth= (O, P), we need to extend the
vocabulary®, such that, for any predicate symhsland a nonempty set of atonis ®
contains the predicate symbgl that has the same arity as thatyof

Let be a nonempty set of atomé,= DL[\; Q](%) be a dl-atom. Thérrelevant formula
of A relative toZ, written byIF (A4, L), is the conjunction of (LPL[\; Q](f), wherey, is
obtained from\ by replacing each predicate symbolith p;, whenevep appears in both
A andL and, (2) for each predicate symhomentioned in both\ and L, the instantiation

8 Y. Wang et al.

onC (Chen et al. 2006) of the formula:

VX - po(X) « [p(X)A N\ X#¢ 4
p(€)eL

where X is a tuple of distinct variables matching the aritypafandf(# ¢ stands for
(X =0, ie,~(mm=c A... Az =cp)if X =(X1,...,X) and@ = (c1, ...,).
Please note that, the instantiation of a formuda: ¢ on a finite setD of constants is the
formula A ;¢ [z /d], in which ¢ = ¢ (resp.,c = ¢') is replaced withT (true) (resp., L
(falsg), wherec and¢’ are two distinct constants. In what follows, we identify the formula
(@ with its instantiation whenever it is clear from its context, unless otherwise stated.

For instance, led = DL[c @ p;c](a) and L = {p(a), p(b)}. ThenIF (A, L) is the
formula:

DL[c @ pr; c](a) A (pra) < p(a) Aa# a) A(pr(b) < p(b) Aa # D)
which is equivalent to
DL[c & pr; c|(a) A —pr(a) A (pL(b) < p(b))-
Intuitively, the irrelevant formula ofd relative to L says that the truth off only depends
on the truth of the atoms not ib.
We are now in a position to define strong loop formulas. Leabe a strong loop of

K = (0, P). The strong loop formula of L (relative toX), written sSLF(L, K), is the
following formula of Lx:

Vio 'V A vAanpn N -B

1<i<n \ AcPos BeNeg
where

e (hy < Pos, notNeg),..., (h, < POs,, not Neg,) are all the rules irP such that
h; € LandPos N L =P foralli(1 <i < n),
e v(A,L) =IF(A, L)if Ais amonotonic dl-atom, and otherwise.

In general, we have to recognize the monotonicity of dl-atoms in order to construct
strong loops of dI-programs. In this sense, the strong loops and strong loop formulas are
defined semantically. If a dl-atom does not mention the operattren it is obviously
monotonic. Thus for the class of dl-programs in which no monotonic dl-atoms mehtion
the strong loops and strong loop formulas are given syntactically, since it is sufficient to
determine the monotonicity of a dl-atom by checking whether it contains the operator

Example 2
Let £ = (0, P) be a dl-program wher& consists of

p(a) < DL[c @ p; c](a); p(a) < not DL[c @ p; c|(a)-

The dl-programiC has a unique strong loap= {p(a)}, but doesn’t have any weak loops.
Its completion is the formula:

p(a) < DL[c @ p; c|](a) V =DL[c @ p; c|(a)

Loop Formulas for Description Logic Programs 9

which equals to the formula(a) < T, i.e., p(a). Note that, the strong loop formula
sLF(L, K) is the formula:

(0 [PHe® pii (@) A (i) < pla) ha £ 0
V=DL[c & p; c](a)

It is clear that the interpretatioh = {p(a)} is a model of COMP(K) relative to the DL
knowledge bas® = (). However,I -, SLHL, K).

Theorem 2

Let X = (O, P) be a dl-program and an interpretation of. Then! is a strong answer
setof L ifand only if I’ o COMP(K) U sLFK), wheresLF(K) is the set of strong
loop formulas of all strong loops @€ and’ is the extension of satisfying [4).

Since a weak loop of a dl-prografd is also a strong loop of, as a by-product, our
loop formula characterizations yield an alternative proof that strong answer sets are also
weak answer sets.

Proposition 3
Let € = (O, P) be a dl-program/ an interpretation of” and L a weak loop ofC. Then
we havel’ =¢ sLF(L, K) D WLF(L, k), wherel” is the extension of satisfying [(4).

