
Rubato DB: a Highly Scalable Staged Grid Database
System for OLTP and Big Data Applications

Li-Yan Yuan
Department of Computing

Science
University of Alberta

yuan@cs.ualberta.ca

Lengdong Wu
Department of Computing

Science
University of Alberta

lengdong@cs.ualberta.ca

Jia-Huai You
Department of Computing

Science
University of Alberta

you@cs.ualberta.ca
Yan Chi

Shanghai Shifang Software
chiyan@rubatodb.com

ABSTRACT
This paper proposes a new formula protocol for distributed
concurrency control, and specifies a staged grid architecture
for highly scalable database management systems. The pa-
per also describes novel implementation techniques of Ru-
bato DB based on the proposed protocol and architecture.
We have conducted extensive experiments which clearly show
that Rubato DB is highly scalable with efficient performance
under both TPC-C and YCSB benchmarks. Our paper ver-
ifies that the formula protocol and the staged grid archi-
tecture provide a satisfactory solution to one of the impor-
tant challenges in the database systems: to develop a highly
scalable database management system that supports various
consistency levels from ACID to BASE.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Transaction processing ; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems

Keywords
Scalable Architecture; Concurrency Control; ACID

1. INTRODUCTION
Big data applications demand and consequently lead to

developments of various highly scalable data management
systems. The trend of using lower-end, commodity servers
to scale out configurations has also become popular, due
to the drop in hardware prices and the improvement in
performance and reliability. Meanwhile, many large-scale
data management systems such as key-value stores [14] and
Bigtable-like stores [8] represent a recent evolution in build-
ing infrastructure by making trade-off between scalability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 03–07, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 $15.00.
http://dx.doi.org/10.1145/2661829.2661879.

and consistency. That is, highly scalable systems often re-
nounce ACID and turn to BASE for high scalability [10, 14,
19]. However, BASE properties make only liveness guar-
antee rather than safety guarantee, and thus applications
managing critical data cannot depend on BASE for correct-
ness and security.

The trade-off between achieving scalability and preserving
strong consistency faced by existing databases leads us to
consider the following questions:
• Is it possible to achieve high scalability with the

ACID properties?

• Is it possible to scale out the commonly used
single server database system design?

In this paper, we provide positive answers to both questions
by presenting Rubato DB, a NewSQL [24, 25] database man-
agement system that supports ACID properties.

Rubato DB is designed and implemented with two distin-
guishing features:
• F1: Rubato DB applies a novel grid database architec-

ture based on the staged event-driven architecture [31].

• F2: Rubato DB introduces a new formula protocol for
distributed concurrency control.

One of the main challenges in designing and developing
a highly scalable database management system using a col-
lection (cluster) of commodity servers is how to distribute a
large volume of data into tens or hundreds of smaller dedi-
cated DAS devices attached to commodity servers. It is F1
that enables Rubato DB to resolve this problem.

Another challenge is how to develop an effective concur-
rency control protocol for thousands of concurrent users that
are accessing data distributed over commodity servers. We
have developed the formula protocol for concurrency (F2)
under the staged grid architecture, which guarantees the se-
rializability of transactions processed by Rubato DB.

The formula protocol for concurrency is a variation of the
Multiversion Timestamp Concurrency Control Protocol [26],
which reduces the overhead of conventional implementation
by the following three optimization mechanisms:

• Instead of using multiple versions of updated data items1,
simple formulas are stored in the memory associated
with each updated data item.

1We use data item as a general term; all definitions and
algorithms in this paper go through for any granularity of
data substituted for this term.

• A dynamic timestamp ordering is used to increase the
concurrency and reduce unnecessary blocking.

• Caching and delaying the transaction operations within
formulas before committing.

We carried out comprehensive experiments to evaluate the
performance of Rubato DB under the TPC-C and YCSB
benchmarks. Especially, the performance of Rubato DB un-
der TPC-C benchmark test can achieve 363K tpmC (with
325,000 concurrent clients) running on a collection of 16
commodity servers (as demonstrated in Figure 6(f)). Ru-
bato DB strictly complies with the TPC-C specification.
Particularly, remote guest access is fully supported and no
simplifed mechasims such as stored procedures are used to
enhance the performance.

The main contributions of this paper are:
• We propose the formula protocol for concurrency in

the distributed environment ensuring serializability.

• We define a highly scalable staged grid database ar-
chitecture, and outline its implementation techniques,
based on which Rubato DB is implemented.

• We describe the main technologies and novel features
used in the implementation of Rubato DB.

• We conducted extensive experiments focused on the
performance of Rubato DB, which fully testify that
Rubato DB can support both ACID and BASE prop-
erties with scalability.

• Our experiments not just confirm our solution but also
provides much needed insights towards highly scalable
database implementations.

In Section 2, we review the background and related work.
We present the staged grid architecture and formula protocol
in Section 3, 4. The experiments are reported in Section 5
and we conclude the paper in Section 6.

2. BACKGROUND AND RELATED WORK
In the last decade, the importance of shared-nothing ar-

chitecture was enhanced in the design of web services. One
representative design is the well-known MapReduce frame-
work for processing large data sets [13]. Another design
is the Staged Event-Driven Architecture (SEDA) [31]. The
SEDA decomposes the whole execution into a series of stages
that represent a set of individual tasks. [31].

There has been some recent work on bringing ideas from
MapReduce/SEDA to database management systems. The
SEDA has been applied to improve the staged database per-
formance through exploiting locality in the memory hierar-
chy at the hardware level [16]. Hive [28] and Scope [7] in-
tegrate query compiling into the MapReduce framework at
the query language level. At the system level, Greenplum [9]
and HadoopDB [1] systematically leverage technologies to
enable queries across multiple nodes to be executed in the
MapReduce style. Dremel [22] uses a multi-level serving tree
to execute queries. Each query is rewritten at each level and
gets pushed down to the next level in the tree. Dryad [17]
constructs the data flow into a direct acyclic graph with com-
munication channels. Rubato DB adopts the similar idea by
integrating the staged event-driven architecture into the grid
shared-nothing infrastructure.

