
ANSI/ISO/IEC Internationa l Standar d (IS)

Database Language SQL — Part 2: Foundation (SQL/Foundation)

«Part 2»

September 1999

Jim Melton

ISO/IEC 9075-2:1999 (E)

Contents Page

Foreword . xv

Introduction . xxv

1 Scope . 1

2 Normative references . 3

3 Definitions, notations, and conventions . 5
3.1 Definitions . 5
3.1.1 Definitions taken from ISO/IEC 10646 . 5
3.1.2 Definitions taken from Unicode . 5
3.1.3 Definitions taken from ISO 8601 . 6
3.1.4 Definitions taken from Part 1 . 6
3.1.5 Definitions provided in Part 2 . 6
3.2 Notation . 10
3.3 Conventions . 10
3.3.1 Use of terms . 10
3.3.1.1 Syntactic containment . 10

4 Concepts . 11
4.1 Data types . 11
4.2 Character strings . 13
4.2.1 Character strings and collating sequences . 13
4.2.2 Operations involving character strings . 14
4.2.2.1 Operators that operate on character strings and return character strings 14
4.2.2.2 Other operators involving character strings . 15
4.2.2.3 Operations involving large object character strings . 15
4.2.3 Rules determining collating sequence usage . 16
4.2.4 Named character sets . 18
4.3 Binary strings . 20
4.3.1 Binary string comparison . 21
4.3.2 Operations involving binary strings . 21
4.3.2.1 Operators that operate on binary strings and return binary strings 21
4.3.2.2 Other operators involving binary strings . 21
4.4 Bit strings . 21
4.4.1 Bit string comparison and assignment . 22

ii Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

4.4.2 Operations involving bit strings . 22
4.4.2.1 Operators that operate on bit strings and return bit strings 22
4.4.2.2 Other operators involving bit strings . 22
4.5 Numbers . 22
4.5.1 Characteristics of numbers . 22
4.5.2 Operations involving numbers . 23
4.6 Boolean types . 24
4.6.1 Comparison and assignment of booleans . 24
4.6.2 Operations involving booleans . 24
4.6.2.1 Operations on booleans that return booleans . 24
4.6.2.2 Other operators involving booleans . 24
4.7 Datetimes and intervals . 24
4.7.1 Datetimes . 25
4.7.2 Intervals . 27
4.7.3 Operations involving datetimes and intervals . 29
4.8 User-defined types . 30
4.8.1 Observers and mutators . 32
4.8.2 Constructors . 32
4.8.3 Subtypes and supertypes . 32
4.8.4 User-defined type comparison and assignment . 33
4.8.5 Transforms for user-defined types . 34
4.9 Row types . 35
4.10 Reference types . 35
4.10.1 Operations involving references . 36
4.11 Collection types . 36
4.11.1 Arrays . 36
4.11.2 Collection comparison . 37
4.11.3 Operations involving collections . 37
4.11.3.1 Operators that operate on array values and return array elements 37
4.11.3.2 Operators that operate on array values and return array values 37
4.12 Type conversions and mixing of data types . 37
4.13 Data conversions . 39
4.14 Domains . 40
4.15 Columns, fields, and attributes . 40
4.16 Tables . 42
4.16.1 Types of tables . 44
4.16.2 Referenceable tables, subtables, and supertables . 45
4.16.3 Operations involving tables . 46
4.17 Integrity constraints . 48
4.17.1 Checking of constraints . 48
4.17.2 Table constraints . 49
4.17.3 Domain constraints . 50
4.17.4 Assertions . 50
4.18 Functional dependencies . 50
4.18.1 General rules and definitions . 51

Contents iii

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

4.18.2 Known functional dependencies in a base table . 52
4.18.3 Known functional dependencies in <table value constructor> . 53
4.18.4 Known functional dependencies in a <joined table> . 53
4.18.5 Known functional dependencies in a <table reference> . 54
4.18.6 Known functional dependencies in the result of a <from clause> . 55
4.18.7 Known functional dependencies in the result of a <where clause> 55
4.18.8 Known functional dependencies in the result of a <group by clause> 56
4.18.9 Known functional dependencies in the result of a <having clause> 56
4.18.10 Known functional dependencies in a <query specification> . 56
4.18.11 Known functional dependencies in a <query expression> . 57
4.19 Candidate keys . 58
4.20 SQL-schemas . 59
4.21 SQL-client modules . 59
4.22 Externally-invoked procedures . 60
4.23 SQL-invoked routines . 61
4.24 Built-in functions . 67
4.25 SQL-paths . 67
4.26 Host parameters . 68
4.26.1 Status parameters . 68
4.26.2 Data parameters . 69
4.26.3 Indicator parameters . 69
4.26.4 Locators . 69
4.27 Diagnostics area . 70
4.28 Standard programming languages . 70
4.29 Cursors . 71
4.30 SQL-statements . 73
4.30.1 Classes of SQL-statements . 73
4.30.2 SQL-statements classified by function . 73
4.30.3 SQL-statements and transaction states . 76
4.30.4 SQL-statement atomicity . 77
4.31 Basic security model . 77
4.31.1 Authorization identifiers . 77
4.31.1.1 SQL-session authorization identifiers . 78
4.31.1.2 SQL-client module authorization identifiers . 79
4.31.1.3 SQL-schema authorization identifiers . 79
4.31.2 Privileges . 79
4.31.3 Roles . 81
4.31.4 Security model definitions . 81
4.32 SQL-transactions . 82
4.33 SQL-connections . 86
4.34 SQL-sessions . 87
4.34.1 Execution contexts . 89
4.35 Triggers . 90
4.35.1 Triggered actions . 90
4.35.2 Execution of triggers . 91

iv Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

4.36 Client-server operation . 92

5 Lexical elements . 93
5.1 <SQL terminal character> . 93
5.2 <token> and <separator> . 96
5.3 <literal> . 105
5.4 Names and identifiers . 113

6 Scalar expressions . 121
6.1 <data type> . 121
6.2 <field definition> . 130
6.3 <value specification> and <target specification> . 132
6.4 <contextually typed value specification> . 136
6.5 <identifier chain> . 138
6.6 <column reference> . 141
6.7 <SQL parameter reference> . 143
6.8 <field reference> . 144
6.9 <attribute or method reference> . 145
6.10 <method reference> . 146
6.11 <method invocation> . 147
6.12 <static method invocation> . 149
6.13 <element reference> . 151
6.14 <dereference operation> . 152
6.15 <reference resolution> . 153
6.16 <set function specification> . 155
6.17 <numeric value function> . 159
6.18 <string value function> . 164
6.19 <datetime value function> . 175
6.20 <interval value function> . 177
6.21 <case expression> . 178
6.22 <cast specification> . 181
6.23 <value expression> . 197
6.24 <new specification> . 200
6.25 <subtype treatment> . 201
6.26 <numeric value expression> . 202
6.27 <string value expression> . 204
6.28 <datetime value expression> . 209
6.29 <interval value expression> . 212
6.30 <boolean value expression> . 216
6.31 <array value expression> . 219
6.32 <array value constructor> . 221

7 Query expressions . 223
7.1 <row value constructor> . 223
7.2 <row value expression> . 226
7.3 <table value constructor> . 227

Contents v

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

7.4 <table expression> . 229
7.5 <from clause> . 230
7.6 <table reference> . 232
7.7 <joined table> . 238
7.8 <where clause> . 244
7.9 <group by clause> . 245
7.10 <having clause> . 256
7.11 <query specification> . 258
7.12 <query expression> . 265
7.13 <search or cycle clause> . 279
7.14 <subquery> . 283

8 Predicates . 285
8.1 <predicate> . 285
8.2 <comparison predicate> . 287
8.3 <between predicate> . 295
8.4 <in predicate> . 296
8.5 <like predicate> . 298
8.6 <similar predicate> . 304
8.7 <null predicate> . 309
8.8 <quantified comparison predicate> . 310
8.9 <exists predicate> . 312
8.10 <unique predicate> . 313
8.11 <match predicate> . 314
8.12 <overlaps predicate> . 316
8.13 <distinct predicate> . 318
8.14 <type predicate> . 320
8.15 <search condition> . 322

9 Data assignment rules and routine determination . 323
9.1 Retrieval assignment . 323
9.2 Store assignment . 328
9.3 Data types of results of aggregations . 333
9.4 Subject routine determination . 336
9.5 Type precedence list determination . 337
9.6 Host parameter mode determination . 342
9.7 Type name determination . 344

10 Additional common elements . 347
10.1 <interval qualifier> . 347
10.2 <language clause> . 351
10.3 <path specification> . 353
10.4 <routine invocation> . 354
10.5 <privileges> . 374
10.6 <character set specification> . 379
10.7 <specific routine designator> . 381

vi Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

10.8 <collate clause> . 384
10.9 <constraint name definition> and <constraint characteristics> . 385
10.10 Execution of BEFORE triggers . 387
10.11 Execution of AFTER triggers . 388
10.12 Execution of triggers . 389
10.13 Execution of array-returning functions . 390
10.14 Data type identity . 393
10.15 Determination of a from-sql function . 395
10.16 Determination of a from-sql function for an overriding method . 396
10.17 Determination of a to-sql function . 397
10.18 Determination of a to-sql function for an overriding method . 398

11 Schema definition and manipulation . 399
11.1 <schema definition> . 399
11.2 <drop schema statement> . 402
11.3 <table definition> . 404
11.4 <column definition> . 412
11.5 <default clause> . 418
11.6 <table constraint definition> . 422
11.7 <unique constraint definition> . 424
11.8 <referential constraint definition> . 426
11.9 <check constraint definition> . 440
11.10 <alter table statement> . 442
11.11 <add column definition> . 444
11.12 <alter column definition> . 445
11.13 <set column default clause> . 446
11.14 <drop column default clause> . 447
11.15 <add column scope clause> . 448
11.16 <drop column scope clause> . 449
11.17 <drop column definition> . 451
11.18 <add table constraint definition> . 453
11.19 <drop table constraint definition> . 454
11.20 <drop table statement> . 456
11.21 <view definition> . 459
11.22 <drop view statement> . 469
11.23 <domain definition> . 471
11.24 <alter domain statement> . 474
11.25 <set domain default clause> . 475
11.26 <drop domain default clause> . 476
11.27 <add domain constraint definition> . 477
11.28 <drop domain constraint definition> . 478
11.29 <drop domain statement> . 479
11.30 <character set definition> . 481
11.31 <drop character set statement> . 483
11.32 <collation definition> . 485
11.33 <drop collation statement> . 487

Contents vii

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

11.34 <translation definition> . 489
11.35 <drop translation statement> . 491
11.36 <assertion definition> . 493
11.37 <drop assertion statement> . 495
11.38 <trigger definition> . 497
11.39 <drop trigger statement> . 501
11.40 <user-defined type definition> . 502
11.41 <attribute definition> . 517
11.42 <alter type statement> . 520
11.43 <add attribute definition> . 521
11.44 <drop attribute definition> . 523
11.45 <add original method specification> . 525
11.46 <add overriding method specification> . 531
11.47 <drop method specification> . 535
11.48 <drop data type statement> . 537
11.49 <SQL-invoked routine> . 541
11.50 <alter routine statement> . 562
11.51 <drop routine statement> . 565
11.52 <user-defined cast definition> . 567
11.53 <drop user-defined cast statement> . 569
11.54 <user-defined ordering definition> . 571
11.55 <drop user-defined ordering statement> . 574
11.56 <transform definition> . 576
11.57 <drop transform statement> . 579

12 Access control . 583
12.1 <grant statement> . 583
12.2 <grant privilege statement> . 588
12.3 <role definition> . 591
12.4 <grant role statement> . 592
12.5 <drop role statement> . 594
12.6 <revoke statement> . 595

13 SQL-client modules . 611
13.1 <SQL-client module definition> . 611
13.2 <module name clause> . 615
13.3 <externally-invoked procedure> . 616
13.4 Calls to an <externally-invoked procedure> . 619
13.5 <SQL procedure statement> . 633
13.6 Data type correspondences . 641

14 Data manipulation . 651
14.1 <declare cursor> . 651
14.2 <open statement> . 657
14.3 <fetch statement> . 659
14.4 <close statement> . 663

viii Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

14.5 <select statement: single row> . 665
14.6 <delete statement: positioned> . 667
14.7 <delete statement: searched> . 670
14.8 <insert statement> . 673
14.9 <update statement: positioned> . 677
14.10 <update statement: searched> . 684
14.11 <temporary table declaration> . 690
14.12 <free locator statement> . 692
14.13 <hold locator statement> . 693
14.14 Effect of deleting rows from base tables . 694
14.15 Effect of deleting some rows from a derived table . 696
14.16 Effect of deleting some rows from a viewed table . 698
14.17 Effect of inserting tables into base tables . 699
14.18 Effect of inserting a table into a derived table . 701
14.19 Effect of inserting a table into a viewed table . 703
14.20 Effect of replacing rows in base tables . 704
14.21 Effect of replacing some rows in a derived table . 706
14.22 Effect of replacing some rows in a viewed table . 708

15 Control statements . 711
15.1 <call statement> . 711
15.2 <return statement> . 712

16 Transaction management . 715
16.1 <start transaction statement> . 715
16.2 <set transaction statement> . 717
16.3 <set constraints mode statement> . 719
16.4 <savepoint statement> . 721
16.5 <release savepoint statement> . 722
16.6 <commit statement> . 723
16.7 <rollback statement> . 725

17 Connection management . 727
17.1 <connect statement> . 727
17.2 <set connection statement> . 730
17.3 <disconnect statement> . 732

18 Session management . 735
18.1 <set session characteristics statement> . 735
18.2 <set session user identifier statement> . 736
18.3 <set role statement> . 737
18.4 <set local time zone statement> . 738

19 Diagnostics management . 739
19.1 <get diagnostics statement> . 739

Contents ix

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

20 Information Schema . 751
20.1 Introduction to Information Schema and Definition Schema . 751
20.2 INFORMATION_SCHEMA Schema . 752
20.3 INFORMATION_SCHEMA_CATALOG_NAME base table . 753
20.4 CARDINAL_NUMBER domain . 754
20.5 CHARACTER_DATA domain . 754
20.6 SQL_IDENTIFIER domain . 755
20.7 TIME_STAMP domain . 755
20.8 ADMINISTRABLE_ROLE_AUTHORIZATIONS view . 756
20.9 APPLICABLE_ROLES view . 757
20.10 ASSERTIONS view . 758
20.11 ATTRIBUTES view . 759
20.12 CHARACTER_SETS view . 761
20.13 CHECK_CONSTRAINTS view . 762
20.14 COLLATIONS view . 763
20.15 COLUMN_DOMAIN_USAGE view . 764
20.16 COLUMN_PRIVILEGES view . 765
20.17 COLUMN_UDT_USAGE view . 766
20.18 COLUMNS view . 767
20.19 CONSTRAINT_COLUMN_USAGE view . 769
20.20 CONSTRAINT_TABLE_USAGE view . 770
20.21 DATA_TYPE_PRIVILEGES view . 771
20.22 DIRECT_SUPERTABLES view . 772
20.23 DIRECT_SUPERTYPES view . 773
20.24 DOMAIN_CONSTRAINTS view . 774
20.25 DOMAIN_UDT_USAGE view . 775
20.26 DOMAINS view . 776
20.27 ELEMENT_TYPES view . 777
20.28 ENABLED_ROLES view . 778
20.29 FIELDS view . 779
20.30 KEY_COLUMN_USAGE view . 780
20.31 METHOD_SPECIFICATION_PARAMETERS view . 781
20.32 METHOD_SPECIFICATIONS view . 783
20.33 PARAMETERS view . 785
20.34 REFERENCED_TYPES view . 787
20.35 REFERENTIAL_CONSTRAINTS view . 788
20.36 ROLE_COLUMN_GRANTS view . 789
20.37 ROLE_ROUTINE_GRANTS view . 790
20.38 ROLE_TABLE_GRANTS view . 791
20.39 ROLE_TABLE_METHOD_GRANTS view . 792
20.40 ROLE_USAGE_GRANTS view . 793
20.41 ROLE_UDT_GRANTS view . 794
20.42 ROUTINE_COLUMN_USAGE view . 795
20.43 ROUTINE_PRIVILEGES view . 796
20.44 ROUTINE_TABLE_USAGE view . 797

x Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

20.45 ROUTINES view . 798
20.46 SCHEMATA view . 800
20.47 SQL_FEATURES view . 801
20.48 SQL_IMPLEMENTATION_INFO view . 802
20.49 SQL_LANGUAGES view . 803
20.50 SQL_PACKAGES view . 804
20.51 SQL_SIZING view . 805
20.52 SQL_SIZING_PROFILES view . 806
20.53 TABLE_CONSTRAINTS view . 807
20.54 TABLE_METHOD_PRIVILEGES view . 808
20.55 TABLE_PRIVILEGES view . 809
20.56 TABLES view . 810
20.57 TRANSFORMS view . 811
20.58 TRANSLATIONS view . 812
20.59 TRIGGERED_UPDATE_COLUMNS view . 813
20.60 TRIGGER_COLUMN_USAGE view . 814
20.61 TRIGGER_TABLE_USAGE view . 815
20.62 TRIGGERS view . 816
20.63 USAGE_PRIVILEGES view . 817
20.64 UDT_PRIVILEGES view . 818
20.65 USER_DEFINED_TYPES view . 819
20.66 VIEW_COLUMN_USAGE view . 821
20.67 VIEW_TABLE_USAGE view . 822
20.68 VIEWS view . 823
20.69 Short name views . 824
20.70 Definition of SQL built-in functions . 835

21 Definition Schema . 847
21.1 Introduction to the Definition Schema . 847
21.2 DEFINITION_SCHEMA Schema . 848
21.3 EQUAL_KEY_DEGREES assertion . 849
21.4 KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_1 assertion . 850
21.5 UNIQUE_CONSTRAINT_NAME assertion . 851
21.6 ASSERTIONS base table . 852
21.7 ATTRIBUTES base table . 853
21.8 CHARACTER_SETS base table . 855
21.9 CHECK_COLUMN_USAGE base table . 857
21.10 CHECK_TABLE_USAGE base table . 858
21.11 CHECK_CONSTRAINTS base table . 859
21.12 COLLATIONS base table . 860
21.13 COLUMN_PRIVILEGES base table . 862
21.14 COLUMNS base table . 864
21.15 DATA_TYPE_DESCRIPTOR base table . 867
21.16 DIRECT_SUPERTABLES base table . 874
21.17 DIRECT_SUPERTYPES base table . 876
21.18 DOMAIN_CONSTRAINTS base table . 878

Contents xi

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

21.19 DOMAINS base table . 880
21.20 ELEMENT_TYPES base table . 881
21.21 FIELDS base table . 882
21.22 KEY_COLUMN_USAGE base table . 884
21.23 METHOD_SPECIFICATION_PARAMETERS base table . 886
21.24 METHOD_SPECIFICATIONS base table . 888
21.25 PARAMETERS base table . 891
21.26 REFERENCED_TYPES base table . 893
21.27 REFERENTIAL_CONSTRAINTS base table . 894
21.28 ROLE_AUTHORIZATION_DESCRIPTORS base table . 896
21.29 ROLES base table . 898
21.30 ROUTINE_COLUMN_USAGE base table . 899
21.31 ROUTINE_PRIVILEGES base table . 901
21.32 ROUTINE_TABLE_USAGE base table . 903
21.33 ROUTINES base table . 905
21.34 SCHEMATA base table . 910
21.35 SQL_FEATURES base table . 911
21.36 SQL_IMPLEMENTATION_INFO base table . 913
21.37 SQL_LANGUAGES base table . 914
21.38 SQL_SIZING base table . 918
21.39 SQL_SIZING_PROFILES base table . 919
21.40 TABLE_CONSTRAINTS base table . 920
21.41 TABLE_METHOD_PRIVILEGES base table . 922
21.42 TABLE_PRIVILEGES base table . 924
21.43 TABLES base table . 926
21.44 TRANSFORMS base table . 928
21.45 TRANSLATIONS base table . 929
21.46 TRIGGERED_UPDATE_COLUMNS base table . 931
21.47 TRIGGER_COLUMN_USAGE base table . 932
21.48 TRIGGER_TABLE_USAGE base table . 934
21.49 TRIGGERS base table . 936
21.50 USAGE_PRIVILEGES base table . 938
21.51 USER_DEFINED_TYPE_PRIVILEGES base table . 940
21.52 USER_DEFINED_TYPES base table . 942
21.53 USERS base table . 945
21.54 VIEW_COLUMN_USAGE base table . 946
21.55 VIEW_TABLE_USAGE base table . 947
21.56 VIEWS base table . 948

22 Status codes . 951
22.1 SQLSTATE . 951
22.2 Remote Database Access SQLSTATE Subclasses . 958
22.3 SQL Multimedia and Application Packages SQLSTATE Subclasses 958

xii Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

23 Conformance . 961
23.1 General conformance requirements . 961
23.2 Claims of conformance . 962

Annex A SQL Conformance Summary . 965

Annex B Implementation-defined elements . 1017

Annex C Implementation-dependent elements . 1027

Annex D Deprecated features . 1033

Annex E Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996 1035

Annex F SQL feature and package taxonomy . 1041

Index . 1065

Contents xiii

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

TABLES

Tables Page

1 Collating coercibility rules for monadic operators . 17
2 Collating coercibility rules for dyadic operators . 17
3 Collating sequence usage for comparisons . 18
4 Fields in datetime values . 25
5 Datetime data type conversions . 27
6 Fields in year-month INTERVAL values . 27
7 Fields in day-time INTERVAL values . 28
8 Valid values for fields in INTERVAL values . 28
9 Valid operators involving datetimes and intervals . 29
10 SQL-transaction isolation levels and the three phenomena . 84
11 Valid values for datetime fields . 127
12 Valid absolute values for interval fields . 128
13 Truth table for the AND boolean operator . 218
14 Truth table for the OR boolean operator . 218
15 Truth table for the IS boolean operator . 218
16 <null predicate> semantics . 309
17 Standard programming languages . 352
18 Data type correspondences for Ada . 641
19 Data type correspondences for C . 642
20 Data type correspondences for COBOL . 644
21 Data type correspondences for Fortran . 646
22 Data type correspondences for MUMPS . 647
23 Data type correspondences for Pascal . 648
24 Data type correspondences for PL/I . 649
25 <identifier>s for use with <get diagnostics statement> . 741
26 SQL-statement codes . 742
27 SQLSTATE class and subclass values . 952
28 SQLSTATE class codes for RDA . 958
29 SQLSTATE class codes for SQL/MM . 959
30 Implied feature relationships . 961
31 SQL/Foundation feature taxonomy and definition for Core SQL . 1042
32 SQL/Foundation feature taxonomy for features outside Core SQL 1057

xiv Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Foreword

(This foreword is not a part of American National Standard ANSI/ISO/IEC 9075-2:1999.)
This Standard (American National Standard ANSI/ISO/IEC 9075-2:1999, Information Systems —
Database Language — SQL — Part 2: Foundation (SQL/Foundation)), replaces in part American
National Standard X3.135-1992.

This American National Standard adds significant new features and capabilities to the specifications
of the standard that it replaces in part, ANSI X3.135-1992. . It is generally compatible with ANSI
X3.135-1992 in the sense that, with very few exceptions, SQL language that conforms to ANSI
X3.135-1992 also conforms to this American National Standard, and will be treated in the same
way by an implementation of this American National Standard as it would by an implementation
of ANSI X3.135-1992. The known incompatibilities between ANSI X3.135-1992 and this American
National Standard are stated in Informative Annex E, ‘‘Incompatibilities with ISO/IEC 9075:1992
and ISO/IEC 9075-4:1996’’.

Technical changes between ANSI X3.135-1992 and this American National Standard include both
improvements or enhancements to existing features and the definition of new features.

ANSI/ISO/IEC 9075 consists of the following parts, under the general title Information Systems —
Database Language — SQL:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 5: Host Language Bindings (SQL/Bindings)

This American National Standard contains six Informative Annexes that are not considered part of
the Standard:

— Annex A (informative): SQL Conformance Summary.

— Annex B (informative): Implementation-defined elements.

— Annex C (informative): Implementation-dependent elements.

— Annex D (informative): Deprecated features.

— Annex E (informative): Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996.

— Annex F (informative): SQL feature and package taxonomy.

Requests for interpretation, suggestions for improvement or addenda, or defect reports are welcome.
They should be sent to the National Committee for Information Technology Standards (NCITS),
1250 Eye Street, NW, Suite 200, Washington, DC 20005.

Foreword xv

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

This Standard was processed and approved for submittal to ANSI by NCITS. Committee approval
of this Standard does not necessarily imply that all committee members voted for approval. At the
time that it approved this Standard, NCITS had the following members:

NCITS Chairman NCITS Vice Chair NCITS Secretary

Ms. Karen Higgenbottom Mr. Dave Michael Ms. Monica Vago

*Non-Response **Abstain

PRODUCERS=13

Apple Computer Inc.
Mr. David Michael [P]
M/S 301-4F
1 INFINITE LOOP
CUPERTINO CA 95014
+1.408.862.5451
Fax: +1.408.974.2691
deek@apple.com

Mr. Jerry Kellenbenz [A]
M/S 301-4F
1 INFINITE LOOP
CUPERTINO CA 95014
+1.408.974.7341
Fax: +1.408.974.2691
jerryk@taurus.apple.com

Bull HN Information Systems Inc.
Mr. Randall Kilmartin [P]
M/S B58
13430 N. BLACK CANYON HIGHWAY
PHOENIX AZ 85029
+1.602.862.4905
Fax: +1.602.862.3285
randy.kilmartin@bull.com

Compaq Computer Corporation
Mr. Scott Jameson [P]
M/S AKO2-3/D10
50 NAGOG PARK
ACTON MA 01720
+1.508.264.7468
Fax: +1.508.264.7656
scott.jameson@digital.com

Mr. Stephen Heil [A]
M/S 110605
20555 SH249
HOUSTON TX 77269-2000
+1.281.518.0781
Fax: +1.281.518.3519
stephen.heil@compaq.com

xvi Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Hewlett-Packard Company
Ms. Karen Higginbottom [P]
M/S 43UC
19420 HOMESTEAD ROAD
CUPERTINO CA 95014
+1.408.447.3274
Fax: +1.408.447.2247
higginbottom@cup.hp.com

Ms. Wendy Fong [A]
M/S 47U-10
19447 PRUNERIDGE AVENUE
CUPERTINO CA 95014
+1.408.447.4463
Fax: +1.408.447.3995
Wendy_Fong@HP-Cupertino-notes2.om.com

Hitachi American Ltd.
Mr. John Neumann [P]
43533 GOLDEN MEADOW CIRCLE
ASHBURN VA 22011
+1.703.729.4858
Fax: +1.703.729.0304
openstrat@aol.com

Mr. Hal Miyamoto [A]
MS 730
2000 SIERRA POINT PKWY
BRISBANE CA 94005-1835
+1.650.244.7218
Fax: +1.650.244.7250
miyamoth@halsp.hitachi.com

IBM Corporation
Ronald F. Silletti [P]
Program Director of Standards
Intellectual Property & Licensing
IBM Corporation
NORTH CASTLE DRIVE
ARMONK, NY 10504
+1.914.765.4373
Fax: +1.914.765.4420
silletti@us.ibm.com

Mr. Joel Urman [A]
IBM Corporation
M/S NC113, Room 1B111
NORTH CASTLE DRIVE
ARMONK, NY 10504-1785
+1.914.765.4392
Fax: +1.914.765.4420
joelu@us.ibm.com

Foreword xvii

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Lucent Technologies Inc.
Mr. Herbert Bertine [P]
ROOM 4K-316
101 CRAWFORDS CORNER RD
HOLMDEL NJ 07733-3030
+1.908.949.4022
Fax: +1.908.949.1196
hbertine@lucent.com

Mr. Tom Rutt [A]
ROOM 4L-308
101 CRAWFORD CORNER ROAD
HOLMDEL NJ 07733-3030
+1.908.949.7862
Fax: +1.908.949.1196
ter@holta.ho.lucent.com

Microsoft Corp.
Mr. Mark Ryland [P]
ONE MICROSOFT WAY
REDMOND WA 98052
+1.703.757.7430
Fax: +1.425.936.7329
markry@microsoft.com

Mr. John Montgomery [A]
ONE MICROSOFT WAY
REDMOND WA 98072
+1.425.705.2921
Fax: +1.425.936.7329
johnmont@microsoft.com

Panasonic Technologies Inc.
Mr. Judson Hofmann [P]
3RD FLOOR
2 RESEARCH WAY
PRINCETON NJ 08540-6628
+1.609.734.7589
Fax: +1.609.987.0483
hofmann@research.panasonic.com

Mr. Terry J. Nelson [A]
3RD FLOOR
2 RESEARCH WAY
PRINCETON NJ 08540
+1.609.734.7324
Fax: +1.609.987.8827
tnelson@@research.panasonic.com

Sony Electronics Inc.
Mr. Masataka Ogawa [P]
MD: SJ-3B2
3300 ZANKER ROAD
SAN JOSE CA 95134-1940
+1.408.955.5091
Fax: +1.408.955.5066

xviii Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Masataka_Ogawa@asd.sel.sony.com

Mr. Michael Deese [A]
MASS STORAGE DIV
4845 PEARL EAST CIRCLE
BOULDER CO 80301
+1.303.415.5821
Fax: +1.303.447.8198
mike_deese@ccmail.sgo.sony.com

Sun Microsystems Inc.
Mr. Carl Cargill [P]
901 SAN ANTONIO ROAD
MS UMPK 15-214
PALO ALTO CA 94303-6445
+1.650.786.8527
Fax: +1.650.786.6445
carl.cargill@eng.sun.com

Mr. Ken Urquhart [A]
901 SAN ANTONIO ROAD
MS UCUP 02-204
PALO ALTO CA 94303-4900
+1.408.343.1889
ken.urquhart@sun.com

Unisys Corporation
Mr. Arnold F. Winkler [P]
M/S B-254
2450 SWEDESFORD ROAD
+1.610.993.7305
+1.610.695.5473
arnold.winkler@unisys.com

Mr. Stephen Oksala [A]
M/S 203H
2476 SWEDESFORD ROAD
PAOLI PA 19301
+1.610.993.7304
Fax: +1.610.695.4700
oksala@unisys.com

Xerox Corporation
Ms. Jean Baroness [P]
1401 H STREET NW
SUITE 200
WASHINGTON DC 20005
+1.202.414.1205
Fax: +1.202.414.1217
jean_m_baronas@co.xerox.com

Ms. Kathleen O’Reilly [A]
1401 H STREET NW
SUITE 200
WASHINGTON DC 20005
+1.202.414.1295

Foreword xix

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Fax: +1.202.414.1217
kathleen_m_o’reilly@co.xerox.com

CONSUMERS=9

Aonix
Mr. Alexander Nawrocki[P]
5040 SHOREHAM PLACE
SAN DIEGO CA 92122
+1.619.824.0271
Fax:
Rocky@sd.aonix.com

AT&T
Mr. Thomas Frost [P]
ROOM 1A29
20 INDEPENDENCE BLVD
WARREN NJ 07059
+1.908.580.6238
Fax: +1.908.580.6881
tfrost@att.com

Mr. Paul Bartoli [A]
ROOM IL-334
101 CRAWFORDS CORNER ROAD
HOLMDEL NJ 07733-3030
+1.908.949.5965
Fax: +1.908.949.8569
Bartoli@att.com

Omron Corporation
Mr. Tak Natsume [P]
#800
160 W SANTA CLARA STREET
SAN JOSE CA 95113
+1.408.271.5211
Fax: +1.408.271.1721
Natsume@omron.org

Perennial
Mr. Barry Hedquist [P]
SUITE 210
4699 OLD IRONSIDES DRIVE
SANTA CLARA, CA 95054
+1.408.748.2900
Fax: +1.408.748.2909
beh@peren.com

Plum Hall, Inc.
Mr. Thomas Plum [P]
3 WAIHONA
Box 44610
KAMUELA HI 96743
+1.808.882.1255
Fax: +1.808.882.1556
Lana@plumhall.com

xx Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Share Inc.
Mr. Dave Thewlis [P]
2301 C STREET
EUREKA, CA 95501-4108
+1.707.442.0547
Fax: +1.707.442.9342
dthewlis@dcta.com

Sybase, Inc.
Mr. Billy Ho [P]
1650 65th STREET
EMERYVILLE CA 94608
+1.510.922.4416
billy.ho@sybase.com

US Department of Defense/DISA
Mr. Russ Richards [P]
10701 PARKRIDGE BLVD
RESTON VA 20191-4357
+1.703.735.3552
Fax: +1.703.735.3257
richarlr@ncr.disa.mil

Dr. Doris Bernardini [A]
PO BOX 2309
RESTON VA 20195-0309
+1.703.735.3566
Fax: +1.703.735.3257
bernardd@ncr.disa.mi

US Department of Energy
Mr. Bruce White [P]
MA-43 GERMANTOWN BUILDING
19901 GERMANTOWN ROAD
GERMANTOWN MD 20874-1290
+1.301.903.6977
Fax: +1.301.903.4101
bruce.white@hq.doe.gov

Ms. Carol Blackston [A]
MA-43 GERMANTOWN BUILDING
19901 GERMANTOWN ROAD
GERMANTOWN MD 20874-1290
+1.301.903.4294
Fax: +1.301.903.4101
carol.blackston@hq.doe.gov

GENERAL INTEREST=2

Institute for Certification of Computer Professionals
Mr. Kenneth M. Zemrowski [P]
C/O ISN/TRW SUITE C-65
1280 MARYLAND AVENUE SW
WASHINGTON DC 20024
+1.202.479.0085 X225
Fax: +1.202.479.4187

Foreword xxi

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

kenneth.zemrowski@trw.com

Mr. Tom Kurihara [A]
TKSTDS & ASSOCIATES, INC.
5713 6TH STREET, NORTH
ARLINGTON, VA 22205-1013
+1.703.516.9650
Fax: +1.703.516.4688
tkstds@mindspring.com

National Institute of Standards & Technology
Mr. Michael Hogan [P]
BUILDING 820
ROOM 634
GAITHERSBURG MD 20899-0999
+1.301.975.2926
Fax: +1.301.948.1784
m.hogan@nist.gov

Mr. Bruce K. Rosen [A]
BLDG 820
ROOM 562
GAITHERSBURG MD 20899
+1.301.975.3345
Fax: +1.301.926.3696
bruce.rosen@nist.gov

Mr. William LaPlant Jr. [A]
4312 BIRCHLAKE COURT
ALEXANDRIA VA 22309
+1.301.457.4887
Fax: +1.301.457.2299
bill.laplant@census.gov

American National Standard ANSI/ISO/IEC 9075-1:1999 was prepared by Technical Committee
Group NCITS H2, Database, working under the auspices of Accredited National Standards
Committee NCITS (National Committee for Information Technology Standards). Technical
Committee H2 on Database, which developed this Standard, had the following members:

Donald R. Deutsch, Chair

Bruce M. Horowitz, Vice-Chair

Krishna Kulkarni, International Representative

Barry D. Vickers, Treasurer

Michael M. Gorman, Secretary

Jim Melton, Editor

Chuck Campbell Andrew Eisenberg Chris Farrar

xxii Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Keith Hare Doug Inkster Tom Julien

R. Michael Lefler Michael Pantaleo Frank Pellow

Janet Prichard William E. Raab Bruce K. Rosen

Paul Scarponcini Herb Sutter Bie Tie

Fred Zemke

Others holding Technical Committee H2 membership while the committee wa developing this
standard were the following:

Dean A. Anderson Mark Ashworth James Barnette

John Barney Daniel Barton Aime Bayle

David Beech Richard Boyne Andras Budinszky

Amelia Carlson Joe Celko Arthur Culbertson

Judy Dillman T. N. Doraiswamy Shel Finkelstein

Donna Fisher Jeffrey Fried Barry Fritchman

Leonard J. Gallagher Kyle W. Geiger Jim Graham

Tom Harwood Wei Hong Ken Jacobs

Phil Jones Bill Kelley William Kent

William J. Koster Vince Kowalski Melissa LoBiando

Fran Lynch Nelson Mattos Jeff Mischkinsky

M. Reza Monajjemi Santanu Mukhopadhyay Phil Nelson

Kee Ong Emmanuel Onuegbe Dipak Patel

Richard Pedigo Ed Peeler Paul Perkovic

Tom Perry Sherry Petersen William Phillips

Michael Pizzo Mahesh Rao George Raudabaugh

Ed Reynolds Jeff Richey John Sadd

Chander Sarna Robert Saunders David Schnepper

Scott Schnier Christine Semeniuk Larry Settle

Phil Shaw Maurice L. Smith Madhukar Thakur

Yang Tsouya Michael Ubell Murali Venkatrao

Andrew Wade Ken Wilner David Yach

Robert Zeek Hans Zeller

Foreword xxiii

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

1) Clause 1, ‘‘Scope’’, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, ‘‘Normative references’’, identifies additional standards that, through reference in this
part of ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, ‘‘Definitions, notations, and conventions’’, defines the notations and conventions used
in this part of ISO/IEC 9075.

4) Clause 4, ‘‘Concepts’’, presents concepts used in the definition of SQL.

5) Clause 5, ‘‘Lexical elements’’, defines the lexical elements of the language.

6) Clause 6, ‘‘Scalar expressions’’, defines the elements of the language that produce scalar values.

7) Clause 7, ‘‘Query expressions’’, defines the elements of the language that produce rows and
tables of data.

8) Clause 8, ‘‘Predicates’’, defines the predicates of the language.

9) Clause 9, ‘‘Data assignment rules and routine determination’’, specifies the rules for assignments
that retrieve data from or store data into SQL-data, and formation rules for set operations.

10) Clause 10, ‘‘Additional common elements’’, defines additional language elements that are used
in various parts of the language.

11) Clause 11, ‘‘Schema definition and manipulation’’, defines facilities for creating and managing a
schema.

12) Clause 12, ‘‘Access control’’, defines facilities for controlling access to SQL-data.

13) Clause 13, ‘‘SQL-client modules’’, defines SQL-client modules and externally-invoked procedures.

14) Clause 14, ‘‘Data manipulation’’, defines the data manipulation statements.

15) Clause 15, ‘‘Control statements’’, defines the SQL-control statements.

16) Clause 16, ‘‘Transaction management’’, defines the SQL-transaction management statements.

17) Clause 17, ‘‘Connection management’’ defines the SQL-connection management statements.

18) Clause 18, ‘‘Session management’’, defines the SQL-session management statements.

19) Clause 19, ‘‘Diagnostics management’’, defines the diagnostics management facilities.

20) Clause 20, ‘‘Information Schema’’, defines viewed tables that contain schema information.

21) Clause 21, ‘‘Definition Schema’’, defines base tables on which the viewed tables containing
schema information depend.

Introduction xxv

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

22) Clause 22, ‘‘Status codes’’, defines values that identify the status of the execution of SQL-
statements and the mechanisms by which those values are returned.

23) Clause 23, ‘‘Conformance’’, defines the criteria for conformance to this part of ISO/IEC 9075.

24) Annex A, ‘‘SQL Conformance Summary’’, is an informative Annex. It summarizes the confor-
mance requirements of the SQL language.

25) Annex B, ‘‘Implementation-defined elements’’, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-defined.

26) Annex C, ‘‘Implementation-dependent elements’’, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-dependent.

27) Annex D, ‘‘Deprecated features’’, is an informative Annex. It lists features that the responsible
Technical Committee intend will not appear in a future revised version of this part of ISO/IEC
9075.

28) Annex E, ‘‘Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996’’, is an infor-
mative Annex. It lists incompatibilities with the previous version of this part of ISO/IEC
9075.

29) Annex F, ‘‘SQL feature and package taxonomy’’, is an informative Annex. It identifies features
and packages of the SQL language specified in this part of ISO/IEC 9075 by an identifier and
a short descriptive name. This taxonomy is used to specify conformance both to Core SQL and
to the packages specified in this part of ISO/IEC 9075. The feature taxonomy may be used to
develop other profiles involving the SQL language.