3.4 An alternative method of computing weak and strong answer sets

Theoremg J1 anfl] 2 serve as the basis for an alternative method of computing weak and
strong answer sets using a SAT solver, along with a dl-reasRnetith the following
property:R is sound, complete, and terminating for entailment checkingklLet (O, P)

be a dl-program and’ = COMP(K). We replace all dl-atoms iff" with new propositional

atoms to producd”. Let £4 be the new atom irf”, for the dl-atomA in T, and X be

the set of all such new atoms ifi’. Below, we outline an algorithm to compute the weak
answer sets ok (here we only describe how to compute the first such an answer set). To
compute a strong answer set, replace the word weak with strong.

(i) Generate a moddlof T if there is none, then there is no weak answer set.
(i) CheckifI is a weak answer set @f,

(a) if yes, returnl as a weak answer set kf.
(b) if no, add a weak loop formula int@' that is not satisfied by relative to O,
and goto (i).

To generate a model df, we compute a modeV of T’ using a SAT solver, and then
useR to check the entailment: For any dl-atomin T, if M = {4 thenM o A
otherwiseM o A.Let M’ = M /X. Itis not difficult to verify that}/’ is a model oft.

The strong and weak answer set semantics of dl-programs have been implemented in a
prototype system called SWEFusing the ASP solver DLV and a dl-reasoner. The main

2 https://www.mat.unical.it/ianni/swlp/; also see (Eiter et al. 2008) for the details of the implementation and
interesting dl-programs

10 Y. Wang et al.

difference in the method outlined here is that we use a SAT solver to generate candidate
models, which allows to take the advantages of the state-of-the-art SAT technology.

For strong answer sets, the construction of a strong loop formula requires checking
monotonicity of dl-atoms. However, for the class of dl-programs mentioning nthis
checking is not needed and the construction of a strong loop formula is hence tractable.

4 Canonical Answer Sets
4.1 Motivation: the problem of self-support

As commented by Eitegt al. (Eiter et al. 2008), some weak answer sets may be consid-
ered counterintuitive because of “self-supporting” loops. For instance, consider the weak
answer sefp(a)} of the dl-prograniC, in Exampl¢ 1. The evidence of the truthseffa) is
inferred by means of a self-supporting loop(%) < DL[c & p; ¢'](a) < p(a)”, which
involves not only the dl-atonDL[c @ p; ¢’](a) but the DL knowledge bas®. Thus the
truth of p(a) depends on the truth of itself. This self-support is excluded by the strong loop
formula of the loopL = {p(a)}.

Let's consider the dl-progranits in ExampIeD. again. Note thdtp(a)} is a strong
answer set oC,. The truth of the atomp(a) depends on the truth ¢& M —b](a) which
depends on the truth gf(a) and—g¢(a). Thus the truth ofp(a) depends on the truth of
itself. The self-supporting loop isp{a) < DL[c®p, bSg; cM-b](a) < (p(a)A—g(a))”.

In this sense, some strong answer sets may be considered counterintuitive as well.

The notion of “circular justification” was formally defined by (Liu and You 2008) to
characterize self-supports for Iparse programs, which was motivated by the notion of
foundedness for logic programs|(Van Gelder et al. 1991) and logic programs with aggre-
gates|(Calimeri et al. 2005). With slight modifications, we extend the concept of circular
justification to dl-programs. Formally, I&f = (O, P) be a dl-program and C HBp be
a supported model df. I is said to becircularly justified (or simply circular) if there is a
nonempty subse¥/ of I such that

INMo N\ An N\ -B (5)

AcPos BeNeg

for any dl-rule ¢ — Pos not Neg in Pwith h € M andI o /\AePOSA/\/\BeNegﬁB'
Otherwise, we say thdtis noncircular. Intuitively speaking, Conditiorj {5) means that the
atoms inM have no support from outside &1, i.e., they have to depend on themselves.

Example 3
Let £ = (0, P) whereP consists of

p(a) < not DL[b & p; —b](a)-

It is not difficult to verify thatkC has two weak answer sdtsand{p(a)}. They are strong
answer sets of as well. In terms of the above definitiofy(a)} is circular.