One common implementation to provide serializability in
systems, such as Megastore [4], Spinnaker [23], etc., is based

on distributed two-phase locking and two-phase commit pro-
tocol. To ensure serializability, all of a transaction’s locks
must be held for the entire duration of the two-phase com-
mit. However, since multiple network round-trips are needed
for the commit, the extra time that locks are held can con-
siderably reduce the overall transactional efficiency, and the
distributed locks that are held by the incomplete transations
of a failed client prevent others from making progress [27].
As well, the deadlock detection and resolution may further
prohibit the concurrency and scalability [20].

Some systems (Sinfonia [2] and H-Store [18], etc.) attempt
to reduce the locking overhead by constraining the scope of
transactions whose accesses are limited to a small subset of
the database. Transactions that can be executed in parallel
to completion without requiring communication with others
are optimized, but other transactions are aborted or exe-
cuted with coarse-grained locks on each partition. Another
simplified variation is to write transactions as stored pro-
cedures [25, 30] without concurrency control. Stored pro-
cedure invocation is executed sequentially within different
partitions to take advantage of parallelism. Despite the high
performance and scalability induced by restricted transac-
tional scope, the concurrency and applicability can be hin-
dered for generalized workloads [4, 18, 27].

Calvin [27] introduced deterministic ordered locking. By
using a pre-ordered agreement for acquiring locks in the
presence of distributed transactions, distributed commit pro-
tocols can be eschewed. However, extra efforts are required
to analyze advance knowledge of all transactions’ read/write
sets before execution. Instead of using any locking mecha-
nisms, Rubato DB implements similar protocols to Span-
ner [12], that is, combining the timestamp-based concur-
rency control with two-phase commit.

Snapshot Isolation is also an attractive isolation level.
However, reading from a snapshot means that a transac-
tion never sees the partial results of other concurrent trans-
actions and write skew may occur as well. Similar to the
recent work [15] on snapshot isolation where transactional
dependencies are detected for serialization, concurrency con-
trol in Rubato DB deals with read/write conflicts using a list
of transactional stored facts (i.e., read before, read by) per
data item with operation performed.

3. STAGED GRID DATABASE

3.1 A Staged Grid Architecture
Rubato DB is implemented using a staged architecture,

which has been introduced and studied for various applica-
tions, such as Dynamic Internet Servers and high-performance
DBMSs [16, 31]. The basic idea of this architecture is that
a system is constructed as a network of staged modules con-
nected with explicit queues. A staged module (or stage)
is a self-contained module consisting of an incoming event
(request) queue, a thread pool and an event handler, as
described in Figure 1 [31]. The staged architecture pro-
vides a satisfactory design for a scalable grid (or distributed)
database management system, since the staged modules can
be easily arranged to run on various grid servers. As a mat-
ter of fact, the MapReduce Framework [13] can be modeled
as a two-staged architecture.

Now we specify the staged grid architecture by integrat-
ing the staged approach into the grid shared-nothing envi-

Figure 1: Description of a Staged Module

ronment. The definition facilitates easy implementation and
efficient operation.

Definition 1. A staged grid module is a staged module
that runs on a grid node. A staged grid module is encapsu-
lated (grid encapsulated module), if it accesses only the data
stored in the DAS (Direct-Attached Storage) of the node.

Definition 2. A staged grid architecture is a software sys-
tem architecture such that:

(a) The system is constructed as a network of grid encap-
sulated modules on the shared-nothing infrastructure,
i.e., all grid nodes are connected by a (high speed or
otherwise) network.

(b) Communication between two modules is by means of
the event queues through the network.

(c) When a staged module pushes a request to the next
module, the request will always be accepted and kept
in the event queue of the destination module.

(d) Each staged module attempts to read requests from its
input event queue. The module will wait if no available
request can be obtained.

(e) Each request to the system will be processed in a relay-
style by passing the request from one staged grid mod-
ule to the next one until it is completed.

3.2 Implementation of Staged Grid Database
Rubato DB uses the staged grid architecture for its query

engine. The essential components of Rubato DB are de-
picted in Figure 2.

Figure 2: Rubato DB system architecture

System Deployment
Rubato DB runs on a collection of servers as one database

instance with a single socket monitor stage module to estab-
lish and record the connection states for all client requests.
Unlike systems such as VoltDB [30], Rubato DB provides a

service as a general OLTP store in that all the transactions
are received as a sequence of SQL requests, not just a stored
procedure. When a request is received by the socket monitor
stage, it is assigned a transaction id (i.e., timestamp).

Rubato DB’s SQL engine is used to process all SQL queries.
The SQL engine is built on top of the staged grid archi-
tecture where each component is implemented as a staged
module. Data independent staged modules such as parser
and security can be deployed on arbitrary grid nodes, and
each node can even consist of multiple such stages for scal-
ing up. Optimizer and processor stage modules (i.e. query
stage, update stage) are deployed corresponding to tables
per node. Particularly,

(a) If a query involves one table on one node, one query
stage is set up for each table.

(b) If a query involves a join on multiple tables on one
node, the join will be carried out by one join stage.

(c) If a query involves one table that distributed over dif-
ferent nodes without join, one query stage per node
will issue the requests, and one aggregation stage in
one of the nodes will collect all result sets and com-
bine them as one result set.

(d) If a query involves a join on two or more tables dis-
tributed over different nodes, several stages are needed
to perform the semi-join based query optimization (not
implemented yet2).

(e) One update stage for each table to perform all up-
date/insertion/deletion operations on each node.