In the text of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page, and in Clause 5,
‘‘Lexical elements’’, through Clause 22, ‘‘Status codes’’, Subclauses begin a new page. Any resulting
blank space is not significant.

xxvi Foundation (SQL/Foundation)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9075-2:1999 (E)

Information technology — Database languages — SQL —

Part 2:
Foundation (SQL/Foundation)

1 Scope

This part of ISO/IEC 9075 defines the data structures and basic operations on SQL-data. It provides
functional capabilities for creating, accessing, maintaining, controlling, and protecting SQL-data.

This part of ISO/IEC 9075 specifies the syntax and semantics of a database language:

— For specifying and modifying the structure and the integrity constraints of SQL-data.

— For declaring and invoking operations on SQL-data and cursors.

— For declaring database language procedures.

It also specifies an Information Schema that describes the structure and the integrity constraints of
SQL-data.

This part of ISO/IEC 9075 provides a vehicle for portability of data definitions and compilation units
between SQL-implementations.

This part of ISO/IEC 9075 provides a vehicle for interconnection of SQL-implementations.

This part of ISO/IEC 9075 does not define the method or time of binding between any of:

— database management system components,

— SQL data definition declarations,

— SQL procedures, or

— compilation units.

Implementations of this part of ISO/IEC 9075 may exist in environments that also support applica-
tion programming languages, end-user query languages, report generator systems, data dictionary
systems, program library systems, and distributed communication systems, as well as various tools
for database design, data administration, and performance optimization.

Scope 1

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

2 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

2 Normative references

The following standards contain provisions that, through reference in this text, constitute provisions
of this part of ISO/IEC 9075. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this part of ISO/IEC 9075
are encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information
interchange.

ISO/IEC 1539-1:1997, Information technology — Programming languages — Fortran — Part 1:
Base language.

ISO 1989:1985, Programming languages — COBOL.
(Endorsement of ANSI X3.23-1985).

ISO/IEC 2022:1994, Information technology — Character code structure and extension tech-
niques.

ISO 6160:1979, Programming languages — PL/I
(Endorsement of ANSI X3.53-1976).

ISO/IEC 7185:1990, Information technology — Programming languages — Pascal.

ISO 8601:1988, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO/IEC 8649:1996, Information technology — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO/IEC 8652:1995, Information technology — Programming languages — Ada.

ISO 8824-1:1995, Information technology — Specification of Abstract Syntax Notation One
(ASN.1) — Part 1: Specification of basic notation

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

ISO/IEC FDIS 9075-3:1999, Information technology — Database languages — SQL — Part 3:
Call-Level Interface (SQL/CLI).

ISO/IEC 9075-4:1999, Information technology — Database languages — SQL — Part 4:
Persistent Stored Modules (SQL/PSM).

ISO/IEC 9075-5:1999, Information technology — Database languages — SQL — Part 5: Host
Language Bindings (SQL/Bindings).

Normative references 3

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

ISO/IEC 9579-1:1993, Information technology — Open Systems Interconnection — Remote
Database Access — Part 1: Generic Model, Service, and Protocol.

ISO/IEC 9579-2:1998, Information technology — Open Systems Interconnection — Remote
Database Access — Part 2: SQL Specialization.

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC 9899:1990/Amendment 1:1995, Amendment to ISO/IEC 9899:1990 — C Integrity.

ISO/IEC 10026-2:1996, Information technology — Open Systems Interconnection — Distributed
Transaction Processing — Part 2: OSI TP Service.

ISO/IEC 10206:1991, Information technology — Programming languages — Extended Pascal.

ISO/IEC 11404:1996, Information technology — Programming languages, their environments
and system software interfaces — Language-independent datatypes.

ISO/IEC 11756:1992, Information technology — Programming languages — MUMPS.

ISO/IEC 10646-1:1993, Information technology — Universal Multi-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane.
The Unicode Consortium, The Unicode Standard, Version 2.0, 1996. ISBN 0-201-48345-9.

4 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

3 Definitions, notations, and conventions

3.1 Definitions

For the purposes of this part of ISO/IEC 9075, the following definitions apply.

3.1.1 Definitions taken from ISO/IEC 10646

This part of ISO/IEC 9075 makes use of the following terms defined in ISO/IEC 10646:

a) character

b) coded character

c) coded character set

d) control function

e) private use plane

f) repertoire

3.1.2 Definitions taken from Unicode

This part of ISO/IEC 9075 makes use of the following terms defined in The Unicode Standard:

a) abstract character

b) abstract character sequence

c) canonical decomposition

d) canonical equivalent

e) code value

f) compatibility decomposition

g) compatibility equivalent

h) control character

i) private use

j) surrogate pair

Definitions, notations, and conventions 5

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
3.1 Definitions

3.1.3 Definitions taken from ISO 8601

This part of ISO/IEC 9075 makes use of the following terms defined in ISO 8601:

a) Coördinated Universal Time (UTC)

b) date (‘‘date, calendar’’ in ISO 8601)

3.1.4 Definitions taken from Part 1

This part of ISO/IEC 9075 makes use of all terms defined in ISO/IEC 9075-1.

3.1.5 Definitions provided in Part 2

This part of ISO/IEC 9075 defines the following terms:

a) assignable: The characteristic of a data type that permits a value of that data type to be
assigned to a site of a specified data type. See Subclause 4.12, ‘‘Type conversions and mixing of
data types’’.

b) assignment: An operation that replaces the instance at a site (known as the target) with a new
instance of a (possibly, though not necessarily, different) value (known as the source).

c) attribute: A component (of a structured type) whose characteristics are specified by an at-
tribute descriptor. A value V in structured type T has exactly one attribute value for each
attribute A of T, this being the result of the invocation of A(V) of the observer function for that
attribute.

d) cardinality (of a value of a collection type): The number of elements in that value. Those
elements need not necessarily have distinct values.

e) character repertoire; repertoire: A set of characters used for a specific purpose or applica-
tion. Each character repertoire has an implied default collating sequence.

f) coercibility: A characteristic of a character string value that governs how a collating sequence
for the value is determined.

g) collation; collating sequence: A method of ordering two comparable character strings. Every
character set has a default collation.

h) collection type: The type of collection denoted by a collection data type: array.

i) comparable: The characteristic of values that permits one value to be compared with another
value. Also said of data types: Two data types are comparable if values of those data types are
comparable. If one of the two data types is a user-defined type, then both shall be in the same
subtype family. See Subclause 4.12, ‘‘Type conversions and mixing of data types’’.

j) constructor function: A niladic SQL-invoked function of which exactly one is implicitly speci-
fied for every structured type. An invocation of the constructor function for data type T returns
a value V of the most specific type T such that V is not null and, for every observer function O
defined for T, the invocation O(V) returns the default value of the attribute corresponding to O.

6 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
3.1 Definitions

k) declared type: Of an expression denoting a value, the unique data type that is common to
every value that might result from evaluation of that expression. The term is also applicable to
anything that can be referenced to denote a value, such as, for example, a parameter, column or
variable.

l) distinct: Two values other than rows and collections are said to be not distinct if either: both
are the null value, or they compare equal according to Subclause 8.2, ‘‘<comparison predicate>’’;
otherwise they are distinct. Two rows (or partial rows) are distinct if at least one of their pairs
of respective values is distinct; otherwise they are not distinct. Two arrays are distinct if the
arrays do not have the same cardinality or if, for arrays of the same cardinality, elements in
the same ordinal position in the two arrays are distinct; otherwise, the arrays are not distinct.
The result of evaluating whether or not two values, two rows, or two arrays are distinct is never
unknown.

m) duplicate: Two or more values or rows are said to be duplicates (of each other) if and only if
they are not distinct.

n) dyadic: Of operators, functions, and procedures, having exactly two operands or parameters.
An example of a dyadic operator in this part of ISO/IEC 9075 is ‘‘�’’, specifying the subtraction
of the right operand from the left operand. An example of a dyadic function is POSITION.

o) element type: The definition of a collection type CT includes specification of a data type that
is common to every element of every value in CT. This is the element type of CT and also the
element type of every value in CT.

p) external routine: An SQL-invoked routine whose routine body is an external body reference
that identifies a program written in a standard programming language other than SQL.

q) fixed-length: A characteristic of bit strings and character strings that restricts a string to
contain exactly one number of bits or characters, respectively, known as the length in bits or
characters, respectively, of the string.

r) form-of-use: A convention (or encoding) for representing characters (in character strings).
Some forms-of-use are fixed-length codings and others are variable-length codings.

s) form-of-use conversion: A method of converting character strings from one form-of-use to
another form-of-use.

t) interface (of a structured type): The set comprising every function such that the declared
type of at least one of its parameters or result is that structured type.

u) monadic: Of operators, functions, and procedures, having exactly one operand or parameter.
An example of a monadic arithmetic operator in this part of ISO/IEC 9075 is ‘‘�’’, specifying
the negation of the operand. An example of a monadic function is CHARACTER_LENGTH,
specifying the length in characters of the argument.

v) most specific type: Of a value, the unique data type of which every data type of that value is
a supertype.

w) mutator function: A dyadic, type-preserving function M whose definition is implied by the
definition of some attribute A (of declared type AT) of some user-defined type T. The first
parameter of M is a result SQL parameter of declared type T, which is also the result type of M.
The second parameter of M is of declared type AT. The invocation M(V, AV) returns the value
V1 such that V1 differs from V only in its value for attribute A, if at all. The most specific type
of V1 is the most specific type of V.

Definitions, notations, and conventions 7

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
3.1 Definitions

x) n-adic operator: An operator having a variable number of operands (informally: n operands).
An example of an n-adic operator in this part of ISO/IEC 9075 is COALESCE.

y) niladic: Of functions and procedures, having no parameters.

z) observer function: An SQL-invoked function A implicitly defined by the definition of attribute
A of a structured type T. If V is some value in T and the declared type of A is AT, then the
invocation of A(V) returns some value AV in AT. AV is then said to be the value of attribute A in
V.

aa) redundant duplicates: All except one of any multiset of duplicate values or rows.

bb) reference type: A data type all of whose values are potential references to sites of one specified
data type.

cc) REF value: A value that references some site.

dd) referenced type: The declared type of the values at sites referenced by values of a particular
reference type.

ee) referenced value: The value at the site referenced by a REF value.

ff) repertoire: See character repertoire.

gg) result SQL parameter: An SQL parameter that specifies RESULT.

hh) result data type: The result data type of an SQL-invoked function is the declared type of the
result of its invocation.

ii) signature (of an SQL-invoked routine): the name of an SQL-invoked routine, the position
and declared type of each of its SQL parameters, and an indication of whether it is an SQL-
invoked function or an SQL-invoked procedure.

jj) SQL argument An expression denoting a value to be substituted for an SQL parameter in an
invocation of an SQL-invoked routine.

kk) SQL-invoked routine: A routine that is allowed to be invoked only from within SQL.

ll) SQL parameter An parameter declared as part of the signature of an SQL-invoked routine.

mm) SQL routine: An SQL-invoked routine whose routine body is written in SQL.

nn) STATE function: A dyadic BOOLEAN function, with <schema qualified routine name>
EQUALS, which can be implicitly defined in connection with a structured type whose val-
ues are unordered. The parameters of the STATE function for data type T are both of declared
type T. The invocation EQUALS(V1, V2) returns true if and only if, for every attribute A of T,
A(V1) = A(V2).

oo) subfield: A field F is a subfield of a row type RT if F is a field of RT or F is a field of a row type
RT2 that is the declared type of a field F2 that is a subfield of RT.

pp) subtype: A data type T2 is a subtype of data type T1 if every value of T2 is also a value of T1.
If T1 and T2 are not compatible, then T2 is a proper subtype of T1. ‘‘Compatible’’ is defined in
Subclause 4.12, ‘‘Type conversions and mixing of data types’’. See also supertype.

8 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
3.1 Definitions

qq) supertype: A data type T1 is a supertype of data type T2 if every value of T2 is also a value
of T1. If T1 and T2 are not compatible, then T2 is a proper supertype of T1. ‘‘Compatible’’ is
defined in Subclause 4.12, ‘‘Type conversions and mixing of data types’’. See also subtype.

rr) translation: A method of translating characters in one character repertoire into characters of
the same or a different character repertoire.

ss) type-preserving function: An SQL-invoked function, one of whose parameters is a result SQL
parameter. The most specific type of the value returned by an invocation of a type-preserving
function is identical to the most specific type of the SQL argument value substituted for the
result SQL parameter.

tt) user-defined type: A type whose characteristics are specified by a user-defined type descriptor.

uu) variable-length: A characteristic of bit strings and character strings that allows a string to
contain any number of bits or characters, respectively, between 0 (zero) and some maximum
number, known as the maximum length in bits or characters, respectively, of the string.

vv) white space: Characters used to separate tokens in SQL text; white space may be required
(for example, to separate <nondelimiter token>s from one another) and may be used between
any two tokens for which there are no rules prohibiting such use. White space is any of the
following characters:

— U+0009, Horizontal Tab

— U+000A, Line Feed

— U+000B, Vertical Tabulation

— U+000C, Form Feed

— U+000D, Carriage Return

— U+0020, Space

— U+00A0, No-Break Space

— U+2000, En Quad

— U+2001, Em Quad

— U+2002, En Space

— U+2003, Em Space

— U+2004, Three-Per-Em Space

— U+2005, Four-Per-Em Space

— U+2006, Six-Per-Em Space

— U+2007, Figure Space

— U+2008, Punctuation Space

— U+2009, Thin Space

Definitions, notations, and conventions 9

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
3.1 Definitions

— U+200A, Hair Space

— U+200B, Zero Width Space

— U+200C, Zero Width Non-Joiner

— U+200D, Zero Width Joiner

— U+200E, Left-To-Right Mark

— U+200F, Right-To-Left Mark

— U+3000, Ideographic Space

— U+2028, Line Separator

— U+2029, Paragraph Separator

— U+FEFF, Zero Width No-Break Space
NOTE 1 – The notation ‘‘U+xyzw’’ identifies a character position on the Basic Multilingual Plane of
ISO/IEC 10646, where each of x, y, z, and w are hexadecimal digits; that character position is in column
zw of row xy. In this International Standard, this notation is used only to unambiguously identify
characters and is not meant to imply a specific encoding for any implementation’s use of that character.

3.2 Notation

The notation used in this part of ISO/IEC 9075 is defined in ISO/IEC 9075-1.

3.3 Conventions

The conventions used in this part of ISO/IEC 9075 are defined in ISO/IEC 9075-1, with the following
additions.

3.3.1 Use of terms

3.3.1.1 Syntactic containment

Let <A> and be syntactic elements; let A1 be an instance of <A> and let B1 be an instance of
.

A1 directly contains B1 if A1 contains B1 without an intervening <set function specification> or
<subquery>.

10 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

4 Concepts

4.1 Data types

A data type is a set of representable values. Every representable value belongs to at least one data
type and some belong to several data types.

Exactly one of the data types of a value V, namely the most specific type of V, is a subtype of every
data type of V. A <value expression> E has exactly one declared type, common to every possible
result of evaluating E. Items that can be referenced by name, such as SQL parameters, columns,
fields, attributes, and variables, also have declared types.

SQL supports three sorts of data types: predefined data types, constructed types, and user-defined
types. Predefined data types are sometimes called the ‘‘built-in data types’’, though not in this
International Standard. User-defined data types can be defined by a standard, by an implementa-
tion, or by an application.

A constructed type is specified using one of SQL’s data type constructors, ARRAY, REF, and ROW. A
constructed type is either an array type, a reference type or a row type, according to whether it is
specified with ARRAY, REF, or ROW, respectively. Array types are the only examples of constructed
types known generically as collection types.

Every predefined data type is a subtype of itself and of no other data types. It follows that every
predefined data type is a supertype of itself and of no other data types. The predefined data types
are individually described in each of Subclause 4.2, ‘‘Character strings’’, through Subclause 4.7,
‘‘Datetimes and intervals’’.

Row types, reference types and collection types are described in Subclause 4.9, ‘‘Row types’’,
Subclause 4.10, ‘‘Reference types’’, Subclause 4.11, ‘‘Collection types’’, respectively.

SQL defines predefined data types named by the following <key word>s: CHARACTER,
CHARACTER VARYING, CHARACTER LARGE OBJECT, BINARY LARGE OBJECT, BIT, BIT
VARYING, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE PRECISION,
BOOLEAN, DATE, TIME, TIMESTAMP, and INTERVAL. These names are used in the type des-
ignators that constitute the type precedence lists specified in Subclause 9.5, ‘‘Type precedence list
determination’’. In fact, every data type is assigned to exactly one equivalence class named by such
a type designator.

For reference purposes:

— The data types CHARACTER, CHARACTER VARYING, and CHARACTER LARGE OBJECT
are collectively referred to as character string types.

— The data types BIT and BIT VARYING are collectively referred to as bit string types.

— The data type BINARY LARGE OBJECT is referred to as the binary string type and the values
of binary string types are referred to as binary strings.

— The data types CHARACTER LARGE OBJECT and BINARY LARGE OBJECT are collectively
referred to as large object string types and the values of large object string types are referred to
as large object strings.

Concepts 11

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.1 Data types

— Character string types, bit string types, and binary string types are collectively referred to as
string types and values of string types are referred to as strings.

— The data types NUMERIC, DECIMAL, INTEGER and SMALLINT are collectively referred to
as exact numeric types.

— The data types FLOAT, REAL, and DOUBLE PRECISION are collectively referred to as approx-
imate numeric types.

— Exact numeric types and approximate numeric types are collectively referred to as numeric
types. Values of numeric types are referred to as numbers.

— The data types TIME WITHOUT TIME ZONE and TIME WITH TIME ZONE are collectively
referred to as time types (or, for emphasis, as time with or without time zone).

— The data types TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE
are collectively referred to as timestamp types (or, for emphasis, as timestamp with or without
time zone).

— The data types DATE, time, and timestamp are collectively referred to as datetime types.

— Values of datetime types are referred to as datetimes.

— The data type INTERVAL is referred to as an interval type. Values of interval types are called
intervals.

Each data type has an associated data type descriptor; the contents of a data type descriptor
are determined by the specific data type that it describes. A data type descriptor includes an
identification of the data type and all information needed to characterize an instance of that data
type.

Subclause 6.1, ‘‘<data type>’’, describes the semantic properties of each data type.

A structured type ST is directly based on a data type DT if DT is the declared type of some attribute
whose descriptor is included in the descriptor of ST.

An array type AT is directly based on a data type DT if DT is the element type of AT.

A reference type RT is directly based on a data type DT if DT is the referenced type.

A row type RT is directly based on a data type DT if DT is the declared type of some field (or the
data type of the domain of some field) whose descriptor is included in the descriptor of RT.

A data type DT1 is based on a data type DT2 if DT1 is directly based on DT2 or DT1 is directly
based on some data type that is based on DT2.

Each host language has its own data types, which are separate and distinct from SQL data types,
even though similar names may be used to describe the data types. Mappings of SQL data types
to data types in host languages are described in Subclause 11.49, ‘‘<SQL-invoked routine>’’, and
Subclause 16.1, "<LB>LB>embedded SQL host program>", in ISO/IEC 9075-5. Not every SQL data
type has a corresponding data type in every host language.

12 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.2 Character strings

4.2 Character strings

A character string data type is described by a character string data type descriptor. A character
string data type descriptor contains:

— The name of the specific character string data type (CHARACTER, CHARACTER VARYING,
and CHARACTER LARGE OBJECT; NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, and NATIONAL CHARACTER LARGE OBJECT are represented as CHARACTER,
CHARACTER VARYING, and CHARACTER LARGE OBJECT, respectively).

— The length or maximum length in characters of the character string data type.

— The catalog name, schema name, and character set name of the character set of the character
string data type.

— The catalog name, schema name, and collation name of the collation of the character string data
type.

Character sets fall into three categories: those defined by national or international standards, those
defined by implementations, and those defined by applications. Every character set contains the
<space> character (equivalent to U+0020). An application defines a character set by assigning a
new name to a character set from one of the first two categories. They can be defined to ‘‘reside’’
in any schema chosen by the application. Character sets defined by standards or by implementa-
tions reside in the Information Schema (named INFORMATION_SCHEMA) in each catalog, as do
collations defined by standards and collations, translations, and form-of-use conversions defined by
implementations.

4.2.1 Character strings and collating sequences

A character string is a sequence of characters chosen from the same character repertoire. The
character repertoire from which the characters of a particular string are chosen may be specified
explicitly or implicitly. A character string has a length, which is the number of characters in the
sequence. The length is 0 (zero) or a positive integer.

All character strings of a given character repertoire are comparable.

A collating sequence, also known as a collation, is a set of rules determining comparison of character
strings in a particular character repertoire. There is a default collating sequence for each character
repertoire, but additional collating sequences can be defined for any character repertoire.
NOTE 2 – A column may be defined as having a default collating sequence. This default collating sequence
for the column may be different from the default collating sequence for its character repertoire, e.g., if the
<collate clause> is specified in the column reference. It will be clear from context when the term ‘‘default
collating sequence’’ is used whether it is meant for a column or for a character repertoire.

Given a collating sequence, two character strings are identical if and only if they are equal in
accordance with the comparison rules specified in Subclause 8.2, ‘‘<comparison predicate>’’. The
collating sequence used for a particular comparison is determined as in Subclause 4.2.3, ‘‘Rules
determining collating sequence usage’’.

The <key word>s NATIONAL CHARACTER are used to specify a character string data type with
a particular implementation-defined character repertoire. Special syntax (N’string’) is provided for
representing literals in that character repertoire.

Concepts 13

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.2 Character strings

A character set is described by a character set descriptor. A character set descriptor includes:

— The name of the character set.

— The name of the default collation for the character set.

For every character set, there is at least one collation. A collation is described by a collation
descriptor. A collation descriptor includes:

— The name of the collation.

— The name of the character set on which the collation operates.

— Whether the collation has the NO PAD or the PAD SPACE characteristic.

4.2.2 Operations involving character strings

4.2.2.1 Operators that operate on character strings and return character strings

<concatenation operator> is an operator, k, that returns the character string made by joining its
character string operands in the order given.

<character substring function> is a triadic function, SUBSTRING, that returns a string extracted
from a given string according to a given numeric starting position and a given numeric length.

<character overlay function> is a function, OVERLAY, that modifies a string argument by replacing
a given substring of the string, which is specified by a given numeric starting position and a
given numeric length, with another string (called the replacement string). When the length of
the substring is zero, nothing is removed from the original string and the string returned by the
function is the result of inserting the replacement string into the original string at the starting
position.

<fold> is a pair of functions for converting all the lower case and title case characters in a given
string to upper case (UPPER) or all the upper case and title case characters to lower case (LOWER).
A lower case character is a character that has the Unicode ’alphabetic’ property and whose Unicode
name includes ’lower’. An upper case character is a character that has the Unicode ’alphabetic’
property and whose Unicode name includes ’upper’. A title case character is a character that has
the Unicode ’alphabetic’ property and whose Unicode name includes ’title’.

<form-of-use conversion> is a function that invokes an installation-supplied form-of-use conversion
to return a character string S2 derived from a given character string S1. It is intended, though
not enforced by this part of ISO/IEC 9075, that S2 be exactly the same sequence of characters as
S1, but encoded according some different form-of-use. A typical use might be to convert a character
string from two-octet UCS to one-octet Latin1 or vice versa.

<trim function> is a function that returns its first string argument with leading and/or trailing pad
characters removed. The second argument indicates whether leading, or trailing, or both leading
and trailing pad characters should be removed. The third argument specifies the pad character that
is to be removed.

<character translation> is a function for changing each character of a given string according to
some many-to-one or one-to-one mapping between two not necessarily distinct character sets. The
mapping, rather than being specified as part of the function, is some external function identified by
a <translation name>.

14 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.2 Character strings

For any pair of character sets, there are zero or more translations that may be invoked by a
<character translation>. A translation is described by a translation descriptor. A translation
descriptor includes:

— The name of the translation,.

— The name of the character set from which it translates.

— The name of the character set to which it translates.

— An indication of how the translation is performed.

4.2.2.2 Other operators involving character strings

<length expression> returns the length of a given character string, as an exact numeric value, in
characters, octets, or bits according to the choice of function.

<position expression> determines the first position, if any, at which one string, S1, occurs within
another, S2. If S1 is of length zero, then it occurs at position 1 (one) for any value of S2. If S1
does not occur in S2, then zero is returned. The declared type of a <position expression> is exact
numeric.

<like predicate> uses the triadic operator LIKE (or the inverse, NOT LIKE), operating on three
character strings and returning a Boolean. LIKE determines whether or not a character string
‘‘matches’’ a given ‘‘pattern’’ (also a character string). The characters <percent> and <underscore>
have special meaning when they occur in the pattern. The optional third argument is a character
string containing exactly one character, known as the ‘‘escape character’’, for use when a <percent>,
<underscore>, or the ‘‘escape character’’ itself is required in the pattern without its special meaning.

<similar predicate> uses the triadic operator SIMILAR (or the inverse, NOT SIMILAR), operating
on three character strings and returning a Boolean. SIMILAR determines whether or not a char-
acter string ‘‘matches’’ a given ‘‘pattern’’ (also a character string). The pattern is in the form of a
‘‘regular expression’’. In this regular expression, certain characters (<left bracket>, <right bracket>,
<left paren>, <right paren>, <vertical bar>, <circumflex>, <minus sign>, <plus sign>, <asterisk>,
<underscore>, <percent>) have a special meaning. The optional third argument specifies the ‘‘escape
character’’, for use when one of the special characters or the ‘‘escape character’’ itself is required in
the pattern without its special meaning.

4.2.2.3 Operations involving large object character strings

Large object strings cannot be operated on by all string operations. Large object strings can,
however, be operated on by the following operations:

— <null predicate>.

— <like predicate>.

— <similar predicate>.

— <position expression>.

— <comparison predicate> with an <equals operator> or <not equals operator>.

— <quantified comparison predicate> with the <equals operator> or <not equals operator>.

Concepts 15

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.2 Character strings

As a result of these restrictions, large object strings and large object string columns cannot be
referenced in (among other places):

— Predicates other than those listed above and the <exists predicate>.

— <general set function>.

— <group by clause>.

— <order by clause>.

— <unique constraint definition>.

— <referential constraint definition>.

— <select list> of a <query specification> that has a <set quantifier> of DISTINCT.

— UNION, INTERSECT, and EXCEPT.

— Columns used for matching when forming a <joined table>.

All the operations described within Subclause 4.2.2.1, ‘‘Operators that operate on character strings
and return character strings’’, and Subclause 4.2.2.2, ‘‘Other operators involving character strings’’,
are supported for large object character strings.

4.2.3 Rules determining collating sequence usage

The rules determining collating sequence usage for character strings are based on the following:

— Expressions where no columns are involved (e.g., literals, host variables) are by default com-
pared using the default collating sequence for their character repertoire.
NOTE 3 – The default collating sequence for a character repertoire is defined in Subclause 10.6,
‘‘<character set specification>’’, and Subclause 11.30, ‘‘<character set definition>’’.

— When one or more columns are involved (e.g., comparing two columns, or comparing a column to
a literal), then provided that all columns involved have the same default collating sequence and
there is no explicit specification of a collating sequence, that default collating sequence is used.

— When columns are involved having different default collating sequences, explicit specification of
the collating sequence in the expression is required via the <collate clause>.

— Any explicit specification of collating sequence in an expression overrides any default collating
sequence.

To formalize this, <character value expression>s effectively have a coercibility characteristic. This
characteristic has the values Coercible, Implicit, No collating sequence, and Explicit. <character
value expression>s with the Coercible, Implicit, or Explicit characteristics have a collating sequence.

A <character value expression> consisting of a column reference has the coercibility characteristic
Implicit, with collating sequence as defined when the column was created. A <character value
expression> consisting of a value other than a column (e.g., a host variable or a literal) has the
coercibility characteristic Coercible, with the default collation for its character repertoire. A <char-
acter value expression> simply containing a <collate clause> has the coercibility characteristic
Explicit, with the collating sequence specified in the <collate clause>.

16 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.2 Character strings

NOTE 4 – When the coercibility characteristic is Coercible, the collating sequence is uniquely determined as
specified in Subclause 8.2, ‘‘<comparison predicate>’’.

The tables below define how the collating sequence and the coercibility characteristic is determined
for the result of any monadic or dyadic operation. Table 1, ‘‘Collating coercibility rules for monadic
operators’’, shows the collating sequence and coercibility rules for monadic operators, and Table 2,
‘‘Collating coercibility rules for dyadic operators’’, shows the collating sequence and coercibility rules
for dyadic operators. Table 3, ‘‘Collating sequence usage for comparisons’’, shows how the collating
sequence is determined for a particular comparison.

Table 1—Collating coercibility rules for monadic operators

Operand Coercibility and Collating Sequence Result Coercibility and Collating Sequence

Coercibility Collating Sequence Coercibility Collating Sequence

Coercible default Coercible default

Implicit X Implicit X

Explicit X Explicit X

No collating sequence No collating sequence

Table 2—Collating coercibility rules for dyadic operators

Operand 1 Coercibility
and Collating Sequence

Operand 2 Coercibility
and Collating Sequence

Result Coercibility
and Collating Sequence

Coercibility
Collating
Sequence Coercibility

Collating
Sequence Coercibility

Collating
Sequence

Coercible default Coercible default Coercible default

Coercible default Implicit Y Implicit Y

Coercible default No collating sequence No collating sequence

Coercible default Explicit Y Explicit Y

Implicit X Coercible default Implicit X

Implicit X Implicit X Implicit X

Implicit X Implicit Y 6= X No collating sequence

Implicit X No collating sequence No collating sequence

Implicit X Explicit Y Explicit Y

No collating sequence Any, except
Explicit

Any No collating sequence

No collating sequence Explicit X Explicit X

Explicit X Coercible default Explicit X

Explicit X Implicit Y Explicit X

Explicit X No collating sequence Explicit X

Explicit X Explicit X Explicit X

Explicit X Explicit Y 6= X Not permitted: invalid syntax

Concepts 17

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.2 Character strings

Table 3—Collating sequence usage for comparisons

Comparand 1 Coercibility
and Collating Sequence

Comparand 2 Coercibility
and Collating Sequence

Coercibility
Collating
Sequence Coercibility

Collating
Sequence

Collating Sequence
Used For The Comparison

Coercible default Coercible default default

Coercible default Implicit Y Y

Coercible default No collating sequence Not permitted: invalid syntax

Coercible default Explicit Y Y

Implicit X Coercible default X

Implicit X Implicit X X

Implicit X Implicit Y 6= X Not permitted: invalid syntax

Implicit X No collating sequence Not permitted: invalid syntax

Implicit X Explicit Y Y

No collating sequence Any except
Explicit

Any Not permitted: invalid syntax

No collating sequence Explicit X X

Explicit X Coercible default X

Explicit X Implicit Y X

Explicit X No collating sequence X

Explicit X Explicit X X

Explicit X Explicit Y 6= X Not permitted: invalid syntax

For n-adic operations (e.g., <case expression>) with operands X1, X2, . . . , Xn, the collating sequence
is effectively determined by considering X1 and X2, then combining this result with X3, and so on.

4.2.4 Named character sets

An SQL <character set specification> allows a reference to a character set name defined by a
standard, an implementation, or a user. The following SQL supported character set names are
specified as part of ISO/IEC 9075:

— SQL_CHARACTER specifies the name of a character repertoire that consists of the 88 <SQL
language character>s as specified in Subclause 5.1, ‘‘<SQL terminal character>’’. It consists
of the 52 uppercase and lowercase simple latin characters, 10 digits, and 26 <SQL special
character>s, including: <space>, <double quote>, <percent>, <ampersand>, <quote>, <left
paren>, <right paren>, <asterisk>, <plus sign>, <comma>, <minus sign>, <period>, <solidus>,
<colon>, <semicolon>, <less than operator>, <equals operator>, <greater than operator>, <ques-
tion mark>, <underscore>, <vertical bar>, <left bracket>, <right bracket>, <circumflex>, <left
brace>, and <right brace>. The 88 characters specified as <SQL language character>s are all
included in the ISO International Reference Version (IRV) characters specified in ISO 646:1991.
The characters in IRV are included in many other international character set definitions. In
addition, 82 of these characters (all except <vertical bar>, <left bracket>, <right bracket>, <cir-
cumflex>, <left brace>, and <right brace>) are in the most stable subset of IRV that, by ISO

18 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.2 Character strings

convention, is included in every latin-based ISO standard set of characters. As far as can be
determined, <vertical bar>, <left bracket>, <right bracket>, <circumflex>, <left brace>, and
<right brace> are included in most character sets that enjoy world-wide use. Thus, the SQL_
CHARACTER repertoire is the most universal of the character sets named herein. The collation
and form-of-use of SQL_CHARACTER is implementation-defined.

— GRAPHIC_IRV (or ASCII_GRAPHIC) specifies the name of a character repertoire that consists
of the 95-character graphic subset of the International Reference Version (IRV) as specified in
ISO 646:1991. The form-of-use is that corresponding to the coded representation of each char-
acter by a single byte (possibly 7-bit, 8-bit, or other), with no designation escape sequences for
other character sets. The default collating sequence is that corresponding to the bit combina-
tions defined by ISO 646:1991. The GRAPHIC_IRV character set is a superset of the <SQL
language character>s. The 7 characters included in GRAPHIC_IRV that are not <SQL language
character>s are, in collation order: Exclamation mark (!), Number sign (#), Dollar sign ($),
Commercial at (@), Reverse solidus (\), Grave accent (‘), and Tilde (~). Of these 7 characters,
only ‘‘!’’ is in the most stable subset of ISO 646, whereas ‘‘#’’ competes with the British pound
sign, ‘‘$’’ competes with the international currency symbol, and the others occupy positions in
ISO 646 that are reserved for national or application-oriented use. However, all are the default
IRV values specified in ISO 646 when no national or application-specific version is explicitly
specified.

— LATIN1 specifies the name of a character repertoire that consists of the 191 graphic characters
defined in ISO 8859-1. The form-of-use is that corresponding to the coded representation of
each character by a single 8-bit byte, with no designation escape sequences for other character
sets. The default collating sequence is that corresponding to the bit combinations defined by
ISO 8859-1. The LATIN1 character set is a superset of GRAPHIC_IRV and, when restricted
to the GRAPHIC_IRV characters, produces the same collation as GRAPHIC_IRV. LATIN1
consists of all characters commonly used in the following languages: Danish, Dutch, English,
Faeroese, Finnish, French, German, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish,
and Swedish. It also includes the following special symbols, in collation order: No-break space,
Inverted exclamation mark (¡), Cent sign (¢), Pound sign (£), Currency sign (¤), Yen sign (¥),
Broken bar (¦), Paragraph sign (¶), Diaeresis (¨), Copyright sign ((c)), Feminine ordinal indicator
(ª), Left angle quotation mark («), Not sign (¬), Soft hyphen, Registered trade mark sign ((r)),
Macron (¯), Degree sign (°), Plus-minus sign (±), Superscript two (²), Superscript three (³), Acute
accent (´), Micro sign (µ), Pilcrow sign, Middle dot (·), Cedilla (¸), Superscript one (¹), Masculine
ordinal indicator (º), Right angle quotation mark (»), Fraction one quarter (1/4), Fraction one half
(1/2), Fraction three quarters (3/4), and Inverted question mark (¿). Other characters include the
Multiplication sign and the Division sign. In LATIN1, all GRAPHIC_IRV characters precede the
non-GRAPHIC_IRV characters in the default collation, followed by the special symbols, followed
by the accented capital letters, followed by the accented small letters. The Multiplication sign
(×) is in the middle of the accented capital letters and the Division sign (÷) is in the middle of
the accented small letters.

— LATIN1 is subject to the following conformance requirements, as specified in Clause 3,
"Conformance", of ISO 8859-1:

• A set of graphic characters is in conformance with ISO 8859-1 if it comprises all graphic
characters specified therein to the exclusion of any other and if their coded representations
are those specified by ISO 8859-1.

• Equipment claimed to implement ISO 8859-1 shall implement all 191 characters.

Concepts 19

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.2 Character strings

— ISO8BIT (or ASCII_FULL) specifies the name of a character repertoire that consists of all 255
characters, each consisting of exactly 8 bits, as specified in ISO 4873 and ISO 8859-1, including
all control characters and all graphic characters except the character corresponding to the
numeric value 0 (zero). The form-of-use is that corresponding to the coded representation of
each character by a single 8-bit byte, with no designation escape sequences for other character
sets. The default collating sequence is that corresponding to the bit combinations defined. The
ISO8BIT character set is a superset of LATIN1 and, when restricted to the LATIN1 characters,
produces the same collation and form-of-use.

— UTF16 and ISO10646 specify the name of a character repertoire that consists of every character
represented by The Unicode Standard Version 2.0 and by ISO/IEC 10646 UTF-16, where each
character is encoded using the UTF-16 encoding, occupying either 1 (one) or 2 octets.

— UTF8 specifies the name of a character repertoire that consists of every character represented
by The Unicode Standard Version 2.0 and by ISO/IEC 10646 UTF-8, where each character is
encoded using the UTF-8 encoding, occupying from 1 (one) through 6 octets.

— UCS2 specifies the name of a character repertoire that consists of every character represented
by The Unicode Standard Version 2.0 and by ISO/IEC 10646 UCS2, where each character is
encoded using the UCS2 encoding, in which each character occupies exactly 2 octets.

— SQL_TEXT specifies the name of a character repertoire that includes the <SQL language char-
acter>s and all other characters that are in character sets supported by the implementation.
The SQL_TEXT character set is a superset of SQL_CHARACTER. The collation and form-of-use
of SQL_TEXT is implementation-defined.

— SQL_IDENTIFIER specifies the name of a character repertoire that includes the <SQL lan-
guage character>s and all other characters that the SQL-implementation supports for use in
<regular identifier>s, which is the same as the repertoire that the SQL-implementation sup-
ports for use in <delimited identifier>s. The SQL_IDENTIFIER character set is a superset of
SQL_CHARACTER but may be a subset of SQL_TEXT. The collation and form-of-use of SQL_
IDENTIFIER is implementation-defined.

— The character sets SQL_CHARACTER, GRAPHIC_IRV (or ASCII_GRAPHIC), LATIN1,
ISO8BIT (or ASCII_FULL), and UNICODE (or ISO10646) have both a ‘‘floor’’ and ‘‘ceiling’’
requirement to consist of exactly the characters specified. Any character data type associated
with one of these character sets has an implied integrity constraint limiting a value of the
data type to be a character string consisting only of characters from the specified character set.
The SQL_TEXT and SQL_IDENTIFIER character sets have a similar ‘‘floor’’ requirement in
that they must contain all characters that are in other character sets supported by the imple-
mentation (for SQL-data and for <identifier>s, respectively); however, SQL_TEXT and SQL_
IDENTIFIER do not have a ‘‘ceiling’’ requirement.

4.3 Binary strings

A binary string is a sequence of octets that does not have either a character set or collation associ-
ated with it.

A binary data type is described by a binary data type descriptor. A binary data type descriptor
contains:

— The name of the data type (BINARY LARGE OBJECT).

20 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.3 Binary strings

— The maximum length of the binary string data type (in octets).

4.3.1 Binary string comparison

All binary strings are mutually comparable. A binary string is identical to another binary string
if and only if it is equal to that binary string in accordance with the comparison rules specified in
Subclause 8.2, ‘‘<comparison predicate>’’.

4.3.2 Operations involving binary strings

4.3.2.1 Operators that operate on binary strings and return binary strings

<blob concatenation> is an operator, k, that returns a binary string by joining its binary string
operands in the order given.

<blob substring function> is a triadic function identical in syntax and semantics to <character
substring function> except that the returned value is a binary string.

<blob overlay function> is a function identical in syntax and semantics to <character overlay func-
tion> except that the first argument, second argument, and returned value are all binary strings.

<trim function> when applied to binary strings is identical in syntax (apart from the default <trim
character>) and semantics to the corresponding operation on character strings except that the
returned value is a binary string.

4.3.2.2 Other operators involving binary strings

<length expression> returns the length of a given binary string, as an exact numeric value, in
characters, octets, or bits according to the choice of function.

<position expression> when applied to binary strings is identical in syntax and semantics to the
corresponding operation on character strings except that the operands are binary strings.