It is interesting to note that weak answer sets allow self-supporting loops involving
any dl-atoms (either monotonic or nonmonotonic), while strong answer sets allow self-
supporting loops only involving nonmonotonic dl-atoms and their default negations. These
considerations motivate us to define a new semantics which is free of circular justifications.

Loop Formulas for Description Logic Programs 11

4.2 Canonical answer sets by loop formulas

Let £ = (O, P) be a dl-program. Theanonical dependency graph of IC, written G, is
the directed graplV, E), whereV = HBp and(u, v) € E if there is a rule of the form
(2) in P such thatd = « and there exists an interpretatiérc HBp such that either of the
following two conditions holds:

(1) I o B;andIU{v} =0 B;, forsomei(1 < i < m). Inthis case, we say thatis
a positive monotonic (resp.,nonmonotonic) dependency oB; if B; is a monotonic
(resp., nonmonotonic) dl-atom. Intuitively, the truth 8f may depend on that of
while the truth ofu may depend on that @8;. Thus the truth of. may depend on
that of v.

(2) I =0 BjandI U {v} o Bj, for somej (1 + m < j < n). Clearly, B; must be
nonmonotonic. In this case, we say thais a negative nonmonotonic dependency
of B;. Intuitively, the truth ofu may depend on that oftot B;”, while its truth may
depend on that of. Thus the truth of. may depend on that af.

A nonempty subsef of HBp is acanonical loop of K if there is a cycle inG¢ that goes
through only and all the nodes in It is clear that ifB; = v then the interpretatioh = {v}
satisfiesv while I\ {v} does not. Thus the notion of canonical loops is a generalization of
that of weak loops given in Subsectjon]3.2, and a generalization of the notion of loops for
normal logic programs (Lin and Zhao 2004).

Note further that the canonical dependency graph is not a generalization of the strong
positive dependency graph, since some strong loops are not canonical loops. E.g., with
the dI-programiC = (0, P), whereP = {p(a) < DL[c ® p,c & p,—c](a)}, the dI-
atomA = DL[c ® p, ¢ © p,—c](a) is equivalent toT. So it is monotonic. It follows that
L = {p(a)} is a strong loop ofC. HoweverL is not a canonical loop of because there
is no interpretatiod such thatl o Aandl U {p(a)} Eo A.

Due to the two kinds of dependencies in a canonical dependency graph defined above,
to define canonical loop formulas, we need two kinds of irrelevant formulas: beta set
of atoms andd = DL[); Q](¥) a nonmonotonic dl-atom. Thevsitive canonical irrelevant
formula of A with respect tal, writtenpCF(4, L), is the conjunction of (LPL[z; Q](),
where)\, is obtained from\ by replacing each predicatewith py, if L contains an atom
p(€) which is a positive nonmonotonic dependency/hfind, (2) for each predicate
occurring in), the instantiation o€ of the formula|(%) ifZ contains an atom(¢) which
is a positive nonmonotonic dependencybfThe negative canonical irrelevant formula of
A with respect tal, writtennCF(A, L), is the conjunction of (LDL[A1; Q](f), whereX,,
is obtained from\ by replacing each predicagewith p;, if L contains an atom(¢) which
is a negative nonmonotonic dependencyldadind, (2) for each predicageoccurring in),
the instantiation or€ of the formula (%) if L contains an atonp (&) which is a negative
nonmonotonic dependency df

Let £ = (O, P) be a dl-program} C HBp and L a loop of K. The canonical Ioop
formula of L relative toC underM, writtencLF(L, M, K), is the following formula:

VIio V| A s N —6(B.L)

1<i<n \ 4ePos BeNeg

12 Y. Wang et al.

p(as) p(ar) p(az) p(as)
q(as) q(a1) q(a2) q(as)
° ° ° °

Fig. 1. The positive dependency relationsHip

where

o (hy « Pos, notNeg),..., (h, < Pos,, not Neg,) are all the rules irP such that
hi € L,PosNL =PandM o A scpos AN\peNeg ~B foreachi(l <i <n),

e 01(A, L) =pCHKA, L) if Aisanonmonotonic dl-atom,(A, L) otherwise,

e 02(B,L) = nCKB, L) if Bisanonmonotonic dl-atom, arél otherwise.