With such deployment, different types of stages can work to-
gether for a single query in a relay-style to achieve pipelined
execution. The same type of stages associated with differ-
ent table partitions can also work simultaneously to achieve
parallelism. A Transaction stage is deployed on each node,
being responsible for coordinating data access on multiple
nodes based on a novel formula protocol for concurrency
(FPC) (in Section 4).

Software Instruction Set
To facilitate communication among staged modules on dif-

ferent nodes, a set of software instructions is introduced to
specify all basic operations and/or data packets. Each in-
struction carries all necessary information required for a re-
quest or a data packet, including its transaction id, opera-
tion id, stage id, partition id, table id, destination node. Any
stage will receive a sequence of incoming instructions from
its previous stages, and forward the processed result (encap-
sulated in an instruction or a sequence of instructions) to its
successive stages for further processing. The instructions
with a uniform format are the only packets flowing through
stages in the system.

By properly multiplexing the concurrent requests of multi-
ple instructions, there is a potential of increasing instruction
reusability to optimize the memory usage. Rubato DB uti-
lizes a stack as a pool of instructions in each grid node: one
instruction is popped up to serve a request when needed,
and will be pushed back to the pool after being used.

Multiple Communication Channels among Stages
Rubato DB utilizes different communication channels among

all stages, depending on locations of stages and/or the sys-

2So far, we can avoid such case by distributing tables with
joining on the same node.

tem resources. Assume the stage Si is going to send an
instruction I into the stage Sj . Two different channels can
be used for different cases:

• I1. Si and Sj are in the same node. Since each node
maintains one instruction stack pool, it only needs to
push the address of I into the operation queue of Sj .

• I2. Si is in Node Ni and Sj is in Node Nj , and Ni, Nj

are on a shared-nothing infrastructure. The standard
TCP/IP protocol pipes are used to send the content I
from Ni into a new instruction Ij in Nj and then push
the address of Ij into the operation queue of Sj .

4. CONCURRENCY CONTROL PROTOCOL
In this section, we will first present the Formula Protocol

for Concurrency (FPC), the concurrency control protocol
used in Rubato DB; and then outline our schema for the
implementation of the protocol. The FPC is a novel im-
plementation of the classical Multiversion Timestamp Con-
currency Control Protocol [26] with logical transformation
formula caching and dynamic timestamp ordering.

The logical transformation formula caching approach
has the advantages over storing actual multiple versions of
data items mainly in the following cases:

(a) For all non-key updates, storing multiple versions need
to maintain physical copies of numerous rows [21], but
the formula approach still uses one simple formula.
This will significantly reduce overhead of multiple ver-
sions of all update data items and simplify the garbage
collect process.

(b) Formula enables us to use commutative conflict-free
operations [3] such as increment/decrement3, instead
of updates, which is much easier than if other wise, in
terms of much less conflict potential.

(c) The implementation of multiversion uses the fine-grained
page as the minimal unit in the memory [5, 6]. The
page size can affect the latency greatly since the full
bandwidth can only be achieved if data is flushed in
pages of relatively large size(e.g. 4KB, 8KB) [6]. To
save page space, multiple versions of different data
are clustered into pages, and complex and error-prone
mechanism is required to ensure update operation does
not overwrite each other even though they access dif-
ferent data [5, 6]. The manipulation on the unit of
formula can reduce the complexity of storing multiple
versions on the page-level. FPC is suitable for both nu-
meric values and string values without costs of pages.

The dynamic timestamp ordering is used to achieve:

(a) avoiding unnecessary blocking or waiting in order to
increase the degree of concurrency.

(b) clearing the formulas as early as possible, similarly to
database management systems using the multiversion
timestamp protocol that delete any version of updated
data item as soon as it is not needed.

In the conventional multiversion timestamp protocol, the
commit order of operations conforms with the timestamp
initially assigned to each transaction. This mechanism is
considered to be static. However, the FPC respects the
initial timestamp ordering while permitting an equivalent

3The execution order of operations does not affect the result.
Thus we consider such operations conflict-free even though
they write the same data item.

schedule that differs from the static timestamp ordering, as
long as it ensures serializability. The timestamp ordering of
all the transactions may be altered to allow a transaction
with older (smaller) timestamp to read the data item up-
dated by a later (larger) transaction on condition that the
serializability is respected.

The following example demonstrates the two distinct fea-
tures of the FPC.

Example 1. Let A,B,C denote three values in one data
item4. We use “W”, “R” to denote “write” and “read” oper-
ation respectively, e.g. W (B = B + 10) means update B by
increasing the value of B by 10; R(B) means read the value
of B. Consider the schedule in Table 1 where T10, T20, T30

are three transactions with subscripts as their timestamp:

T10 T20 T30 A B C
t1 90 100 80

t2 W(B=B×1.1) 90 100 80

t3 W(B=B+10) 90 100 80

t4 W(C=C+10) 90 100 80

t5 commit 90 110 90

t6 R(B=121)

t7 commit 90 121 90

t8 commit 90 121 90

Table 1: Transactions Schedule

In this schedule, the updates issued by T10, T30 at t2, t3,
t4 will be executed by caching formulas rather than multiple
versions of replica. When T30 requests to commit at t5, all
formulas issued by T30 (i.e., W (B = B+10), W (C = C+10))
will be force-written and eliminated from the memory. After
T30 commits, the disk values of B and C are updated to 110
and 90 respectively. Further, when T20 issues R(B) at t6, it
will first read the value of B from disk as 110, and then the
update formula W (B = B ∗1.1) issued by T10 earlier will be
applied. Hence, T20 reads the value of B as 121.

This schedule that is not allowed in the classical multi-
version timestamp protocol, is indeed serializable and its
equivalent serial schedule is T30, T10, T20. The schedule does
not comply with the intial timestamp ordering, but it does
permit an equivalent serial schedule.