<like predicate> when applied to binary strings is identical in syntax and semantics to the corre-
sponding operation on character strings except that the operands are binary strings.

4.4 Bit strings

A bit string is a sequence of bits, each having the value of 0 (zero) or 1 (one). A bit string has a
length, which is the number of bits in the string. The length is 0 (zero) or a positive integer.

A bit string data type is described by a bit string data type descriptor. A bit string data type
descriptor contains:

— The name of the specific bit string data type (BIT or BIT VARYING).

— The length of the bit string data type (in bits).

Concepts 21

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.4 Bit strings

4.4.1 Bit string comparison and assignment

All bit strings are mutually comparable. A bit string is identical to another bit string if and only
if it is equal to that bit string in accordance with the comparison rules specified in Subclause 8.2,
‘‘<comparison predicate>’’.

4.4.2 Operations involving bit strings

4.4.2.1 Operators that operate on bit strings and return bit strings

<bit concatenation> is an operator, k, that returns the bit string made by concatenating the two bit
string operands in the order given.

<bit substring function> is a triadic function identical in syntax and semantics to <character sub-
string function> except that the first argument and the returned value are both bit strings.

4.4.2.2 Other operators involving bit strings

<length expression> returns the length (as an integer number of octets or bits according to the
choice of function) of a given bit string.

<position expression> determines the first position, if any, at which one string, S1, occurs within
another, S2. If S1 is of length zero, then it occurs at position 1 (one) for any value of S2. If S1 does
not occur in S2, then zero is returned.

4.5 Numbers

A number is either an exact numeric value or an approximate numeric value. Any two numbers are
mutually comparable to each other.

A numeric data type is described by a numeric data type descriptor. A numeric data type descriptor
contains:

— The name of the specific numeric data type (NUMERIC, DECIMAL, INTEGER, SMALLINT,
FLOAT, REAL, or DOUBLE PRECISION).

— The precision of the numeric data type.

— The scale of the numeric data type, if it is an exact numeric data type.

— An indication of whether the precision (and scale) are expressed in decimal or binary terms.

A value described by a numeric data type descriptor is always signed.

4.5.1 Characteristics of numbers

An exact numeric value has a precision and a scale. The precision is a positive integer that de-
termines the number of significant digits in a particular radix (binary or decimal). The scale is a
non-negative integer. A scale of 0 (zero) indicates that the number is an integer. For a scale of S,
the exact numeric value is the integer value of the significant digits multiplied by 10�S .

22 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.5 Numbers

An approximate numeric value consists of a mantissa and an exponent. The mantissa is a signed
numeric value, and the exponent is a signed integer that specifies the magnitude of the mantissa.
An approximate numeric value has a precision. The precision is a positive integer that specifies the
number of significant binary digits in the mantissa. The value of an approximate numeric value is
the mantissa multiplied by 10x, where x is the exponent.

Whenever an exact or approximate numeric value is assigned to an exact numeric value site, an
approximation of its value that preserves leading significant digits after rounding or truncating is
represented in the declared type of the target. The value is converted to have the precision and
scale of the target. The choice of whether to truncate or round is implementation-defined.

An approximation obtained by truncation of a numeric value N for an <exact numeric type> T is a
value V in T such that N is not closer to zero than is V and there is no value in T between V and N.

An approximation obtained by rounding of a numeric value N for an <exact numeric type> T is a
value V in T such that the absolute value of the difference between N and the numeric value of V is
not greater than half the absolute value of the difference between two successive numeric values in
T. If there is more than one such value V, then it is implementation-defined which one is taken.

All numeric values between the smallest and the largest value, inclusive, in a given exact numeric
type have an approximation obtained by rounding or truncation for that type; it is implementation-
defined which other numeric values have such approximations.

An approximation obtained by truncation or rounding of a numeric value N for an <approximate
numeric type> T is a value V in T such that there is no numeric value in T and distinct from that
of V that lies between the numeric value of V and N, inclusive.

If there is more than one such value V then it is implementation-defined which one is taken. It
is implementation-defined which numeric values have approximations obtained by rounding or
truncation for a given approximate numeric type.

Whenever an exact or approximate numeric value is assigned to an approximate numeric value
site, an approximation of its value is represented in the declared type of the target. The value is
converted to have the precision of the target.

Operations on numbers are performed according to the normal rules of arithmetic, within
implementation-defined limits, except as provided for in Subclause 6.26, ‘‘<numeric value expres-
sion>’’.

4.5.2 Operations involving numbers

As well as the usual arithmetic operators, plus, minus, times, divide, unary plus, and unary minus,
there are the following functions that return numbers:

— <position expression> (see Subclause 4.2.2, ‘‘Operations involving character strings’’, and
Subclause 4.4.2, ‘‘Operations involving bit strings’’) takes two strings as arguments and returns
an integer.

— <length expression> (see Subclause 4.2.2, ‘‘Operations involving character strings’’, and
Subclause 4.4.2, ‘‘Operations involving bit strings’’) operates on a string argument and returns
an integer.

— <extract expression> (see Subclause 4.7.3, ‘‘Operations involving datetimes and intervals’’)
operates on a datetime or interval argument and returns an integer.

— <cardinality expression> (see Subclause 4.11.3, ‘‘Operations involving collections’’) operates on a
collection argument and returns an integer.

Concepts 23

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.5 Numbers

— <absolute value expression> operates on a numeric argument and returns its absolute value in
the same most specific type.

— <modulus expression> operates on two exact numeric arguments with scale 0 (zero) and returns
the modulus (remainder) of the first argument divided by the second argument as an exact
numeric with scale 0 (zero).

4.6 Boolean types

The data type boolean comprises the distinct truth values true and false . Unless prohibited by a
NOT NULL constraint, the boolean data type also supports the unknown truth value as the null
value. This specification does not make a distinction between the null value of the boolean data
type and the unknown truth value that is the result of an SQL <predicate>, <search condition>, or
<boolean value expression>; they may be used interchangeably to mean exactly the same thing.

The boolean data type is described by the boolean data type descriptor. The boolean data type
descriptor contains:

— The name of the boolean data type (BOOLEAN).

4.6.1 Comparison and assignment of booleans

All boolean data type values and SQL truth values are mutually comparable and assignable. The
value true is greater than the value false , and any comparison involving the null value or an
unknown truth value will return an unknown result. The values true and false may be assigned
to any site having a boolean data type; assignment of unknown , or the null value, is subject to the
nullability characteristic of the target.

4.6.2 Operations involving booleans

4.6.2.1 Operations on booleans that return booleans

The monadic boolean operator NOT and the dyadic boolean operators AND and OR take boolean
operands and produce a boolean result (see Table 13, ‘‘Truth table for the AND boolean operator’’,
and Table 14, ‘‘Truth table for the OR boolean operator’’).

4.6.2.2 Other operators involving booleans

Every SQL <predicate>, <search condition>, and <boolean value expression> may be considered as
an operator that returns a boolean result.

4.7 Datetimes and intervals

A datetime data type is described by a datetime data type descriptor. An interval data type is
described by an interval data type descriptor.

A datetime data type descriptor contains:

— The name of the specific datetime data type (DATE, TIME WITHOUT TIME ZONE, TIMESTAMP
WITHOUT TIME ZONE, TIME WITH TIME ZONE, or TIMESTAMP WITH TIME ZONE).

24 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.7 Datetimes and intervals

— The value of the <time fractional seconds precision>, if it is a TIME WITHOUT TIME ZONE,
TIMESTAMP WITHOUT TIME ZONE, TIME WITH TIME ZONE, or TIMESTAMP WITH
TIME ZONE type.

An interval data type descriptor contains:

— The name of the interval data type (INTERVAL).

— An indication of whether the interval data type is a year-month interval or a day-time interval.

— The <interval qualifier> that describes the precision of the interval data type.

A value described by an interval data type descriptor is always signed.

Every datetime or interval data type has an implied length in positions. Let D denote a value in
some datetime or interval data type DT. The length in positions of DT is constant for all D. The
length in positions is the number of characters from the character set SQL_TEXT that it would take
to represent any value in a given datetime or interval data type.

An approximation obtained by rounding of a datetime or interval value D for a <datetime type>
or <interval type> T is a value V in T such that the absolute value of the difference between D
and the numeric value of V is not greater than half the absolute value of the difference between
two successive datetime or interval values in T. If there is more than one such value V, then it is
implementation-defined which one is taken.

4.7.1 Datetimes

Table 4, ‘‘Fields in datetime values’’, specifies the fields that can make up a datetime value; a
datetime value is made up of a subset of those fields. Not all of the fields shown are required to be
in the subset, but every field that appears in the table between the first included primary field and
the last included primary field shall also be included. If either timezone field is in the subset, then
both of them shall be included.

Table 4—Fields in datetime values

Keyword Meaning

Primary datetime fields

YEAR Year

MONTH Month within year

DAY Day within month

HOUR Hour within day

MINUTE Minute within hour

SECOND Second and possibly fraction of a second within minute

Timezone datetime fields

TIMEZONE_HOUR Hour value of time zone displacement

TIMEZONE_MINUTE Minute value of time zone displacement

There is an ordering of the significance of <primary datetime field>s. This is, from most significant
to least significant: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

Concepts 25

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.7 Datetimes and intervals

The <primary datetime field>s other than SECOND contain non-negative integer values, con-
strained by the natural rules for dates using the Gregorian calendar. SECOND, however, can be
defined to have a <time fractional seconds precision> that indicates the number of decimal digits
maintained following the decimal point in the seconds value, a non-negative exact numeric value.

There are three classes of datetime data types defined within this part of ISO/IEC 9075:

— DATE — contains the <primary datetime field>s YEAR, MONTH, and DAY.

— TIME — contains the <primary datetime field>s HOUR, MINUTE, and SECOND.

— TIMESTAMP — contains the <primary datetime field>s YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND.

Items of type datetime are mutually comparable only if they have the same <primary datetime
field>s.

A datetime data type that specifies WITH TIME ZONE is a data type that is datetime with time
zone, while a datetime data type that specifies WITHOUT TIME ZONE is a data type that is
datetime without time zone.

The surface of the earth is divided into zones, called time zones, in which every correct clock tells
the same time, known as local time. Local time is equal to UTC (Coördinated Universal Time) plus
the time zone displacement, which is an interval value that ranges between INTERVAL�’12:59’
HOUR TO MINUTE and INTERVAL +’13:00’ HOUR TO MINUTE. The time zone displacement
is constant throughout a time zone, changing at the beginning and end of Daylight Time, where
applicable.

A datetime value, of data type TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME
ZONE, may represent a local time, whereas a datetime value of data type TIME WITH TIME ZONE
or TIMESTAMP WITH TIME ZONE represents UTC. On occasion, UTC is adjusted by the omission
of a second or the insertion of a ‘‘leap second’’ in order to maintain synchronization with sidereal
time. This implies that sometimes, but very rarely, a particular minute will contain exactly 59, 61,
or 62 seconds. Whether an SQL-implementation supports leap seconds, and the consequences of
such support for date and interval arithmetic, is implementation-defined.

For the convenience of users, whenever a datetime value with time zone is to be implicitly derived
from one without (for example, in a simple assignment operation), SQL assumes the value without
time zone to be local, subtracts the default SQL-session time zone displacement from it to give UTC,
and associates that time zone displacement with the result.

Conversely, whenever a datetime value without time zone is to be implicitly derived from one with,
SQL assumes the value with time zone to be UTC, adds the time zone displacement to it to give
local time, and the result, without any time zone displacement, is local.

The preceding principles, as implemented by <cast specification>, result in data type conversions be-
tween the various datetime data types, as summarized in Table 5, ‘‘Datetime data type conversions’’.

26 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.7 Datetimes and intervals

Table 5—Datetime data type conversions

to DATE

to TIME
WITHOUT
TIME
ZONE

to TIME
WITH
TIME
ZONE

to TIMESTAMP
WITHOUT
TIME ZONE

to TIMESTAMP
WITH TIME
ZONE

from DATE trivial not sup-
ported

not sup-
ported

Copy year,
month, and
day; set hour,
minute, and
second to 0
(zero)

SV) TSw/oTZ

) TSw/TZ

from TIME
WITHOUT
TIME
ZONE

not sup-
ported

trivial TV.UTC =
SV � STZD
(modulo 24);
TV.TZ =
STZD

Copy date
fields from
CURRENT_
DATE and time
fields from TZ

SV) TSw/oTZ

) TSw/TZ

from TIME
WITH
TIME
ZONE

not sup-
ported

SV.UTC +
SV.TZ
(module 24)

trivial SV) TSw/oTZ
) TSw/TZ

Copy date
fields from
CURRENT_
DATE and time
and time zone
fields from SV

from
TIMESTAMP
WITHOUT
TIME
ZONE

Copy date
fields from
SV

Copy time
fields from
TZ

SV)
TSw/TZ

) TSw/oTZ

trivial TV.UTC = SV
� STZD;
TV.TZ = STZD

from
TIMESTAMP
WITH
TIME
ZONE

SV)
TSw/oTZ

) DATE

SV)
TSw/oTZ

) TIMEw/oTZ

Copy time
and time
zone fields
from SV

SV.UTC +
SV.TZ

trivial

4.7.2 Intervals

There are two classes of intervals. One class, called year-month intervals, has an express or implied
datetime precision that includes no fields other than YEAR and MONTH, though not both are
required. The other class, called day-time intervals, has an express or implied interval precision
that can include any fields other than YEAR or MONTH.

Table 6, ‘‘Fields in year-month INTERVAL values’’, specifies the fields that make up a year-month
interval. A year-month interval is made up of a contiguous subset of those fields.

Table 6—Fields in year-month INTERVAL values

Keyword Meaning

YEAR Years

MONTH Months

Concepts 27

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.7 Datetimes and intervals

Table 7, ‘‘Fields in day-time INTERVAL values’’, specifies the fields that make up a day-time inter-
val. A day-time interval is made up of a contiguous subset of those fields.

Table 7—Fields in day-time INTERVAL values

Keyword Meaning

DAY Days

HOUR Hours

MINUTE Minutes

SECOND Seconds and possibly fractions of a second

The actual subset of fields that comprise a value of either type of interval is defined by an <interval
qualifier> and this subset is known as the precision of the value.

Within a value of type interval, the first field is constrained only by the <interval leading field
precision> of the associated <interval qualifier>. Table 8, ‘‘Valid values for fields in INTERVAL
values’’, specifies the constraints on subsequent field values.

Table 8—Valid values for fields in INTERVAL values

Keyword Valid values of INTERVAL fields

YEAR Unconstrained except by <interval leading field precision>

MONTH Months (within years) (0-11)

DAY Unconstrained except by <interval leading field precision>

HOUR Hours (within days) (0-23)

MINUTE Minutes (within hours) (0-59)

SECOND Seconds (within minutes) (0-59.999...)

Values in interval fields other than SECOND are integers and have precision 2 when not the first
field. SECOND, however, can be defined to have an <interval fractional seconds precision> that
indicates the number of decimal digits maintained following the decimal point in the seconds value.
When not the first field, SECOND has a precision of 2 places before the decimal point.

Fields comprising an item of type interval are also constrained by the definition of the Gregorian
calendar.

Year-month intervals are mutually comparable only with other year-month intervals. If two year-
month intervals have different interval precisions, they are, for the purpose of any operations
between them, effectively converted to the same precision by appending new <primary datetime
field>s to either the most significant end of one interval, the least significant end of one interval, or
both. New least significant <primary datetime field>s are assigned a value of 0 (zero). When it is
necessary to add new most significant datetime fields, the associated value is effectively converted
to the new precision in a manner obeying the natural rules for dates and times associated with the
Gregorian calendar.

28 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.7 Datetimes and intervals

Day-time intervals are mutually comparable only with other day-time intervals. If two day-time
intervals have different interval precisions, they are, for the purpose of any operations between
them, effectively converted to the same precision by appending new <primary datetime field>s
to either the most significant end of one interval or the least significant end of one interval, or
both. New least significant <primary datetime field>s are assigned a value of 0 (zero). When it is
necessary to add new most significant datetime fields, the associated value is effectively converted
to the new precision in a manner obeying the natural rules for dates and times associated with the
Gregorian calendar.

4.7.3 Operations involving datetimes and intervals

Table 9, ‘‘Valid operators involving datetimes and intervals’’, specifies the declared types of arith-
metic expressions involving datetime and interval operands.

Table 9—Valid operators involving datetimes and intervals

Operand 1 Operator Operand 2 Result Type

Datetime � Datetime Interval

Datetime + or � Interval Datetime

Interval + Datetime Datetime

Interval + or � Interval Interval

Interval � or = Numeric Interval

Numeric � Interval Interval

Arithmetic operations involving values of type datetime or interval obey the natural rules associ-
ated with dates and times and yield valid datetime or interval results according to the Gregorian
calendar.

Operations involving values of type datetime require that the datetime values be mutually com-
parable. Operations involving values of type interval require that the interval values be mutually
comparable.

Operations involving a datetime and an interval preserve the time zone of the datetime operand. If
the datetime operand does not include a time zone part, then the local time zone is effectively used.

<overlaps predicate> uses the operator OVERLAPS to determine whether or not two chronological
periods overlap in time. A chronological period is specified either as a pair of datetimes (starting
and ending) or as a starting datetime and an interval.

<extract expression> operates on a datetime or interval and returns an exact numeric value repre-
senting the value of one component of the datetime or interval.

<interval absolute value expression> operates on an interval argument and returns its absolute
value in the same most specific type.

Concepts 29

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.8 User-defined types

4.8 User-defined types

A user-defined type is a schema object, identified by a <user-defined type name>. The definition
of a user-defined type specifies a number of components, including in particular a list of attribute
definitions. Although the attribute definitions are said to define the representation of the user-
defined type, in fact they implicitly define certain functions (observers and mutators) that are part
of the interface of the user-defined type; physical representations of user-defined type values are
implementation-dependent.

The representation of a user-defined type is expressed either as a single data type (some predefined
data type, called the source type), in which case the user-defined type is said to be a distinct type, or
as a list of attribute definitions, in which case it is said to be a structured type.

The definition of a user-defined type may include a <method specification list> consisting of one or
more <method specification>s. A <method specification> is either an <original method specification>
or an <overriding method specification>. Each <original method specification> specifies the <method
name>, the <specific name>, the <SQL parameter declaration list>, the <returns data type>, the
<result cast from type> (if any), the <transform group specification> (if any), whether the method is
type-preserving, the <language clause>, the <parameter style> if the language is not SQL, whether
STATIC is specified, whether the method is deterministic, to what extent the method accesses SQL
(possibly writes SQL data, possibly reads SQL data, possibly contains SQL, or does not possibly
contain SQL), and whether the method should be evaluated as NULL whenever any argument is
NULL, without actually invoking the method.

Each <overriding method specification> specifies the <method name>, the <specific name>, the
<SQL parameter declaration list> and the <returns data type>. For each <overriding method
specification>, there must be an <original method specification> with the same <method name>
and <SQL parameter declaration list> in some proper supertype of the user-defined type. Every
SQL-invoked method in a schema must correspond to exactly one <original method specification> or
<overriding method specification> associated with some user-defined type existing in that schema.

A method M that corresponds to an <original method specification> in the definition of a structured
type T1 is an original method of T1. A method M that corresponds to an <overriding method
specification> in the definition of T1 is an overriding method of T1.

A method M is a method of type T1 if one of the following holds:

— M is an original method of T1.

— M is an overriding method of T1.

— There is a proper supertype T2 of T1 such that M is an original or overriding method of T2
and such that there is no method M3 such that M3 has the same <method name> and <SQL
parameter declaration list> as M and M3 is an original method or overriding method of a type
T3 such that T2 is a proper supertype of T3 and T3 is a supertype of T1.

If T1 is a subtype of T2 and M1 is a method of T1 such that there exists a method M2 of T2 such
that M1 and M2 have the same <method name> and the same unaugmented <SQL parameter
declaration list>, then M1 is an inherited method of T1 from T2.

A user-defined type is described by a user-defined type descriptor. A user-defined type descriptor
contains:

— The name of the user-defined type. This is the type designator of that type, used in type prece-
dence lists (see Subclause 9.5, ‘‘Type precedence list determination’’).

30 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.8 User-defined types

— An indication of whether the user-defined type is a structured type or a distinct type.

— An indication of whether the user-defined type is ordered.

— The ordering form for the user-defined type (EQUALS, FULL, or NONE).

— The ordering category for the user-defined type (RELATIVE, MAP, or STATE).

— A <specific routine designator> identifying the ordering function, depending on the ordering
category.

— If the user-defined type is a direct subtype of another user-defined type, then the name of that
user-defined type.

— If the representation is a predefined data type, then the descriptor of that type; otherwise the
attribute descriptor of every originally-defined attribute and every inherited attribute of the
user-defined type.

— An indication of whether the user-defined type is instantiable or not instantiable.

— An indication of whether the user-defined type is final or not final.

— The transform descriptor of the user-defined type.

— If the user-defined type is a structured type, then whether the reference type for which the
structured type is the referenced type has a user-defined representation, a derived representa-
tion, or a system-defined representation, and the list of attributes of the derived representation.
NOTE 5 – ‘‘user-defined representation’’, ‘‘derived representation’’, and ‘‘system-defined representation’’
of a reference type are defined in Subclause 4.10, ‘‘Reference types’’.

— If the <method specification list> is specified, then for each <method specification> contained in
<method specification list>, a method specification descriptor that includes:

• The <method name>.

• The <SQL parameter declaration list> augmented to include the implicit first parameter
with parameter name SELF.

• The <language name>.

• If the <language name> is not SQL, then the <parameter style>.

• The <returns data type>.

• The <result cast from type>, if any.

• An indication as to whether the <method specification> is an <original method specification>
or an <overriding method specification>.

• If the <method specification> is an <original method specification>, then an indication of
whether STATIC is specified.

• An indication whether the method is deterministic.

• An indication whether the method possibly writes SQL data, possibly reads SQL data,
possibly contains SQL, or does not possibly contain SQL.

Concepts 31

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.8 User-defined types

• An indication whether the method should not be invoked if any argument is the null value,
in which case the value of the method is the null value.

NOTE 6 – The characteristics of an <overriding method specification> other than the <method name>,
<SQL parameter declaration list>, and <returns data type> are the same as the characteristics for the
corresponding <original method specification>.

4.8.1 Observers and mutators

Corresponding to every attribute of every structured type is exactly one implicitly-defined observer
function and exactly one implicitly-defined mutator function. These are both SQL-invoked functions.
Further, the mutator function is a type-preserving function.

Let A be the name of an attribute of structured type T and let AT be the data type of A. The
signature of the observer function for this attribute is FUNCTION A(T) and its result data type is
AT. The signature of the mutator function for this attribute is FUNCTION A(T RESULT, AT) and
its result data type is T.

Let V be a value in data type T and let AV be a value in data type AT. The invocation A(V,AV)
returns MV such that A(MV) = AV and for every attribute A’ (A’ 6= A) of T, A’(MV) = A’(V). The most
specific type of MV is the most specific type of V.

4.8.2 Constructors

Associated with every structured type ST is at least one constructor function, implicitly defined
when ST is defined. The constructor function is defined if and only if ST is instantiable.

The signature of the constructor function for structured type T is T() and its result data type is T.
The invocation T() returns a value V such that V is not null and, for every attribute A of T, A(V)
returns the default value of A. The most specific type of V is T.

4.8.3 Subtypes and supertypes

As a consequence of the <subtype clause> of <user-defined type definition>, two structured types
Ta and Tb that are not compatible can be such that Ta is a subtype of Tb. See Subclause 11.40,
‘‘<user-defined type definition>’’.

A type Ta is a direct subtype of a type Tb if Ta is a proper subtype of Tb and there does not exist a
type Tc such that Tc is a proper subtype of Tb and a proper supertype of Ta.

A type Ta is a subtype of type Tb if one of the following pertains:

— Ta and Tb are compatible;

— Ta is a direct subtype of Tb; or

— Ta is a subtype of some type Tc and Tc is a direct subtype of Tb.

By the same token, Tb is a supertype of Ta and is a direct supertype of Ta in the particular case
where Ta is a direct subtype of Tb.

If Ta is a subtype of Tb and Ta and Tbare not compatible, then Ta is proper subtype of Tb and Tb is
a proper supertype of Ta. A type cannot be a proper supertype of itself.

A type with no proper supertypes is a maximal supertype. A type with no proper subtypes is a leaf
type.

32 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.8 User-defined types

Let Ta be a maximal supertype and let T be a subtype of Ta. The set of all subtypes of Ta (which
includes Ta itself) is called a subtype family of T or (equivalently) of Ta. A subtype family is not
permitted to have more than one maximal supertype.

Every value in a type T is a value in every supertype of T. A value V in type T has exactly one
most specific type MST such that MST is a subtype of T and V is not a value in any proper subtype
of MST. The most specific type of value need not be a leaf type. For example, a type structure
might consist of a type PERSON that has STUDENT and EMPLOYEE as its two subtypes, while
STUDENT has two direct subtypes UG_STUDENT and PG_STUDENT. The invocation STUDENT()
of the constructor function for STUDENT returns a value whose most specific type is STUDENT,
which is not a leaf type.

If Ta is a subtype of Tb, then a value in Ta can be used wherever a value in Tb is expected. In
particular, a value in Ta can be stored in a column of type Tb, can be substituted as an argument for
an input SQL parameter of data type Tb, and can be the value of an invocation of an SQL-invoked
function whose result data type is Tb.

A type T is said to be the minimal common supertype of a set of types S if T is a supertype of every
type in S and a subtype of every type that is a supertype of every type in S.
NOTE 7 – Because a subtype family has exactly one maximal supertype, if two types have a common
subtype, they must also have a minimal common supertype. Thus, for every set of types drawn from the
same subtype family, there is some member of that family that is the minimal common supertype of all of the
types in that set.

If a structured type ST is defined to be not instantiable, then the most specific type of every value
in ST is necessarily of some proper subtype of ST.

If a user-defined type UDT is defined to be final, then UDT has no proper subtypes. As a conse-
quence, the most specific type of every value in UDT is necessarily UDT.

Users must have the UNDER privilege on a type before they can define any direct subtypes of it. A
type can have more than one direct subtype. However, a type can have at most one direct supertype.

A <user-defined type definition> for type T can include references to components of every direct
supertype of T. Effectively, components of all direct supertype representations are copied to the
subtype’s representation.

4.8.4 User-defined type comparison and assignment

Let comparison type of a user-defined type Ta be the user-defined type Tb that satisfies all the
following conditions:

a) The type designator of Tb is in the type precedence list of Ta.

b) The user-defined type descriptor of Tb includes an ordering form that is EQUALS or FULL.

c) The descriptor of no type Tc whose type designator precedes that of Tb in the type precedence
list of Ta includes an ordering form that includes EQUALS or FULL.

If there is no such type Tb, then Ta has no comparison type.

Let comparison form of a user-defined type Ta be the ordering form included in the user-defined
type descriptor of the comparison type of Ta.

Let comparison category of a user-defined type Ta be the ordering category included in the user-
defined type descriptor of the comparison type of Ta.

Concepts 33

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.8 User-defined types

Let comparison function of a user-defined type Ta be the ordering function included in the user-
defined type descriptor of the comparison type of Ta.

Two values V1 and V2 of whose declared types are user-defined types T1 and T2 are comparable if
and only if T1 and T2 are in the same subtype family and each have some comparison type CT1 and
CT2, respectively. CT1 and CT2 constrain the comparison forms and comparison categories of T1
and T2 to be the same — they must be the same throughout a type family. If the comparison cate-
gory is either STATE or RELATIVE, then the comparison functions of T1 and T2 are constrained to
be equivalent; if the comparison category is MAP, they are not constrained to be equivalent.
NOTE 8 – Explicit CAST functions or attribute comparisons can be used to make both values of the same
subtype family or to perform the comparisons on attributes of the user-defined types.

NOTE 9 – ‘‘Subtype’’ and ‘‘subtype family’’ are defined in Subclause 4.8.3, ‘‘Subtypes and supertypes’’.

An expression E whose declared type is some user-defined type UDT1 is assignable to a site S
whose declared type is some user-defined type UDT2 if and only if UDT1 is a subtype of UDT2. The
effect of the assignment of E to S is that the value of S is V, obtained by the evaluation of E. The
most specific type of V is some subtype of UDT1, possibly UDT1 itself, while the declared type of S
remains UDT2.

4.8.5 Transforms for user-defined types

Transforms are SQL-invoked functions that are automatically invoked when values of user-defined
types are transferred from SQL-environment to host languages or vice-versa.

A transform is associated with a user-defined type. A transform identifies a list of transform groups
of up to two SQL-invoked functions, called the transform functions, each identified by a group name.
The group name of a transform group is an <identifier> such that no two transform groups for a
transform have the same group name. The two transform functions are:

— from-sql function — This SQL-invoked function maps the user-defined type value into a value
of an SQL pre-defined type, and gets invoked whenever a user-defined type value is passed to a
host language program or an external routine.

— to-sql function — This SQL-invoked function maps a value of an SQL predefined type to a
value of a user-defined type and gets invoked whenever a user-defined type value is supplied by
a host language program or an external routine.

A transform is defined by a <transform definition>. A transform is described by a transform de-
scriptor. A transform descriptor includes a possibly empty list of transform group descriptors, where
each transform group descriptor includes:

— The group name of the transform group.

— The specific name of the from-sql function, if any, associated with the transform group.

— The specific name of the to-sql function, if any, associated with the transform group.

34 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.9 Row types

4.9 Row types

A row type is a sequence of (<field name> <data type>) pairs, called fields. It is described by a row
type descriptor. A row type descriptor consists of the field descriptor of every field of the row type.

The most specific type of a row of a table is a row type. In this case, each column of the row
corresponds to the field of the row type that has the same ordinal position as the column.

Row type RT2 is a subtype of data type RT1 if and only if RT1 and RT2 are row types of the same
degree and, in every n-th pair of corresponding field definitions, FD1n in RT1 and FD2n in RT2, the
<field name>s are equivalent and the <data type> of FD1n is compatible with the <data type> of
FD2n.

4.10 Reference types

A REF value is a value that references a row in a referenceable table (see Subclause 4.16.2,
‘‘Referenceable tables, subtables, and supertables’’). A referenceable table is necessarily also a
typed table (that is, it has an associated structured type from which its row type is derived).

Given a structured type T, the REF values that can reference rows in typed tables defined on T
collectively form a certain data type RT known as a reference type. T is the referenced type of RT.

A REF value is represented as an octet sequence with an implementation-defined length.

Values of two reference types are mutually comparable if the referenced types of their declared
types have some common supertype.

An expression E whose declared type is some reference type RT1 is assignable to a site S whose
declared type is some reference type RT2 if and only if the referenced type of RT1 is a subtype
of the referenced type of RT2. The effect of the assignment of E to S is that the value of S is V,
obtained by the evaluation of E. The most specific type of V is some subtype of RT1, possibly RT1
itself, while the declared type of S remains RT2.

A site RS that is occupied by a REF value might have a scope, which determines the effect of an
invocation of <dereference operator> on the value at RS. A scope is specified as table name and
consists at any time of every site that is occupied by a row in that table.

A reference type is described by a reference type descriptor. A reference type descriptor includes:

— The name of the referenceable table, if any, that is the scope of the reference type.

— The name of the referenced type.

In a host variable, a REF value is materialized as an N-octet value, where N is implementation-
defined.

Reference type RT2 is a subtype of data type RT1 (equivalently, RT1 is a supertype of RT2) if and
only if RT1 is a reference type and the referenced type of RT2 is a subtype of the referenced type of
RT1.

A reference type has a user-defined representation if its referenced type is defined by a <user-
defined type definition> that specifies <user-defined representation>. A reference type has a derived
representation if its referenced type is defined by a <user-defined type definition> that specifies
<derived representation>. A reference type has a system-defined representation if it does not have a
user-defined representation or a derived representation.

Concepts 35

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.10 Reference types

4.10.1 Operations involving references

An operation is provided that takes a REF value and returns the value that is held in a column
of the site identified by the REF value (see Subclause 6.14, ‘‘<dereference operation>’’). If the REF
value identifies no site, perhaps because a site it once identified has been destroyed, then the null
value is returned.

An operation is provided that takes a REF value and returns a value of the referenced type; that
value is constructed from the values of the columns of the site identified by that REF value (see
Subclause 6.15, ‘‘<reference resolution>’’). An operation is also provided that takes a REF value and
returns a value acquired from invoking an SQL-invoked method on a value of the referenced type;
that value is constructed from the values of the columns of the site identified by that REF value
(see Subclause 6.10, ‘‘<method reference>’’).

4.11 Collection types

A collection is a composite value comprising zero or more elements each a value of some data type
DT. If the elements of some collection C are values of DT, then C is said to be a collection of DT. The
number of elements in C is the cardinality of C. The term ‘‘element’’ is not further defined in this
part of ISO/IEC 9075. The term ‘‘collection’’ is generic, encompassing various types (of collection)
in connection with each of which, individually, this part of ISO/IEC 9075 defines primitive type
constructors and operators. This part of ISO/IEC 9075 supports one collection type, arrays.

A specific <collection type> CT is a <data type> specified by pairing a specific <collection type
constructor> CC with a specific data type EDT. Every element of every possible value of CT is a
value of EDT and is permitted to be, more specifically, of some subtype of EDT. EDT is termed the
element type of CT. CC specifies the type of collection, such as ARRAY, that every value of CT is,
and thus determines the operators that are available for operating on or returning values of CT.

A collection type descriptor describes a <collection type>. The collection type descriptor for <collec-
tion type> CT includes:

— The descriptor of the element type of CT.

— An indication of the type of the collection CT: ARRAY.

Collection type CT2 is a subtype of data type CT1 (equivalently, CT1 is a supertype of CT2) if and
only if CT1 has the same type constructor as CT2 and the element type of CT2 is a subtype of the
element type of CT1.

4.11.1 Arrays

An array is a collection A in which each element is associated with exactly one ordinal position in
A. If n is the cardinality of A, then the ordinal position p of an element is an integer in the range 1
(one) � p � n. If EDT is the element type of A, then A can thus be considered as a function of the
integers in the range 1 (one) to n onto EDT.

An array site AS has a maximum cardinality m. The cardinality n of an array occupying AS is
constrained not to exceed m.

An array type is a <collection type>. If AT is some array type with element type EDT, then every
value of AT is an array of EDT.

36 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.11 Collection types

Let A1 and A2 be arrays of EDT. A1 and A2 are the same array if and only if A1 and A2 have the
same cardinality n and if, for all i in the range 1 (one) � i � n, the element at ordinal position i in
A1 is the same as the element at ordinal position i in A2.

Let n1 be the cardinality of A1 and let n2 be the cardinality of A2. A1 is a subarray of A2 if and
only if there exists some j in the range 0 (zero) � j < n2 such that, for every i in the range 1 (one) �
i � n1, the element at ordinal position i in A1 is the same as the element at ordinal position i+j in
A2.

4.11.2 Collection comparison

Two collections are comparable if and only if they are of the same collection type and their element
types are comparable.

Each collection type has a defined element order. Comparisons may be defined in terms of the
element order of the collections. The element order defines the pairs of corresponding elements
from the collections being compared. The element order of an array is implicitly defined by the
ordinal position of its elements.

In the case of comparison of two arrays C and D, the elements are compared pairwise in element
order. C = D is true if and only if C and D have the same cardinality and every pair of elements are
equal.

4.11.3 Operations involving collections

4.11.3.1 Operators that operate on array values and return array elements

<element reference> is an operation that returns the array element in the specified position within
the array.

4.11.3.2 Operators that operate on array values and return array values

<array concatenation> is an operation that returns the array value made by joining its array value
operands in the order given.

4.12 Type conversions and mixing of data types

Values of the data types NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, and
DOUBLE PRECISION are numbers and are all mutually comparable and mutually assignable. If
an assignment would result in a loss of the most significant digits, an exception condition is raised.
If least significant digits are lost, implementation-defined rounding or truncating occurs with no
exception condition being raised. The rules for arithmetic are generally governed by Subclause 6.26,
‘‘<numeric value expression>’’.

Values corresponding to the data types CHARACTER, CHARACTER VARYING, and CHARACTER
LARGE OBJECT are mutually assignable if and only if they are taken from the same character
repertoire. If they are from different character repertoires, then the value of the source of the
assignment must be translated to the character repertoire of the target before an assignment is
possible. Such translation may be implementation-defined and implicitly performed, in which case
the two character data types are also mutually assignable. If a store assignment would result
in the loss of non-<space> characters due to truncation, then an exception condition is raised. If
a retrieval assignment would result in the loss of characters due to truncation, then a warning

Concepts 37

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.12 Type conversions and mixing of data types

condition is raised. The values are mutually comparable only if they are mutually assignable
and can be coerced to have the same collation. The comparison of two character strings depends
on the collating sequence used for the comparison (see Table 3, ‘‘Collating sequence usage for
comparisons’’). When values of unequal length are compared, if the collating sequence for the
comparison has the NO PAD characteristic and the shorter value is equal to a prefix of the longer
value, then the shorter value is considered less than the longer value. If the collating sequence for
the comparison has the PAD SPACE characteristic, for the purposes of the comparison, the shorter
value is effectively extended to the length of the longer by concatenation of <space>s on the right.

Values corresponding to the binary data type are mutually assignable. If a store assignment would
result in the loss of non-zero octets due to truncation, then an exception condition is raised. If a
retrieval assignment would result in the loss of octets due to truncation, then a warning condition is
raised. When binary string values are compared, they must have exactly the same length (in octets)
to be considered equal. Binary string values can only be compared for equality.

Values corresponding to the data types BIT and BIT VARYING are always mutually comparable and
are mutually assignable. If a store assignment would result in the loss of bits due to truncation,
then an exception condition is raised. If a store assignment to a fixed-length bit string would
result in the addition of bits, then an exception condition is raised. If a retrieval assignment would
result in the loss of bits due to truncation, then a warning condition is raised. When values of
unequal length are compared, if the shorter is a prefix of the longer, then the shorter is less than
the longer; otherwise, the longer is effectively truncated to the length of the shorter for the purposes
of comparison. When values of equal length are compared, then a bit-by-bit comparison is made. A
0-bit is less than a 1-bit.

Values corresponding to the data type boolean are always mutually comparable and are mutually
assignable.

Values of type datetime are mutually assignable only if the source and target of the assignment are
both of type DATE, or both of type TIME (regardless whether WITH TIME ZONE or WITHOUT
TIME ZONE is specified or implicit), or both of type TIMESTAMP (regardless whether WITH TIME
ZONE or WITHOUT TIME ZONE is specified or implicit).

Values of type interval are mutually assignable only if the source and target of the assignment are
both year-month intervals or if they are both day-time intervals.

Values corresponding to user-defined types are discussed in Subclause 4.8.4, ‘‘User-defined type
comparison and assignment’’.

Values corresponding to reference types are discussed in Subclause 4.10, ‘‘Reference types’’.

Values corresponding to the collection types are discussed in Subclause 4.11, ‘‘Collection types’’.

Implicit type conversion can occur in expressions, fetch operations, single row select operations,
inserts, deletes, and updates. Explicit type conversions can be specified by the use of the CAST
operator.

Values corresponding to row types are mutually assignable if and only if both have the same degree
and every field in one row type is mutually assignable to the field in the same ordinal position of
the other row type. Values corresponding to row types are mutually comparable if and only if both
have the same degree and every field in one row type is mutually comparable to the field in the
same ordinal position of the other row type.

Two data types are said to be compatible if they are mutually assignable and their descriptors
include the same data type name. If they are row types, it must further be the case that the
declared types of their corresponding fields are pairwise compatible. If they are collection types,
it must further be the case that their element types are compatible. If they are reference types, it
must further be the case that their referenced types are compatible.

38 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.12 Type conversions and mixing of data types

NOTE 10 – The data types ‘‘CHARACTER(n) CHARACTER SET CS1’’ and ‘‘CHARACTER(m) CHARACTER
SET CS2’’, where CS1 6= CS2, have descriptors that include the same data type name (CHARACTER), but
are not mutually assignable; therefore, they are not compatible.