Given a dl-prograniC = (O, P) and an interpretatiofi C HBp. We callI a canonical
answer set of IC if I’ is a model of COMP(K) U cLF(I, K) relative toO, wherel’ is the
extension off satisfying [#) andtLF(,K) = {cLF(L, I,K)|L is a canonical loop ok’}.
It is not difficult to prove that every canonical answer set of a dI-progfaima supported
model of .

Example 4

Consider the dl-progrant, in Example[1, i.e. o = (0, P,) where P, = {p(a) «
DL[c® p,bO q; cM—b](a)}. Itis easy to see that the dl-atab.[c ® p, b© ¢; ¢ —b](a)
is nonmonotonic)) o DL[c ® p,b & q;c T =bl(a), and{p(a)} Eo DLlc® p,b S
¢; ¢cM=b](a). ThusL = {p(a)} is a canonical loop oK. Let I = {p(a)}. The canonical
loop formulacLF(L, I, K) is equivalent to

p(a) D DLlc @ pr,b© g; ¢ =bl(a) A (pr(a) = p(a) A (a # a))

where the last conjunct is equivalentt,(a). Thus, the loop formula is not satisfied by
the extension of satisfying [(4) relative to the knowledge bakeSo ! is not a canonical
answer set oK, even ifI is a model of COMP(Ks) relative to the knowledge bage

The next example demonstrates the difference among the positive dependency graphs of
dl-programs.

Example 5
Let K = (O, P) be a dl-program wher® = () and P consists of the following rules:
p(a1) < DL[c & p, c](a), p(as) < not DL[c & p, ~c|(as),

p(az) — DL[c @ p,b© q;cM=b](az), p(as) < p(aa).
The only weak positive dependency BBy is (p(a4), p(a4)), the strong positive depen-
dency includesp(a1), p(a1)) besides the weak one, while the canonical positive depen-
dency containgp(az), p(a2)) and(p(as), p(as)) in addition to the strong ones. Figure 1
depicts the various dependency relationsHB. The weak positive dependency graph
is G¢ = (V,E)whereV = {p(a;),q(a;)]1 < i < 4} andE = {(p(as),p(as))},
while the strong one i&/¢ = (V, E’) whereE’ = F U {(p(a1), p(a1))}. The canonical
dependency graph 6% = (V, E”) whereE” = E' U {(p(a2), p(a2)), (p(as), p(as))}.

Loop Formulas for Description Logic Programs 13

Comparing with the previous definitions of loop formulas, in addition to the irrelevant
formulas of nonmonotonic dl-atoms, the definition of canonical loop formulas has a notable
distinction: itis given under a sét’ of atoms whose purpose is to restrict that the support of
any atom inZ, come from the rules whose bodies are satisfied/bfrelative to a knowledge
base). The next proposition shows that the canonical loops and canonical loop formulas
for dl-programs are indeed a generalization of loops and loop formulas for normal logic
programs|(Lin and Zhao 2004) respectively.

Proposition 4
Let P be a normal logic prograni; C HBp and M a model of the completion aP.

(1) Lis aloop ofP if and only if L is a canonical loop ok = (0, P).
(2) M = LF(L,P)ifandonly if M = cLF(L, M, P), whereLF (L, P) is the loop
formula associated with underP (Lin and Zhao 2004) an@® = 0.

Proposition 5
Let £ = (O, P) be a dl-program and a canonical answer set &f. ThenI is minimal in
the sense thdf has no canonical answer fétsuch thatl’ C 1.

The following two propositions show that the canonical answer sets of dl-programs are
noncircular strong answer sets. Thus canonical answer sets are weak answer sets as well.

Proposition 6
Let £ = (O, P) be a dl-program and C HBp a canonical answer set &f. Then[is
noncircular.

Proposition 7
Let £ = (O, P) be a dl-program and C HBp a canonical answer set &f. Then[is a
strong answer set &f.