Now we present the formula protocol for concurrency for-
mally as follows.

4.1 Formula Protocol for Concurrency (FPC)
As with the timestamp protocol, each transaction under

FPC is assigned a unique timestamp, TS(T), when it is ini-
tiated in the socket monitor stage on one dedicated server.
The FPC guarantees the existence of an equivalent serial
schedule in which transactions are ordered by their times-
tamps (subject to dynamic timestamp ordering).

The FPC stores with each data item, x, on relevant node,
the following pieces of information:
• lrt(x,Ni): the largest timestamp of active (not com-

mitted) transactions that have read x on the node Ni;

• list(x,Ni): the list of update formulas of the form:
uf(x, Tu1, Ni), . . . , uf(x, Tun, Ni), where uf(x, Tj , Ni)
represents an update formula on x by transaction Tj on
Node Ni, and TS(Tu1) ≤ TS(Tu2) ≤ · · · ≤ TS(Tun).

4For simplicity, we consider only one data item but all the
discussions are valid for a set of data items.

If such an active transaction does not exist, lrt(x,Ni),
and list(x,Ni) are set to 0 and ∅ respectively.

Read/Write Operation
When a transaction, T1, makes a request to read x on

node Ni, read(x, T1, Ni) will first retrieve the value of x from
disk on Ni and then update the retrieved value using stored
update formulas in list(x,Ni) if needed. More specifically,
• R1. T1 read x on Ni.

Let v0(x) be the disk value of x on Ni, and

uf(x, Tu1, Ni), . . . , uf(x, Tum, Ni) be the list of update
formulas in list(x,Ni) such that (1) TS(Tum) ≤ TS(T1)
and (2) TS(Tu(m+1)) > TS(T1). Then v1(x) be the
value obtained by applying uf(x, Tu1, Ni) on v0(x),
v2(x) be the value obtained by applying uf(x, Tu2, Ni)
on v1(x), and vum(x) be the value obtained by apply-
ing uf(x, Tum, Ni) on vu(m−1)(x).

vum(x) is the value to be retrieved by read(x, T1, Ni).

If TS(T1) > lrt(x,Ni), TS(T1) is assigned to lrt(x,Ni).

To facilitate the cascading rollbacks and wait for commits,
the FPC protocol also records a fact, read by(Tuk, x, T1)
for 1 ≤ k ≤ m, indicating the value x updated by Tuk

is read by T1.
Obviously, T1 retrieves the value that is obtained by sequen-
tially applying all update formulas on x issued by transac-
tions with older timestamps, and if TS(T1) < swt(x,Ni),
where swt(x,Ni) is the smallest timestamp of a transac-
tion contained in list(x,Ni), it retrieves the disk value of
x directly. This is the same as the multiversion timestamp
protocol, except that the update formulas are used instead
of actual multiple versions of data items.

When a transaction, T1 with timestamp TS(T1), makes
a request to write x on node Ni, i.e., write(x, T1, Ni), the
FPC performs the following action:

• W1. If TS(T1) < lrt(x,Ni), there must exist another
transaction T2, which should follow T1 according to
the equivalent serial order on the timestamp, has read
the value of x before. Thus T1 is too old to write x,
and must be aborted. This may also trigger cascading
rollbacks as in K1.

• W2. If lrt(x,Ni) = 0 or TS(T1) = lrt(x,Ni), the
write request is processed by simply adding a new up-
date formula uf(x, T1, Ni) into list(x,Ni).

• W3. If TS(T1) > lrt(x,Ni) > 0, the write request is
processed by (1) simply adding a new update formula
uf(x, T1, Ni) into list(x,Ni).

Further, there must exist another transaction T2 such
that (a) TS(T2) < TS(T1), and (b) T2 has read the
value of x before. The FPC protocol also (2) records
a fact read b4(T2, x, T1).

In W3, read b4(T2, x, T1) is recorded to facilitate the dy-
namic timestamp ordering. Assume that TS(T2) < TS(T1),
and T1 issues commit before T2 does. The dynamic times-
tamp ordering allows T1 to commit, but update formulas
of T1 will be retained in the memory rather than cleared
if there exists any read b4(T2, x, T1) stored in the system.
Only when all the stored facts read b4(Ti, x, T1) for T1 are
removed as in C2, K1, update formulas of T1 can be cleared
and force-written to disks.

Commit/Rollback Protocol
To facilitate committing a transaction that has accessed

data items distributed over different nodes, the FPC main-
tains a list PN(T) of participating nodes for each active
transaction T . That is,

PN(T) = {Ni | T reads x on Ni or T writes x on Ni}.

When a transaction, T1, makes a request to commit, the
FPC performs a variation of two-phase commit protocol
through a coordinator. In the 1st-phase, pre-commit(T1,Ni)
pre-checks if Ni is ready to commit for each Ni ∈ PN(T1).
In the 2nd-phase, a consentaneous action will be taken based
on the response from each node. There are two kinds of ap-
proaches to present the dynamic timestamp ordering: one is
pessimistic that forces transactions to wait for commit for
read b4 facts; the other is optimistic that allows transactions
to commit immediately in presence of read b4 facts, but re-
tain the formulas without being cleared until all read b4
facts are removed later. The pessimistic approach is op-
timal for read intensive workloads where read b4 facts are
rare; while the optimistic approach is optimal for write in-
tensive workloads where read b4 facts are frequent.

• P1. (pessimistic) pre-commit(T1,Ni)

1. If there exists read by(T2, x, T1) or read b4(T2, x, T1)
on Ni, suspend T1 with wait for commit(T1, T2).

2. Otherwise, return T1 is ready to commit on Ni.

• P2. (optimistic) pre-commit(T1,Ni)

1. If there exists read by(T2, x, T1) on Ni, suspend
T1 with wait for commit(T1, T2).

2. Otherwise, return T1 is ready to commit on Ni.

The FPC waits until it receives the ready-to-commit mes-
sage from all nodes in PN(T1), then performs commit(T1,Ni)
on all nodes Ni ∈ PN(T1).