4.13 Data conversions

Explicit data conversions can be specified by a CAST operator. A CAST operator defines how values
of a source data type are converted into a value of a target data type according to the Syntax Rules
and General Rules of Subclause 6.22, ‘‘<cast specification>’’. Data conversions between predefined
data types and between constructed types are defined by the rules of this part of ISO/IEC 9075.
Data conversions between one or more user-defined types are defined by a user-defined cast.

A user-defined cast identifies an SQL-invoked function, called the cast function, that has one SQL
parameter whose declared type is the same as the source data type and a result data type that is
the target data type. A cast function may optionally be specified to be implicitly invoked whenever
values are assigned to targets of its result data type. Such a cast function is called an implicitly
invocable cast function.

A user-defined cast is defined by a <user-defined cast definition>. A user-defined cast has a user-
defined cast descriptor that includes:

— The name of the source data type.

— The name of the target data type.

— The specific name of the SQL-invoked function that is the cast function.

— An indication as to whether the cast function is implicitly invocable.

When a value V of declared type TV is assigned to a target T of declared type TT, a user-defined
cast function UDCF is said to be an appropriate user-defined cast function if and only if all of the
following are true:

— The descriptor of UDCF indicates that UDCF is implicitly invocable.

— The type designator of the declared type DTP of the only SQL parameter P of UDCF is in the
type precedence list of TV.

— The result data type of UDCF is TT.

— No other user-defined cast function UDCQ with a SQL parameter Q with declared type TQ that
precedes DTP in the type precedence list of TV is an appropriate user-defined cast function to
assign V to T.

A SQL procedure statement S is said to be dependent on an appropriate user-defined cast function
UDCF if and only if all of the following are true:

— S is a <select statement: single row>, <insert statement>, <update statement: positioned>, or
<update statement: searched>.

— UDCF is invoked during a store or retrieval assignment operation that is executed during the
execution of S and UDCF is not executed during the invocation of a SQL-invoked function that
is invoked during the execution of S.

Concepts 39

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.14 Domains

4.14 Domains

A domain is a set of permissible values. A domain is defined in a schema and is identified by a
<domain name>. The purpose of a domain is to constrain the set of valid values that can be stored
in a column of a base table by various operations.

A domain definition specifies a data type. It may also specify a <domain constraint> that further
restricts the valid values of the domain and a <default clause> that specifies the value to be used in
the absence of an explicitly specified value or column default.

A domain is described by a domain descriptor. A domain descriptor includes:

— The name of the domain.

— The data type descriptor of the data type of the domain.

— The <collation name> from the <collate clause>, if any, of the domain.

— The value of <default option>, if any, of the domain.

— The domain constraint descriptors of the domain constraints, if any, of the domain.

4.15 Columns, fields, and attributes

The terms column, field, and attribute refer to structural components of tables, row types, and
structured types, respectively, in analogous fashion. As the structure of a table consists of one
or more columns, so does the structure of a row type consist of one or more fields and that of a
structured type one or more attributes. Every structural element, whether a column, a field, or an
attribute, is primarily a name paired with a declared type. The elements of a structure are ordered.
Elements in different positions in the same structure can have the same declared type but not the
same name. Although the elements of a structure are distinguished from each other by name, in
some circumstances the compatibility of two structures (for the purpose at hand) is determined
solely by considering the declared types of each pair of elements at the same ordinal position.

A table (see Subclause 4.16, ‘‘Tables’’) is defined on one or more columns and consists of zero or more
rows. A column has a name and a declared type. Each row in a table has exactly one value for each
column. Each value in a row is a value in the declared type of the column.
NOTE 11 – The declared type includes the null value and values in proper subtypes of the declared type.

Every column has a nullability characteristic that indicates whether the value from that column
can be the null value. The possible values of nullability characteristic are known not nullable and
possibly nullable.

A column C of a base table T has a nullability characteristic that is known not nullable if and only
if at least one of the following is true:

— There exists at least one constraint NNC that is not deferrable and that simply contains a
<search condition> that is a <boolean value expression> that is a known-not-null condition for
C.

— C is based on a domain that has a domain constraint that is not deferrable and that simply
contains a <search condition> that is a <boolean value expression> that is a known-not-null
condition for VALUE.

— C is a unique column of a nondeferrable unique constraint that is a PRIMARY KEY.

40 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.15 Columns, fields, and attributes

— The SQL-implementation is able to deduce that the value of C can never be null through some
additional implementation-defined rule or rules.

A column C of a derived table is known not nullable, according to the Syntax Rules of Subclause 7.7,
‘‘<joined table>’’, Subclause 7.11, ‘‘<query specification>’’, and Subclause 7.12, ‘‘<query expression>’’.

Otherwise, a column C is possibly nullable.
NOTE 12 – Whether a column of a virtual table is possibly nullable or known not nullable is specified in
the Syntax Rules of various Subclauses, including Subclause 7.7, ‘‘<joined table>’’, Subclause 7.11, ‘‘<query
specification>’’, and Subclause 7.12, ‘‘<query expression>’’.

A column, field, or attribute may be defined with a data type that is a reference type. For such a
column, field, or attribute, if the reference type specifies a <scope clause>, then the user may specify
whether reference values must be checked. If the user has specified that reference values must be
checked, then:

— Whenever the value of the column, field, or attribute is changed, the new value of the column,
field, or attribute must reference a row of one of the tables in the <scope clause> of the reference
type.

— The column, field, or attribute definition may specify that, whenever a row is deleted from one of
the tables in the <scope clause>, either the value of the (referencing) column, field, or attribute
is set to the null value, or that such deletions are prohibited; in the latter case, attempts to
perform such deletions result in the raising of an exception condition: constraint violation.

A column, C, is described by a column descriptor. A column descriptor includes:

— The name of the column.

— Whether the name of the column is an implementation-dependent name.

— If the column is based on a domain, then the name of that domain; otherwise, the data type
descriptor of the declared type of C.

— The <collation name> from the <collate clause>, if any, of C.

— The value of <default option>, if any, of C.

— The nullability characteristic of C.

— The ordinal position of C within the table that contains it.

— An indication of whether the column is a self-referencing column of a base table or not.

An attribute A is described by an attribute descriptor. An attribute descriptor includes:

— The name of the attribute.

— The data type descriptor of the declared type of A.

— The <collation name> from the <collate clause>, if any, of A.

— The ordinal position of A within the structured type that contains it.

— The value of the implicit or explicit <attribute default> of A.

— If the data type of the attribute is a reference type, then whether reference values must be
checked.

Concepts 41

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.15 Columns, fields, and attributes

— The name of the structured type defined by the <user-defined type definition> that defines A.

A field F is described by a field descriptor. A field descriptor includes:

— The name of the field.

— The data type descriptor of the declared type of F.

— The <collation name> from the <collate clause>, if any, of F.

— The ordinal position of F within the row type that simply contains it.

— If the data type of the field is a reference type, then whether reference values must be checked.

4.16 Tables

A table is a collection of rows having one or more columns. A row is an instance of a row type.
Every row of the same table has the same row type. The value of the i-th field of every row in a
table is the value of the i-th column of that row in the table. The row is the smallest unit of data
that can be inserted into a table and deleted from a table.

The degree of a table, and the degree of each of its rows, is the number of columns of that table.
The number of rows in a table is its cardinality. A table whose cardinality is 0 (zero) is said to be
empty.

A table is either a base table or a derived table. A base table is either a persistent base table, a
global temporary table, a created local temporary table, or a declared local temporary table.

A persistent base table is a named table defined by a <table definition> that does not specify
TEMPORARY.

A derived table is a table derived directly or indirectly from one or more other tables by the evalu-
ation of a <query expression> whose result has an element type that is a row type. The values of a
derived table are derived from the values of the underlying tables when the <query expression> is
evaluated.

A viewed table is a named derived table defined by a <view definition>. A viewed table is sometimes
called a view.

All base tables are updatable. Derived tables are either updatable or not updatable. The operations
of update and delete are permitted for updatable tables, subject to constraining Access Rules. Some
updatable tables, including all base tables, are also insertable-into, in which case the operation of
insert is also permitted, again subject to Access Rules.

A table T2 is part of a column C of a table T1 if setting the value of T1.C to a null value (ignoring
any constraints or triggers defined on T1 or T1.C) would cause T2 to disappear.

The most specific type of a row is a row type. All rows of a table are of the same row type and this
is called the row type of that table.

A table is described by a table descriptor. A table descriptor is either a base table descriptor, a view
descriptor, or a derived table descriptor (for a derived table that is not a view).

Every table descriptor includes:

— The column descriptor of each column in the table.

— The name, if any, of the structured type, if any, associated with the table.

42 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.16 Tables

— An indication of whether the base table is a referenceable table or not, and an indication of
whether the self-referencing column is a system-generated, a user-generated, or a derived
self-referencing column.

— A list, possibly empty, of the names of its direct supertables.

— A list, possibly empty, of the names of its direct subtables.

A base table descriptor describes a base table. In addition to the components of every table descrip-
tor, a base table descriptor includes:

— The name of the base table.

— An indication of whether the table is a persistent base table, a global temporary table, a created
local temporary table, or a declared local temporary table.

— If the base table is a global temporary table, a created local temporary table, or a declared local
temporary table, then an indication of whether ON COMMIT DELETE ROWS was specified or
ON COMMIT PRESERVE ROWS was specified or implied.

— The descriptor of each table constraint specified for the table.

— A non-empty set of functional dependencies, according to the rules given in Subclause 4.18,
‘‘Functional dependencies’’.

— A non-empty set of candidate keys, according to the rules of Subclause 4.19, ‘‘Candidate keys’’.

— A preferred candidate key, which may or may not be additionally designated the primary key,
according to the Rules in Subclause 4.18, ‘‘Functional dependencies’’.

A derived table descriptor describes a derived table. In addition to the components of every table
descriptor, a derived table descriptor includes:

— The <query expression> that defines how the table is to be derived.

— An indication of whether the derived table is updatable or not.

— An indication of whether the derived table is insertable-into or not.

A view descriptor describes a view. In addition to the components of a derived table descriptor, a
view descriptor includes:

— The name of the view.

— An indication of whether the view has the CHECK OPTION; if so, whether it is to be applied as
CASCADED or LOCAL.

— The original <query expression> of the view.

Concepts 43

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.16 Tables

4.16.1 Types of tables

The terms simply underlying table, underlying table, leaf underlying table, generally underlying
table, and leaf generally underlying table define a relationship between a derived table or cursor and
other tables.

The simply underlying tables of derived tables and cursors are defined in Subclause 7.11, ‘‘<query
specification>’’, Subclause 7.12, ‘‘<query expression>’’, and Subclause 14.1, ‘‘<declare cursor>’’. A
<table or query name> has no simply underlying tables.

The underlying tables of a derived table or cursor are the simply underlying tables of the derived
table or cursor and the underlying tables of the simply underlying tables of the derived table or
cursor.

The leaf underlying tables of a derived table or cursor are the underlying tables of the derived table
or cursor that do not themselves have any underlying tables.

The generally underlying tables of a derived table or cursor are the underlying tables of the derived
table or cursor and, for each underlying table of the derived table or cursor that is a <table or query
name> TORQN, the generally underlying tables of TORQN, defined as follows:

— If TORQN identifies a base table, then TORQN has no generally underlying tables.

— If TORQN is a <query name>, then the generally underlying tables of TORQN are the <query
expression body> QEB of the <with list element> identified by TORQN and the generally
underlying tables of QEB.

— If TORQN identifies a view V, then the generally underlying tables of TORQN are the <query
expression> QEV included in the view descriptor of V and the generally underlying tables of
QEV.

The leaf generally underlying tables of a derived table or cursor are the generally underlying tables
of the derived table or cursor that do not themselves have any generally underlying tables.

A grouped table is a set of groups derived during the evaluation of a <group by clause>. A group G
is a multiset of rows in which, for every grouping column GC, if the value of GC in some row is GV,
then the value of GC in every row is GV; moreover, if R1 is a row in group G1 of grouped table GT
and R2 is a row in GT such that for every grouping column GC the value of GC in R1 is equal to
the value of GC in R2 (or both are the null value), then R2 is in G1. Every row in GT is in exactly
one group. A group may be considered as a table. Set functions operate on groups.

A global temporary table is a named table defined by a <table definition> that specifies GLOBAL
TEMPORARY. A created local temporary table is a named table defined by a <table definition>
that specifies LOCAL TEMPORARY. Global and created local temporary tables are effectively
materialized only when referenced in an SQL-session. Every SQL-client module in every SQL-
session that references a created local temporary table causes a distinct instance of that created
local temporary table to be materialized. That is, the contents of a global temporary table or a
created local temporary table cannot be shared between SQL-sessions.

In addition, the contents of a created local temporary table cannot be shared between SQL-client
modules of a single SQL-session. The definition of a global temporary table or a created local
temporary table appears in a schema. In SQL language, the name and the scope of the name
of a global temporary table or a created local temporary table are indistinguishable from those
of a persistent base table. However, because global temporary table contents are distinct within
SQL-sessions, and created local temporary tables are distinct within SQL-client modules within
SQL-sessions, the effective <schema name> of the schema in which the global temporary table
or the created local temporary table is instantiated is an implementation-dependent <schema

44 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.16 Tables

name> that may be thought of as having been effectively derived from the <schema name> of the
schema in which the global temporary table or created local temporary table is defined and the
implementation-dependent SQL-session identifier associated with the SQL-session.

In addition, the effective <schema name> of the schema in which the created local temporary
table is instantiated may be thought of as being further qualified by a unique implementation-
dependent name associated with the SQL-client module in which the created local temporary table
is referenced.

A declared local temporary table is a module local temporary table. A module local temporary table
is a named table defined by a <temporary table declaration> in an SQL-client module. A module
local temporary table is effectively materialized the first time it is referenced in an SQL-session,
and it persists for that SQL-session.

A declared local temporary table may be declared in an SQL-client module.

A declared local temporary table that is declared in an SQL-client module is a named table defined
by a <temporary table declaration> that is effectively materialized the first time any <externally-
invoked procedure> in the <SQL-client module definition> that contains the <temporary table
declaration> is executed. A declared local temporary table is accessible only by <externally-invoked
procedure>s in the <SQL-client module definition> that contains the <temporary table declaration>.
The effective <schema name> of the <schema qualified name> of the declared local temporary table
may be thought of as the implementation-dependent SQL-session identifier associated with the
SQL-session and a unique implementation-dependent name associated with the <SQL-client module
definition> that contains the <temporary table declaration>.

All references to a declared local temporary table are prefixed by ‘‘MODULE.’’.

The materialization of a temporary table does not persist beyond the end of the SQL-session in
which the table was materialized. Temporary tables are effectively empty at the start of an SQL-
session.

4.16.2 Referenceable tables, subtables, and supertables

A table BT whose row type is derived from a structured type ST is called a typed table. Only
a base table or a view can be a typed table. A typed table has columns corresponding, in name
and declared type, to every attribute of ST and one other column REFC that is the self-referencing
column of BT; let REFCN be the <column name> of REFC. The declared type of REFC is necessarily
REF(ST) and the nullability characteristic of REFC is known not nullable. If BT is a base table,
then the table constraint ‘‘UNIQUE(REFCN)’’ is implicit in the definition of BT. A typed table is
called a referenceable table. A self-referencing column cannot be updated. Its value is determined
during the insertion of a row into the referenceable table. The value of a system-generated self-
referencing column and a derived self-referencing column is automatically generated when the row
is inserted into the referenceable table. The value of a user-generated self-referencing column is
supplied as part of the candidate row to be inserted into the referenceable table.

A table Ta is a direct subtable of another base table Tb if and only if the <table name> of Tb is
contained in the <subtable clause> contained in the <table definition> or <view definition> of Ta.
Both Ta and Tb must be created on a structured type and the structured type of Ta must be a direct
subtype of the structured type of Tb.

A table Ta is a subtable of a table Tb if and only if any of the following are true:

1) Ta and Tb are the same named table.

2) Ta is a direct subtable of Tb.

Concepts 45

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.16 Tables

3) There is a table Tc such that Ta is a direct subtable of Tc and Tc is a subtable of Tb.

A table T is considered to be one of its own subtables. Subtables of T other than T itself are called
its proper subtables. A table shall not have itself as a proper subtable.

A table Tb is called a supertable of a table Ta if Ta is a subtable of Tb. If Ta is a direct subtable of
Tb, then Tb is called a direct supertable of Ta. A table that is not a subtable of any other table is
called a maximal supertable.

Let Ta be a maximal supertable and T be a subtable of Ta. The set of all subtables of Ta (which
includes Ta itself) is called the subtable family of T or (equivalently) of Ta. Every subtable family
has exactly one maximal supertable.

A leaf table is a table that does not have any proper subtables.

Those columns of a subtable Ta of a structured type STa that correspond to the inherited attributes
of STa are called inherited columns. Those columns of Ta that correspond to the originally-defined
attributes of STa are called originally-defined columns.

Let TB be a subtable of TA. Let SLA be the <value expression> sequence implied by the <select
list> ‘‘*’’ in the <query specification> ‘‘SELECT * FROM TA’’. For every row RB in the value of TB
there exists exactly one row RA in the value of TA such that RA is the result of the <row subquery>
‘‘SELECT SLA FROM VALUES RRB’’, where RRB is some <row value constructor> whose value is
RB. RA is said to be the superrow in TA of RB and RB is said to be the subrow in TB of RA. If TA
is a base table, then the one-to-one correspondence between superrows and subrows is guaranteed
by the requirement for a unique constraint to be specified for some supertable of TA. If TA is a view,
then such one-to-one correspondence is guaranteed by the requirement for a unique constraint to be
specified on the leaf generally underlying table of TA.

Users must have the UNDER privilege on a table before they can use the table in a subtable
definition. A table can have more than one proper subtable. Similarly, a table can have more than
one proper supertable.

4.16.3 Operations involving tables

Table values are operated on and returned by <query expression>s. The syntax of <query expres-
sion> includes various internal operators that operate on table values and return table values. In
particular, every <query expression> effectively includes at least one <from clause>, which operates
on one or more table values and returns a single table value. A table value operated on by a <from
clause> is specified by a <table reference>.

In a <table reference>, ONLY can be specified to exclude from the result rows that have subrows in
proper subtables of the referenced table.

A <table reference> that satisfies certain properties specified in this international standard can
be used to designate an updatable table. Certain table updating operations, specified by SQL-data
change statements, are available in connection with updatable tables. The value of an updatable
table T is determined by the result of the mostly recently executed SQL-data change statement
(see Subclause 4.30.2, ‘‘SQL-statements classified by function’’) operating on T. An SQL-data change
statement on table T has a primary effect (on T itself) and zero or more secondary effects (not
necessarily on T).

The effect of deleting a row R from T is to replace the value TV of T by the result of the <query
expression>:

SELECT * FROM T EXCEPT ALL VALUES RR

46 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.16 Tables

where RR is some <row value constructor> whose value is R. The primary effect of a <delete
statement: positioned> on T is to delete exactly one specified row from T. The primary effect of
a <delete statement: searched> on T is to delete zero or more rows from T.

The effect of replacing a row R in T is to replace the value TV of T by the result of the <query
expression>:

SELECT *
FROM T
EXCEPT ALL
VALUES RR
UNION ALL

VALUES RR1

where RR is some <row value constructor> whose value is R and RR1 is some <row value con-
structor> whose value is the row to replace R in T. The primary effect of an <update statement:
positioned> on T is to replace exactly one specified row in T with some specified row. The primary
effect of an <update statement: searched> on T is to replace zero or more rows in T.

If T, as well as being updatable, is insertable-into, then rows can be inserted into it. The effect of
inserting a row R into T is to replace the value TV of T by the result of the <query expression>:

SELECT * FROM T UNION ALL VALUES RR

where RR is some <row value constructor> whose value is R. The primary effect of an <insert
statement> on T is to insert into T each of the zero or more rows contained in a specified table.

Each of the table updating operations, when applied to T, can have various secondary effects, as
specified in ISO/IEC 9075. Such secondary effects can include alteration or reversal of the primary
effect. Secondary effects might arise from the existence of:

— Underlying tables of T, other than T itself, whose values might be subject to secondary effects.

— Updatable views whose <view definition>s do not specify WITH GLOBAL CHECK OPTION,
which might result in alteration or reversal of primary effects.

— Cascaded operations specified in connection with integrity constraints involving underlying
tables of T, which might result in secondary effects on tables referenced by such constraints.

— Proper subtables and proper supertables of T, whose values might be affected by updating
operations on T.

— Triggers specified for underlying tables of T, which might specify table updating operations on
updatable tables other than T.

The secondary effects of table updating operations on T on proper supertables and subtables of T
are as follows:

— When row R is deleted from T, for every table ST that is a proper supertable or proper subtable
of T, the corresponding superrow or subrow SR of R in ST is deleted from ST.

— When row R is replaced in T, for every table ST that is a proper supertable or a proper subtable
of T the corresponding superrow or subrow SR of R in ST is replaced in ST.

— When row R is inserted into T, for every proper supertable ST of T the corresponding superrow
SR of R is inserted into ST.

Concepts 47

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.17 Integrity constraints

4.17 Integrity constraints

Integrity constraints, generally referred to simply as constraints, define the valid states of SQL-
data by constraining the values in the base tables. A constraint is either a table constraint, a
domain constraint or an assertion. A constraint is described by a constraint descriptor. A constraint
descriptor is either a table constraint descriptor, a domain constraint descriptor or an assertion
descriptor. Every constraint descriptor includes:

— The name of the constraint.

— An indication of whether or not the constraint is deferrable.

— An indication of whether the initial constraint mode is deferred or immediate.

A <query expression> or <query specification> is possibly non-deterministic if an SQL-implementation
might, at two different times where the state of the SQL-data is the same, produce results that dif-
fer by more than the order of the rows due to General Rules that specify implementation-dependent
behavior.

No integrity constraint shall be defined using a <query specification> or a <query expression> that
is possibly non-deterministic.

4.17.1 Checking of constraints

Every constraint is either deferrable or non-deferrable. Within an SQL-transaction, every constraint
has a constraint mode; if a constraint is non-deferrable, then its constraint mode is always imme-
diate, otherwise it is either immediate or deferred. Every constraint has an initial constraint mode
that specifies the constraint mode for that constraint at the start of each SQL-transaction and im-
mediately after definition of that constraint. If a constraint is deferrable, then its constraint mode
may be changed (from immediate to deferred, or from deferred to immediate) by execution of a <set
constraints mode statement>.

The checking of a constraint depends on its constraint mode within the current SQL-transaction.
If the constraint mode is immediate, then the constraint is effectively checked at the end of each
SQL-statement.
NOTE 13 – This includes SQL-statements that are executed as a direct result or an indirect result of
executing a different SQL-statement.

If the constraint mode is deferred, then the constraint is effectively checked when the constraint
mode is changed to immediate either explicitly by execution of a <set constraints mode statement>,
or implicitly at the end of the current SQL-transaction.

When a constraint is checked other than at the end of an SQL-transaction, if it is not satisfied, then
an exception condition is raised and the SQL-statement that caused the constraint to be checked has
no effect other than entering the exception information into the diagnostics area. When a <commit
statement> is executed, all constraints are effectively checked and, if any constraint is not satisfied,
then an exception condition is raised and the SQL-transaction is terminated by an implicit <rollback
statement>.

48 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.17 Integrity constraints

4.17.2 Table constraints

A table constraint is either a unique constraint, a referential constraint or a table check constraint.
A table constraint is described by a table constraint descriptor which is either a unique constraint
descriptor, a referential constraint descriptor or a table check constraint descriptor.

Every table constraint specified for base table T is implicitly a constraint on every subtable of T, by
virtue of the fact that every row in a subtable is considered to have a corresponding superrow in
every one of its supertables.

A unique constraint is described by a unique constraint descriptor. In addition to the components of
every table constraint descriptor, a unique constraint descriptor includes:

— An indication of whether it was defined with PRIMARY KEY or UNIQUE.

— The names and positions of the unique columns specified in the <unique column list>.

If the table descriptor for base table T includes a unique constraint descriptor indicating that the
unique constraint was defined with PRIMARY KEY, then the columns of that unique constraint
constitute the primary key of T. A table that has a primary key cannot have a proper supertable.

A referential constraint is described by a referential constraint descriptor. In addition to the compo-
nents of every table constraint descriptor, a referential constraint descriptor includes:

— The names of the referencing columns specified in the <referencing columns>.

— The names of the referenced columns and referenced table specified in the <referenced table and
columns>.

— The value of the <match type>, if specified, and the <referential triggered actions>, if specified.

NOTE 14 – If MATCH FULL or MATCH PARTIAL is specified for a referential constraint and if the
referencing table has only one column specified in <referential constraint definition> for that referential
constraint, or if the referencing table has more than one specified column for that <referential constraint
definition>, but none of those columns is nullable, then the effect is the same as if no <match option> were
specified.

A table check constraint is described by a table check constraint descriptor. In addition to the
components of every table constraint descriptor, a table check constraint descriptor includes:

— The <search condition>.

A unique constraint is satisfied if and only if no two rows in a table have the same non-null values
in the unique columns. In addition, if the unique constraint was defined with PRIMARY KEY, then
it requires that none of the values in the specified column or columns be a null value.

In the case that a table constraint is a referential constraint, the table is referred to as the referenc-
ing table. The referenced columns of a referential constraint shall be the unique columns of some
unique constraint of the referenced table.

A referential constraint is satisfied if one of the following conditions is true, depending on the
<match option> specified in the <referential constraint definition>:

— If no <match type> was specified then, for each row R1 of the referencing table, either at least
one of the values of the referencing columns in R1 shall be a null value, or the value of each
referencing column in R1 shall be equal to the value of the corresponding referenced column in
some row of the referenced table.

Concepts 49

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.17 Integrity constraints

— If MATCH FULL was specified then, for each row R1 of the referencing table, either the value of
every referencing column in R1 shall be a null value, or the value of every referencing column in
R1 shall not be null and there shall be some row R2 of the referenced table such that the value
of each referencing column in R1 is equal to the value of the corresponding referenced column in
R2.

— If MATCH PARTIAL was specified then, for each row R1 of the referencing table, there shall
be some row R2 of the referenced table such that the value of each referencing column in R1 is
either null or is equal to the value of the corresponding referenced column in R2.

The referencing table may be the same table as the referenced table.

A table check constraint is satisfied if and only if the specified <search condition> is not false for
any row of a table.

4.17.3 Domain constraints

A domain constraint is a constraint that is specified for a domain. It is applied to all columns that
are based on that domain, and to all values cast to that domain.

A domain constraint is described by a domain constraint descriptor. In addition to the components
of every constraint descriptor a domain constraint descriptor includes:

— The <search condition>.

A domain constraint is satisfied by SQL-data if and only if, for any table T that has a column named
C based on that domain, the specified <search condition>, with each occurrence of VALUE replaced
by C, is not false for any row of T.

A domain constraint is satisfied by the result of a <cast specification> if and only if the specified
<search condition>, with each occurrence of VALUE replaced by that result, is not false.

4.17.4 Assertions

An assertion is a named constraint that may relate to the content of individual rows of a table, to
the entire contents of a table, or to a state required to exist among a number of tables.

An assertion is described by an assertion descriptor. In addition to the components of every con-
straint descriptor an assertion descriptor includes:

— The <search condition>.

An assertion is satisfied if and only if the specified <search condition> is not false.

4.18 Functional dependencies

This Subclause defines functional dependency and specifies a minimal set of rules that a conforming
implementation must follow to determine functional dependencies and candidate keys in base tables
and <query expression>s.

The rules in this Subclause may be freely augmented by implementation-defined rules, where
indicated in this Subclause.

50 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.18 Functional dependencies

4.18.1 General rules and definitions

Let T be any table. Let CT be the set comprising all the columns of T, and let A and B be arbitrary
subsets of CT, not necessarily disjoint and possibly empty.

Let ‘‘T: A 7! B’’ (read ‘‘in T, A determines B’’ or ‘‘B is functionally dependent on A in T’’) denote the
functional dependency of B on A in T, which is true if, for any possible value of T, any two rows
that agree in value for every column in A also agree in value for every column in B. Two rows agree
in value for a column if the two values either are both null or compare as equal under the General
Rules of Subclause 8.2, ‘‘<comparison predicate>’’. When the table T is understood from context, the
abbreviation ‘‘A 7! B’’ may also be used.

If X 7! Y is some functional dependency in some table T, then X is a determinant of Y in T.

Let A 7! B and C 7! D be any two functional dependencies in T. The following are also functional
dependencies in T:

— A UNION (C DIFFERENCE B) 7! B UNION D

— C UNION (A DIFFERENCE D) 7! B UNION D

NOTE 15 – Here, ‘‘UNION’’ denotes set union and ‘‘DIFFERENCE’’ denotes set difference.

These two rules are called the rules of deduction for functional dependencies.

Every table has an associated non-empty set of functional dependencies.

The set of functional dependencies is non-empty because X 7! X for any X. A functional dependency
of this form is an axiomatic functional dependency, as is X 7! Y where Y is a subset of X. X 7! Y is a
non-axiomatic functional dependency if Y is not a subset of X.

In the following Subclauses, let a column C1 be a counterpart of a column C2 under qualifying
table QT if C1 is specified by a column reference (or by a <value expression> that is a column
reference) that references C2 and QT is the qualifying table of C2. If C1 is a counterpart of C2
under qualifying table QT1 and C2 is a counterpart of C3 under qualifying table QT2, then C1 is a
counterpart of C1 under QT2.

The notion of counterparts naturally generalizes to sets of columns, as follows: If S1 and S2 are sets
of columns, and there is a one-to-one correspondence between S1 and S2 such that each element of
S1 is a counterpart of the corresponding element of S2, then S1 is a counterpart of S2.

The next Subclauses recursively define the notion of known functional dependency. This is a ternary
relationship between a table and two sets of columns of that table. This relationship expresses that
a functional dependency in the table is known to the SQL-implementation. All axiomatic functional
dependencies are known functional dependencies. In addition, any functional dependency that
can be deduced from known functional dependencies using the rules of deduction for functional
dependency is a known functional dependency.

The next Subclauses also recursively define the notion of a ‘‘BUC-set’’, which is a set of columns of a
table (as in ‘‘S is BUC-set’’, where S is a set of columns).
NOTE 16 – ‘‘BUC’’ is an acronym for ‘‘base table unique constraint’’, since the starting point of the recursion
is a set of known not null columns comprising a nondeferrable unique constraint of a base table.

The notion of BUC-set is closed under the following deduction rule for BUC-sets: If S1 and S2 are
sets of columns, S1 is a subset of S2, S1 7! S2, and S2 is a BUC-set, then S1 is also a BUC-set.
NOTE 17 – A BUC-set may be empty, in which case there is at most one row in the table. This case must
be distinguished from a table with no BUC-set.

Concepts 51

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.18 Functional dependencies

An SQL-implementation may define additional rules for determining BUC-sets, provided that every
BUC-set S of columns of a table T shall have an associated base table BT such that every column of
S has a counterpart in BT, and for any possible value of the columns of S, there is at most one row
in BT having those values in those columns.

The next Subclauses also recursively define the notion of a ‘‘BPK-set’’, which is a set of columns of a
table (as in ‘‘S is a BPK-set’’, where S is a set of columns). Every BPK-set is a BUC-set.
NOTE 18 – ‘‘BPK’’ is an acronym for ‘‘base table primary key’’, since the starting point of the recursion is a
set of known not null columns comprising a nondeferrable primary key constraint of a base table.

The notion of BPK-set is closed under the following deduction rule for BPK-sets: If S1 and S2 are
sets of columns, S1 is a subset of S2, S1 7! S2, and S2 is a BPK-set, then S1 is also a BPK-set.
NOTE 19 – Like BUC-sets, a BPK-set may be empty.

An SQL-implementation may define additional rules for determining BPK-sets, provided that every
BPK-set S is a BUC-set, and every member of S has a counterpart to a column in a primary key in
the associated base table BT.

All applicable syntactic transformations (for example, to remove *, CUBE, or ROLLUP) shall be
applied before using the rules to determine known functional dependencies, BUC-sets, and BPK-
sets.

The following Subclauses use the notion of AND-component of a <search condition> SC. which is
defined recursively as follows:

— If SC is a <boolean test> BT, then the only AND-component of SC is BT.

— If SC is a <boolean factor> BF, then the only AND-component of SC is BF.

— If SC is a <boolean term> of the form ‘‘P AND Q’’, then the AND-components of SC are the
AND-components of P and the AND-components of Q.

— If SC is a <boolean value expression> BVE that specifies OR, then the only AND-component of
SC is BVE.

Let AC be an AND-component of SC such that AC is a <comparison predicate> whose <comp op> is
<equals operator>. Let RVE1 and RVE2 be the two <row value expression>s that are the operands
of AC. Suppose that both RVE1 and RVE2 are <row value constructor>s. Let n be the number of
<row value constructor element>s in RVE1. Let RVEC1i and RVEC1i, 1 (one)� i � n, be the i-th
<row value constructor element> of RVE1 and RVE2, respectively. The <comparison predicate>
‘‘RVEC1i = RVEC2i’’ is called an equality AND-component of SC.

4.18.2 Known functional dependencies in a base table

Let T be a base table and let CT be the set comprising all the columns of T.

A set of columns S1 of T is a BPK-set if it is the set of columns enumerated in some unique con-
straint UC of T, UC specifies PRIMARY KEY, and UC is nondeferrable.

A set of columns S1 of T is a BUC-set if it is the set of columns enumerated in some unique con-
straint UC of T, UC is nondeferrable, and every member of S1 is known not null.

If UCL is a set of columns of T such that UCL is a BUC-set, then UCL 7! CT is a known functional
dependency in T.

Implementation-defined rules may determine other known functional dependencies in T.

52 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.18 Functional dependencies

4.18.3 Known functional dependencies in <table value constructor>

Let R be the result of a <table value constructor>, and let CR be the set comprising all the columns
of R.

No set of columns of R is a BPK-set or a BUC-set, except as determined by implementation-defined
rules.

All axiomatic functional dependencies are known functional dependencies of a <table value con-
structor>. In addition, there may be implementation-defined known functional dependencies (for
example, by examining the actual value of the <table value constructor>).

4.18.4 Known functional dependencies in a <joined table>

Let T1 and T2 denote the tables identified by the first and second <table reference>s of some <joined
table> JT. Let R denote the table that is the result of JT. Let CT be the set of columns of the result
of JT.

Every column of R has some counterpart in either T1 or T2. If NATURAL is specified or the <join
specification> is a <named columns join>, then some columns of R may have counterparts in both
T1 and T2.

A set of columns S of R is a BPK-set if S has some counterpart in T1 or T2 that is a BPK-set, every
member of S is known not null, and S 7! CT is a known functional dependency of R.

A set of columns S of R is a BUC-set if S has some counterpart in T1 or T2 that is a BUC-set, every
member of S is known not null, and S 7! CT is a known functional dependency of R.
NOTE 20 – The following rules for known functional dependencies in a <joined table> are not mutually
exclusive. The set of known functional dependencies is the union of those dependencies generated by all
applicable rules, including the rules of deduction presented earlier.

If <join condition> is specified, AP is an equality AND-component of the <search condition>, one
comparand of AP is a column reference CR, and the other comparand of AP is a <literal>, then let
CRC be the counterparts of CR in R. Let {} denote the empty set. {} 7! {CRC} is a known functional
dependency in R if any of the following conditions is true:

— INNER is specified.

— If LEFT is specified and CR is a column reference to a column in T1.

— If RIGHT is specified and CR is a column reference to a column in T2.

NOTE 21 – An SQL-implementation may also choose to recognize {} -> {CRC} as a known functional depen-
dency if the other comparand is a deterministic expression containing no column references.

If <join condition> is specified, AP is an equality AND-component of the <search condition>, one
comparand of AP is a column reference CRA, and the other comparand of AP is a column references
CRB, then let CRAC and CRBC be the counterparts of CRA and CRB in R. {CRAC} 7! {CRBC} is a
known functional dependency in R if any of the following conditions is true:

— INNER is specified.

— If LEFT is specified and CRA is a column reference to a column in T1.

Concepts 53

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.18 Functional dependencies

— If RIGHT is specified and CRA is a column reference to a column in T2.

NOTE 22 – An SQL-implementation may also choose to recognize the following as known functional depen-
dencies: {CRAC} 7! {CRBC} if CRA is known not nullable, CRA is a column of T1, and RIGHT or FULL is
specified; or if CRA is known not nullable, CRA is a column of T2, and LEFT or FULL is specified.

NOTE 23 – An SQL-implementation may also choose to recognize similar known functional dependencies
of the form { CRA1 , . . . , CRAN } 7! {CRCB} in case one comparand is a deterministic expression of column
references CRA1 , . . . , CRAN under similar conditions.

If NATURAL is specified, or if a <join specification> immediately containing a <named columns
join> is specified, then let C1 , . . . , CN be the column names of the corresponding join columns, for
i between 1 (one) and N. Let SC be the <search condition>:

(TN1.C1 = TN2.C1)
AND
. . .
AND
(TN1.CN = TN2.CN)

Let SLCC and SL be the <select list>s defined in the Syntax Rules of Subclause 7.7, ‘‘<joined ta-
ble>’’. Let JT be the <join type>. Let TN1 and TN2 be the exposed <table or query name> or <cor-
relation name> of tables T1 and T2, respectively. Let IR be the result of the <query expression>:

SELECT SLCC, TN1.*, TN2.*
FROM TN1 JT JOIN TN2

ON SC

The following are recognized as additional known functional dependencies of IR:

— If INNER or LEFT is specified, then { COALESCE (TN1.Ci, TN2.Ci) } 7! { TN1.Ci }, for all i
between 1 (one) and N.

— If INNER or RIGHT is specified, then { COALESCE (TN1.Ci, TN2.Ci) } 7! { TN2.Ci }, for all i
between 1 (one) and N.

The known functional dependencies of R are the known functional dependencies of:

SELECT SL FROM IR

4.18.5 Known functional dependencies in a <table reference>

Let R be the result of some <table reference> TR. The BPK-sets, BUC-sets, and functional depen-
dencies of R are determined as follows:

Case:

— If TR immediately contains a <table or query name> TQN (with or without ONLY), then the
counterparts of the BPK-sets and BUC-sets of TQN are the BPK-sets and BUC-sets, respec-
tively, of R. If A 7! B is a functional dependency in the result of TQN, and AC and BC are the
counterparts of A and B, respectively, then AC 7! BC is a known functional dependency in R.

54 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.18 Functional dependencies

— If TR immediately contains a <derived table> DT, then the counterparts of the BPK-sets and
BUC-sets of DT are the BPK-sets and BUC-sets, respectively, of R. If A 7! B is a functional
dependency in the result of DT, and AC and BC are the counterparts of A and B, respectively,
then AC 7! BC is a known functional dependency in R.

— If TR immediately contains a <joined table> JT, then the counterparts of the BPK-sets and
BUC-sets of JT are the BPK-sets and BUC-sets, respectively, of R. If A 7! B is a functional
dependency in the result of JT, and AC and BC are the counterparts of A and B, respectively,
then AC 7! BC is a known functional dependency in R.

— If TR immediately contains a <lateral derived table> LDT, then the counterparts of the BPK-
sets and BUC-sets of LDT are the BPK-sets and BUC-sets, respectively, of R. If A 7! B is a
functional dependency in the result of LDT, and AC and BC are the counterparts of A and B,
respectively, then AC 7! BC is a known functional dependency in R.

— If TR immediately contains a <collection derived table> CDT, and WITH ORDINALITY is
specified, then let C1 and C2 be the two columns names of CDT. {C2} is a BPK-set and a
BUC-set, and {C2} 7! {C2, C1} is a known functional dependency. If WITH ORDINALITY is
not specified, then these rules do not identify any BPK-set, BUC-set, or non-axiomatic known
functional dependency.

4.18.6 Known functional dependencies in the result of a <from clause>

Let R be the result of some <from clause> FC.

If there is only one <table reference> TR in FC, then the counterparts of the BPK-sets of TR and the
counterparts of the BUC-sets of TR are the BPK-sets and BUC-sets of TR, respectively. Otherwise,
these rules do not identify any BPK-sets or BUC-sets in the result of FC.

If T is a <table reference> immediately contained in the <table reference list> of FC, then all known
functional dependencies in T are known functional dependencies in R.