The following proposition, together with Propositiph 6, implies that the operatisr
the only cause that a strong answer set of a dl-program is circular.

Proposition 8
Let £ = (O, P) be a dl-program in whichP does not mention the operater. Then
I C HBp is a canonical answer set &fif and only if I is a strong answer set #f.

5 Related Work

Integrating ASP with description logics has attracted a great deal of attention recently. The
existing approaches can be roughly classified into three categories. The first is to adopt a
nonmonotonic formalism that covers both ASP and first-order logic (if not for the latter,
then extend it to the first-order casg) (Motik and Rosati 2010; Bruijn et al.|2007), where
ontologies and rules are written in the same language, resulting in a tight coupling. The
second is a loose approach: An ontology knowledge base and the rules share the same con-
stants but not the same predicates, and the communication is via a well-defined interface,
such as dl-atoms (Eiter et al. 2008). The third is to combine ontologies with hybrid rules
(Rosati 2005 Rosati 2006; de Bruijn et al. 2D07), where predicates in the language of on-
tologies are interpreted classically, whereas those in the language of rules are interpreted
nonmonotonically.

14 Y. Wang et al.

Although each approach above has its own merits, the loose approach possesses some
unique advantages. In many situations, we would like to combine existing knowledge
bases, possibly under different logics. In this case, a notion of interface is natural and
necessary. The loose approach seems particularly intuitive, as it does not rely on the use
of modal operators nor on a multi-valued logic. One notices that dI-programs share simi-
lar characteristics with another recent interast]ti-context systems, in which knowledge
bases of arbitrary logics communicate throuwghige rules (Brewka and Eiter 2007).

However, the relationships among these different approaches are currently not well un-
derstood. For example, although we know how to translate a dI-program without the non-
monotonic operatop to an MKNF theory while preserving the strong answer set seman-
tics (Motik and Rosati 2010), when is involved, no such a translation is known. Similarly,
although a variant of Quantified Equilibrium Logic (QEL) captures the existing hybrid ap-
proaches, as shown Ky (de Bruijn et al. 2007), it is not clear how one would apply the loop
formulas for logic programs with arbitrary sentences (Lee and Mengd 2008) to dI-programs,
since, to the best of our knowledge, there is no syntactic, semantics-preserving translation
from dl-programs to logic programs with arbitrary sentences or to QEL.

In fact, the loop formulas for dl-programs are more involved than any previously known
loop formulas, due to mixing ASP with classical first-order logic. This is evidenced by the
fact that weak loop formulas permit self-supports, strong loop formulas eliminate certain
kind of self-supports, and finally canonical loop formulas remove all self-supports. This
seems to be a unique phenomenon that arises to dl-programs, not to any other known
extensions of ASP, including logic programs with arbitrary sentences.

6 Concluding Remarks

In this paper, we characterized the weak and strong answer sets of dl-programs by program
completion and loop formulas. Although these loop formulas also provide an alternative
mechanism for computing answer sets, building such a system presents itself as an inter-
esting future work. We also proposed the canonical answer sets for dl-programs, which
are minimal and noncircular in a formal sense. From the perspective of loop formulas, we
see a notable distinction among the weak, strong and canonical answer sets: the canonical
answer sets permit no circular justifications, the strong answer sets permit circular justifica-
tions involving nonmonotonic dl-atoms but not monotonic ones, whereas the weak answer
sets permit circular justifications that involve any dl-atoms but not atoms.

We remark that, for a given dl-prograkh = (O, P), to decide if a sef¥ C HBp is a
strong or canonical loop and to construct the strong or canonical loop formula axfe
generally quite difficult, since we have to decide the monotonicity of the dl-atoms occurring
in P. The exact complexity of deciding if a set of atoms is a strong or canonical loop is
one of our ongoing studies, in addition to the complexity of deciding if a given dl-program
has a canonical answer set.