• C1. (pessimistic) commit(T1,Ni), i.e., T1 commits
on the node Ni: Force-write all update formulas is-
sued by T1 on Ni, and remove all stored facts, such as
read by, read b4, and uf involving T1.

• C2. (optimistic) commit(T1,Ni) i.e., T1 commits on
the node Ni: The formulas issued by T1 are cleared
and force-written to database disks only if there exists
no read b4(Trb, x, T1) fact; otherwise formulas are re-
served in the memory. When Trb commits or rollbacks
and read b4(Trb, x, T1) is the only read b4 stored fact
for T1, force-write and clear all update formulas issued
by T1 on Ni in W3.

After T1 commits in all participating nodes in PN(T1), the
FPC wakes up all waiting transactions Tw to resume pre-
commit(Tw,Ni), if wait for commit(T1, Tw) recorded in P1(1)
or P2(1).

When a transaction T1 makes a request to rollback, or
is forced to rollback as in W1, or times out to receive any
response from Ni due to network failure, the FPC performs
rollback(T1,Ni) on all Ni ∈ PN(T1).

• K1. rollback(T1,Ni). Send cascading rollbacks to all
Tr if read by(Tr, x, T1) is recorded; and remove all
stored facts, such as read by, read b4, and uf involv-
ing T1 on Ni. If there exists read b4(T1, x, Tcb) and it
is the only read b4 stored fact for Tcb, force-write and
clear all update formulas issued by Tcb on Ni in W3.

After T1 rollbacks in all participating nodes in PN(T1),
the FPC wakes up all waiting transactions Tw to be rolled
back. if wait for commit(T1, Tw) is recorded in P1(1) or
P2(1).

As indicated after C1, C2 and K1, when T1 terminates
(commit or rollback), all transactions that are waiting for T1

resume and restart to pre-commit or cascading rollback. The
transition for transaction states is demonstrated in Figure 3.

Figure 3: Transitions between states

It is not difficult to prove that the FPC guarantees serial-
izability and atomicity since it is just a novel implementation
of the multiversion timestamp protocol, except for the dy-
namic ordering. As a matter of fact, its proof follows the
following facts:

(a) The orders of all conflict pairs of operations are com-
patible with the timestamp ordering of all the involving
transactions.

(b) The dynamic ordering rearranges a transaction T to be
effectively a smaller timestamp only if T has no opera-
tions that are conflict to any operations of Ti such that
TS(Ti) < TS(T).

(c) Update transactions commit corresponding to timestamp
ordering. If T1 and T2 are update transactions that com-
mit, then if TS(T1) < TS(T2) (after dynamic ordering
if possible), then T1 commits before T2.

(d) No transaction commits in a state where it has read un-
committed data. That is, transactions that issue commit
will wait for any uncommitted update transactions from
which they read.

(e) Any transaction that reads data written by an aborted
transaction itself aborts.

(f) Availability is achieved by rolling back transactions with
timeout due to node failure or network partition.

4.2 Implementation of the FPC
Rubato DB uses Berkeley DB5 with B-tree indexes for

basic data operations (e.g. put, get, insert, delete, etc.). All
table partitions and their secondary index files if any are
stored on the local disk as Berkeley DB files.

The basic operations of the FPC are implemented as a
layer, called Formula DB on top of Berkeley DB. Formula
DB is a thread-free package compatible with Berkeley DB,
such that all disk accesses are through Formula DB6.

In addition to all Berkeley DB operations, Formula DB
also supports the following operations and functionalities:

(a) FDB→ pre-commit(T1): to perform the pre-commit
operation on FDB, as specified in P1 and P2,

5The transaction support of Berkeley DB itself is turned off.
6We set the buffer size of Formula DB same as Berkeley DB
that is fine-tuned based on the data size.

(b) FDB→ commit(T1): to perform the commit operation
on FDB, as specified in C1 and C2.

(c) FDB→ rollback(T1): to perform the rollback operation
on FDB, as specified in K1.

(d) FDB→ update(T1, N, F,W): to update the Nth col-
umn of the FDB according to the formula F for all
records satisfying the boolean value expression W .

Formula DB uses (a), (b), (c) to achieve serializability over
distributed nodes; and uses (d) to store logic formulas in-
stead of multiversions of updated data items for FPC.

Formula DB implements a fine granularity of control on
the manipulation of data at row level or even finer by using
formula unification.

Figure 4: Query/Update engine module

As shown in Figure 4, an internal main memory Formula
DB is used to store logic formulas of all the updates7. Each
update operation is stored as one formula. Selection or read
operation is evaluated against both formulas and disk. Up-
date or write operation is done only after the transaction is
committed. All associated formulas are removed from the
main memory when the related transaction’s state is cleared.

The implementation of Formula DB is decentralized in
that every node contains a transaction stage to initialize the
two-phase commit/rollback. The node where the two-phase
commit protocol is initialized is called the coordinator node
for the transactions. Other participating nodes are cohort
nodes, respectively. Formula DB also includes measures for
dealing with various kinds of failures and/or network parti-
tion that might occur.

(a) The cohort times out while waiting for a pre-commit
message. The cohort will roll back the transaction. The
cohort can be certain that no commit has been taken at
any node, since it has not replied ready-to-commit yet.

(b) The coordinator times out while waiting for a ready-
to-commit response from cohorts. Even though cohorts
might have sent read-to-commit response, but one of
replies might not have been delivered during the timeout
period. The coordinator decides to roll back, and sends
a rollback request to each achievable cohort.