4.18.7 Known functional dependencies in the result of a <where clause>

Let T be the table that is the operand of the <where clause>. Let R be the result of the <where
clause>. A set of columns S in R is a BUC-set if there is a <table reference> TR such that every
member of S has a counterpart in TR, the counterpart of S in TR is a BUC-set, and S 7! CR, where
CR is the set of all columns of R. If, in addition, the counterpart of S is a BPK-set, then S is a
BPK-set.

If A 7! B is a known functional dependency in T, then let AC be the set of columns of R whose
counterparts are in A, and let BC be the set of columns of R whose counterparts are in B. AC 7! BC
is a known functional dependency in R.

If AP is an equality AND-component of the <search condition> simply contained in the <where
clause> and one comparand of AP is a column reference CR, and the other comparand of AP is a
<literal>, then let CRC be the counterpart of CR in R. {} 7! {CRC} is a known functional dependency
in R, where {} denotes the empty set.
NOTE 24 – An SQL-implementation may also choose to recognize {} 7! {CRC} as a known functional
dependency if the other comparand is a deterministic expression containing no column references.

Concepts 55

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.18 Functional dependencies

If AP is an equality AND-component of the <search condition> simply contained in the <where
clause> and one comparand of AP is a column reference CRA, and the other comparand of AP is
a column references CRB, then let CRAC and CRBC be the counterparts of CRA and CRB in R.
{CRBC} 7! {CRAC} and {CRAC} 7! {CRBC} are known functional dependencies in R.
NOTE 25 – An SQL-implementation may also choose to recognize known functional dependencies of the
form {CRAC1, . . . , CRACN } 7! {CRBC} if one comparand is a deterministic expressions that contains column
references CRA1, . . . , CRAN and the other comparand is a column reference CRB.

4.18.8 Known functional dependencies in the result of a <group by clause>

Let T1 be the table that is the operand of the <group by clause>, and let R be the result of the
<group by clause>.

Let G be the set of columns specified by the <grouping column reference list> of the <group by
clause>, after applying all syntactic transformations to eliminate ROLLUP, CUBE, and GROUPING
SETS.

The columns of R are the columns of G, with an additional column CI, whose value in any particular
row of R somehow denotes the subset of rows of T1 that is associated with the combined value of
the columns of G in that row.

If every element of G is a column reference to a known not null column, then G is a BUC-set of R. If
G is a subset of a BPK-set of columns of T1, then G is a BPK-set of R.

G 7! CI is a known functional dependency in R.
NOTE 26 – Any <set function specification> that is specified in conjunction with R is necessarily a function
of CI. If SFVC denotes the column containing the results of such a <set function specification>, then CI 7!
SFVC holds true, and it follows that G 7! SFVC is a known functional dependency in the table containing
SFVC.

4.18.9 Known functional dependencies in the result of a <having clause>

Let T1 be the table that is the operand of the <having clause>, let SC be the <search condition>
directly contained in the <having clause>, and let R be the result of the <having clause>.

If S is a set of columns of R and the counterpart of S in T1 is a BPK-set, then S is a BPK-set. If the
counterpart of S in T1 is a BUC-set, then S is a BUC-set.

Any known functional dependency in the <query expression>

SELECT * FROM T1 WHERE SC

is a known functional dependency in R.

4.18.10 Known functional dependencies in a <query specification>

Let T be the <table expression> simply contained in the <query specification> and let R be the
result of the <query specification>.

Let SL be the <select list> of the <query specification>.

Let T1 be T extended to the right with columns arising from <value expression>s contained in
the <select list>, as follows: A <value expression> VE that is not a column reference specifies a
computed column CC in T1. For every row in T1, the value in CC is the result of VE.

56 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.18 Functional dependencies

Let S be a set of columns of R such that every element of S arises from the use of <asterisk> in
SL or by the specification of a column reference as a <value expression> simply contained in SL. S
has counterparts in T and T1. If the counterpart of S in T is a BPK-set, then S is a BPK-set. If the
counterpart of S in T is a BUC-set or a BPK-set, then S is a BUC-set.

If A 7! B is some known functional dependency in T, then A 7! B is a known functional dependency
in T1.

Let CC be the column specified by some <value expression> VE in the <select list>.

If OP1, OP2, . . . are the operands of VE that are column references, then {OP1, OP2, . . . } 7! CC is
a known functional dependency in T1.

Let C 7! D be some known functional dependency in T1. If all the columns of C have counterparts
in R, then let DR be the set comprising those columns of D that have counterparts in R. C 7! DR is
a known functional dependency in R.

4.18.11 Known functional dependencies in a <query expression>

If a <with clause> is specified, and RECURSIVE is not specified, then the BPK-sets, BUC-sets,
and known functional dependencies of the table identified by a <query name> in the <with list>
are the same as the BPK-sets, BUC-sets, and known functional dependencies of the corresponding
<query expression>, respectively. If RECURSIVE is specified, then the BPK-sets, BUC-sets, and
non-axiomatic known functional dependencies are implementation-defined.

A <query expression> that is a <query term> that is a <query primary> that is a <simple table> or
a <joined table> is covered by previous Subclauses of this Clause.

If the <query expression> specifies UNION, EXCEPT or INTERSECT, then let T1 and T2 be the left
and right operand tables and let R be the result. Let CR be the set comprising all the columns of R.

Each column of R has a counterpart in T1 and a counterpart in T2.

Case:

— If EXCEPT is specified, then a set S of columns of R is a BPK-set if its counterpart in T1 is a
BPK-set. S is a BUC-set if its counterpart in T1 is a BUC-set.

— If UNION is specified, then there are no BPK-sets and no BUC-sets.

— If INTERSECT is specified, then a set S of columns of R is a BPK-set if either of its counterparts
in T1 and T2 is a BPK-set. S is a BUC-set if either of its counterparts in T1 and T2 is a
BUC-set.

Case:

— If UNION is specified, then no non-axiomatic functional dependency in T1 or T2 is a
known functional dependency in R, apart from any functional dependencies determined by
implementation-defined rules.

— If EXCEPT is specified, then all known functional dependencies in T1 are known functional
dependencies in R.

Concepts 57

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.18 Functional dependencies

— If INTERSECT is specified, then all known functional dependencies in T1 and all known func-
tional dependencies in T2 are known functional dependencies in R.

NOTE 27 – Other known functional dependencies may be determined according to implementation-defined
rules.

4.19 Candidate keys

If the functional dependency CK 7! CT holds true in some table T, where CT consists of all columns
of T, and there is no proper subset CK1 of CK such that CK1 7! CT holds true in T, then CK is a
candidate key of T. The set of candidate keys SCK is nonempty because, if no proper subset of CT is
a candidate key, then CT is a candidate key.
NOTE 28 – Because a candidate key is a set (of columns), SCK is therefore a set of sets (of columns).

A candidate key CK is a strong candidate key if CK is a BUC-set, or if T is a grouped table and CK
is a subset of the set of grouping columns of T. Let SSCK be the set of strong candidate keys.

Let PCK be the set of P such that P is a member of SCK and P is a BPK-set.

Case:

— If PCK is nonempty, then the primary key is chosen from PCK as follows: If PCK has exactly
one element, then that element is the primary key; otherwise, the left-most element of PCK is
chosen according to the ‘‘left-most rule’’ below. The primary key is also the preferred candidate
key.

— Otherwise, there is no primary key and the preferred candidate key is chosen as follows:

Case:

• If SSCK has exactly one element, then it is the preferred candidate key; otherwise, if SSCK
has more than one element, then the left-most element of SSCK is chosen, according to the
‘‘left-most’’ rule below.

• Otherwise, if SCK has exactly one element, then it is the preferred candidate key; otherwise,
the left-most element of SCK is chosen, according to the ‘‘left-most’’ rule below.

— The ‘‘left-most’’ rule:

• This rule uses the ordering of the columns of a table, as specified elsewhere in this part of
ISO/IEC 9075.

To determine the left-most of two sets of columns of T, first list each set in the order of
the column-numbers of its members, extending the shorter list with zeros to the length
of the longer list. Then, starting at the left of each ordered list, step forward until a pair
of unequal column numbers, one from the same position in each list, is found. The list
containing the number that is the smaller member of this pair identifies the left-most of the
two sets of columns of T.

To determine the left-most of more than two sets of columns of T, take the left-most of any
two sets, then pair that with one of the remaining sets and take the left-most, and so on
until there are no remaining sets.

58 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.20 SQL-schemas

4.20 SQL-schemas

An SQL-schema is a persistent descriptor that includes:

— The <schema name> of the SQL-schema.

— The <authorization identifier> of the owner of the SQL-schema.

— The <character set name> of the default character set for the SQL-schema.

— The <schema path specification> defining the SQL-path for SQL-invoked routines for the SQL-
schema.

— The descriptor of every component of the SQL-schema.

In this part of ISO/IEC 9075, the term ‘‘schema’’ is used only in the sense of SQL-schema. Each
component descriptor is either a domain descriptor, a base table descriptor, a view descriptor, a
constraint descriptor, a privilege descriptor, a character set descriptor, a collation descriptor, a
translation descriptor, a user-defined type descriptor, or a routine descriptor. The persistent objects
described by the descriptors are said to be owned by or to have been created by the <authorization
identifier> of the schema.

A schema is created initially using a <schema definition> and may be subsequently modified incre-
mentally over time by the execution of <SQL schema statement>s. <schema name>s are unique
within a catalog.

A <schema name> is explicitly or implicitly qualified by a <catalog name> that identifies a catalog.

Base tables and views are identified by <table name>s. A <table name> consists of a <schema
name> and an <identifier>. For a persistent table, the <schema name> identifies the schema in
which the base table or view identified by the <table name> was defined. Base tables and views
defined in different schemas can have <identifier>s that are equal according to the General Rules of
Subclause 8.2, ‘‘<comparison predicate>’’.

If a reference to a <table name> does not explicitly contain a <schema name>, then a specific
<schema name> is implied. The particular <schema name> associated with such a <table name>
depends on the context in which the <table name> appears and is governed by the rules for <schema
qualified name>.

If a reference to an SQL-invoked routine that is contained in a <routine invocation> does not
explicitly contain a <schema name>, then the SQL-invoked routine is selected from the SQL-path of
the schema.

The containing schema of an <SQL schema statement> is defined as the schema identified by
the <schema name> implicitly or explicitly contained in the name of the object that is created or
manipulated by that SQL-statement.

4.21 SQL-client modules

An SQL-client module is an object specified in the module language. SQL-client modules are cre-
ated and destroyed by implementation-defined mechanisms (which can include the granting and
revoking of module privileges). SQL-client modules exist in the SQL-environment containing an
SQL-client. The <externally-invoked procedure>s of an SQL-client module are invoked by host
language programs. The <language clause> of an SQL-client module specifies a host programming

Concepts 59

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.21 SQL-client modules

language. The format of an SQL-client module is specified by <SQL-client module definition> (see
Subclause 13.1, ‘‘<SQL-client module definition>’’).

An SQL-client module consists of:

— An <SQL-client module name>.

— A <language clause>.

— A <module authorization clause> with either or both of a <module authorization identifier> and
a <schema name>.

— An optional SQL-path used to qualify:

• Unqualified <routine name>s that are immediately contained in <routine invocation>s that
are contained in the SQL-client module.

• Unqualified <user-defined type name>s that are immediately contained in <user-defined
type>s that are contained in the SQL-client module.

— An optional <module character set specification> that identifies the character set used to express
the SQL-client module.
NOTE 29 – The <module character set specification. has not effect on the SQL language contained
in the SQL-client module and exists only for compatibility with ISO/IEC 9075:1992. It may be used to
document the character set of the SQL-client module.

— Zero or more <temporary table declaration>s.

— Zero or more cursors specified by <declare cursor>s.

— One or more <externally-invoked procedure>s.

A compilation unit is a segment of executable code, possibly consisting of one or more subprograms.
An SQL-client module is associated with a compilation unit during its execution. A single SQL-
client module may be associated with multiple compilation units and multiple SQL-client modules
may be associated with a single compilation unit. The manner in which this association is speci-
fied, including the possible requirement for execution of some implementation-defined statement, is
implementation-defined. Whether a compilation unit may invoke or transfer control to other compi-
lation units, written in the same or a different programming language, is implementation-defined.

4.22 Externally-invoked procedures

Externally-invoked routines are always procedures (‘‘externally-invoked procedure’’) that are in-
voked by ‘‘call’’ statements in compilation units of the specified standard programming language.
Externally-invoked procedures are always SQL routines. Externally-invoked procedures are speci-
fied with a <language clause> that specifies any language other than LANGUAGE SQL.

60 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.23 SQL-invoked routines

4.23 SQL-invoked routines

An SQL-invoked routine is an SQL-invoked procedure or an SQL-invoked function. An SQL-invoked
routine comprises at least a <schema qualified routine name>, a sequence of <SQL parameter
declaration>s, and a <routine body>.

An SQL-invoked routine is an element of an SQL-schema and is called a schema-level routine.

An SQL-invoked routine SR is said to be dependent on a user-defined type UDT if and only if SR
is created during the execution of the <user-defined type definition> that created UDT. An SQL-
invoked routine that is dependent on a user-defined type may not be destroyed by a <drop routine
statement>. It is destroyed implicitly by a <drop data type statement>.

A <predicate> P is said to be dependent on an SQL-invoked routine SR if and only if SR is the
ordering function included in the user-defined descriptor of a user-defined type UDT and one of the
following conditions is true:

— P is a <comparison predicate> that immediately contains a <row value expression> whose
declared type is some user-defined type T1 whose comparison type is UDT.

— P is a <quantified comparison predicate> that immediately contains a <row value expression>
that has some field whose declared type is some user-defined type T1 whose comparison type is
UDT.

— P is a <unique predicate> that immediately contains a <table subquery> that has a column
whose declared type is some user-defined type T1 whose comparison type is UDT.

— P is a <match predicate> that immediately contains a <row value expression> that has some
field whose declared type is some user-defined type T1 whose comparison type is UDT.

— P is a <comparison predicate> with some corresponding value whose declared type is some array
type whose element type is a user-defined type T1 whose comparison type is UDT.

— P is a <quantified comparison predicate> that immediately contains a <row value expression>
that has some field whose declared type is some array type whose element type is a user-defined
type T1 whose comparison type is UDT.

— P is a <unique predicate> that immediately contains a <table subquery> that has a column
whose declared type is some array type whose element type is a user-defined type T1 whose
comparison type is UDT.

— P is a <match predicate> that immediately contains a <row value expression> that has some
field whose declared type is some array type whose element type is a user-defined type T1 whose
comparison type is UDT.

NOTE 30 – ‘‘Comparison type’’ is defined in Subclause 4.8.4, ‘‘User-defined type comparison and assign-
ment’’.

A <set function specification> SFS is said to be dependent on an SQL-invoked routine SR if and
only if all the following are true:

— SR is the ordering function included in the user-defined descriptor of a user-defined type UDT.

— SFS is a <general set function> whose <set function type> SFS is MAX or MIN or SFS is a
<general set function> whose <set qualifier> is DISTINCT.

Concepts 61

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.23 SQL-invoked routines

— The declared type of the <value expression> of SFS is UDT.

A <group by clause> GBC is said to be dependent on an SQL-invoked routine SR if and only if all
the following are true:

— SR is the ordering function included in the user-defined descriptor of a user-defined type UDT.

— The declared type of a grouping column of GBC is UDT.

An SQL-invoked procedure is an SQL-invoked routine that is invoked from an SQL <call state-
ment>. An SQL-invoked procedure may have input SQL parameters, output SQL parameters,
and SQL parameters that are both input SQL parameters and output SQL parameters. The for-
mat of an SQL-invoked procedure is specified by <SQL-invoked procedure> (see Subclause 11.49,
‘‘<SQL-invoked routine>’’).

An SQL-invoked function is an SQL-invoked routine whose invocation returns a value. Every
parameter of an SQL-invoked function is an input parameter, one of which may be designated as
the result SQL parameter. The format of an SQL-invoked function is specified by <SQL-invoked
function> (see Subclause 11.49, ‘‘<SQL-invoked routine>’’). An SQL-invoked function can be a type-
preserving function; a type-preserving function is an SQL-invoked function that has a result SQL
parameter. The result data type of a type-preserving function is some subtype of the data type of its
result SQL parameter.

An SQL-invoked method is an SQL-invoked function that is specified by <method specification
designator> (see Subclause 11.49, ‘‘<SQL-invoked routine>’’). There are two kinds of SQL-invoked
methods: instance SQL-invoked methods and static SQL-invoked methods. All SQL-invoked meth-
ods are associated with a structured type, also known as the type of the method. The <routine
characteristic>s of an SQL-invoked method are specified by a <method specification> contained
in the <user-defined type definition> of the type of the method. An instance SQL-invoked method
satisfies the following conditions:

— Its first parameter, called the subject parameter, has a declared type that is a user-defined type.
The type of the subject parameter is the type of the method. A parameter other than the subject
parameter is called an additional parameter.

— Its descriptor is in the same schema as the descriptor of the data type of its subject parameter.

A static SQL-invoked method satisfies the following conditions:

— It has no subject parameter. Its first parameter, if any, is treated no differently than any other
parameter.

— Its descriptor is in the same schema as the descriptor of the structured type of the method. The
name of this type (or of some subtype of it) is always specified together with the name of the
method when the method is to be invoked.

An SQL-invoked function that is not an SQL-invoked method is an SQL-invoked regular function.
An SQL-invoked regular function is specified by <function specification> (see Subclause 11.49,
‘‘<SQL-invoked routine>’’).

A null-call function is an SQL-invoked function that is defined to return the null value if any of its
input arguments is the null value. A null-call function is an SQL-invoked function whose <null-call
clause> specifies ‘‘RETURNS NULL ON NULL INPUT’’.

62 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.23 SQL-invoked routines

An SQL-invoked routine can be an SQL routine or an external routine. An SQL routine is an SQL-
invoked routine whose <language clause> specifies SQL. The <routine body> of an SQL routine
is an <SQL procedure statement>; the <SQL procedure statement> forming the <routine body>
can be any SQL-statement, including an <SQL control statement>, but excluding an <SQL schema
statement>, <SQL connection statement>, or <SQL transaction statement>.

An external routine is one whose <language clause> does not specify SQL. The <routine body> of
an external routine is an <external body reference> whose <external routine name> identifies a
program written in some standard programming language other than SQL.

An SQL-invoked routine is uniquely identified by a <specific name>, called the specific name of the
SQL-invoked routine.

SQL-invoked routines are invoked differently depending on their form. SQL-invoked procedures are
invoked by <call statement>s. SQL-invoked regular functions are invoked by <routine invocation>s.
Instance SQL-invoked methods are invoked by <method invocation>s, while static SQL-invoked
methods are invoked by <static method invocation>s. An invocation of an SQL-invoked routine
specifies the <routine name> of the SQL-invoked routine and supplies a sequence of argument
values corresponding to the <SQL parameter declaration>s of the SQL-invoked routine. A subject
routine of an invocation is an SQL-invoked routine that may be invoked by a <routine invocation>.
After the selection of the subject routine of a <routine invocation>, the SQL arguments are eval-
uated and the SQL-invoked routine that will be executed is selected. If the subject routine is an
instance SQL-invoked method, then the SQL-invoked routine that is executed is selected from the
set of overriding methods of the subject routine. (The term ‘‘set of overriding methods’’ is defined
in the General Rules of Subclause 10.4, ‘‘<routine invocation>’’.) The overriding method that is
selected is the overriding method with a subject parameter the type designator of whose declared
type precedes that of the declared type of the subject parameter of every other overriding method
in the type precedence list of the most specific type of the value of the SQL argument that corre-
sponds to the subject parameter. See the General Rules of Subclause 10.4, ‘‘<routine invocation>’’.
If the subject routine is not an SQL-invoked method, then the SQL-invoked routine executed is
that subject routine. After the selection of the SQL-invoked routine for execution, the values of
the SQL arguments are assigned to the corresponding SQL parameters of the SQL-invoked routine
and its <routine body> is executed. If the SQL-invoked routine is an SQL routine, then the <rou-
tine body> is an <SQL procedure statement> that is executed according to the General Rules of
<SQL procedure statement>. If the SQL-invoked routine is an external routine, then the <routine
body> identifies a program written in some standard programming language other than SQL that is
executed according to the rules of that standard programming language.

The <routine body> of an SQL-invoked routine is always executed under the same SQL-session
from which the SQL-invoked routine was invoked. Before the execution of the <routine body>, a
new context for the current SQL-session is created and the values of the current context preserved.
When the execution of the <routine body> completes the original context of the current SQL-session
is restored.

If the SQL-invoked routine is an external routine, then an effective SQL parameter list is con-
structed before the execution of the <routine body>. The effective SQL parameter list has different
entries depending on the parameter passing style of the SQL-invoked routine. The value of each
entry in the effective SQL parameter list is set according to the General Rules of Subclause 10.4,
‘‘<routine invocation>’’, and passed to the program identified by the <routine body> according to the
rules of Subclause 13.6, ‘‘Data type correspondences’’. After the execution of that program, if the
parameter passing style of the SQL-invoked routine is SQL, then the SQL-implementation obtains
the values for output parameters (if any), the value (if any) returned from the program, the value of
the SQLSTATE, and the value of the message text (if any) from the values assigned by the program
to the effective SQL parameter list. If the parameter passing style of the SQL-invoked routine is
GENERAL, then such values are obtained in an implementation-defined manner.

Concepts 63

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.23 SQL-invoked routines

Different SQL-invoked routines can have equivalent <routine name>s. No two SQL-invoked func-
tions in the same schema are allowed to have the same signature. No two SQL-invoked procedures
in the same schema are allowed to have the same name and the same number of parameters.
Subject routine determination is the process for choosing the subject routine for a given <routine
invocation> given a <routine name> and an <SQL argument list>. Subject routine determination
for SQL-invoked functions considers the most specific types of all of the arguments to the invocation
of the SQL-invoked function in order from left to right. Where there is not an exact match between
the most specific types of the arguments and the declared types of the parameters, type precedence
lists are used to determine the closest match. See Subclause 9.4, ‘‘Subject routine determination’’.

If a <routine invocation> is contained in a <query expression> of a view, a check constraint, or
an assertion, the <trigger action> of a trigger, or in an <SQL- invoked routine>, then the subject
routine for that invocation is determined at the time the view is created, the check constraint is
defined, the assertion is created, the trigger is created, or the SQL-invoked routine is created. If
the subject routine is an SQL-invoked procedure, an SQL-invoked regular function, or a static SQL-
invoked method, then the same SQL-invoked routine is executed whenever the view is used, the
check constraint or assertion is evaluated, the trigger is executed, or the SQL-invoked routine is
invoked. If the subject routine is an instance SQL-invoked method, then the SQL-invoked routine
that is executed is determined whenever the view is used, the check constraint or assertion is
evaluated, the trigger is executed, or the SQL-invoked routine is invoked, based on the most specific
type of the value resulting from the evaluation of the SQL argument that correspond to the subject
parameter. See the General Rules of Subclause 10.4, ‘‘<routine invocation>’’.

All <identifier chain>s in the <routine body> of an SQL routine are resolved to identify the basis
and basis referent at the time that the SQL routine is created. Thus, the same columns and SQL
parameters are referenced whenever the SQL routine is invoked.

An SQL-invoked routine is either deterministic or possibly non-deterministic. An SQL-invoked
function that is deterministic always returns the same return value for a given list of SQL argu-
ment values. An SQL-invoked procedure that is deterministic always returns the same values in
its output and inout SQL parameters for a given list of SQL argument values. An SQL-invoked
routine is possibly non-deterministic if, during invocation of that SQL-invoked routine, an SQL-
implementation might, at two different times when the state of the SQL-data is the same, produce
unequal results due to General Rules that specify implementation-dependent behavior.

An external routine either does not possibly contain SQL or possibly contains SQL. Only an external
routine that possibly contains SQL may execute SQL-statements during its invocation.

An SQL-invoked routine may or may not possibly read SQL-data. Only an SQL-invoked routine
that possibly reads SQL-data may read SQL-data during its invocation.

An SQL-invoked routine may or may not possibly modify SQL-data. Only an SQL-invoked routine
that possibly modifies SQL-data may modify SQL-data during its invocation.

An SQL-invoked routine has a routine authorization identifier, which is (directly or indirectly) the
authorization identifier of the owner of the schema that contains the SQL-invoked routine at the
time that the SQL-invoked routine is created.

When the <routine body> of an SQL-invoked routine is executed and the new SQL-session context
for the SQL-session is created, the SQL-session user identifier in the new SQL-session context
is set to the current user identifier in the SQL-session context that was active when the SQL-
session caused the execution of the <routine body>. The authorization stack of this new SQL-
session context is initially set to empty and a new pair of identifiers is immediately appended to the
authorization stack such that:

— The user identifier is the newly initialized SQL-session user identifier.

64 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.23 SQL-invoked routines

— The role name is the current role name of the SQL-session context that was active when the
SQL-session caused the execution of the <routine body>.

The identifiers in this new entry of the authorization stack are then modified depending on whether
the SQL-invoked routine is an SQL routine or an external routine. If the SQL-invoked routine is an
SQL routine, then, if the routine authorization identifier is a user identifier, the user identifier is
set to the routine authorization identifier and the role name is set to null; otherwise, the role name
is set to the routine authorization and the user identifier is set to null.

If the SQL-invoked routine is an external routine, then the identifiers are determined according to
the external security characteristic of the SQL-invoked routine:

— If the external security characteristic is DEFINER, then:

• If the routine authorization identifier is a user identifier, then the user identifier is set to
the routine authorization identifier and the role name is set to the null value.

• Otherwise, the role name is set to the routine authorization identifier and the user identifier
is set to the null value.

— If the external security characteristic is INVOKER, then the identifiers remain unchanged.

— If the external security characteristic is IMPLEMENTATION DEFINED, then the identifiers
are set to implementation-defined values.

An SQL-invoked routine that is an external routine also has an external routine authorization
identifier, which is the <module authorization identifier>, if any, of the <SQL-client module defini-
tion> contained in the external program identified by the <routine body> of the external routine. If
that <SQL-client module definition> does not specify a <module authorization identifier>, then the
external routine authorization identifier is an implementation-defined authorization identifier.

The final value of the user identifier and role name in the authorization stack are used for privilege
determination for access to the SQL objects, if any, referenced in the <SQL procedure statement>s
that are executed during the execution of the <routine body>.

An SQL-invoked routine has a routine SQL-path, which is inherited from its containing SQL-
schema, the current SQL-session, or the containing SQL-client module.

An SQL-invoked routine that is an external routine also has an external routine SQL-path, which
is derived from the <module path specification>, if any, of the <SQL-client module definition>
contained in the external program identified by the routine body of the external routine. If that
<SQL-client module definition> does not specify a <module path specification>, then the external
routine SQL-path is an implementation-defined SQL-path. For both SQL and external routines,
the SQL-path of the current SQL-session is used to determine the search order for the subject
routine of a <routine invocation> whose <routine name> does not contain a <schema name> if the
<routine invocation> is contained in a <preparable statement> or in a <direct SQL statement>.
SQL routines use the routine SQL-path to determine the search order for the subject routines of
a <routine invocation> whose <routine name> does not contain a <schema name> if the <routine
invocation> is not contained in a <preparable statement> or in a <direct SQL statement>. External
routines use the external routine SQL-path to determine the search order for the subject routine of
a <routine invocation> whose <routine name> does not contain a <schema name> if the <routine
invocation> is not contained in a <preparable statement> or in a <direct SQL statement>.

An SQL-invoked routine is described by a routine descriptor. A routine descriptor contains:

— The routine name of the SQL-invoked routine.

Concepts 65

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.23 SQL-invoked routines

— The <specific name> of the SQL-invoked routine.

— The routine authorization identifier of the SQL-invoked routine.

— The routine SQL-path of the SQL-invoked routine.

— The name of the language in which the body of the SQL-invoked routine is written.

— For each of the SQL-invoked routine’s SQL parameters, the <SQL parameter name>, if it is
specified, the <data type>, the ordinal position, and an indication of whether the SQL parameter
is an input SQL parameter, an output SQL parameter, or both an input SQL parameter and an
output SQL parameter.

— An indication of whether the SQL-invoked routine is an SQL-invoked function or an SQL-
invoked procedure.

— If the SQL-invoked routine is an SQL-invoked procedure, then the maximum number of dynamic
result sets.

— An indication of whether the SQL-invoked routine is deterministic or possibly non-deterministic.

— Indications of whether the SQL-invoked routine possibly modifies SQL-data, possibly reads
SQL-data, possibly contains SQL, or does not possibly contain SQL.

— If the SQL-invoked routine is an SQL-invoked function, then:

• The <returns data type> of the SQL-invoked function.

• If the <returns data type> simply contains <locator indication>, then an indication that the
return value is a locator.

• An indication of whether the SQL-invoked function is a type-preserving function or not.

• An indication of whether the SQL-invoked function is a mutator function or not.

• If the SQL-invoked function is a type-preserving function, then an indication of which
parameter is the result parameter.

• An indication of whether the SQL-invoked function is a null-call function.

— The creation timestamp.

— The last-altered timestamp.

— If the SQL-invoked routine is an SQL routine, then the SQL routine body of the SQL-invoked
routine.

— If the SQL-invoked routine is an external routine, then:

• The <external routine name> of the external routine.

• The <parameter style> of the external routine.

• If the external routine specifies a <result cast>, then an indication that it specifies a <result
cast> and the <data type> specified in the <result cast>. If <result cast> contains <locator
indication>, then an indication that the <data type> specified in the <result cast> has a
locator indication.

66 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.23 SQL-invoked routines

• The external security characteristic of the external routine.

• The external routine authorization identifier of the external routine.

• The external routine SQL-path of the external routine.

• The effective SQL parameter list of the external routine.

• For every SQL parameter that has an associated from-sql function FSF, the specific name of
FSF.

• For every SQL parameter that has an associated to-sql function TSF, the specific name of
TSF.

• If the SQL-invoked routine is an external function and if it has a to-sql function TRF
associated with the result, then the specific name of TRF.

• For every SQL parameter whose <SQL parameter declaration> contains <locator indica-
tion>, an indication that the SQL parameter is a locator parameter.

— The <schema name> of the schema that includes the SQL-invoked routine.

— If the SQL-invoked routine is an SQL-invoked function, then an indication of whether the
SQL-invoked function is an SQL-invoked method.

— If the SQL-invoked routine is an SQL-invoked method, then an indication of the user-defined
type whose descriptor contains the corresponding method specification descriptor.

— If the SQL-invoked routine is an SQL-invoked method, then an indication of whether STATIC
was specified.

— An indication of whether the SQL-invoked routine is dependent on a user-defined type.

4.24 Built-in functions

Certain SQL operators whose invocation employs syntax similar to that of <routine invocation> are
designated built-in functions. Those that are so designated are those that appear in the result of
the following <query expression>:

SELECT DISTINCT ROUTINE_NAME
FROM INFORMATION_SCHEMA.ROUTINES

WHERE SPECIFIC_SCHEMA = ’INFORMATION_SCHEMA’

Some built-in functions are defined in this part of ISO/IEC 9075. It is implementation-defined
whether there are built-in functions other than those defined in this part of ISO/IEC 9075.

4.25 SQL-paths

An SQL-path is a list of one or more <schema name>s that determines the search order for one of
the following:

— The subject routine of a <routine invocation> whose <routine name> does not contain a <schema
name>.

Concepts 67

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.25 SQL-paths

— The user-defined type when the <user-defined type name> does not contain a <schema name>.

If the specification of an SQL-path does not specify a schema whose schema name is INFORMATION_
SCHEMA, then INFORMATION_SCHEMA is assumed to precede all of the specified schema names.

The value specified by CURRENT_PATH is the value of the SQL-path of the current SQL-session.
This SQL-path is used to search for the subject routine of a <routine invocation> whose <routine
name> does not contain a <schema name> when the <routine invocation> is contained in <prepara-
ble statement>s that are prepared in the current SQL-session by either an <execute immediate
statement> or a <prepare statement>, or contained in <direct SQL statement>s that are invoked
directly. The definition of SQL-schemas specifies an SQL-path that is used to search for the subject
routine of a <routine invocation> whose <routine name>s do not contain a <schema name> when
the <routine invocation> is contained in the <schema definition>.

4.26 Host parameters

A host parameter is declared in an <externally-invoked procedure> by a <host parameter declara-
tion>. A host parameter either assumes or supplies the value of the corresponding argument in the
invocation of the <externally-invoked procedure>.

A <host parameter declaration> specifies the <data type> of its value, which maps to the host
language type of its corresponding argument. Host parameters cannot be null, except through the
use of indicator parameters.

4.26.1 Status parameters

The SQLSTATE host parameter is a status parameter. It is set to status codes that indicate ei-
ther that a call of the <externally-invoked procedure> completed successfully or that an exception
condition was raised during execution of the <externally-invoked procedure>.

An <externally-invoked procedure> must specify the SQLSTATE host parameter. The SQLSTATE
host parameter is a character string host parameter for which exception values are defined in
Clause 22, ‘‘Status codes’’.

If a condition is raised that causes a statement to have no effect other than that associated with
raising the condition (that is, not a completion condition), then the condition is said to be an ex-
ception condition or exception. If a condition is raised that permits a statement to have an effect
other than that associated with raising the condition (corresponding to an SQLSTATE class value of
successful completion, warning, or no data), then the condition is said to be a completion condition.

Exception conditions or completion conditions may be raised during the execution of an <SQL
procedure statement>. One of the exception conditions becomes the active condition when the <SQL
procedure statement> terminates. If the active condition is an exception condition, then it will be
called the active exception condition. If the active condition is a completion condition, then it will be
called the active completion condition.

The completion condition warning is broadly defined as completion in which the effects are correct,
but there is reason to caution the user about those effects. It is raised for implementation-defined
conditions as well as conditions specified in this part of ISO/IEC 9075. The completion condi-
tion no data has special significance and is used to indicate an empty result. The completion
condition successful completion is defined to indicate a completion condition that does not corre-
spond to warning or no data. This includes conditions in which the SQLSTATE subclass provides
implementation-defined information of a non-cautionary nature.

68 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.26 Host parameters

For the purpose of choosing status parameter values to be returned, exception conditions for trans-
action rollback have precedence over exception conditions for statement failure. Similarly, the
completion condition no data has precedence over the completion condition warning, which has
precedence over the completion condition successful completion. All exception conditions have prece-
dence over all completion conditions. The values assigned to SQLSTATE shall obey these precedence
requirements.

4.26.2 Data parameters

A data parameter is a host parameter that is used to either assume or supply the value of data
exchanged between a host program and an SQL-implementation.

4.26.3 Indicator parameters

An indicator parameter is an integer host parameter that is specified immediately following another
host parameter. Its primary use is to indicate whether the value that the other host parameter
assumes or supplies is a null value. An indicator host parameter cannot immediately follow another
indicator host parameter.

The other use for indicator parameters is to indicate whether string data truncation occurred
during a transfer between a host program and an SQL-implementation in host parameters or
host variables. If a non-null character string value is transferred and the length of the target is
sufficient to accept the entire source value, then the indicator parameter or variable is set to 0
(zero) to indicate that truncation did not occur. However, if the length of the target is insufficient,
the indicator parameter or variable is set to the length (in characters or bits, as appropriate) of the
source value to indicate that truncation occurred and to indicate original length in characters or
bits, as appropriate, of the source.

4.26.4 Locators

A host parameter, an SQL parameter of an external routine, or the value returned by an external
function may be specified to be a locator by specifying AS LOCATOR. A locator is an SQL-session
object, rather than SQL-data, that can be used to reference an SQL-data instance. A locator is
either a large object locator, an user-defined type locator, or an array locator. A large object locator
is one of the following:

— Binary large object locator, a value of which identifies a binary large object.

— Character large object locator, a value of which identifies a character large object.

— National character large object locator, a value of which identifies a national character large
object.

A user-defined type locator identifies a value of the user-defined type specified by the locator spec-
ification. An array locator identifies a value of the array type specified by the locator specification.

When the value at a site of binary large object type, character large object type, user-defined type
or array type is to be assigned to locator of the corresponding type, an implementation-dependent
four-octet non-zero integer value is generated and assigned to the target. A locator value uniquely
identifies a value of the corresponding type.

Concepts 69

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.26 Host parameters

A locator may be either valid or invalid. A host parameter specified as a locator may be further
specified to be a holdable locator. When a locator is initially created, it is marked valid and, if
applicable, not holdable. A <hold locator statement> identifying the locator must be specifically
executed before the end of the SQL-transaction in which it was created in order to make that
locator holdable.

A non-holdable locator remains valid until the end of the SQL-transaction in which it was gener-
ated, unless it is explicitly made invalid by the execution of a <free locator statement> or a <rollback
statement> that specifies a <savepoint clause> is executed before the end of that SQL-transaction.

A holdable locator may remain valid beyond the end of the SQL-transaction in which it is gen-
erated. A holdable locator becomes invalid whenever a <free locator statement> identifying that
locator is executed, a <rollback statement> that specifies a <savepoint clause> is executed, or the
SQL-transaction in which it is generated or any subsequent SQL-transaction is rolled back. All
locators remaining valid at the end of an SQL-session are marked invalid when that SQL-session
terminates.

4.27 Diagnostics area

The diagnostics area is a place where completion and exception condition information is stored
when an SQL-statement is executed. There is one diagnostics area associated with an SQL-agent,
regardless of the number of SQL-client modules that the SQL-agent includes or the number of
connections in use.

At the beginning of the execution of any <externally-invoked procedure> that contains an <SQL
procedure statement> that is not an <SQL diagnostics statement>, the diagnostics area is emptied.
An implementation must place information about a completion condition or an exception condition
reported by SQLSTATE into this area. If other conditions are raised, an implementation may place
information about them into this area.

<externally-invoked procedure>s containing <SQL diagnostics statement>s return a code indicat-
ing completion or exception conditions for that statement via SQLSTATE, but do not modify the
diagnostics area.

An SQL-agent may choose the size of the diagnostics area with the <set transaction statement>;
if an SQL-agent does not specify the size of the diagnostics area, then the size of the diagnostics
area is implementation-dependent, but shall always be able to hold information about at least one
condition. An SQL-implementation may place information into this area about fewer conditions
than are specified. The ordering of the information about conditions placed into the diagnostics
area is implementation-dependent, except that the first condition in the diagnostics area always
corresponds to the condition specified by the SQLSTATE value.

4.28 Standard programming languages

This part of ISO/IEC 9075 specifies the actions of <externally-invoked procedure>s in SQL-client
modules when those <externally-invoked procedure>s are called by programs that conform to certain
specified programming language standards. The term ‘‘standard PLN program’’, where PLN is the
name of a programming language, refers to a program that conforms to the standard for that
programming language as specified in Clause 2, ‘‘Normative references’’.

70 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.29 Cursors

4.29 Cursors

A cursor is specified by a <declare cursor>.

For every <declare cursor> in an SQL-client module, a cursor is effectively created when an SQL-
transaction (see Subclause 4.32, ‘‘SQL-transactions’’) referencing the SQL-client module is initiated.

One of the properties that may be specified for a cursor determines whether or not it is a holdable
cursor:

— A cursor that is not a holdable cursor is closed when the SQL-transaction in which it was
created is terminated.

— A holdable cursor is not closed if that cursor is in the open state at the time that the SQL-
transaction is terminated with a commit operation. A holdable cursor that is in the closed state
at the time that the SQL-transaction is terminated remains closed. A holdable cursor is closed
no matter what its state if the SQL-transaction is terminated with a rollback operation.

— A holdable cursor is closed and destroyed when the SQL-session in which it was created is
terminated.

NOTE 31 – A holdable cursor may be said to be ‘‘holdable’’ or ‘‘held’’.

A cursor is in either the open state or the closed state. The initial state of a cursor is the closed
state. A cursor is placed in the open state by an <open statement> and returned to the closed
state by a <close statement> or a <rollback statement>. An open cursor that was not defined as a
holdable cursor is also closed by a <commit statement>.