Acknowledgment We thank the anonymous reviewers for their detailed comments, which
helped improve the presentation of the paper. Yisong Wang was supported in part by NSFC
grants 90718009 and 60703095, the Fund of Guizhou Science and Technology 2008[2119],
the Fund of Education Department of Guizhou Province 2008[011], Scientific Research

Loop Formulas for Description Logic Programs 15

Fund for talents recruiting of Guizhou University 2007[042]. Yi-Dong Shen is supported
in part by NSFC grants 60970045 and 60721061.

References

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER, P. F.
2007.The Description Logic Handbook: Theory, Implementation, and Applications, 2nd ed. Cam-
bridge University Press, New York, NY.

BERNERSLEE, T., HENDLER, J.,AND LASSILA, O. 2001. The semantic weBcientific American
Magazine 284, 5, 34—43.

BREWKA, G. AND EITER, T. 2007. Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. InProceedings of AAAI 2007. AAAI Press, Vancouver, BC, Canada, 385-390.

BRUIJN, J., BHTER, T., POLLERES, A., AND TOMPITS, H. 2007. Embedding non-ground logic
programs into autoepistemic logic for knowledge-base combinationPrdeeedings of IJCAI
2007, 304-309.

CALIMERI, F., FABER, W., LEONE, N., AND PERRI, S. 2005. Declarative and computational prop-
erties of logic programs with aggregates Pioceedings of IJCAI 2005. Edinburgh, Scotland, UK,
406-411.

CHEN, Y., LIN, F., WANG, Y., AND ZHANG, M. 2006. First-order loop formulas for normal logic
programs. InProceedings of KR 2006. AAAIl Press, Lake District of United Kingdom, 298-307.

DE BRUIIN, J., FEARCE, D., POLLERES, A., AND VALVERDE, A. 2007. Quantified equilibrium
logic and hybrid rules. IProceedings of Web Reasoning and Rule Systems, First International
Conference. Lecture Notes in Computer Science, vol. 4524. Springer, Innsbruck , Austria.

EITER, T., IANNI, G., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOMPITS, H. 2008. Com-
bining answer set programming with description logics for the semantic wWebficial Intelli-
gence 172,12-13, 1495-1539.

HORROCKS |. AND PATEL-SCHNEIDER, P. F. 2004. A proposal for an OWL rules language. In
Proceedings of WWW 2004. ACM, New York, NY, USA, 723-731.

LEE, J.AND MENG, Y. 2008. On loop formulas with variables. Rroceedings of KR 2008. AAAI
Press, Sydney, Australia, 444—-453.

LIN, F.AND ZHAO, Y. 2004. ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 1-2, 115-137.

Liu, G.AND You, J.-H. 2008. Lparse programs revisited: Semantics and representation of aggre-
gates. InProceedings of ICLP 2008. Lecture Notes in Computer Science, vol. 5366. Springer,
Udine, Italy, 347-361.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. Stable models and an alternative logic program-
ming paradigm. IrThe Logic Programming Paradigm: A 25-Year Perspective, K. Apt, V. Marek,

M. Truszczynski, and D. Warren, Eds. Springer-Verlag, Berlin, 375-398.

MOTIK, B. AND ROSATI, R. 2010. Reconciling description logics and rul&sACM 36, 165—-228.

NIEMELA, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence 25, 3-4, 241-273.

RosATI, R. 2005. On the decidability and complexity of integrating ontologies and ridegnal of
Web Semantics 3, 1, 61-73.

RosATI, R. 2006. DL+log: Tight integration of description logics and disjunctive datalogrén
ceedings of KR 2006. AAAI Press, Lake District of the United Kingdom, 68-78.

VAN GELDER, A., ROSS K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general
logic programsJ. ACM 38, 3, 620—650.

W3C OWL WORKING GROUP. 2009. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, Available at http://www.w3.org/TR/owl2-overview/.

	Introduction
	Preliminaries
	Description logics
	Description logic programs
	Strong and weak answer sets

	Completion and Loop Formulas
	Completion
	Weak loop formulas
	Strong loop formulas
	An alternative method of computing weak and strong answer sets

	Canonical Answer Sets
	Motivation: the problem of self-support
	Canonical answer sets by loop formulas

	Related Work
	Concluding Remarks
	References