(c) The cohort times out while waiting for a commit/rollback
message. The cohort attempts to communicate with the
coordinator or other cohorts to determine the outcome
of the transaction. The cohort is blocked until it can
determine if the coordinator has made a decision and if
so what that decision is.

Similar to the timestamp management approach of Span-
ner [12] that avoids transactions from being executed with
an invalid timestamp, Rubato DB adopts a loading control

7So far, system crashes are not considered and thus formulas
are durable in the memory without being flushed to disks.

schema implemented in the socket monitor stage based on
the following principles:

At any time, the system should process the requests with
least conflict potential. When all the current requests have
higher conflict potential, the socket monitor stage would
wait awhile for new requests with lower potential to arrive.

The conflict potential is evaluated by the number of active
clients and priorities among transactions. The socket moni-
tor maintains one list of active clients (with an active trans-
action) and one list of requesting clients (whose requests are
waiting to be processed). Assume the oldest timestamp in
the requesting list is TSR, and the number of active clients
is NA, and NO is the number of active clients whose trans-
action timestamp TS ≤ TSR. The conflict potential at any
moment is determined by NO

NA
. If the transaction TTSR with

timestamp TSR is the oldest among all active transactions,
then the ratio is 1

NA
, and processing TTSR has the least con-

flict potential. On the other hand, if TTSR is the youngest

transaction, then the ratio is NA
NA

= 100%, and processing

TTSR has the highest conflict potential. Rubato DB regu-
lates the socket monitor not process any request when the
oldest waiting transaction is not among the older 20%.

5. PERFORMANCE EVALUATION
In this section, we report various experiments, focusing

on the performance evaluation of Rubato DB. The main
purposes of experiments are:

1. What is scalability of Rubato DB for the OLTP applica-
tions requiring ACID properties?

2. Is Rubato DB capable of handling both OLTP and big
data applications using a collection of commodity servers?

3. What are performance comparisons between Rubato DB
and NoSQL systems in big data applications?

Since Rubato DB is developed using the proposed new for-
mula protocol for concurrency and the staged grid database
architecture, the answers to aforementioned questions also
provide an assessment to the FPC and the new architecture.

We also present some interesting experiments conducted
during the development of Rubato DB that provide much
needed insights to FPC and the staged architecture. Partic-
ularly, answers are given to the following questions:

4. If numerous conflict operations access data items dis-
tributed over multiple nodes in an OLTP application,
what is the impact on the performance of FPC?

5. In developing an application using the staged architec-
ture, what is a better choice of using either single-thread
or multiple-threads?

5.1 Experimental Setup and Benchmark
All the experiments reported in this paper use a collection

of (up to 16) commodity servers connected with a Gigabit
LAN with low network latency. More specifically,

1. Each server has dual quad-core Intel Xeon CPUs, 32 GB
of main memory, SATA disks configured in RAID0.

2. All of the servers are running Linux Ubuntu 12.04 LTS.

3. A Rubato DB server runs on the collection of servers as
one database instance.

In order to measure performance of Rubato DB and com-
pare its performance with other systems, two standard bench-
marks are used. The TPC-C benchmark [29] is a com-
prehensive database benchmark test that continues to be

a popular yardstick for comparing OLTP performance on
various hardware and software configurations. The Yahoo
Cloud Serving Benchmark (YCSB) [11] is a data serving
benchmark widely used to measure throughput and latency
with varying operations distribution for big data systems.

5.2 Scalability of Rubato DB under TPC-C
The first set of experiments are conducted to measure

scalability of Rubato DB8 for OLTP applications using the
TPC-C Benchmark. TPC-C performance is measured in
tpmC (i.e., the number of New-Order transactions per minute).
The benchmark can be scaled up by increasing the number
of warehouses and hence the number of concurrent clients.

We firstly investigate the capacity of a single server system
by scaling up the RAM size (i.e., 32 GB, 64 GB, 128 GB).
We deploy all staged modules in one server. The test is
conducted by increasing the number of clients from 1000
to 20000 (each warehouse has 10 clients as per the TPC-C
specification). Figure 5 shows the CPUs can achieve high
utilization with 128 GB RAM. Considering we only have
a collection of commodity servers with 32 GB RAM, in the
following tests, we strictly comply with TPC-C specification
with one exception that is setting 50 clients per warehouse
in order to make the best of the computing resources we
have. Figure 5 shows that our results will still stand if we
fully comply with TPC-C specification, i.e., 10 clients per
warehouse if we had 16 servers with 128G memory each.

Figure 5: Scaling up with Memory Size
To test scalability of Rubato DB, we continue the exper-

iments by increasing the number of concurrent clients from
25,000, at the full capacity of one server, to 47,500 using two
servers, to 85,000 using four servers, and all way to 325,000
clients using 16 servers9. The latency of all TPC-C tests sat-
isfies the benchmark specification, and as a matter of fact,
all transactions are completed within 0.6 second. The per-
formance of scalability is summarized in Table 2, and all
details are presented in Figure 6. There are two types of
nodes when the system size is greater than one. Compared
with non-main nodes, the main-node also includes an addi-
tional socket monitor stage and simulates the client requests
of the TPC-C test program10.

The tests show that the system works smoothly by allocat-
ing more computing resources gradually to handle growing
client base. The CPU and RAM usage percentage increases

8By using“SET TRANSACTION ISOLATION LEVEL SE-
RIALIZABLE”, Rubato DB provides serializable transac-
tion semantics guarantee.
9Rubato DB is currently implemented as a research system
in the university lab, and its performance may still be im-
proved dramatically comparing with those commercial ones.

10We do not need dedicated client servers for simplicity and
minimal hardware cost.