A cursor in the open state identifies a table, an ordering of the rows of that table, and a position
relative to that ordering. If the <declare cursor> does not contain an <order by clause>, or contains
an <order by clause> that does not specify the order of the rows completely, then the rows of the
table have an order that is defined only to the extent that the <order by clause> specifies an order
and is otherwise implementation-dependent.

When the ordering of a cursor is not defined by an <order by clause>, the relative position of two
rows is implementation-dependent. When the ordering of a cursor is partially determined by an
<order by clause>, then the relative positions of two rows are determined only by the <order by
clause>; if the two rows have equal values for the purpose of evaluating the <order by clause>, then
their relative positions are implementation-dependent.

A cursor is either updatable or not updatable. If the table identified by a cursor is not updatable or
if INSENSITIVE is specified for the cursor, then the cursor is not updatable; otherwise, the cursor
is updatable. The operations of update and delete are permitted for updatable cursors, subject to
constraining Access Rules.

The position of a cursor in the open state is either before a certain row, on a certain row, or after
the last row. If a cursor is on a row, then that row is the current row of the cursor. A cursor may be
before the first row or after the last row of a table even though the table is empty. When a cursor is
initially opened, the position of the cursor is before the first row.

A holdable cursor that has been held open retains its position when the new SQL-transaction
is initiated. However, before either an <update statement: positioned> or a <delete statement:
positioned> is permitted to reference that cursor in the new SQL-transaction, a <fetch statement>
must be issued against the cursor.

Concepts 71

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.29 Cursors

A <fetch statement> positions an open cursor on a specified row of the cursor’s ordering and re-
trieves the values of the columns of that row. An <update statement: positioned> updates the
current row of the cursor. A <delete statement: positioned> deletes the current row of the cursor.

If an error occurs during the execution of an SQL-statement that identifies a cursor, then, ex-
cept where otherwise explicitly defined, the effect, if any, on the position or state of that cursor is
implementation-dependent.

If a completion condition is raised during the execution of an SQL-statement that identifies a cursor,
then the particular SQL-statement identifying that open cursor on which the completion condition
is returned is implementation-dependent.

Another property of a cursor is its sensitivity, which may be sensitive, insensitive, or asensitive,
depending on whether SENSITIVE, INSENSITIVE, or ASENSITIVE is specified or implied. The
following paragraphs define several terms used to discuss issues relating to cursor sensitivity:

A change to SQL-data is said to be independent of a cursor CR if and only if it is not made by an
<update statement: positioned> or a <delete statement: positioned> that is positioned on CR.

A change to SQL-data is said to be significant to CR if and only if it is independent of CR, and, had
it been committed before CR was opened, would have caused the table associated with the cursor to
be different in any respect.

A change to SQL-data is said to be visible to CR if and only if it has an effect on CR by inserting a
row in CR, deleting a row from CR, changing the value of a column of a row of CR, or reordering
the rows of CR.

If a cursor is open, and the SQL-transaction in which the cursor was opened makes a significant
change to SQL-data, then whether that change is visible through that cursor before it is closed is
determined as follows:

— If the cursor is insensitive, then significant changes are not visible.

— If the cursor is sensitive, then significant changes are visible.

— If the cursor is asensitive, then the visibility of significant changes is implementation-dependent.

If a holdable cursor is open during an SQL-transaction T and it is held open for a subsequent
SQL-transaction, then whether any significant changes made to SQL-data (by T or any subsequent
SQL-transaction in which the cursor is held open) are visible through that cursor in the subsequent
SQL-transaction before that cursor is closed is determined as follows:

— If the cursor is insensitive, then significant changes are not visible.

— If the cursor is sensitive, then the visibility of significant changes is implementation-defined.

— If the cursor is asensitive, then the visibility of significant changes is implementation-dependent.

A <declare cursor> DC that specifies WITH RETURN is called a result set cursor. The <cursor
specification> CR contained in DC defines a table T; the term result set is used to refer to T. A
result set cursor, if declared in an SQL-invoked procedure and not closed when the procedure
returns to its invoker, returns a result set to the invoker.

72 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.30 SQL-statements

4.30 SQL-statements

4.30.1 Classes of SQL-statements

An SQL-statement is a string of characters that conforms to the Format and Syntax Rules specified
in the parts of ISO/IEC 9075. Most SQL-statements can be prepared for execution and executed
in an SQL-client module, in which case they are prepared when the SQL-client module is created
and executed when the containing externally-invoked procedure is called (see Subclause 4.21,
‘‘SQL-client modules’’).

In this part of ISO/IEC 9075, there are at least two ways of classifying SQL-statements:

— According to their effect on SQL objects, whether persistent objects, i.e., SQL-data, SQL-client
modules, and schemas, or transient objects, such as SQL-sessions and other SQL-statements.

— According to whether or not they start an SQL-transaction, or can, or must, be executed when
no SQL-transaction is active.

This part of ISO/IEC 9075 permits SQL-implementations to provide additional, implementation-
defined, statements that may fall into any of these categories. This Subclause will not mention
those statements again, as their classification is entirely implementation-defined.

4.30.2 SQL-statements classified by function

The following are the main classes of SQL-statements:

— SQL-schema statements; these may have a persistent effect on the set of schemas.

— SQL-data statements; some of these, the SQL-data change statements, may have a persistent
effect on SQL-data.

— SQL-transaction statements; except for the <commit statement>, these, and the following
classes, have no effects that persist when a session is terminated.

— SQL-control statements.

— SQL-connection statements.

— SQL-session statements.

— SQL-diagnostics statements.

The following are the SQL-schema statements:

— <schema definition>

— <drop schema statement>

— <domain definition>

— <drop domain statement>

— <table definition>

— <drop table statement>

Concepts 73

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.30 SQL-statements

— <view definition>

— <drop view statement>

— <assertion definition>

— <drop assertion statement>

— <alter table statement>

— <alter domain statement>

— <grant statement>

— <revoke statement>

— <character set definition>

— <drop character set statement>

— <collation definition>

— <drop collation statement>

— <translation definition>

— <drop translation statement>

— <trigger definition>

— <drop trigger statement>

— <user-defined type definition>

— <alter type statement>

— <drop data type statement>

— <user-defined ordering definition>

— <drop user-defined ordering statement>

— <transform definition>

— <drop transform statement>

— <schema routine>

— <alter routine statement>

— <drop routine statement>

— <role definition>

— <grant role statement>

— <drop role statement>

74 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.30 SQL-statements

The following are the SQL-data statements:

— <temporary table declaration>

— <declare cursor>

— <open statement>

— <close statement>

— <fetch statement>

— <select statement: single row>

— <free locator statement>

— <hold locator statement>

— All SQL-data change statements

The following are the SQL-data change statements:

— <insert statement>

— <delete statement: searched>

— <delete statement: positioned>

— <update statement: searched>

— <update statement: positioned>

The following are the SQL-transaction statements:

— <start transaction statement>

— <set transaction statement>

— <set constraints mode statement>

— <commit statement>

— <rollback statement>

— <savepoint statement>

— <release savepoint statement>

The following are the SQL-connection statements:

— <connect statement>

— <set connection statement>

— <disconnect statement>

The following are the SQL-control statements:

— <call statement>

Concepts 75

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.30 SQL-statements

— <return statement>

The following are the SQL-session statements:

— <set session characteristics statement>

— <set session user identifier statement>

— <set role statement>

— <set local time zone statement>

The following are the SQL-diagnostics statements:

— <get diagnostics statement>

4.30.3 SQL-statements and transaction states

The following SQL-statements are transaction-initiating SQL-statements, i.e., if there is no current
SQL-transaction, and a statement of this class is executed, an SQL-transaction is initiated:

— All SQL-schema statements

— The SQL-transaction statements <commit statement> and <rollback statement>, if they specify
AND CHAIN.

— The following SQL-data statements:

• <open statement>

• <close statement>

• <fetch statement>

• <select statement: single row>

• <insert statement>

• <delete statement: searched>

• <delete statement: positioned>

• <update statement: searched>

• <update statement: positioned>

• <free locator statement>

• <hold locator statement>

— <start transaction statement>

The following SQL-statements are not transaction-initiating SQL-statements, i.e., if there is no
current SQL-transaction, and a statement of this class is executed, no SQL-transaction is initiated.

— All SQL-transaction statements except <start transaction statement>s and <commit state-
ment>s and <rollback statement>s that specify AND CHAIN.

76 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.30 SQL-statements

— All SQL-connection statements

— All SQL-session statements

— All SQL-diagnostics statements

— The following SQL-data statements:

• <temporary table declaration>

• <declare cursor>

The following SQL-statements are possibly transaction-initiating SQL-statements:

• <return statement>

If the initiation of an SQL-transaction occurs in an atomic execution context, and an SQL-
transaction has already completed in this context, then an exception condition is raised: invalid
transaction initiation.

If an <SQL control statement> causes the evaluation of a <subquery> and there is no current
SQL-transaction, then an SQL-transaction is initiated before evaluation of the <subquery>.

4.30.4 SQL-statement atomicity

The execution of all SQL-statements other than SQL-control statements is atomic with respect to
recovery. Such an SQL-statement is called an atomic SQL-statement.

An atomic execution context is said to be active during the execution of an atomic SQL-statement or
evaluation of a <subquery>. Within one atomic execution context, another atomic execution context
may become active. This latter atomic execution context is said to be a more recent atomic execution
context. During the execution of any SQL-statement S, if there is an atomic execution context for
which no other atomic execution context is more recent, then it is the most recent atomic execution
context.

An SQL-transaction cannot be explicitly terminated within an atomic execution context. If the
execution of an atomic SQL-statement is unsuccessful, then the changes to SQL-data or schemas
made by the SQL-statement are canceled.

4.31 Basic security model

4.31.1 Authorization identifiers

An <authorization identifier> identifies a set of privileges. An <authorization identifier> can be
either a <user identifier> or a <role name>. A <user identifier> represent a user of the database
system. The mapping of <user identifier>s to operating system users is implementation-dependent.
A <role name> represents a role.

Concepts 77

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.31 Basic security model

4.31.1.1 SQL-session authorization identifiers

An SQL-session has a <user identifier> called the SQL-session user identifier. When an SQL-session
is initiated, the SQL-session user identifier is determined in an implementation-defined manner,
unless the session is initiated using a <connect statement>. The value of the SQL-session user
identifier can never be the null value. The SQL-session user identifier can be determined by using
SESSION_USER.

The context of an SQL-session contains a time-varying sequence of pairs of identifiers, known as
the authorization stack, each pair consisting of a user identifier and a role name. This sequence
of pairs is maintained using a ‘‘last-in, first-out’’ discipline, and effectively only the latest pair is
visible. Initially, there is one pair whose user identifier is a copy of the SQL-session user identifier
and whose role name is the null value. An additional pair is created by execution of an <externally
invoked procedure> EIP. If the <module authorization clause> of the <SQL-client module definition>
containing EIP specifies a <module authorization identifier> MAI, then MAI determines the value
of the new pair, as follows. If MAI is a <user identifier>, then the user identifier of the pair is
MAI and the role name is the null value; otherwise, the user identifier is the null value and the
role name is MAI. If there is no <module authorization clause>, then the new pair is a copy of the
previous last pair in the authorization stack. The pair placed in the stack during the execution of
EIP is removed when that execution of EIP completes.

The latest pair in the authorization stack of the current SQL-session context determine the priv-
ileges for the execution of each SQL-statement. The user identifier in this pair is known as the
current user identifier; the role name is known as the current role name. They may be determined
using CURRENT_USER and CURRENT_ROLE, respectively. The current user identifier and the
current role name are called the current authorization identifiers.

At a given time, the value of the current user identifier or the current role name can be a null
value, but their values cannot both be null values at the same time. That is, there must always
be a non-null current user identifier or current role name in order to have privileges to execute
some SQL-statement (remember that the privileges granted to PUBLIC are available to all of the
<authorization identifier>s in the SQL-environment).

The <set session user identifier statement> changes the value of the current SQL-session user
identifier. The <set role statement> changes the value of the current role name for the current
SQL-session.

The phrase current authorization identifier refers to the situation in which the value of either the
current user identifier or the current role name is a null value (and thus the value of the other
<authorization identifier> is not a null value); the phrase is said to refer to the value of the current
authorization identifier.

Let A be an <authorization identifier>. The phrase ‘‘the current authorization identifier is set to A’’
refers to:

— If A is a <user identifier>, then the current user identifier is set to A and the current role name
is set to the null value.

— If A is a <role name>, then the current role name is set to A and the current user identifier is
set to the null value.

78 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.31 Basic security model

4.31.1.2 SQL-client module authorization identifiers

An SQL-client module may specify an <authorization identifier>, called a <module authorization
identifier>.

If a <module authorization identifier> is specified, then it is used as the current authorization
identifier for the execution of all <externally-invoked procedure>s in the SQL-client module. If
the <module authorization identifier> is not specified, then the current user identifier and the
current role name of the SQL-session are used as the current user identifier and current role name,
respectively, for the execution of each <externally-invoked procedure> in the SQL-client module.

4.31.1.3 SQL-schema authorization identifiers

A <schema definition> may specify an <authorization identifier>, called a <schema authorization
identifier>, that represents the owner of that schema.

If the <schema authorization identifier> is specified, then it is used as the current authorization
identifier for the creation of the schema. If the <schema authorization identifier> is not specified,
then the <authorization identifier> specified by the <module authorization identifier> or the current
user identifier of the SQL-session is used to determine the current authorization identifier for the
creation of the schema.

4.31.2 Privileges

A privilege authorizes a given category of <action> to be performed on a specified base table, view,
column, domain, character set, collation, translation, user-defined type, trigger, or SQL-invoked
routine by a specified <authorization identifier>.

Each privilege is represented by a privilege descriptor. A privilege descriptor contains:

— The identification of the base table, view, column, domain, character set, collation, translation,
user-defined type, table/method pair, trigger, or SQL-invoked routine module that the descriptor
describes.

— The <authorization identifier> of the grantor of the privilege.

— The <authorization identifier> of the grantee of the privilege.

— Identification of the <action> that the privilege allows.

— An indication of whether or not the privilege is grantable.

— An indication of whether or not the privilege has the WITH HIERARCHY OPTION specified.

The <action>s that can be specified are:

— INSERT

— INSERT (<column name list>)

— UPDATE

— UPDATE (<column name list>)

— DELETE

Concepts 79

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.31 Basic security model

— SELECT

— SELECT (<column name list>)

— SELECT (<privilege method list>)

— REFERENCES

— REFERENCES (<column name list>)

— USAGE

— UNDER

— TRIGGER

— EXECUTE

A privilege descriptor with an <action> of INSERT, UPDATE, DELETE, SELECT, TRIGGER, or
REFERENCES is called a table privilege descriptor and identifies the existence of a privilege on the
table identified by the privilege descriptor.

A privilege descriptor with an <action> of SELECT (<column name list>), INSERT (<column name
list>), UPDATE (<column name list>), or REFERENCES (<column name list>) is called a column
privilege descriptor and identifies the existence of a privilege on the columns in the table identified
by the privilege descriptor.

A privilege descriptor with an <action> of SELECT (<privilege method list>) is called a ta-
ble/method privilege descriptor and identifies the existence of a privilege on the methods of the
structured type of the table identified by the privilege descriptor.

A table privilege descriptor specifies that the privilege identified by the <action> (unless the <ac-
tion> is DELETE) is to be automatically granted by the grantor to the grantee on all columns
subsequently added to the table.

A privilege descriptor with an <action> of USAGE is called a usage privilege descriptor and iden-
tifies the existence of a privilege on the domain, user-defined type, character set, collation, or
translation identified by the privilege descriptor.

A privilege descriptor with an <action> of UNDER is called an under privilege descriptor and
identifies the existence of the privilege on the structured type identified by the privilege descriptor.

A privilege descriptor with an <action> of EXECUTE is called an execute privilege descriptor and
identifies the existence of a privilege on the SQL-invoked routine identified by the privilege descrip-
tor.

A grantable privilege is a privilege associated with a schema that may be granted by a <grant
statement>. The WITH GRANT OPTION clause of a <grant statement> specifies whether the
<authorization identifier> recipient of a privilege (acting as a grantor) may grant it to others.

Privilege descriptors that represent privileges for the owner of an object have a special grantor
value, ‘‘_SYSTEM’’. This value is reflected in the Information Schema for all privileges that apply to
the owner of the object.

A schema that is owned by a given schema <user identifier> or schema <role name> may contain
privilege descriptors that describe privileges granted to other <authorization identifier>s (grantees).
The granted privileges apply to objects defined in the current schema.

80 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.31 Basic security model

4.31.3 Roles

A role, identified by a <role name>, is a set of privileges defined by the union of the privileges
defined by the privilege descriptors whose grantee is that <role name> and the sets of privileges
of the <role name>s defined by the role authorization descriptors whose grantee is the first <role
name>. A role may be granted to <authorization identifier>s with a <grant role statement>. No
cycles of role grants are allowed.

The WITH ADMIN OPTION clause of the <grant role statement> specifies whether the recipient of
a role may grant it to others.

Each grant is represented and identified by a role authorization descriptor. A role authorization
descriptor includes:

— The <role name> of the role.

— The <authorization identifier> of the grantor.

— The <authorization identifier> of the grantee.

— An indication of whether or not the role was granted with the WITH ADMIN OPTION and
hence is grantable.

Because roles may be granted to other roles, a role is said to ‘‘contain’’ other roles. The set of roles
X contained in any role A is defined as the set of roles identified by role authorization descriptors
whose grantee is A, together with all other roles contained by roles in X.

4.31.4 Security model definitions

The set of applicable roles for an <authorization identifier> consists of all roles defined by the role
authorization descriptors whose grantee is that <authorization identifier> or PUBLIC together with
all other roles they contain.

The set of user privileges for a <user identifier> consists of all privileges defined by the privilege
descriptors whose grantee is either that <user identifier> or PUBLIC.

The set of role privileges for a <role name> consists of all privileges defined by the privilege descrip-
tors whose grantee is either that <role name>, PUBLIC, or one of the applicable roles of that <role
name>.

The set of applicable privileges for an <authorization identifier> is defined as:

— If that <authorization identifier> is a <user identifier>, then the set of user privileges for that
<authorization identifier>.

— If that <authorization identifier> is a <role name>, then the set of role privileges for that
<authorization identifier>.

The phrase enabled roles refers to:

— If the value of the current role name of the current SQL-session is the null value, then the
empty set.

— Otherwise, the set of roles defined by the current role name of the current SQL-session together
with its applicable roles.

Concepts 81

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.31 Basic security model

The phrase enabled authorization identifiers refers to the set of <authorization identifier>s defined
by the enabled roles together with the current user identifier of the current SQL-session, if its value
is not a null value.

The phrase enabled privileges refers to:

— If the value of the current role name of the current SQL-session is a null value, then the empty
set.

— Otherwise, the set of privileges defined by the role privileges of the current role name of the
current SQL-session.

The phrase current user privileges refers to:

— If the value of the current user identifier of the current SQL-session is a null value, the empty
set.

— Otherwise, the set of privileges defined by the user privileges of the current user identifier of
the current SQL-session.

The phrase current privileges refers to the set of privileges defined by the current user privileges
together with those defined by the enabled privileges.

4.32 SQL-transactions

An SQL-transaction (transaction) is a sequence of executions of SQL-statements that is atomic
with respect to recovery. These operations are performed by one or more compilation units and
SQL-client modules.

It is implementation-defined whether or not the execution of an SQL-data statement is permitted
to occur within the same SQL-transaction as the execution of an SQL-schema statement. If it does
occur, then the effect on any open cursor or deferred constraint is implementation-defined. There
may be additional implementation-defined restrictions, requirements, and conditions. If any such
restrictions, requirements, or conditions are violated, then an implementation-defined exception
condition or a completion condition warning with an implementation-defined subclass code is raised.

Each SQL-client module that executes an SQL-statement of an SQL-transaction is associated with
that SQL-transaction. An SQL-transaction is initiated when no SQL-transaction is currently active
and an <externally-invoked procedure> is called that results in the execution of a transaction-
initiating SQL-statement. An SQL-transaction is terminated by a <commit statement> or a
<rollback statement>. If an SQL-transaction is terminated by successful execution of a <commit
statement>, then all changes made to SQL-data or schemas by that SQL-transaction are made per-
sistent and accessible to all concurrent and subsequent SQL-transactions. If an SQL-transaction is
terminated by a <rollback statement> or unsuccessful execution of a <commit statement>, then all
changes made to SQL-data or schemas by that SQL-transaction are canceled. Committed changes
cannot be canceled. If execution of a <commit statement> is attempted, but certain exception con-
ditions are raised, it is unknown whether or not the changes made to SQL-data or schemas by that
SQL-transaction are canceled or made persistent.

An SQL-transaction may be partially rolled back by using a savepoint. The savepoint and its
<savepoint name> are established within an SQL-transaction when a <savepoint statement> is
executed. If a <rollback statement> references a savepoint, then all changes made to SQL-data or
schema subsequent to the establishment of the savepoint are canceled, and the SQL-transaction is
restored to its state as it was immediately following the execution of the <savepoint statement>.
Savepoints are destroyed when an SQL-transaction is terminated, or when a <release savepoint

82 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.32 SQL-transactions

statement> is executed. Savepoints may be redefined within an SQL-transaction by executing a
<savepoint statement> that refers to a savepoint previously defined in the same SQL-transaction.

It is implementation-defined whether or not, or how, a <rollback statement> that references a
<savepoint specifier> affects the contents of the diagnostics area, the contents of SQL descriptor
areas, and the status of prepared statements.

An SQL-transaction has a constraint mode for each integrity constraint. The constraint mode for an
integrity constraint in an SQL-transaction is described in Subclause 4.17, ‘‘Integrity constraints’’.

An SQL-transaction has an access mode that is either read-only or read-write. The access mode may
be explicitly set by a <set transaction statement> before the start of an SQL-transaction or by the
use of a <start transaction statement> to start an SQL-transaction; otherwise, it is implicitly set to
the default access mode for the SQL-session before each SQL-transaction begins. If no <set session
characteristics statement> has set the default access mode for the SQL-session, then the default
access mode for the SQL-session is read-write. The term read-only applies only to viewed tables and
persistent base tables.

An SQL-transaction has a diagnostics area limit, which is a positive integer that specifies the
maximum number of conditions that can be placed in the diagnostics area during execution of an
SQL-statement in this SQL-transaction.

Closing the cursor causes an effective check of all table constraints and assertions, the effective
execution of all referential actions, and the re-evaluation of all matching rows and unique matching
rows.

SQL-transactions initiated by different SQL-agents that access the same SQL-data or schemas and
overlap in time are concurrent SQL-transactions.

An SQL-transaction has an isolation level that is READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, or SERIALIZABLE. The isolation level of an SQL-transaction defines the
degree to which the operations on SQL-data or schemas in that SQL-transaction are affected by
the effects of and can affect operations on SQL-data or schemas in concurrent SQL-transactions.
The isolation level of an SQL-transaction when any cursor is held open from the previous SQL-
transaction within an SQL-session is the isolation level of the previous SQL-transaction by default.
If no cursor is held open, or this is the first SQL-transaction within an SQL-session, then the
isolation level is SERIALIZABLE by default. The level can be explicitly set by the <set transaction
statement> before the start of an SQL-transaction or by the use of a <start transaction statement>
to start an SQL-transaction. If it is not explicitly set, then the isolation level is implicitly set to the
default isolation level for the SQL-session before each SQL-transaction begins. If no <set session
characteristics statement> has set the default isolation level for the SQL-session, then the default
access mode for the SQL-session is SERIALIZABLE.

Execution of a <set transaction statement> is prohibited after the start of an SQL-transaction
and before its termination. Execution of a <set transaction statement> before the start of an
SQL-transaction sets the access mode, isolation level, and diagnostics area limit for the single
SQL-transaction that is started after the execution of that <set transaction statement>. If multiple
<set transaction statement>s are executed before the start of an SQL-transaction, the last such
statement is the one whose settings are effective for that SQL-transaction; their actions are not
cumulative.

The execution of concurrent SQL-transactions at isolation level SERIALIZABLE is guaranteed to be
serializable. A serializable execution is defined to be an execution of the operations of concurrently
executing SQL-transactions that produces the same effect as some serial execution of those same
SQL-transactions. A serial execution is one in which each SQL-transaction executes to completion
before the next SQL-transaction begins.

Concepts 83

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.32 SQL-transactions

The isolation level specifies the kind of phenomena that can occur during the execution of concurrent
SQL-transactions. The following phenomena are possible:

1) P1 (‘‘Dirty read’’): SQL-transaction T1 modifies a row. SQL-transaction T2 then reads that row
before T1 performs a COMMIT. If T1 then performs a ROLLBACK, T2 will have read a row that
was never committed and that may thus be considered to have never existed.

2) P2 (‘‘Non-repeatable read’’): SQL-transaction T1 reads a row. SQL-transaction T2 then modifies
or deletes that row and performs a COMMIT. If T1 then attempts to reread the row, it may
receive the modified value or discover that the row has been deleted.

3) P3 (‘‘Phantom’’): SQL-transaction T1 reads the set of rows N that satisfy some <search condi-
tion>. SQL-transaction T2 then executes SQL-statements that generate one or more rows that
satisfy the <search condition> used by SQL-transaction T1. If SQL-transaction T1 then repeats
the initial read with the same <search condition>, it obtains a different collection of rows.

The four isolation levels guarantee that each SQL-transaction will be executed completely or not at
all, and that no updates will be lost. The isolation levels are different with respect to phenomena
P1, P2, and P3. Table 10, ‘‘SQL-transaction isolation levels and the three phenomena’’ specifies the
phenomena that are possible and not possible for a given isolation level.

Table 10—SQL-transaction isolation levels and the three phenomena

Level P1 P2 P3

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible

NOTE 32 – The exclusion of these phenomena for SQL-transactions executing at isolation level SERIALIZABLE
is a consequence of the requirement that such transactions be serializable.

Changes made to SQL-data or schemas by an SQL-transaction in an SQL-session may be perceived
by that SQL-transaction in that same SQL-session, and by other SQL-transactions, or by that same
SQL-transaction in other SQL-sessions, at isolation level READ UNCOMMITTED, but cannot be
perceived by other SQL-transactions at isolation level READ COMMITTED, REPEATABLE READ,
or SERIALIZABLE until the former SQL-transaction terminates with a <commit statement>.

Regardless of the isolation level of the SQL-transaction, phenomena P1, P2, and P3 shall not
occur during the implied reading of schema definitions performed on behalf of executing an SQL-
statement, the checking of integrity constraints, and the execution of referential actions associated
with referential constraints. The schema definitions that are implicitly read are implementation-
dependent. This does not affect the explicit reading of rows from tables in the Information Schema,
which is done at the isolation level of the SQL-transaction.

The execution of a <rollback statement> may be initiated implicitly by an SQL-implementation
when it detects the inability to guarantee the serializability of two or more concurrent SQL-
transactions. When this error occurs, an exception condition is raised: transaction rollback —
serialization failure.

The execution of a <rollback statement> may be initiated implicitly by an SQL-implementation
when it detects unrecoverable errors. When such an error occurs, an exception condition is raised:
transaction rollback with an implementation-defined subclass code.

84 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.32 SQL-transactions

The execution of an SQL-statement within an SQL-transaction has no effect on SQL-data or
schemas other than the effect stated in the General Rules for that SQL-statement, in the
General Rules for Subclause 11.8, ‘‘<referential constraint definition>’’, in the General Rules for
Subclause 11.38, ‘‘<trigger definition>’’, and in the General Rules for Subclause 11.49, ‘‘<SQL-
invoked routine>’’. Together with serializable execution, this implies that all read operations are
repeatable within an SQL-transaction at isolation level SERIALIZABLE, except for:

1) the effects of changes to SQL-data or schemas and its contents made explicitly by the SQL-
transaction itself,

2) the effects of differences in SQL parameter values supplied to externally-invoked procedures,
and

3) the effects of references to time-varying system variables such as CURRENT_DATE and
CURRENT_USER.

In some environments (e.g., remote database access), an SQL-transaction can be part of an encom-
passing transaction that is controlled by an agent other than the SQL-agent. The encompassing
transaction may involve different resource managers, the SQL-implementation being just one in-
stance of such a manager. In such environments, an encompassing transaction must be terminated
via that other agent, which in turn interacts with the SQL-implementation via an interface that
may be different from SQL (COMMIT or ROLLBACK), in order to coördinate the orderly termi-
nation of the encompassing transaction. When an SQL-transaction is part of an encompassing
transaction that is controlled by an agent other than an SQL-agent and a <rollback statement>
is initiated implicitly by an SQL-implementation, then the SQL-implementation will interact with
that other agent to terminate that encompassing transaction. The specification of the interface
between such agents and the SQL-implementation is beyond the scope of this part of ISO/IEC 9075.
However, it is important to note that the semantics of an SQL-transaction remain as defined in the
following sense:

— When an agent that is different from the SQL-agent requests the SQL-implementation to
rollback an SQL-transaction, the General Rules of Subclause 16.7, ‘‘<rollback statement>’’, are
performed.

— When such an agent requests the SQL-implementation to commit an SQL-transaction, the
General Rules of Subclause 16.6, ‘‘<commit statement>’’, are performed. To guarantee orderly
termination of the encompassing transaction, this commit operation may be processed in several
phases not visible to the application; not all the General Rules of Subclause 16.6, ‘‘<commit
statement>’’, need to be executed in a single phase.

However, even in such environments, the SQL-agent interacts directly with the SQL-server to set
characteristics (such as read-only or read-write, isolation level, and constraints mode) that are
specific to the SQL-transaction model.

It is implementation-defined whether SQL-transactions that affect more than one SQL-server are
supported. If such SQL-transactions are supported, then the part of each SQL-transaction that
affects a single SQL-server is called a branch transaction or a branch of the SQL-transaction. If
such SQL-transactions are supported, then they generally have all the same characteristics (access
mode, diagnostics area limit, and isolation level, as well as constraint mode). However, it is possible
to alter some characteristics of such an SQL-transaction at one SQL-server by the use of the SET
LOCAL TRANSACTION statement; if a SET LOCAL TRANSACTION statement is executed at an
SQL-server before any transaction-initiating SQL-statement, then it may set the characteristics of
that branch of the SQL-transaction at that SQL-server.

Concepts 85

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.32 SQL-transactions

The characteristics of a branch of an SQL-transaction are limited by the characteristics of the
SQL-transaction as a whole:

— If the SQL-transaction is read-write, then the branch of the SQL-transaction may be read-write
or read-only; if the SQL-transaction is read-only, then the branch of the SQL-transaction must
be read-only.

— If the SQL-transaction has an isolation level of READ UNCOMMITTED, then the branch of the
SQL-transaction may have an isolation level of READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, or SERIALIZABLE.

If the SQL-transaction has an isolation level of READ COMMITTED, then the branch of the
SQL-transaction must have an isolation level of READ COMMITTED, REPEATABLE READ, or
SERIALIZABLE.

If the SQL-transaction has an isolation level of REPEATABLE READ, then the branch of the
SQL-transaction must have an isolation level of REPEATABLE READ or SERIALIZABLE.

If the SQL-transaction has an isolation level of SERIALIZABLE, then the branch of the SQL-
transaction must have an isolation level of SERIALIZABLE.

— The diagnostics area limit of a branch of an SQL-transaction is always the same as the di-
agnostics area limit of the SQL-transaction; SET LOCAL TRANSACTION shall not specify a
diagnostics area limit.

SQL-transactions that are not part of an encompassing transaction are terminated by the execution
of <commit statement>s and <rollback statement>s. If those statements specify AND CHAIN, then
they also initiate a new SQL-transaction with the same characteristics as the SQL-transaction
that was just terminated, except that the constraint mode of each integrity constraint reverts to its
default mode (deferred or immediate).

4.33 SQL-connections

An SQL-connection is an association between an SQL-client and an SQL-server. An SQL-connection
may be established and named by a <connect statement>, which identifies the desired SQL-server
by means of an <SQL-server name>. A <connection name> is specified as a <simple value specifi-
cation> whose value is an <identifier>. Two <connection name>s identify the same SQL-connection
if their values, with leading and trailing <space>s removed, are equivalent according to the rules
for <identifier> comparison in Subclause 5.2, ‘‘<token> and <separator>’’. It is implementation-
defined how an SQL-implementation uses <SQL-server name> to determine the location, identity,
and communication protocol required to access the SQL-server and create an SQL-session.

An SQL-connection is an active SQL-connection if any SQL-statement that initiates or requires an
SQL-transaction has been executed at its SQL-server via that SQL-connection during the current
SQL-transaction.

An SQL-connection is either current or dormant. If the SQL-connection established by the most
recently executed implicit or explicit <connect statement> or <set connection statement> has not
been terminated, then that SQL-connection is the current SQL-connection; otherwise, there is no
current SQL-connection. An existing SQL-connection that is not the current SQL-connection is a
dormant SQL-connection.

86 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.33 SQL-connections

An SQL implementation may detect the loss of the current SQL-connection during execution of
any SQL-statement. When such a connection failure is detected, an exception condition is raised:
connection exception — statement completion unknown. This exception condition indicates that the
results of the actions performed in the SQL-server on behalf of the statement are unknown to the
SQL-agent.

Similarly, an SQL-implementation may detect the loss of the current SQL-connection during the
execution of a <commit statement>. When such a connection failure is detected, an exception con-
dition is raised: connection exception — transaction resolution unknown. This exception condition
indicates that the SQL-implementation cannot verify whether the SQL-transaction was committed
successfully, rolled back, or left active.

A user may initiate an SQL-connection between the SQL-client associated with the SQL-agent and
a specific SQL-server by executing a <connect statement>. Otherwise, an SQL-connection between
the SQL-client and an implementation-defined default SQL-server is initiated when an <externally-
invoked procedure> is called and no SQL-connection is current. The SQL-connection associated
with an implementation-defined default SQL-server is called the default SQL-connection. An SQL-
connection is terminated either by executing a <disconnect statement> or following the last call
to an <externally-invoked procedure> within the last active SQL-client module. The mechanism
and rules by which an SQL-implementation determines whether a call to an <externally-invoked
procedure> is the last call within the last active SQL-client module are implementation-defined.

An SQL-implementation must support at least one SQL-connection and may require that the
SQL-server be identified at the binding time chosen by the SQL-implementation. If an SQL-
implementation permits more than one concurrent SQL-connection, then the SQL-agent may
connect to more than one SQL-server and select the SQL-server by executing a <set connection
statement>.

4.34 SQL-sessions

An SQL-session spans the execution of a sequence of consecutive SQL-statements invoked by a
single user from a single SQL-agent.

An SQL-session is associated with an SQL-connection. The SQL-session associated with the default
SQL-connection is called the default SQL-session. An SQL-session is either current or dormant.
The current SQL-session is the SQL-session associated with the current SQL-connection. A dormant
SQL-session is an SQL-session that is associated with a dormant SQL-connection.

Within an SQL-session, module local temporary tables are effectively created by <temporary table
declaration>s. Module local temporary tables are accessible only to invocations of <externally-
invoked procedure>s in the SQL-client module in which they are created. The definitions of module
local temporary tables persist until the end of the SQL-session.

Within an SQL-session, locators are effectively created when a host parameter or an SQL parameter
of an external routine that is specified as a binary large object locator, a character large object
locator, a user-defined type locator, or an array locator is assigned a value of binary large object
type, character large object type, user-defined type, or array type, respectively. These locators are
part of the SQL-session context. A locator may be either valid or invalid. All locators remaining
valid at the end of an SQL-session are marked invalid on termination of that SQL-session.

An SQL-session has a unique implementation-dependent SQL-session identifier. This SQL-session
identifier is different from the SQL-session identifier of any other concurrent SQL-session. The
SQL-session identifier is used to effectively define implementation-defined schemas that contain the
instances of any global temporary tables, created local temporary tables, or declared local temporary
tables within the SQL-session.

Concepts 87

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.34 SQL-sessions

An SQL-session has a <user identifier> that is initially set to an implementation-defined value when
the SQL-session is started, unless the SQL-session is started as a result of successful execution of
a <connect statement>, in which case the initial <user identifier> of the SQL-session is set to the
value of the implicit or explicit <connection user name> contained in the <connect statement>.

An SQL-session has an original local time zone displacement and a default local time zone dis-
placement, which are values of data type INTERVAL HOUR TO MINUTE. Both the original lo-
cal time zone displacement and the default local time zone displacement are initially set to the
same implementation-defined value. The default local time zone displacement can subsequently be
changed by successful execution of a <set local time zone statement>. The original local time zone
displacement cannot be changed. It is also possible to set the default local time zone displacement
to equal the value of the original local time zone displacement.

An SQL-invoked routine is active as soon as an SQL-statement executed by an SQL-agent causes
invocation of an SQL-invoked routine and ceases to be active when execution of that invocation is
complete.

At any time during an SQL-session, containing SQL is said to be permitted or not permitted.
Similarly, reading SQL-data is said to be permitted or not permitted and modifying SQL-data is
said to be permitted or not permitted.

An SQL-session has enduring characteristics. The enduring characteristics of an SQL-session
are initially the same as the default values for the corresponding SQL-session characteristics.
The enduring characteristics are changed by successful execution of a <set session characteristics
statement> that specifies one or more enduring characteristics. Enduring characteristics that
are not specified in a <set session characteristics statement> are not changed in any way by the
successful execution of that statement.

SQL-sessions have the following enduring characteristics:

— enduring transaction characteristics

Each of the enduring characteristics are affected by a corresponding alternative in the <session
characteristic> appearing in the <session characteristic list> of a <set session characteristics state-
ment>.

An SQL-session has context that is preserved when an SQL-session is made dormant and restored
when the SQL-session is made current. This context comprises:

— The current SQL-session identifier.

— The current user identifier.

— The current role name.

— The identities of all instances of temporary tables.

— The original time zone.

— The current default time zone.

— The current constraint mode for each integrity constraint.

— The current transaction access mode.

— The cursor position of all open cursors.

— The current transaction isolation level.

88 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.34 SQL-sessions

— The current SQL diagnostics area and its contents, along with the current diagnostics size.

— The value of all valid locators.

— The value of the SQL-path for the current SQL-session.

— A statement execution context.

— A routine execution context.

— Zero or more trigger execution contexts.

NOTE 33 – The use of the word ‘‘current’’ in the preceding list implies the values that are current in the
SQL-session that is to be made dormant, and not the values that will become current in the SQL-session that
will become the active SQL-session.

4.34.1 Execution contexts

Execution contexts augment an SQL-session context to cater for certain special circumstances
that might pertain from time to time during invocations of SQL-statements. An execution context
is either a trigger execution context or a routine execution context. There is always a statement
execution context, a routine execution context, and zero or more trigger execution contexts. For certain
SQL-statements, the execution context is always atomic. A routine execution context is either
atomic or non-atomic. Every trigger execution context is atomic. Statement execution contexts are
described in Subclause 4.30.3, ‘‘SQL-statements and transaction states’’. Trigger execution contexts
are described in Subclause 4.35, ‘‘Triggers’’.

A routine execution context consists of:

— An indication as to whether or not an SQL-invoked routine is active.

— An indication as to whether or not containing SQL is permitted.

— An indication as to whether or not reading SQL-data is permitted.

— An indication as to whether or not modifying SQL-data is permitted.

— An identification of the SQL-invoked routine that is active.

— The routine SQL-path derived from the routine SQL-path if the SQL-invoked routine that is
active is an SQL routine and from the external routine SQL-path if the SQL-invoked routine
that is active is an external routine.

An SQL-invoked routine is active as soon as an SQL-statement executed by an SQL-agent causes
invocation of an SQL-invoked routine and ceases to be active when execution of that invocation is
complete.

When an SQL-agent causes the invocation of an SQL-invoked routine, a new context for the current
SQL-session is created and the values of the current context are preserved. When the execution of
that SQL-invoked routine completes, the original context of the current SQL-session is restored and
some SQL-session characteristics are reset.

If the routine execution context of the SQL-session indicates that an SQL-invoked routine is active,
then the routine SQL-path included in the routine execution context of the SQL-session is used
to effectively qualify unqualified <routine name>s that are immediately contained in <routine
invocation>s that are contained in a <preparable statement> or in a <direct SQL statement>.

Concepts 89

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.35 Triggers

4.35 Triggers

A trigger is defined by a <trigger definition>. A <trigger definition> specifies a trigger that is
described by a trigger descriptor . A trigger descriptor includes:

— The name of the trigger.

— The name of the base table that is the subject table.

— The trigger action time (BEFORE or AFTER).

— The trigger event (INSERT, DELETE, or UPDATE).

— Whether the trigger is a statement-level trigger or a row-level trigger.

— Any old values correlation name, new values correlation name, old values table alias, or new
values table alias.

— The triggered action.

— The trigger column list (possibly empty) for the trigger event.

— The triggered action column set of the triggered action.

— The timestamp of creation of the trigger.

A BEFORE trigger is a trigger whose trigger event specifies BEFORE. An AFTER trigger is a
trigger whose trigger event specifies AFTER.

A statement-level trigger is one specified using FOR EACH STATEMENT, while a row-level trigger
is one specified using FOR EACH ROW. A trigger cannot be both a statement-level trigger and a
row-level trigger.

The order of execution of a set of triggers is ascending by value of their timestamp of creation in
their descriptors, such that the oldest trigger executes first. If one or more triggers have the same
timestamp value, then their relative order of execution is implementation-defined.

4.35.1 Triggered actions

A schema might include one or more trigger descriptors, each of which includes the definition of a
triggered action specifying a <triggered SQL statement> that is to be executed (either once for each
affected row, in the case of a row-level trigger, or once for the whole triggering INSERT, DELETE,
or UPDATE statement, in the case of a statement-level trigger) before or after rows are inserted
into a table, rows are deleted from a table, or one or more columns are updated in rows of a table.
The execution of such a triggered action resulting from the insertion, deletion, or updating of a table
may cause the triggering of further triggered actions.

The <triggered SQL statement> of a triggered action is effectively executed either immediately
before or immediately after the trigger event, as determined by the specified trigger action time.

When an execution of the <triggered SQL statement> TSS of a triggered action is not successful,
then an exception condition is raised and the SQL-statement that caused TSS to be executed has no
effect on SQL-data or schemas.

90 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
4.35 Triggers

4.35.2 Execution of triggers

During the execution of an SQL-statement, zero or more trigger execution contexts exist, no more
than one of which is active. The execution of an SQL-data change statement Si creates a new
trigger execution context TECi and causes TECi to become active. TECi remains in existence until
the completion of Si. An SQL-data change statement Sj that is executed before the completion of Si
preserves TECi and creates a new trigger execution context TECj that becomes the active one and
remains in existence until the completion of Sj. At the completion of Sj, TECj ceases to exist and
TECi is restored as the active trigger execution context.

A trigger execution context consists of a set of state changes. Within a trigger execution context,
each state change is uniquely identified by a trigger event, a subject table, and a column list. The
trigger event can be DELETE, INSERT, or UPDATE. A state change SC contains a set of transitions,
a set of statement-level triggers considered as executed for SC, and a set of row-level triggers, each
paired with the set of rows in SC for which it is considered as executed. .

A statement-level trigger that is considered as executed for a state change SC (in a given trigger
execution context) is not subsequently executed for SC.

If a row-level trigger RLT is considered as executed for some row R in SC, then RLT is not subse-
quently executed for R.

A transition represents a modification of a row in the subject table for the trigger event.

An old transition table is a set of old transition variables, each of which is the value of the row
before the SQL-update operation is executed. A (possible empty) old transition table exists if the
trigger event is UPDATE or DELETE. A new transition table is a set of new transition variables,
each of which is the value of the row after the SQL-update operation is executed. A (possible empty)
new transition table exists if the trigger event is UPDATE or INSERT.

If both transition tables exist, they have the same cardinality.

A <triggered action> may refer to the old transition table only by explicitly specifying an <old values
table alias> and to the new transition table only by explicitly specifying a <new values table alias>.
A <triggered action> may refer to a correlation name associated with the old transition table only
by explicitly specifying an <old values correlation name>; this correlation name identifies the old
transition variable. A <triggered action> may refer to a correlation name associated with the new
transition table only by explicitly specifying a <new values correlation name>; this correlation name
identifies the new transition variable. The scope of <old values table alias>, <new values table
alias>, <old values correlation name>, and <new values correlation name> is the <triggered action>
of the <trigger definition> that specifies it.

When execution of an SQL-data change statement Si causes a trigger execution context TECi to
come into existence, the set of state changes SSCi is empty. Let TD be some trigger descriptor
and let TE, ST, and CL be the trigger event, subject table, and column list of TD, respectively. A
state change SCij arises in SSCi when TE occurs during the execution of Si and SSCi does not
already contain a state change identified by TE, ST, and CL. A transition Tijk is added to SCij
when a row is inserted into, updated in, or deleted from ST during the execution of Si or the
checking of referential constraints according to the General Rules of Subclause 11.8, ‘‘<referential
constraint definition>’’, Subclause 14.6, ‘‘<delete statement: positioned>’’, Subclause 14.7, ‘‘<delete
statement: searched>’’, Subclause 14.8, ‘‘<insert statement>’’, Subclause 14.9, ‘‘<update statement:
positioned>’’, and Subclause 14.10, ‘‘<update statement: searched>’’.

A consequence of the execution of an SQL-data change statement that causes at least one transition
to arise in some state change is called an SQL-update operation.

The transitions Tijk added by an SQL-update operation SUO to a state change in SSCi are the set
of affected rows of SUO.

Concepts 91

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
4.35 Triggers

When a state change SCij arises in SSCi, one or more triggers are activated by SCij. A trigger TR is
activated by SCij if and only if the subject table of TR is the subject table of SCij, the trigger event
of TR is the trigger event of SCij, and the set of column names listed in TCL is the equivalent to
the set of column names listed in SCCLij.

Whenever an SQL-update operation creates a new state change SCij, the BEFORE triggers acti-
vated by SCij are executed before the execution of the SQL-update operation. After the completion
of the SQL-data change statement Si that created a trigger execution context TECi, the AFTER
triggers activated by any state changes SCij in the set of state changes SSCi of TECi are executed.

A <triggered action> contained in a BEFORE or AFTER trigger that specifies FOR EACH ROW
can refer to columns of old transition variables and new transition variables. Such references can
be specified as <column reference>s, which includes as a special case <target specification>s and
<simple target specification>s that identify the new transition variable. When a new transition
variable is specified in a <target specification> or <simple target specification>, the column of
the new transition variable that is identified by the <column name> contained in the <target
specification> or <simple target specification> is effectively replaced by the value assigned to it.

4.36 Client-server operation

When an SQL-agent is active, it is bound in some implementation-defined manner to a single
SQL-client. That SQL-client processes the explicit or implicit <SQL connection statement> for the
first call to an <externally-invoked procedure> by an SQL-agent. The SQL-client communicates
with, either directly or possibly through other agents such as RDA, one or more SQL-servers. An
SQL-session involves an SQL-agent, an SQL-client, and a single SQL-server.

SQL-client modules associated with the SQL-agent exist in the SQL-environment containing the
SQL-client associated with the SQL-agent.

Called <externally-invoked procedure>s containing an <SQL connection statement> or an <SQL
diagnostics statement> are processed by the SQL-client. Following the successful execution of a
<connect statement> or a <set connection statement>, the SQL-client modules associated with the
SQL-agent are effectively materialized with an implementation-dependent <SQL-client module
name> in the SQL-server. Other called <externally-invoked procedure>s are processed by the
SQL-server.

A call by the SQL-agent to an <externally-invoked procedure> containing an <SQL diagnostics
statement> fetches information from the diagnostics area associated with the SQL-client. Following
the execution of an <SQL procedure statement> by an SQL-server, diagnostic information is passed
in an implementation-dependent manner into the SQL-agent’s diagnostics area in the SQL-client.
The effect on diagnostic information of incompatibilities between the character repertoires supported
by the SQL-client and SQL-server is implementation-dependent.

92 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

5 Lexical elements

5.1 <SQL terminal character>

Function
Define the terminal symbols of the SQL language and the elements of strings.

Format

<SQL terminal character> ::=
<SQL language character>

<SQL language character> ::=
<simple Latin letter>

| <digit>
| <SQL special character>

<simple Latin letter> ::=
<simple Latin upper case letter>

| <simple Latin lower case letter>

<simple Latin upper case letter> ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O

| P | Q | R | S | T | U | V | W | X | Y | Z

<simple Latin lower case letter> ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o

| p | q | r | s | t | u | v | w | x | y | z

<digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<SQL special character> ::=
<space>

| <double quote>
| <percent>
| <ampersand>
| <quote>
| <left paren>
| <right paren>
| <asterisk>
| <plus sign>
| <comma>
| <minus sign>
| <period>
| <solidus>
| <colon>
| <semicolon>
| <less than operator>
| <equals operator>
| <greater than operator>
| <question mark>
| <left bracket>
| <right bracket>

Lexical elements 93

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.1 <SQL terminal character>

| <circumflex>
| <underscore>
| <vertical bar>
| <left brace>
| <right brace>

<space> ::= !! See the Syntax Rules

<double quote> ::= "

<percent> ::= %

<ampersand> ::= &

<quote> ::= ’

<left paren> ::= (

<right paren> ::=)

<asterisk> ::= *

<plus sign> ::= +

<comma> ::= ,

<minus sign> ::= -

<period> ::= .

<solidus> ::= /

<colon> ::= :

<semicolon> ::= ;

<less than operator> ::= <

<equals operator> ::= =

<greater than operator> ::= >

<question mark> ::= ?

<left bracket or trigraph> ::=
<left bracket>

| <left bracket trigraph>

<right bracket or trigraph> ::=
<right bracket>

| <right bracket trigraph>

<left bracket> ::= [

<left bracket trigraph> ::= ??(

<right bracket> ::=]

<right bracket trigraph> ::= ??)

94 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.1 <SQL terminal character>

<circumflex> ::= ^

<underscore> ::= _

<vertical bar> ::= |

<left brace> ::={

<right brace> ::=}

Syntax Rules

1) Every character set shall contain a <space> character that is equivalent to U+0020.

Access Rules

None.

General Rules

1) There is a one-to-one correspondence between the symbols contained in <simple Latin upper
case letter> and the symbols contained in <simple Latin lower case letter> such that, for all i,
the symbol defined as the i-th alternative for <simple Latin upper case letter> corresponds to
the symbol defined as the i-th alternative for <simple Latin lower case letter>.

Conformance Rules

None.

Lexical elements 95

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.2 <token> and <separator>

5.2 <token> and <separator>

Function
Specify lexical units (tokens and separators) that participate in SQL language.

Format

<token> ::=
<nondelimiter token>

| <delimiter token>

<nondelimiter token> ::=
<regular identifier>

| <key word>
| <unsigned numeric literal>
| <national character string literal>
| <bit string literal>
| <hex string literal>
| <large object length token>
| <multiplier>

<regular identifier> ::= <identifier body>

<identifier body> ::=
<identifier start> [{ <underscore> | <identifier part> }...]

<identifier start> ::=
<initial alphabetic character>

| <ideographic character>

<identifier part> ::=
<alphabetic character>

| <ideographic character>
| <decimal digit character>
| <identifier combining character>
| <underscore>
| <alternate underscore>
| <extender character>
| <identifier ignorable character>
| <connector character>

<initial alphabetic character> ::= !! See the Syntax Rules

<ideographic character> ::= !! See the Syntax Rules

<alphabetic character> ::= !! See the Syntax Rules

<decimal digit character> ::= !! See the Syntax Rules

<identifier combining character> ::= !! See the Syntax Rules

<alternate underscore> ::= !! See the Syntax Rules

<extender character> ::= !! See the Syntax Rules

<identifier ignorable character> ::= !! See the Syntax Rules

<connector character> ::= !! See the Syntax Rules

96 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.2 <token> and <separator>

<large object length token> ::=
<digit>...<multiplier>

<multiplier> ::=
K

| M
| G

<delimited identifier> ::=
<double quote> <delimited identifier body> <double quote>

<delimited identifier body> ::= <delimited identifier part>...

<delimited identifier part> ::=
<nondoublequote character>

| <doublequote symbol>

<nondoublequote character> ::= !! See the Syntax Rules

<doublequote symbol> ::= "" !! two consecutive double quote characters

<delimiter token> ::=
<character string literal>

| <date string>
| <time string>
| <timestamp string>
| <interval string>
| <delimited identifier>
| <SQL special character>
| <not equals operator>
| <greater than or equals operator>
| <less than or equals operator>
| <concatenation operator>
| <right arrow>
| <left bracket trigraph>
| <right bracket trigraph>
| <double colon>

<not equals operator> ::= <>

<greater than or equals operator> ::= >=

<less than or equals operator> ::= <=

<concatenation operator> ::= ||

<right arrow> ::= ->

<double colon> ::= ::

<separator> ::= { <comment> | <white space> }...

<white space> ::= !! See the Syntax Rules

<comment> ::=
<simple comment>

| <bracketed comment>

<simple comment> ::=
<simple comment introducer> [<comment character>...] <newline>

Lexical elements 97

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.2 <token> and <separator>

<simple comment introducer> ::= <minus sign><minus sign>[<minus sign>...]

<bracketed comment> ::= !! (See the Syntax Rules)
<bracketed comment introducer>
<bracketed comment contents>

<bracketed comment terminator>

<bracketed comment introducer> ::= /*

<bracketed comment terminator> ::= */

<bracketed comment contents> ::=
[{ <comment character> | <separator> }...]

<comment character> ::=
<nonquote character>

| <quote>

<newline> ::= !! See the Syntax Rules

<key word> ::=
<reserved word>

| <non-reserved word>

<non-reserved word> ::=
ABS | ADA | ASENSITIVE | ASSIGNMENT | ASYMMETRIC | ATOMIC | AVG

| BETWEEN | BIT_LENGTH | BITVAR

| C | CALLED | CARDINALITY | CATALOG_NAME | CHAIN | CHAR_LENGTH
| CHARACTER_LENGTH | CHARACTER_SET_CATALOG | CHARACTER_SET_NAME
| CHARACTER_SET_SCHEMA | CHECKED | CLASS_ORIGIN | COALESCE | COBOL
| COLLATION_CATALOG | COLLATION_NAME | COLLATION_SCHEMA | COLUMN_NAME
| COMMAND_FUNCTION | COMMAND_FUNCTION_CODE | COMMITTED | CONDITION_NUMBER
| CONNECTION_NAME | CONSTRAINT_CATALOG | CONSTRAINT_NAME | CONSTRAINT_SCHEMA
| CONTAINS | CONVERT | COUNT | CURSOR_NAME

| DATETIME_INTERVAL_CODE | DATETIME_INTERVAL_PRECISION | DEFINED | DEFINER
| DISPATCH | DYNAMIC_FUNCTION | DYNAMIC_FUNCTION_CODE

| EXISTING | EXISTS | EXTRACT

| FINAL | FORTRAN

| G | GENERATED | GRANTED

| HIERARCHY | HOLD

| IMPLEMENTATION | INFIX | INSENSITIVE | INSTANCE | INSTANTIABLE | INVOKER

| K | KEY_MEMBER | KEY_TYPE

| LENGTH | LOWER

| M | MAX | MIN | MESSAGE_LENGTH | MESSAGE_OCTET_LENGTH | MESSAGE_TEXT
| METHOD | MOD | MORE | MUMPS

| NAME | NULLABLE | NUMBER | NULLIF

98 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.2 <token> and <separator>

| OCTET_LENGTH | OPTIONS | OVERLAPS | OVERLAY | OVERRIDING

| PASCAL | PARAMETER_MODE | PARAMETER_NAME | PARAMETER_ORDINAL_POSITION
| PARAMETER_SPECIFIC_CATALOG | PARAMETER_SPECIFIC_NAME
| PARAMETER_SPECIFIC_SCHEMA | PLI | POSITION

| REPEATABLE | RETURNED_LENGTH | RETURNED_OCTET_LENGTH | RETURNED_SQLSTATE
| ROUTINE_CATALOG | ROUTINE_NAME | ROUTINE_SCHEMA | ROW_COUNT

| SCALE | SCHEMA_NAME | SECURITY | SELF | SENSITIVE | SERIALIZABLE | SERVER_NAME
| SIMPLE | SOURCE | SPECIFIC_NAME | SIMILAR | SUBLIST | SUBSTRING | SUM | STYLE
| SUBCLASS_ORIGIN | SYMMETRIC | SYSTEM

| TABLE_NAME | TRANSACTIONS_COMMITTED | TRANSACTIONS_ROLLED_BACK
| TRANSACTION_ACTIVE | TRANSFORM | TRANSFORMS | TRANSLATE | TRIGGER_CATALOG
| TRIGGER_SCHEMA | TRIGGER_NAME | TRIM | TYPE

| UNCOMMITTED | UNNAMED | UPPER | USER_DEFINED_TYPE_CATALOG
| USER_DEFINED_TYPE_NAME | USER_DEFINED_TYPE_SCHEMA

<reserved word> ::=
ABSOLUTE | ACTION | ADD | ADMIN | AFTER | AGGREGATE

| ALIAS | ALL | ALLOCATE | ALTER | AND | ANY | ARE | ARRAY | AS | ASC
| ASSERTION | AT | AUTHORIZATION

| BEFORE | BEGIN | BINARY | BIT | BLOB | BOOLEAN | BOTH | BREADTH | BY

| CALL | CASCADE | CASCADED | CASE | CAST | CATALOG | CHAR | CHARACTER
| CHECK | CLASS | CLOB | CLOSE | COLLATE | COLLATION | COLUMN | COMMIT
| COMPLETION | CONNECT | CONNECTION | CONSTRAINT | CONSTRAINTS
| CONSTRUCTOR | CONTINUE | CORRESPONDING | CREATE | CROSS | CUBE | CURRENT
| CURRENT_DATE | CURRENT_PATH | CURRENT_ROLE | CURRENT_TIME | CURRENT_TIMESTAMP
| CURRENT_USER | CURSOR | CYCLE

| DATA | DATE | DAY | DEALLOCATE | DEC | DECIMAL | DECLARE | DEFAULT
| DEFERRABLE | DEFERRED | DELETE | DEPTH | DEREF | DESC | DESCRIBE | DESCRIPTOR
| DESTROY | DESTRUCTOR | DETERMINISTIC | DICTIONARY | DIAGNOSTICS | DISCONNECT
| DISTINCT | DOMAIN | DOUBLE | DROP | DYNAMIC

| EACH | ELSE | END | END-EXEC | EQUALS | ESCAPE | EVERY | EXCEPT
| EXCEPTION | EXEC | EXECUTE | EXTERNAL

| FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM | FREE | FULL
| FUNCTION

| GENERAL | GET | GLOBAL | GO | GOTO | GRANT | GROUP | GROUPING

| HAVING | HOST | HOUR

| IDENTITY | IGNORE | IMMEDIATE | IN | INDICATOR | INITIALIZE | INITIALLY
| INNER | INOUT | INPUT | INSERT | INT | INTEGER | INTERSECT | INTERVAL
| INTO | IS | ISOLATION | ITERATE

| JOIN

| KEY

| LANGUAGE | LARGE | LAST | LATERAL | LEADING | LEFT | LESS | LEVEL | LIKE
| LIMIT
| LOCAL | LOCALTIME | LOCALTIMESTAMP | LOCATOR

Lexical elements 99

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.2 <token> and <separator>

| MAP | MATCH | MINUTE | MODIFIES | MODIFY | MODULE | MONTH

| NAMES | NATIONAL | NATURAL | NCHAR | NCLOB | NEW | NEXT | NO | NONE
| NOT | NULL | NUMERIC

| OBJECT | OF | OFF | OLD | ON | ONLY | OPEN | OPERATION | OPTION
| OR | ORDER | ORDINALITY | OUT | OUTER | OUTPUT

| PAD | PARAMETER | PARAMETERS | PARTIAL | PATH | POSTFIX | PRECISION | PREFIX
| PREORDER | PREPARE | PRESERVE | PRIMARY
| PRIOR | PRIVILEGES | PROCEDURE | PUBLIC

| READ | READS | REAL | RECURSIVE | REF | REFERENCES | REFERENCING | RELATIVE
| RESTRICT | RESULT | RETURN | RETURNS | REVOKE | RIGHT
| ROLE | ROLLBACK | ROLLUP | ROUTINE | ROW | ROWS

| SAVEPOINT | SCHEMA | SCROLL | SCOPE | SEARCH | SECOND | SECTION | SELECT
| SEQUENCE | SESSION | SESSION_USER | SET | SETS | SIZE | SMALLINT | SOME| SPACE
| SPECIFIC | SPECIFICTYPE | SQL | SQLEXCEPTION | SQLSTATE | SQLWARNING | START
| STATE | STATEMENT | STATIC | STRUCTURE | SYSTEM_USER

| TABLE | TEMPORARY | TERMINATE | THAN | THEN | TIME | TIMESTAMP
| TIMEZONE_HOUR | TIMEZONE_MINUTE | TO | TRAILING | TRANSACTION | TRANSLATION
| TREAT | TRIGGER | TRUE

| UNDER | UNION | UNIQUE | UNKNOWN
| UNNEST | UPDATE | USAGE | USER | USING

| VALUE | VALUES | VARCHAR | VARIABLE | VARYING | VIEW

| WHEN | WHENEVER | WHERE | WITH | WITHOUT | WORK | WRITE

| YEAR

| ZONE

NOTE 34 – The list of <reserved word>s is considerably longer than the analogous list of <key word>s
in ISO/IEC 9075:1992. To assist users of ISO/IEC 9075 avoid such words in a possible future revision, the
following list of potential <reserved word>s is provided. Readers must understand that there is no guarantee
that all of these words will, in fact, become <reserved word>s in any future revision; furthermore, it is almost
certain that additional words will be added to this list as any possible future revision emerges.

Assurance that a <regular identifier> will not become a <reserved word> in a possible future revision of
ISO/IEC 9075 can be obtained by including a <digit> or an <underscore> in the <regular identifier>, and
by taking care to avoid identifiers beginning with CURRENT_, SESSION_, SYSTEM_, or TIMEZONE_, or
ending in _LENGTH.

The words are:

No words are potentially reserved.

Syntax Rules

1) An <alphabetic character> is any character with the Unicode alphabetic property.
NOTE 35 – Characters with the ‘‘alphabetic’’ property include characters that are called ‘‘letters’’ and
characters that are called ‘‘syllables’’.

100 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.2 <token> and <separator>

2) An <initial alphabetic character> is an <alphabetic character> that does not have the Unicode
‘‘combining’’ property.

3) An <ideographic character> is a character with the Unicode ‘‘ideographic’’ property.

4) A <decimal digit character> is a character with the Unicode ‘‘decimaldigit’’ property.

5) An <identifier combining character> is a character with the Unicode ‘‘combining’’ property,
except for U+06DD, U+06DE, U+20DD, U+20DE, U+20DF, and U+20E0.
NOTE 36 – U+06DD is ‘‘Arabic End of Ayah’’, U+06DE is ‘‘Arabic Start of Rub El Hizb’’, U+20DD
is ‘‘Combining Enclosing Circle’’; U+20DE is ‘‘Combining Enclosing Square’’, U+20DF is ‘‘Combining
Enclosing Diamond’’, and U+20E0 is ‘‘Combining Enclosing Circle Backslash’’.

6) An <extender character> is any of U+00B7, U+02D0, U+02D1, U+0640, U+0E46, U+0EC6,
U+3005, U+3031 through U+3035 inclusive, U+309B through U+309E inclusive, U+30FC
through U+30FE inclusive, U+FF70, U+FF9E, and U+FF9F.
NOTE 37 – U+00B7 is ‘‘Middle Dot’’, U+02D0 is ‘‘Modifier Letter Triangular Colon’’, U+20D1 is
‘‘Modifier Letter Half Triangular Colon’’, U+0640 is ‘‘Arabic Tatweel’’, U+0E46 is ‘‘Thai Character
Maiyamok’’, U+0EC6 is ‘‘Lao Ko La’’, U+3005 is ‘‘Ideographic Iteration Mark’’, U+3031 through U+3035
inclusive are variations of Vertical Kana Repeat Marks, U+309B through U+309E inclusive are variations
of Combining Katakana-Hiragana Sound Marks and Hiragana Iteration Marks, U+30FC through U+30FE
inclusive are variations of Katakana-Hiragana Prolonged Sound Mark and Katakana Iteration Marks,
U+FF70 is ‘‘Halfwidtyh Katakana-Hiragana Prolonged Sound Mark’’, U+FF9E is ‘‘Halfwidth Katakana
Voiced Sound Mark’’, and U+FF9F is ‘‘Halfwidth Katakana Semi-voiced Sound Mark’’.

7) An <identifier ignorable character> is any of U+200C through U+200F inclusive, U+202A
through U+202E inclusive, U+206A through U+206F inclusive, and U+FEFF.
NOTE 38 – U+200C is ‘‘Zero Width Non-Joiner’’, U+200D is ‘‘Zero Width Joiner’’, U+200E is ‘‘Left-To-
Right Mark’’, U+200F is ‘‘Right-To-Left Mark’’, U+202A is ‘‘Left-To-Right Embedding’’, U+202B is ‘‘Right-
To-Left Embedding’’, U+202C is ‘‘Pop Directional Formatting’’, U+202D is ‘‘Left-To- Right Override’’,
U+202E is ‘‘Right-To-Left Override’’, U+206A is ‘‘Inhibit Symmetric Swapping’’, U+206B is ‘‘Activate
Symmetric Swapping’’, U+206C is ‘‘Inhibit Arabic Form Shaping’’, U+206D is ‘‘Activate Arabic Form
Shaping’’, U+206E is ‘‘National Digit Shapes’’, U+2006F is ‘‘Nominal Digit Shapes’’, and U+FEFF is
‘‘Zero-Width No-Break Space’’.

8) An <alternate underscore> is any of U+FE33, U+FE34, U+FE4D, U+FE4E, U+FE4F, and
U+FF3F.
NOTE 39 – U+FE33 is ‘‘Presentation Form for Vertical Low Line’’, U+FE34 is ‘‘Presentation Form for
Vertical Wavy Low Line’’, U+FE4D is ‘‘Dashed Low Line’’, U+FE4E is ‘‘Centreline Low Line’’, U+FE4F is
‘‘Wavy Low Line’’and U+FF3F is ‘‘Fullwidth Low Line’’.

9) A <connector character> is any of U+203F or U+2040.
NOTE 40 – U+203F is ‘‘Undertie’’ and U+2040 is ‘‘Character Tie’’.

10) <white space> is any consecutive sequence of characters each of which satisfies the definition of
white space found in Subclause 3.1.5, ‘‘Definitions provided in Part 2’’.

11) <newline> is the implementation-defined end-of-line indicator.
NOTE 41 – <newline> is typically represented by U+000A (‘‘Line Feed’’) and/or U+000D (‘‘Carriage
Return’’); however, this representation is not required by ISO/IEC 9075.

12) With the exception of the <space> character explicitly contained in <timestamp string> and <in-
terval string> and the permitted <separator>s in <bit string literal>s and <hex string literal>s,
a <token>, other than a <character string literal>, a <national character string literal>, or a
<delimited identifier>, shall not contain a <space> character or other <separator>.

Lexical elements 101

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.2 <token> and <separator>

13) A <nondoublequote character> is one of:

a) Any <SQL language character> other than a <double quote>;

b) Any character other than a <double quote> in the character repertoire identified by the
<module character set specification>; or

c) Any character other than a <double quote> in the character repertoire identified by the
<character set specification>.

14) Any <token> may be followed by a <separator>. A <nondelimiter token> shall be followed by a
<delimiter token> or a <separator>.
NOTE 42 – If the Format does not allow a <nondelimiter token> to be followed by a <delimiter token>,
then that <nondelimiter token> shall be followed by a <separator>.

15) There shall be no <space> nor <newline> separating the <minus sign>s of a <simple comment
introducer>.

16) There shall be no <separator> separating any two <digit>s or separating a <digit> and <multi-
plier> of a <large object length token>.

17) Within a <bracketed comment contents>, any <solidus> immediately followed by an <aster-
isk> without any intervening <separator> shall be considered to be the <bracketed comment
introducer> of a <separator> that is a <bracketed comment>.
NOTE 43 – Conforming programs should not place <simple comment> within a <bracketed comment>
because if such a <simple comment> contains the sequence of characters ‘‘*/’’ without a preceding ‘‘/*’’ in
the same <simple comment>, it will prematurely terminate the containing <bracketed comment>.

18) SQL text containing one or more instances of <comment> is equivalent to the same SQL text
with the <comment> replaced with <newline>.

19) In a <regular identifier>, the number of <identifier part>s shall be less than 128.

20) The <delimited identifier body> of a <delimited identifier> shall not comprise more than 128
<delimited identifier part>s.

21) For every <identifier body> IB there is exactly one corresponding case-normal form CNF. CNF
is an <identifier body> derived from IB as follows.

Let n be the number of characters in IB. For i ranging from 1 (one) to n, the i-th character Mi of
IB is translated into the corresponding character or characters of CNF as follows.

Case:

a) If Mi is a lower case character or a title case character for which an equivalent upper case
sequence U is defined by Unicode, then let j be the number of characters in U; the next j
characters of CNF are U.

b) Otherwise, the next character of CNF is Mi.

22) The case-normal form of the <identifier body> of a <regular identifier> is used for purposes such
as and including determination of identifier equivalence, representation in the Definition and
Information Schemas, and representation in diagnostics areas.
NOTE 44 – Any lower-case letters for which there are no upper-case equivalents are left in their
lower-case form.

102 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.2 <token> and <separator>

23) The <identifier body> of a <regular identifier> is equivalent to an <identifier body> in which
every letter that is a lower-case letter is replaced by the equivalent upper-case letter or letters.
This treatment includes determination of equivalence, representation in the Information and
Definition Schemas, representation in the diagnostics area, and similar uses.

24) The <identifier body> of a <regular identifier> (with every letter that is a lower-case letter
replaced by the corresponding upper-case letter or letters), treated as the repetition of a <char-
acter string literal> that specifies a <character set specification> of SQL_IDENTIFIER, shall
not be equal, according to the comparison rules in Subclause 8.2, ‘‘<comparison predicate>’’, to
any <reserved word> (with every letter that is a lower-case letter replaced by the correspond-
ing upper-case letter or letters), treated as the repetition of a <character string literal> that
specifies a <character set specification> of SQL_IDENTIFIER.
NOTE 45 – Assurance that a <regular identifier> will not become a <reserved word> in a possible
future revision of ISO/IEC 9075 can be obtained by including a <digit> or an <underscore> in the
<regular identifier>, and by taking care to avoid identifiers beginning with CURRENT_, SESSION_,
SYSTEM_, or TIMEZONE_, or ending in _LENGTH.

25) Two <regular identifier>s are equivalent if their <identifier body>s, considered as the rep-
etition of a <character string literal> that specifies a <character set specification> of SQL_
IDENTIFIER, compare equally according to the comparison rules in Subclause 8.2, ‘‘<compari-
son predicate>’’.

26) A <regular identifier> and a <delimited identifier> are equivalent if the <identifier body> of the
<regular identifier> (with every letter that is a lower-case letter replaced by the corresponding
upper-case letter or letters) and the <delimited identifier body> of the <delimited identifier>
(with all occurrences of <quote> replaced by <quote symbol> and all occurrences of <doublequote
symbol> replaced by <double quote>), considered as the repetition of a <character string literal>
that specifies a <character set specification> of SQL_IDENTIFIER and an implementation-
defined collation that is sensitive to case, compare equally according to the comparison rules in
Subclause 8.2, ‘‘<comparison predicate>’’.

27) Two <delimited identifier>s are equivalent if their <delimited identifier body>s, considered as
the repetition of a <character string literal> that specifies a <character set specification> of
SQL_IDENTIFIER and an implementation-defined collation that is sensitive to case, compare
equally according to the comparison rules in Subclause 8.2, ‘‘<comparison predicate>’’.

28) For the purposes of identifying <key word>s, any <simple Latin lower case letter> contained in
a candidate <key word> shall be effectively treated as the corresponding <simple Latin upper
case letter>.

Access Rules

None.

General Rules

None.

Lexical elements 103

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.2 <token> and <separator>

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, in a <regular identifier>, the number of <underscore>s
plus the number of <identifier part>s shall be less than 18.

2) Without Feature F391, ‘‘Long identifiers’’, the <delimited identifier body> of a <delimited identi-
fier> shall not comprise more than 18 <delimited identifier part>s.
NOTE 46 – Not every character set supported by a conforming SQL-implementation necessarily con-
tains every character associated with <identifier start> and <identifier part> that is identified in the
Syntax Rules of this Subclause. No conforming SQL-implementation shall be required to support in
<identifier start> or <identifier part> any character identified in the Syntax Rules of this Subclause
unless that character belongs to the character set in use for an SQL-client module or in SQL-data.

3) Without Feature T351, ‘‘Bracketed comments’’, conforming SQL language shall not contain a
<bracketed comment>.

104 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.3 <literal>

5.3 <literal>

Function
Specify a non-null value.

Format

<literal> ::=
<signed numeric literal>

| <general literal>

<unsigned literal> ::=
<unsigned numeric literal>

| <general literal>

<general literal> ::=
<character string literal>

| <national character string literal>
| <bit string literal>
| <hex string literal>
| <binary string literal>
| <datetime literal>
| <interval literal>
| <boolean literal>

<character string literal> ::=
[<introducer><character set specification>]
<quote> [<character representation>...] <quote>
[{ <separator> <quote> [<character representation>...] <quote> }...]

<introducer> ::= <underscore>

<character representation> ::=
<nonquote character>

| <quote symbol>

<nonquote character> ::= !! See the Syntax Rules.

<quote symbol> ::= <quote><quote>

<national character string literal> ::=
N <quote> [<character representation>...] <quote>
[{ <separator> <quote> [<character representation>...] <quote> }...]

<bit string literal> ::=
B <quote> [<bit>...] <quote>
[{ <separator> <quote> [<bit>...] <quote> }...]

<hex string literal> ::=
X <quote> [<hexit>...] <quote>
[{ <separator> <quote> [<hexit>...] <quote> }...]

<binary string literal> ::=
X <quote> [{ <hexit> <hexit> }...] <quote>
[{ <separator> <quote> [{ <hexit> <hexit> }...] <quote> }...]

<bit> ::= 0 | 1

Lexical elements 105

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.3 <literal>

<hexit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f

<signed numeric literal> ::=
[<sign>] <unsigned numeric literal>

<unsigned numeric literal> ::=
<exact numeric literal>

| <approximate numeric literal>

<exact numeric literal> ::=
<unsigned integer> [<period> [<unsigned integer>]]

| <period> <unsigned integer>

<sign> ::= <plus sign> | <minus sign>

<approximate numeric literal> ::= <mantissa> E <exponent>

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [<sign>] <unsigned integer>

<unsigned integer> ::= <digit>...

<datetime literal> ::=
<date literal>

| <time literal>
| <timestamp literal>

<date literal> ::=
DATE <date string>

<time literal> ::=
TIME <time string>

<timestamp literal> ::=
TIMESTAMP <timestamp string>

<date string> ::=
<quote> <unquoted date string> <quote>

<time string> ::=
<quote> <unquoted time string> <quote>

<timestamp string> ::=
<quote> <unquoted timestamp string> <quote>

<time zone interval> ::=
<sign> <hours value> <colon> <minutes value>

<date value> ::=
<years value> <minus sign> <months value> <minus sign> <days value>

<time value> ::=
<hours value> <colon> <minutes value> <colon> <seconds value>

<interval literal> ::=

INTERVAL [<sign>] <interval string> <interval qualifier>

106 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.3 <literal>

<interval string> ::=
<quote> <unquoted interval string> <quote>

<unquoted date string> ::= <date value>

<unquoted time string> ::=
<time value> [<time zone interval>]

<unquoted timestamp string> ::=
<unquoted date string> <space> <unquoted time string>

<unquoted interval string> ::=
[<sign>] { <year-month literal> | <day-time literal> }

<year-month literal> ::=
<years value>

| [<years value> <minus sign>] <months value>

<day-time literal> ::=
<day-time interval>

| <time interval>

<day-time interval> ::=
<days value>
[<space> <hours value> [<colon> <minutes value> [<colon> <seconds value>]]]

<time interval> ::=
<hours value> [<colon> <minutes value> [<colon> <seconds value>]]

| <minutes value> [<colon> <seconds value>]
| <seconds value>

<years value> ::= <datetime value>

<months value> ::= <datetime value>

<days value> ::= <datetime value>

<hours value> ::= <datetime value>

<minutes value> ::= <datetime value>

<seconds value> ::=
<seconds integer value> [<period> [<seconds fraction>]]

<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<datetime value> ::= <unsigned integer>

<boolean literal> ::=
TRUE

| FALSE
| UNKNOWN

Lexical elements 107

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.3 <literal>

Syntax Rules

1) In a <character string literal> or <national character string literal>, the sequence:

<quote> <character representation>... <quote>
<separator> <quote> <character representation>... <quote>

is equivalent to the sequence

<quote> <character representation>... <character representation>... <quote>
NOTE 47 – The <character representation>s in the equivalent sequence are in the same sequence and
relative sequence as in the original <character string literal>.

2) In a <bit string literal>, the sequence

<quote> <bit>... <quote> <separator> <quote> <bit>... <quote>

is equivalent to the sequence

<quote> <bit>... <bit>... <quote>
NOTE 48 – The <bit>s in the equivalent sequence are in the same sequence and relative sequence as in
the original <bit string literal>.

3) In a <hex string literal>, the sequence

<quote> <hexit>... <quote> <separator> <quote> <hexit>... <quote>

is equivalent to the sequence

<quote> <hexit>... <hexit>... <quote>
NOTE 49 – The <hexit>s in the equivalent sequence are in the same sequence and relative sequence as
in the original <hex string literal>.

4) In a <binary string literal>, the sequence

<quote> { <hexit> <hexit> }... <quote> <separator> <quote> { <hexit> <hexit> }... <quote>

is equivalent to the sequence

<quote> { <hexit> <hexit> }... { <hexit> <hexit> }... <quote>
NOTE 50 – The <hexits> in the equivalent sequence are in the same sequence and relative sequence as
in the original <binary string literal>.

5) In a <character string literal>, <national character string literal>, <bit string literal>, <binary
string literal>, or <hex string literal>, a <separator> shall contain a <newline>.

6) A <national character string literal> is equivalent to a <character string literal> with the ‘‘N’’
replaced by ‘‘<introducer><character set specification>’’, where ‘‘<character set specification>’’ is
an implementation-defined <character set name>.

7) A <nonquote character> is one of:

a) Any <SQL language character> other than a <quote>;

b) Any character other than a <quote> in the character repertoire identified by the <module
character set specification>; or

c) Any character other than a <quote> in the character repertoire identified by the <character
set specification> or implied by ‘‘N’’.

108 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.3 <literal>

8) Case:

a) If a <character set specification> is not specified in a <character string literal>, then the
set of characters contained in the <character string literal> shall be wholly contained in the
character set of the SQL-client module that contains the <character string literal>.

b) Otherwise, there shall be no <separator> between the <introducer> and the <character set
specification>, and the set of characters contained in the <character string literal> shall be
wholly contained in the character set specified by the <character set specification>.

9) The declared type of a <character string literal> is fixed-length character string. The length of
a <character string literal> is the number of <character representation>s that it contains. Each
<quote symbol> contained in <character string literal> represents a single <quote> in both the
value and the length of the <character string literal>. The two <quote>s contained in a <quote
symbol> shall not be separated by any <separator>.
NOTE 51 – <character string literal>s are allowed to be zero-length strings (i.e., to contain no char-
acters) even though it is not permitted to declare a <data type> that is CHARACTER with <length> 0
(zero).

10) The character set of a <character string literal> is

Case:

a) If the <character string literal> specifies a <character set specification>, then the character
set specified by that <character set specification>.

b) Otherwise, the character set of the SQL-client module that contains the <character string
literal>.

11) The declared type of a <bit string literal> is fixed-length bit string. The length of a <bit string
literal> is the number of bits that it contains.

12) The declared type of a <hex string literal> is fixed-length bit string. Each <hexit> appearing
in the literal is equivalent to a quartet of bits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
are interpreted as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, and 1111, respectively. The <hexit>s a, b, c, d, e, and f have respectively the same
values as the <hexit>s A, B, C, D, E, and F.