(a) 1-node (b) 2-nodes (c) 4-nodes

(d) 8-nodes (e) 16-nodes (f) scalability

Figure 6: TPC-C Benchmark Performance

wareh. size clients servers tpmC

500 72 GB 25000 1 28935
950 135 GB 47500 2 55390

1700 245 GB 85000 4 105572
3200 464 GB 160000 8 184524
6500 943 GB 325000 16 363759

Table 2: TPC-C results

linearly with the growing client number. However, when
the system reaches its full capacity, increasing the number
of clients will decrease the tpmC. Then the system needs to
scale out by adding more servers. The results clearly demon-
strate that Rubato DB is scalable for OLTP applications
in that the throughput of the benchmark satisfies a linear
growth with the increase of the number of servers used. The
overall throughput of Rubato DB with different system sizes
is plotted in Figure 6(f), which shows the achieved through-
put (tpmC) and the rollback ratio on top of the commodity
servers cluster. The rollback ratio is stable at a low level of
0.05% as the number of nodes increases. Our experiments
also verify that the FPC is scalable in distributed database
environment without decreasing the performance.

Another interesting observation is that by using the pro-
posed formula protocol for concurrency and the new staged
grid database architecture, we can develop a large scale of
database applications running on a collection of commodity
servers, without using expensive network-attached storage
(NAS) systems and/or cluster servers.

5.3 Conflict Operations over Different Nodes
This set of experiments are design to investigate the im-

pact on the performance of OLTP applications using the
formula protocol for concurrency when a large percentage
of conflict operations accessing data items distributed over
multiple different grid nodes.

We execute a workload derived from the TPC-C bench-
mark by involving remote guest clients. With remote guest
clients, transactions will need to access multiple table parti-
tions across multiple nodes, adding additional network over-
head. The performance of the TPC-C benchmark tests with
the remote guest accesses varying from 1%, 10%, 20%, and
30% are presented in Figure 7.

Figure 7: Impact of Remote Guest Clients
Rubato DB runs smoothly and correctly11 with various

percentages of remote guest accesses. As expected, the im-
plementation of FPC does not limit the scalability, unless
extensive conflicts occur over distributed nodes, as shown
by the performance declining with the increase of remote
guest accesses in Figure 7: with 10% remote guest accesses,
the throughput of the TPC-C test reduces to about 80% on 8
and 16 grid nodes. The performance further reduces to 65%
with 20% remote guest accesses. With 30% remote guest
accesses, the performance may decrease nearly by half. We
believe that the performance repercussions increase relative
to the number of nodes mainly because of the communica-
tion cost among distributed nodes, which leaves room for
improvement of the FPC.

11TPC-C check program is conducted to verify all constraint
conditions are passed.

5.4 Stages vs. Threads
Different from traditional databases using multi-threads

for parallelism, and staged event-driven architecture appli-
cations using multi-threads in their stages, Rubato DB is
implemented with a single-thread in each and every staged
module in its architecture, partially due to the results demon-
strated by the experiment below.

Figure 8: Throughput Comparison

We conducted a sequence of experiments for performance
comparison of Rubato DB using single-thread stages vs.
multi-threads stages running on a collection of 4 commodity
servers. The results are presented in Figure 8. It clearly
demonstrates that the superior scalability of the system us-
ing a single thread delivers much better performance than
that of the system using multiple threads. It has been re-
ported that the multiple threads may pay a heavy price in
context switching, especially in transactional processes in-
volving high code foot-print and exhibiting irregular data
access patterns [16, 25].

5.5 Performance on YCSB Benchmark
In this set of experiments, we use YCSB benchmark to

evaluate the performance of Rubato DB and other typi-
cal systems for big data applications including Cassandra12

(an open-source key-value store), HBase13 (a open-source
Bigtable [8] system) and MySQL Cluster14 (a scalable rela-
tional data store). By setting “AUTO COMMIT ON” op-
tion in Rubato DB, each statement issued from any client
will be committed automatically regardless of the state of
transactions. We use the implemented YCSB client pro-
grams15 for testing two kinds of workloads: read intensive
workload (95% read and 5% write operations) and write in-
tensive workload (50% read and 50% write operations). The
size of the data is set to 100 million 1KB records for each
node, resulting around 120GB of raw data per node. In
the experiments, a continuous mixed workload is submitted
into the system as per the specification, and the benchmark
then measures the performance in terms of throughput (op-
erations/sec) and latency (in milliseconds).

The experiments are conducted on all four systems with
the number of nodes as 1, 2, 4, 8, and 1216. The system over-
all throughput comparison is plotted in Figure 9(a), 10(a)

12http://cassandra.apache.org/
13http://hbase.apache.org/
14http://www.mysql.com/cluster/
15https://github.com/brianfrankcooper/ycsb/
16Our experiments do not use replications. With replica-
tions the performance may be improved due to parallel read,
the writing effect varies with different update synchroniza-
tion/asynchronization strategies.

and the corresponding latency of read and write operation
is shown in Figure 9(b),(c), 10(b),(c) respectively.

Our experiments clearly demonstrate the following:

(a) Rubato DB scales well with increasing throughput and
flat latency. That is, more workload can be handled
by adding more server nodes into the system.

(b) Overall, the performance of Rubato DB is comparable
with that of other popular big data storage systems.

Readers may also find out that the scalability of Rubato
DB is comparable to Cassandra, and better than MySQL
Cluster. Further, the write latencies for Rubato DB are
higher than read latencies, since the update mechanism in
the Rubato DB system is designed to provide low read la-
tency at the cost of high write latency.

As a matter of fact, the soft state in BASE properties
presents challenges for developers, because it requires com-
plex and error-prone mechanisms to reason about the cor-
rectness of the system state. With the FPC, Rubato DB can
achieve a higher consistency level-BASIC (Basic Availability,
Scalability, Instant Consistency) to get rid of soft state.

5.6 Experimental Summary
The performance experiments of Rubato DB reported in

this entire section not just provide answers to questions
listed earlier but also provide much needed insights to chal-
lenges of scalability and ACID/BASE properties.

1. Rubato DB is highly scalable and efficient for OLTP ap-
plications supporting the ACID properties.

2. The performance of Rubato DB is comparable with many
NoSQL systems for key-value store applications support-
ing BASE properties.

3. Rubato DB is capable of handling both OLTP and big
data applications on a collection of commodity servers.

4. Rubato DB is considerably cost effective.

5. It is better to use a single thread for all stages in the
staged architecture.

6. The scalability of OLTP applications is not limited by us-
ing FPC, unless a large percentage of conflict operations
access data items distributed over different grid nodes.

6. CONCLUSIONS
In this paper we have introduced a highly scalable database

management system, namely Rubato DB, that can be elas-
tically deployed in the grid distributed environment. Exten-
sive experiments on different typical benchmarks verify that
the staged grid architecture and the FPC protocol make Ru-
bato DB a satisfactory solution for achieving scalability with
both ACID and BASE properties.

7. REFERENCES
[1] A. Abouzeid and etc. Hadoopdb: an architectural

hybrid of mapreduce and dbms technologies for
analytical workloads. In PVLDB, pages 922–933, 2009.

[2] M. K. Aguilera, A. Merchant, and etc. Sinfonia: A
new paradigm for building scalable distributed
systems. volume 27, pages 5:1–5:48.

[3] P. Alvaro, N. Conway, J. Hellerstein, and W. R.
Marczak. Consistency analysis in bloom: a calm and
collected approach. In CIDR, pages 249–260, 2011.

[4] J. Baker, C. Bond, J. Corbett, and etc. Megastore:
Providing scalable, highly available storage for
interactive services. In CIDR, pages 223–234, 2011.

(a) Throughput (b) Read latency (c) Write latency
Figure 9: Performance Results for Read-intensive Workload

(a) Throughput (b) Read latency (c) Write latency
Figure 10: Performance Results for Write-intensive Workload

[5] S. Blott and H. F. Korth. An almost-serial protocol
for transaction execution in main-memory database
systems. In PVLDB, pages 706–717, 2002.

[6] M. Brantner, D. Florescu, and etc. Building a
database on s3. In SIGMOD, pages 251–264, 2008.

[7] R. Chaiken, B. Jenkins, and etc. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1(2):1265–1276, Aug. 2008.

[8] F. Chang, J. Dean, S. Ghemawat, and etc. Bigtable:
A distributed storage system for structured data. In
ACM TOCS, volume 26, pages 1–26, 2008.

[9] J. Cohen, B. Dolan, and etc. Mad skills: new analysis
practices for big data. PVLDB, 2(2):1481–1492, 2009.

[10] B. F. Cooper and etc. Pnuts: Yahoo!’s hosted data
serving platform. In VLDB, pages 1277–1288, 2008.

[11] B. F. Cooper and etc. Benchmarking cloud serving
systems with ycsb. In SoCC, pages 143–154, 2010.

[12] J. C. Corbett and etc. Spanner: Google’s
globally-distributed database. In OSDI, pages
251–264, 2012.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Commun.of
ACM, volume 51, pages 107–113, 2008.

[14] G. DeCandia, D. Hastorun, and etc. Dynamo:
Amazon’s highly available key-value store. In SOSP,
pages 205–220, 2007.

[15] A. Fekete, D. Liarokapis, and etc. Making snapshot
isolation serializable. In TODS, volume 30, pages
492–528, 2005.

[16] S. Harizopoulos and A. Ailamaki. A case for staged
database systems. In CIDR, 2003.

[17] M. Isard, M. Budiu, and etc. Dryad: distributed
data-parallel programs from sequential building
blocks. ACM SIGOPS, 41(3):59–72, 2007.

[18] R. Kallman and etc. H-store: a high-performance,
distributed main memory transaction processing
system. In VLDB, pages 1496–1499, 2008.

[19] A. Lakshman. Cassandra: a decentralized structured
storage system. In SIGOPS, pages 35–40, 2010.

[20] P.-A. Larson, S. Blanas, and etc. High-performance
concurrency control mechanisms for main-memory
databases. In PVLDB, volume 5, pages 298–309, 2011.

[21] K. Manassiev and etc. Exploiting distributed version
concurrency in a transactional memory cluster. In
ACM SIGPLAN, pages 198–208. ACM, 2006.

[22] S. Melnik and etc. Dremel: interactive analysis of
web-scale datasets. PVLDB, 3(1-2):330–339, 2010.

[23] J. Rao and etc. Using paxos to build a scalable,
consistent, and highly available datastore. volume 4,
pages 243–254. VLDB Endowment, 2011.

[24] M. Stonebraker and R. Cattell. 10 rules for scalable
performance in ’simple operation’ datastores.
Commun. ACM, 54(6):72–80, June 2011.

[25] M. Stonebraker, S. Madden, and etc. The end of an
architectural era: (it’s time for a complete rewrite). In
VLDB, pages 1150–1160, 2007.

[26] R. Thomas. A solution to the concurrency control
problem for multiple copy databases. In Digest of
papers IEEE COMPCON spring, pages 56–62, 1984.

[27] A. Thomson, T. Diamond, and etc. Calvin: fast
distributed transactions for partitioned database
systems. In SIGMOD, pages 1–12, 2012.

[28] A. Thusoo, J. S. Sarma, and etc. Hive: a warehousing
solution over a map-reduce framework. volume 2,
pages 1626–1629. VLDB Endowment, Aug. 2009.

[29] TPC-C. http://www.tpc.org/tpcc/. 2010.

[30] VoltDB. http://voltdb.com/products/technology.

[31] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. In SOSP, pages 230–243, 2001.