13) The declared type of a <binary string literal> is binary string. Each <hexit> appearing in the
literal is equivalent to a quartet of bits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are
interpreted as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, and 1111, respectively. The <hexit>s a, b, c, d, e, and f have respectively the same
values as the <hexit>s A, B, C, D, E, and F.

14) An <exact numeric literal> without a <period> has an implied <period> following the last
<digit>.

15) The declared type of an <exact numeric literal> is exact numeric. The precision of an <exact
numeric literal> is the number of <digit>s that it contains. The scale of an <exact numeric
literal> is the number of <digit>s to the right of the <period>.

16) The declared type of an <approximate numeric literal> is approximate numeric. The precision
of an <approximate numeric literal> is the precision of its <mantissa>.

17) The declared type of a <date literal> is DATE.

Lexical elements 109

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.3 <literal>

18) The declared type of a <time literal> that does not specify <time zone interval> is TIME(P)
WITHOUT TIME ZONE, where P is the number of digits in <seconds fraction>, if specified, and
0 (zero) otherwise. The declared type of a <time literal> that specifies <time zone interval> is
TIME(P) WITH TIME ZONE, where P is the number of digits in <seconds fraction>, if specified,
and 0 (zero) otherwise.

19) The declared type of a <timestamp literal> that does not specify <time zone interval> is
TIMESTAMP(P) WITHOUT TIME ZONE, where P is the number of digits in <seconds frac-
tion>, if specified, and 0 (zero) otherwise. The declared type of a <timestamp literal> that
specifies <time zone interval> is TIMESTAMP(P) WITH TIME ZONE, where P is the number of
digits in <seconds fraction>, if specified, and 0 (zero) otherwise.

20) If <time zone interval> is not specified, then the effective <time zone interval> of the datetime
data type is the current default time zone displacement for the SQL-session.

21) Let datetime component be either <years value>, <months value>, <days value>, <hours value>,
<minutes value>, or <seconds value>.

22) Let N be the number of <primary datetime field>s in the precision of the <interval literal>, as
specified by <interval qualifier>.

The <interval literal> being defined shall contain N datetime components.

The declared type of <interval literal> specified with an <interval qualifier> is INTERVAL with
the <interval qualifier>.

Each datetime component shall have the precision specified by the <interval qualifier>.

23) Within a <datetime literal>, the <years value> shall contain four digits. The <seconds integer
value> and other datetime components, with the exception of <seconds fraction>, shall each
contain two digits.

24) Within the definition of a <datetime literal>, the <datetime value>s are constrained by the
natural rules for dates and times according to the Gregorian calendar.

25) Within the definition of an <interval literal>, the <datetime value>s are constrained by the
natural rules for intervals according to the Gregorian calendar.

26) Within the definition of a <year-month literal>, the <interval qualifier> shall not specify DAY,
HOUR, MINUTE, or SECOND. Within the definition of a <day-time literal>, the <interval
qualifier> shall not specify YEAR or MONTH.

27) Within the definition of a <datetime literal>, the value of the <time zone interval> shall be in
the range �12:59 to +13:00.

Access Rules

None.

General Rules

1) The value of a <character string literal> is the sequence of <character representation>s that it
contains.

2) The value of a <bit string literal> or a <hex string literal> is the sequence of bits that it con-
tains.

110 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.3 <literal>

3) The numeric value of an <exact numeric literal> is determined by the normal mathematical
interpretation of positional decimal notation.

4) The numeric value of an <approximate numeric literal> is approximately the product of the
exact numeric value represented by the <mantissa> with the number obtained by raising the
number 10 to the power of the exact numeric value represented by the <exponent>.

5) The <sign> in a <signed numeric literal> or an <interval literal> is a monadic arithmetic
operator. The monadic arithmetic operators + and � specify monadic plus and monadic minus,
respectively. If neither monadic plus nor monadic minus are specified in a <signed numeric
literal> or an <interval literal>, or if monadic plus is specified, then the literal is positive. If
monadic minus is specified in a <signed numeric literal> or <interval literal>, then the literal is
negative. If <sign is specified in both possible locations in an <interval literal>, then the sign of
the literal is determined by normal mathematical interpretation of multiple sign operators.

6) Let V be the integer value of the <unsigned integer> contained in <seconds fraction> and let
N be the number of digits in the <seconds fraction> respectively. The resultant value of the
<seconds fraction> is effectively determined as follows:

Case:

a) If <seconds fraction> is specified within the definition of a <datetime literal>, then the
effective value of the <seconds fraction> is V � 10�N seconds.

b) If <seconds fraction> is specified within the definition of an <interval literal>, then let M be
the <interval fractional seconds precision> specified in the <interval qualifier>.

Case:

i) If N < M, then let V1 be V �10
M�N ; the effective value of the <seconds fraction> is

V 1 � 10�M seconds.

ii) If N > M, then let V2 be the integer part of the quotient of V=10N�M ; the effective value
of the <seconds fraction> is V 2 � 10�M seconds.

iii) Otherwise, the effective value of the <seconds fraction> is V � 10�M seconds.

7) The i-th datetime component in a <datetime literal> or <interval literal> assigns the value
of the datetime component to the i-th <primary datetime field> in the <datetime literal> or
<interval literal>.

8) If <time zone interval> is specified, then the time and timestamp values in <time literal> and
<timestamp literal> represent a datetime in the specified time zone.

9) If <date value is specified, then it is interpreted as a date in the Gregorian calendar. If <time
value> is specified, then it is interpreted as a time of day. Let DV be the value of the <datetime
literal>, disregarding <time zone interval>.

Case:

a) If <time zone interval> is specified, then let TZI be the value of the interval denoted by
<time zone interval>. The value of the <datetime literal> is DV � TZI, with time zone
displacement TZI.

Lexical elements 111

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.3 <literal>

b) Otherwise, the value of the <datetime literal> is DV.
NOTE 52 – If <time zone interval> is specified, then a <time literal> or <timestamp literal> is inter-
preted as local time with the specified time zone displacement. However, it is effectively converted to
UTC while retaining the original time zone displacement.

If <time zone interval> is not specified, then no assumption is made about time zone displacement.
However, should a time zone displacement be required during subsequent processing, the default SQL-
session time zone displacement will be applied at that time.

10) The truth value of a <boolean literal> is true if TRUE is specified, is false if FALSE is specified,
and is unknown if UNKNOWN is specified.
NOTE 53 – The null value of the boolean data type is equivalent to the unknown truth value (see
Subclause 4.6, ‘‘Boolean types’’).

Conformance Rules

1) Without Feature T031, ‘‘BOOLEAN data type’’, a <general literal> shall not be a <boolean
literal>.

2) Without Feature F555, ‘‘Enhanced seconds precision’’, an <unsigned integer> that is a <seconds
fraction> that is contained in a <timestamp literal> shall not contain more than 6 <digit>s. A
<time literal> shall not contain a <seconds fraction>.

3) Without Feature F511, ‘‘BIT data type’’, a <general literal> shall not be a <bit string literal> or
a <hex string literal>.

4) Without Feature F421, ‘‘National character’’, a <general literal> shall not be a <national charac-
ter string literal>.

5) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <general literal> shall not be an
<interval literal>.

6) Without Feature F271, ‘‘Compound character literals’’, conforming SQL language shall con-
tain exactly one repetition of <character representation> (that is, it shall contain exactly one
sequence of ‘‘<quote> <character representation>... <quote>’’).

7) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’, a
<character string literal> shall not specify a <character set specification>.

8) Without Feature F411, ‘‘Time zone specification’’, conforming Core SQL shall not specify a <time
zone interval>.

9) Without Feature T041, ‘‘Basic LOB data type support’’, conforming Core SQL language shall not
contain any <binary string literal>.

112 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.4 Names and identifiers

5.4 Names and identifiers

Function
Specify names.

Format

<identifier> ::=
<actual identifier>

<actual identifier> ::=
<regular identifier>

| <delimited identifier>

<SQL language identifier> ::=
<SQL language identifier start>
[{ <underscore> | <SQL language identifier part> }...]

<SQL language identifier start> ::= <simple Latin letter>

<SQL language identifier part> ::=
<simple Latin letter>

| <digit>

<authorization identifier> ::=
<role name>

| <user identifier>

<table name> ::=
<local or schema qualified name>

<domain name> ::= <schema qualified name>

<schema name> ::=
[<catalog name> <period>] <unqualified schema name>

<unqualified schema name> ::= <identifier>

<catalog name> ::= <identifier>

<schema qualified name> ::=
[<schema name> <period>] <qualified identifier>

<local or schema qualified name> ::=
[<local or schema qualifier> <period>] <qualified identifier>

<local or schema qualifier> ::=
<schema name>

| MODULE

<qualified identifier> ::= <identifier>

<column name> ::=
<identifier>

<correlation name> ::= <identifier>

Lexical elements 113

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.4 Names and identifiers

<query name> ::= <identifier>

<SQL-client module name> ::= <identifier>

<procedure name> ::= <identifier>

<schema qualified routine name> ::= <schema qualified name>

<method name> ::= <identifier>

<specific name> ::= <schema qualified name>

<cursor name> ::= <local qualified name>

<local qualified name> ::=
[<local qualifier> <period>] <qualified identifier>

<local qualifier> ::= MODULE

<host parameter name> ::= <colon> <identifier>

<SQL parameter name> ::= <identifier>

<constraint name> ::= <schema qualified name>

<external routine name> ::=
<identifier>

| <character string literal>

<trigger name> ::= <schema qualified name>

<collation name> ::= <schema qualified name>

<character set name> ::= [<schema name> <period>] <SQL language identifier>

<translation name> ::= <schema qualified name>

<form-of-use conversion name> ::= <schema qualified name>

<user-defined type name> ::= <schema qualified type name>

<schema qualified type name> ::=
[<schema name> <period>] <qualified identifier>

<attribute name> ::=
<identifier>

<field name> ::= <identifier>

<savepoint name> ::= <identifier>

<role name> ::= <identifier>

<user identifier> ::= <identifier>

<connection name> ::= <simple value specification>

<SQL-server name> ::= <simple value specification>

114 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.4 Names and identifiers

<connection user name> ::= <simple value specification>

Syntax Rules

1) In an <SQL language identifier>, the number of <SQL language identifier part>s shall be less
than 128.

2) An <SQL language identifier> is equivalent to an <SQL language identifier> in which every
letter that is a lower-case letter is replaced by the equivalent upper-case letter or letters.
This treatment includes determination of equivalence, representation in the Information and
Definition Schemas, representation in the diagnostics area, and similar uses.

3) An <SQL language identifier> (with every letter that is a lower-case letter replaced by the cor-
responding upper-case letter or letters), treated as the repetition of a <character string literal>
that specifies a <character set specification> of SQL_IDENTIFIER, shall not be equal, according
to the comparison rules in Subclause 8.2, ‘‘<comparison predicate>’’, to any <reserved word>
(with every letter that is a lower-case letter replaced by the corresponding upper-case letter or
letters), treated as the repetition of a <character string literal> that specifies a <character set
specification> of SQL_IDENTIFIER.
NOTE 54 – It is the intention that no <key word> specified in ISO/IEC 9075 or revisions thereto shall
end with an <underscore>.

4) If a <local or schema qualified name> does not contain a <local or schema qualifier>, then

Case:

a) If the <local or schema qualified name> is contained in a <schema definition>, then the
<schema name> that is specified or implicit in the <schema definition> is implicit.

b) Otherwise, the <schema name> that is specified or implicit for the SQL-client module is
implicit.

5) Let TN be a <table name> with a <qualified identifier> QI and a <local or schema qualifier>
LSQ.

Case:

a) If LSQ is ‘‘MODULE’’, then TN shall be contained in an SQL-client module M and the
<module contents> of M shall contain a <temporary table declaration> TT whose <table
name> has a <qualified identifier> equal to QI.

b) Otherwise, LSQ shall be a <schema name> that identifies a schema that contains a <table
definition> or <view definition> whose <table name> has a <qualified identifier> equal to
QI.

6) If a <cursor name> CN with a <qualified identifier> QI does not contain a <local qualifier>, then
the <local qualifier> MODULE is implicit.

7) Let CN be a <cursor name> with a <qualified identifier> QI and a <local qualifier> LQ. LQ shall
be ‘‘MODULE’’ and CN shall be contained in an SQL-client module whose <module contents>
contain a <declare cursor> whose <cursor name> is CN.

8) Case:

a) If <user-defined type name> UDTN with a <qualified identifier> QI is simply contained in
<user-defined type>, then

Lexical elements 115

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.4 Names and identifiers

Case:

i) If UDTN contains a <schema name> SN, then the schema identified by SN shall contain
the descriptor of a user-defined type UDT such that the <qualified identifier> of UDT is
equivalent to QI. UDT is the user-defined type identified by UDTN.

ii) Otherwise:

1) Case:

A) If UDTN is contained in a <schema definition>, then let DP be the SQL-path of
that <schema definition>.

B) Otherwise, let DP be the SQL-path of the <SQL-client module definition> that
contains UDTN.

2) Let N be the number of <schema name>s in DP. Let Si, 1 (one) � i � N, be the i-th
<schema name> in DP.

3) Let the set of subject types be the set containing every user-defined type T in the
schema identified by some Si, 1 (one) � i � N, such that the <qualified identifier> of
T is equivalent to QI. There shall be at least one type in the set of subject types.

4) Let UDT be the user-defined type contained in the set of subject types such that
there is no other type UDT2 for which the <schema name> of the schema that
includes the user-defined type descriptor of UDT2 precedes in DP the <schema
name> identifying the schema that includes the user-defined type descriptor of UDT.
UDTN identifies UDT.

5) The implicit <schema name> of UDTN is the <schema name> of the schema that
includes the user-defined type descriptor of UDT.

b) Otherwise,

Case:

i) If UDTN is contained in a <schema definition>, then the implicit <schema name> of
UDTN is the <schema name> that is specified or implicit in <schema definition>.

ii) Otherwise, the implicit <schema name> of UDTN is the <schema name> that is specified
or implicit in <SQL-client module definition>.

9) Two <schema qualified type name>s are equivalent if any only if they have equivalent <qualified
identifier>s and equivalent <schema name>s, regardless of whether the <schema name>s are
implicit or explicit.

10) No <unqualified schema name> shall specify DEFINITION_SCHEMA.

11) If a <schema qualified name> does not contain a <schema name>, then

Case:

a) If the <schema qualified name> is contained in a <schema definition>, then the <schema
name> that is specified or implicit in the <schema definition> is implicit.

b) Otherwise, the <schema name> that is specified or implicit for the <SQL-client module
definition> is implicit.

116 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.4 Names and identifiers

12) If a <schema name> does not contain a <catalog name>, then

Case:

a) If the <unqualified schema name> is contained in a <module authorization clause>, then an
implementation-defined <catalog name> is implicit.

b) If the <unqualified schema name> is contained in a <schema definition> other than in a
<schema name clause>, then the <catalog name> that is specified or implicit in the <schema
name clause> is implicit.

c) If the <unqualified schema name> is contained in a <schema name clause>, then

Case:

i) If the <schema name clause> is contained in an SQL-client module, then the explicit or
implicit <catalog name> contained in the <module authorization clause> is implicit.

ii) Otherwise, an implementation-defined <catalog name> is implicit.

d) Otherwise, the explicit or implicit <catalog name> contained in the <module authorization
clause> is implicit.

13) Two <schema qualified name>s are equivalent if and only if they have the same <qualified
identifier> and the same <schema name>, regardless of whether the <schema name>s are
implicit or explicit.

14) Two <character set name>s are equivalent if and only if they have the same <SQL language
identifier> and the same <schema name>, regardless of whether the <schema name>s are
implicit or explicit.

15) Two <schema name>s are equivalent if and only if they have the same <unqualified schema
name> and the same <catalog name>, regardless of whether the <catalog name>s are implicit
or explicit.

16) An <identifier> that is a <correlation name> is associated with a table within a particular scope.
The scope of a <correlation name> is either a <select statement: single row>, <subquery>, or
<query specification> (see Subclause 7.6, ‘‘<table reference>’’), or is a <trigger definition> (see
Subclause 11.38, ‘‘<trigger definition>’’). Scopes may be nested. In different scopes, the same
<correlation name> may be associated with different tables or with the same table.

17) No <authorization identifier> shall specify ‘‘PUBLIC’’.

18) Those <identifier>s that are valid <authorization identifier>s are implementation-defined.

19) Those <identifier>s that are valid <catalog name>s are implementation-defined.

20) If a <character set name> does not specify a <schema name>, then INFORMATION_SCHEMA
is implicit.

21) If a <collation name> does not specify a <schema name>, then INFORMATION_SCHEMA is
implicit.

22) If a <translation name> does not specify a <schema name>, then INFORMATION_SCHEMA is
implicit.

Lexical elements 117

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.4 Names and identifiers

23) The <data type> of <SQL-server name>, <connection name>, and <connection user name> shall
be character string with an implementation-defined character set and shall have an octet length
of 128 characters or less.

24) If a <form-of-use conversion name> does not specify a <schema name>, then INFORMATION_
SCHEMA is implicit; otherwise, INFORMATION_SCHEMA shall be specified.

Access Rules

None.

General Rules

1) A <table name> identifies a table.

2) Within its scope, a <correlation name> identifies a table.

3) Within its scope, a <query name> identifies the table defined or returned by some associated
<query expression body>.

4) A <column name> identifies a column.

5) A <domain name> identifies a domain.

6) An <authorization identifier> identifies a set of privileges.

7) An <SQL-client module name> identifies an SQL-client module.

8) A <schema qualified routine name> identifies an SQL-invoked routine.

9) A <method name> identifies an SQL-invoked method M whose descriptor is included in the
schema that includes the descriptor of the user-defined type that is the type of M.

10) A <specific name> identifies an SQL-invoked routine.

11) A <cursor name> identifies a cursor.

12) A <host parameter name> identifies a host parameter.

13) An <SQL parameter name> identifies an SQL parameter.

14) An <external routine name> identifies an external routine.

15) A <trigger name> identifies a trigger.

16) A <constraint name> identifies a table constraint, a domain constraint, or an assertion.

17) A <catalog name> identifies a catalog.

18) A <schema name> identifies a schema.

19) A <collation name> identifies a collating sequence.

20) A <character set name> identifies a character set.

21) A <translation name> identifies a character translation.

118 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
5.4 Names and identifiers

22) A <form-of-use conversion name> identifies a form-of-use conversion. All <form-of-use conver-
sion name>s are implementation-defined.

23) A <connection name> identifies an SQL-connection.

24) A <user-defined type name> identifies a user-defined type.

25) An <attribute name> identifies an attribute of a structured type.

26) A <savepoint name> identifies a savepoint. The scope of a <savepoint name> is the SQL-
transaction in which it was defined.

27) A <field name> identifies a field.

28) A <role name> identifies a role.

29) A <user identifier> identifies a user.

30) If the <form-of-use conversion name> does not contain an explicit a <schema name>, then
INFORMATION_SCHEMA is implicit; otherwise, INFORMATION_SCHEMA shall be specified.

Conformance Rules

1) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall not contain any <savepoint
name>.

2) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any <role
name>.

3) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, conforming SQL
language shall not contain any <query name>.

4) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not contain any
<attribute name>.

5) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any <field
name>.

6) Without Feature F651, ‘‘Catalog name qualifiers’’, conforming SQL language shall not contain
any explicit <catalog name>.

7) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not contain
any explicit <connection name>.

8) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any explicit <collation name>, <translation name>, or <form-of-use conversion name>.

9) Without Feature F821, ‘‘Local table references’’, conforming SQL language shall not specify
MODULE in a <local or schema qualifier> or <local qualified name>.

10) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain any
<domain name>.

11) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall not contain
any <constraint name>.

Lexical elements 119

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
5.4 Names and identifiers

12) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’,
conforming SQL language shall not contain any <character set name>.

13) Without Feature T601, ‘‘Local cursor references’’, a <cursor name> shall not specify <local
qualifier>.

120 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

6 Scalar expressions

6.1 <data type>

Function
Specify a data type.

Format

<data type> ::=
<predefined type>

| <row type>
| <user-defined type>
| <reference type>
| <collection type>

<predefined type> ::=
<character string type> [CHARACTER SET <character set specification>]

| <national character string type>
| <binary large object string type>
| <bit string type>
| <numeric type>
| <boolean type>
| <datetime type>
| <interval type>

<character string type> ::=
CHARACTER [<left paren> <length> <right paren>]

| CHAR [<left paren> <length> <right paren>]
| CHARACTER VARYING <left paren> <length> <right paren>
| CHAR VARYING <left paren> <length> <right paren>
| VARCHAR <left paren> <length> <right paren>
| CHARACTER LARGE OBJECT [<left paren> <large object length> <right paren>]
| CHAR LARGE OBJECT [<left paren> <large object length> <right paren>]
| CLOB [<left paren> <large object length> <right paren>]

<national character string type> ::=
NATIONAL CHARACTER [<left paren> <length> <right paren>]

| NATIONAL CHAR [<left paren> <length> <right paren>]
| NCHAR [<left paren> <length> <right paren>]
| NATIONAL CHARACTER VARYING <left paren> <length> <right paren>
| NATIONAL CHAR VARYING <left paren> <length> <right paren>
| NCHAR VARYING <left paren> <length> <right paren>
| NATIONAL CHARACTER LARGE OBJECT [<left paren> <large object length> <right paren>]

| NCHAR LARGE OBJECT [<left paren> <large object length> <right paren>]
| NCLOB [<left paren> <large object length> <right paren>]

<binary large object string type> ::=
BINARY LARGE OBJECT [<left paren> <large object length> <right paren>]

| BLOB [<left paren> <large object length> <right paren>]

<bit string type> ::=
BIT [<left paren> <length> <right paren>]

Scalar expressions 121

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.1 <data type>

| BIT VARYING <left paren> <length> <right paren>

<numeric type> ::=
<exact numeric type>

| <approximate numeric type>

<exact numeric type> ::=
NUMERIC [<left paren> <precision> [<comma> <scale>] <right paren>]

| DECIMAL [<left paren> <precision> [<comma> <scale>] <right paren>]
| DEC [<left paren> <precision> [<comma> <scale>] <right paren>]
| INTEGER
| INT
| SMALLINT

<approximate numeric type> ::=
FLOAT [<left paren> <precision> <right paren>]

| REAL
| DOUBLE PRECISION

<length> ::= <unsigned integer>

<large object length> ::=
<unsigned integer> [<multiplier>]

| <large object length token>

<precision> ::= <unsigned integer>

<scale> ::= <unsigned integer>

<boolean type> ::= BOOLEAN

<datetime type> ::=
DATE

| TIME [<left paren> <time precision> <right paren>]
[<with or without time zone>]

| TIMESTAMP [<left paren> <timestamp precision> <right paren>]
[<with or without time zone>]

<with or without time zone> ::=
WITH TIME ZONE

| WITHOUT TIME ZONE

<time precision> ::= <time fractional seconds precision>

<timestamp precision> ::= <time fractional seconds precision>

<time fractional seconds precision> ::= <unsigned integer>

<interval type> ::= INTERVAL <interval qualifier>

<row type> ::=
ROW <row type body>

<row type body> ::=
<left paren>
<field definition> [{ <comma> <field definition> }...]

<right paren>

<reference type> ::=
REF <left paren> <referenced type> <right paren>

122 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.1 <data type>

[<scope clause>]

<scope clause> ::=
SCOPE <table name>

<referenced type> ::= <user-defined type>

<user-defined type> ::= <user-defined type name>

<collection type> ::=
<data type> <array specification>

<array specification> ::=
<collection type constructor>

<left bracket or trigraph> <unsigned integer> <right bracket or trigraph>

<collection type constructor> ::=
ARRAY

Syntax Rules

1) CHAR is equivalent to CHARACTER. DEC is equivalent to DECIMAL. INT is equivalent
to INTEGER. VARCHAR is equivalent to CHARACTER VARYING. NCHAR is equivalent to
NATIONAL CHARACTER. CLOB is equivalent to CHARACTER LARGE OBJECT. NCLOB
is equivalent to NATIONAL CHARACTER LARGE OBJECT. BLOB is equivalent to BINARY
LARGE OBJECT.

2) ‘‘NATIONAL CHARACTER’’ is equivalent to the corresponding <character string type> with a
specification of ‘‘CHARACTER SET CSN’’, where ‘‘CSN’’ is an implementation-defined <charac-
ter set name>.

3) The value of a <length> or a <precision> shall be greater than 0 (zero).

4) If <length> is omitted, then a <length> of 1 (one) is implicit.

5) If <large object length> is omitted, then an implementation-defined <large object length> is
implicit.

6) The numeric value of a <large object length> is determined as follows.

Case:

a) If <large object length> immediately contains <unsigned integer> and does not immediately
contain <multiplier>, then the numeric value of <large object length> is the numeric value
of the specified <unsigned integer>.

b) If <large object length> immediately contains <large object length token> or immediately
contains <unsigned integer> and <multiplier>, then let D be the value of the specified
<unsigned integer> or the numeric value of the sequence of <digit>s of <large object length
token> interpreted as an <unsigned integer>. The numeric value of <large object length> is
the numeric value resulting from the multiplication of D and MS, then MS is:

i) If <multiplier> is K, then 1,024.

ii) If <multiplier> is M, then 1,048,576.

iii) If <multiplier> is G, then 1,073,741,824.

Scalar expressions 123

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.1 <data type>

7) If a <scale> is omitted, then a <scale> of 0 (zero) is implicit.

8) If a <precision> is omitted, then an implementation-defined <precision> is implicit.

9) CHARACTER specifies the data type character string.

10) Characters in a character string are numbered beginning with 1 (one).

11) Case:

a) If neither VARYING nor LARGE OBJECT is specified in <character string type>, then the
length in characters of the character string is fixed and is the value of <length>.

b) If VARYING is specified in <character string type>, then the length in characters of the
character string is variable, with a minimum length of 0 (zero) and a maximum length of
the value of <length>.

c) If LARGE OBJECT is specified in a <character string type>, then the length in characters of
the character string is variable, with a minimum length of 0 (zero) and a maximum length
of the value of <large object length>.

The maximum values of <length> and <large object length> are implementation-defined.
Neither <length> nor <large object length> shall be greater than the corresponding maximum
value.

12) If <character string type> is not contained in a <domain definition> or a <column definition>
and CHARACTER SET is not specified, then an implementation-defined <character set spec-
ification> that specifies an implementation-defined character set that contains at least every
character that is in <SQL language character> is implicit.
NOTE 55 – Subclause 11.23, ‘‘<domain definition>’’, and Subclause 11.4, ‘‘<column definition>’’, specify
the result when <character string type> is contained in a <domain definition> or <column definition>,
respectively.

13) The character set named SQL_TEXT is an implementation-defined character set whose charac-
ter repertoire is SQL_TEXT.
NOTE 56 – The character repertoire SQL_TEXT is defined in Subclause 4.2, ‘‘Character strings’’.

14) The character set named SQL_IDENTIFIER is an implementation-defined character set whose
character repertoire is SQL_IDENTIFIER.
NOTE 57 – The character repertoire SQL_IDENTIFIER is defined in Subclause 4.2, ‘‘Character strings’’.

15) BINARY LARGE OBJECT specifies the data type binary string.

16) Octets in a binary large object string are numbered beginning with 1 (one). The length in octets
of the string is variable, with a minimum length of 0 (zero) and a maximum length of the value
of <large object length>.

17) BIT specifies the data type bit string.

18) Bits in a bit string are numbered beginning with 1 (one).

19) Case:

a) If VARYING is not specified in <bit string type>, then the length in bits of the bit string is
fixed and is the value of <length>.

124 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.1 <data type>

b) If VARYING is specified in <bit string type>, then the length in bits of the string is variable,
with a minimum length of 0 (zero) and a maximum length of the value of <length>.

The maximum value of <length> is implementation-defined. <length> shall not be greater than
this maximum value.

20) The <scale> of an <exact numeric type> shall not be greater than the <precision> of the <exact
numeric type>.

21) For the <exact numeric type>s DECIMAL and NUMERIC:

a) The maximum value of <precision> is implementation-defined. <precision> shall not be
greater than this value.

b) The maximum value of <scale> is implementation-defined. <scale> shall not be greater than
this maximum value.

22) NUMERIC specifies the data type exact numeric, with the decimal precision and scale specified
by the <precision> and <scale>.

23) DECIMAL specifies the data type exact numeric, with the decimal scale specified by the <scale>
and the implementation-defined decimal precision equal to or greater than the value of the
specified <precision>.

24) INTEGER specifies the data type exact numeric, with binary or decimal precision and scale of 0
(zero). The choice of binary versus decimal precision is implementation-defined, but shall be the
same as SMALLINT.

25) SMALLINT specifies the data type exact numeric, with scale of 0 (zero) and binary or decimal
precision. The choice of binary versus decimal precision is implementation-defined, but shall be
the same as INTEGER. The precision of SMALLINT shall be less than or equal to the precision
of INTEGER.

26) FLOAT specifies the data type approximate numeric, with binary precision equal to or
greater than the value of the specified <precision>. The maximum value of <precision> is
implementation-defined. <precision> shall not be greater than this value.

27) REAL specifies the data type approximate numeric, with implementation-defined precision.

28) DOUBLE PRECISION specifies the data type approximate numeric, with implementation-
defined precision that is greater than the implementation-defined precision of REAL.

29) For the <approximate numeric type>s FLOAT, REAL, and DOUBLE PRECISION, the maximum
and minimum values of the exponent are implementation-defined.

30) If <time precision> is not specified, then 0 (zero) is implicit. If <timestamp precision> is not
specified, then 6 is implicit.

31) If <with or without time zone> is not specified, then WITHOUT TIME ZONE is implicit.

32) The maximum value of <time precision> and the maximum value of <timestamp precision>
shall be the same implementation-defined value that is not less than 6. The values of <time
precision> and <timestamp precision> shall not be greater than that maximum value.

Scalar expressions 125

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.1 <data type>

33) The length of a DATE is 10 positions. The length of a TIME WITHOUT TIME ZONE is 8 posi-
tions plus the <time fractional seconds precision>, plus 1 (one) position if the <time fractional
seconds precision> is greater than 0 (zero). The length of a TIME WITH TIME ZONE is 14 po-
sitions plus the <time fractional seconds precision> plus 1 (one) position if the <time fractional
seconds precision> is greater than 0 (zero). The length of a TIMESTAMP WITHOUT TIME
ZONE is 19 positions plus the <time fractional seconds precision>, plus 1 (one) position if the
<time fractional seconds precision> is greater than 0 (zero). The length of a TIMESTAMP WITH
TIME ZONE is 25 positions plus the <time fractional seconds precision> plus 1 (one) position if
the <time fractional seconds precision> is greater than 0 (zero).

34) An <interval type> specifying an <interval qualifier> whose <start field> and <end field> are
both either YEAR or MONTH or whose <single datetime field> is YEAR or MONTH is a year-
month interval type. An <interval type> that is not a year-month interval type is a day-time
interval type.
NOTE 58 – The length of interval data types is specified in the General Rules of Subclause 10.1,
‘‘<interval qualifier>’’.

35) The i-th value of an interval data type corresponds to the i-th <primary datetime field>.

36) Within the non-null values of a <datetime type>, the value of the time zone interval shall be in
the range �12:59 to +13:00.
NOTE 59 – The range for time zone intervals is larger than many readers might expect because it is
governed by political decisions in governmental bodies rather than by any natural law.

37) If <data type> is a <reference type>, then there shall exist a user-defined type descriptor whose
user-defined type name is <user-defined type name> UDTN simply contained in <referenced
type>. UDTN shall identify a structured type.

38) The <table name> contained in a <scope clause> shall identify a referenceable table whose
structured type is UDTN.

39) The <table name> STN specified in <scope clause> identifies the scope of the reference type.
This scope consists of every row in the table identified by STN.

40) If <collection type> CT immediately contains an <array specification>, then the <data type>
immediately contained in CT shall not contain a <collection type>.

41) A <collection type> CT that immediately contains an <array specification> specifies an array
type. The <data type> immediately contained in CT is the element type of the array type. The
<unsigned integer> immediately contained in <array specification> is the maximum cardinality
of a site of data type CT.

42) <row type> specifies the row data type.

43) BOOLEAN specifies the boolean data type.

Access Rules

1) If <reference type> is specified, then

Case:

a) If <reference type> is contained in an <SQL schema statement>, then the applicable
privileges shall include the USAGE privilege on the user-defined type identified by the
<user-defined type name> simply contained in <referenced type>.

126 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.1 <data type>

b) Otherwise, the current privileges shall include the USAGE privilege on the user-defined
type identified by the <user-defined type name> simply contained in <referenced type>.

NOTE 60 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) If any specification or operation attempts to cause an item of a character type to contain a
character that is not a member of the character repertoire associated with the character item,
then an exception condition is raised: data exception — character not in repertoire.

2) For a <datetime type>,

Case:

a) If DATE is specified, then the data type contains the <primary datetime field>s years,
months, and days.

b) If TIME is specified, then the data type contains the <primary datetime field>s hours,
minutes, and seconds.

c) If TIMESTAMP is specified, then the data type contains the <primary datetime field>s
years, months, days, hours, minutes, and seconds.

d) If WITH TIME ZONE is specified, then the data type contains the time zone datetime fields.

NOTE 61 – A <datetime type> contains no other fields than those specified by the preceding Rule.

3) For a <datetime type>, a <time fractional seconds precision> that is an explicit or implicit <time
precision> or <timestamp precision> defines the number of decimal digits following the decimal
point in the SECOND <primary datetime field>.

4) Table 11, ‘‘Valid values for datetime fields’’, specifies the constraints on the values of the <date-
time field>s in datetime values. The values of TIMEZONE_HOUR and TIMEZONE_MINUTE
shall either both be non-negative or both be non-positive.

Table 11—Valid values for datetime fields

Keyword Valid values of datetime fields

YEAR 0001 to 9999

MONTH 01 to 12

DAY Within the range 1 (one) to 31, but further constrained by the value of
MONTH and YEAR fields, according to the rules for well-formed dates in
the Gregorian calendar.

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 61.9(N) where ‘‘9(N)’’ indicates the number of digits specified by <time
fractional seconds precision>.

TIMEZONE_HOUR -12 to 13

TIMEZONE_MINUTE -59 to 59

NOTE 62 – Datetime data types will allow dates in the Gregorian format to be stored in the date
range 0001�01�01 CE through 9999�12�31 CE. The range for SECOND allows for as many as two

Scalar expressions 127

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.1 <data type>

‘‘leap seconds’’. Interval arithmetic that involves leap seconds or discontinuities in calendars will produce
implementation-defined results.

5) If WITH TIME ZONE is not specified, then the time zone displacement of the datetime data
type is effectively the current default time zone displacement of the SQL-session.

6) An interval value can be zero, positive, or negative.

7) The values of the <primary datetime field>s within an interval data type are constrained as
follows:

a) The value corresponding to the first <primary datetime field> is an integer with at most N
digits, where N is the <interval leading field precision>.

b) Table 12, ‘‘Valid absolute values for interval fields’’, specifies the constraints for the absolute
values of other <primary datetime field>s in interval values.

c) If an interval value is zero, then all fields of the interval are zero.

d) If an interval value is positive, then all fields of the interval are non-negative and at least
one field is positive.

e) If an interval value is negative, then all fields of the interval are non-positive, and at least
one field is negative.

Table 12—Valid absolute values for interval fields

Keyword Valid values of INTERVAL fields

MONTH 0 to 11

HOUR 0 to 23

MINUTE 0 to 59

SECOND 0 to 59.9(N) where ‘‘9(N)’’ indicates the number of digits specified by <interval frac-
tional seconds precision> in the <interval qualifier>.

8) If <data type> is a <collection type>, then a collection type descriptor is created. The collection
type descriptor includes an indication of the <collection type constructor> specified by the
<collection type> and the descriptor of the element type of the <collection type>.

9) For a <row type> RT, the degree of RT is initially set to zero. The General Rules of
Subclause 6.2, ‘‘<field definition>’’, specify the degree of RT during the definition of the fields of
RT.

10) If the <data type> is a <row type>, then a row type descriptor is created. The row type descrip-
tor includes a field descriptor for every <field definition> of the <row type>.

11) A <user-defined type name> identifies a user-defined type.

12) A <reference type> identifies a reference type.

13) If <data type> is a <reference type>, then a reference type descriptor is created. The reference
type descriptor includes the name of the <referenced type>. If a <scope clause> is specified, then
the reference type descriptor includes STN, identifying the scope of the reference type.

128 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.1 <data type>

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, <user-defined type name>, if specified, shall not
identify a structured type.

2) Without Feature T031, ‘‘BOOLEAN data type’’, a <predefined type> shall not be a <boolean
type>.

3) Without Feature F555, ‘‘Enhanced seconds precision’’, a <time precision>, if specified, shall
specify 0 (zero).

4) Without Feature F555, ‘‘Enhanced seconds precision’’, a <timestamp precision>, if specified,
shall specify 0 (zero) or 6.

5) Without Feature F511, ‘‘BIT data type’’, a <data type> shall not be a <bit string type>.

6) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <data type> shall not be an
<interval type>.

7) Without Feature F421, ‘‘National character’’, a <data type> shall not be a <national character
string type>

8) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’, a
<data type> shall not specify CHARACTER SET.

9) Without Feature F421, ‘‘National character’’, a <national character string type> shall not specify
NATIONAL CHARACTER LARGE OBJECT, NCHAR LARGE OBJECT, or NCLOB.

10) Without Feature F411, ‘‘Time zone specification’’, a <datetime data type> shall not specify <with
or without time zone>.

11) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not specify
<reference type>.

12) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not specify <row type>.

13) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not specify <col-
lection type>.

14) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
a <scope clause> that is not simply contained in a <data type> that is simply contained in a
<column definition>.

15) Without Feature S092, ‘‘Arrays of user-defined types’’, the <data type> simply contained in a
<collection type> shall not be a <user-defined type>.

16) Without Feature S094, ‘‘Arrays of reference types’’, the <data type> simply contained in a
<collection type> shall not be a <reference type>.

17) Without Feature T041, ‘‘Basic LOB data type support’’, conforming SQL language shall not
specify LARGE OBJECT, BLOB, CLOB, or NCLOB.

Scalar expressions 129

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.2 <field definition>

6.2 <field definition>

Function
Define a field of a row type.

Format

<field definition> ::=
<field name>
<data type>
[<reference scope check>]
[<collate clause>]

Syntax Rules

1) Let RT be the <row type> that simply contains a <field definition>.

2) The <field name> shall not be equivalent to the <field name> of any other <field definition>
simply contained in RT.

3) The declared type of the field is <data type>.

4) If the declared type of the field is character string, then the collation of the field is

Case:

a) If <collate clause> is specified, then the collation specified by that <collate clause>.

b) Otherwise, the default collation of the character set of the field.

5) If <data type> is a <reference type> that contains a <scope clause>, then a <reference scope
check> that specifies either REFERENCES ARE NOT CHECKED or REFERENCES ARE
CHECKED ON DELETE NO ACTION shall be specified; otherwise, <reference scope check>
shall not be specified.

6) Let DT be the <data type>.

7) If DT is CHARACTER or CHARACTER VARYING and does not specify a <character set specifi-
cation>, then the <character set specification> specified or implicit in the <schema character set
specification>.

8) If DT is a <character string type> that identifies a character set that specifies a <collate clause>
and the <field definition> does not contain a <collate clause>, then the <collate clause> of the
<character string type> is implicit in the <field definition>.

9) If <collate clause> is specified, then the declared type shall be a character string type.

Access Rules

1) If a <data type> is specified that is a user-defined type U, then the applicable privileges of
the <authorization identifier> of the schema or SQL-client module that contains the <field
definition> shall include USAGE on U.
NOTE 63 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

130 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.2 <field definition>

General Rules

1) The <collate clause> specifies the default collating sequence for the field. If <collate clause>
is not specified, then the default collating sequence is that used for comparisons of Coercible
coercibility characteristic, as defined in Subclause 8.2, ‘‘<comparison predicate>’’.

2) A data type descriptor is created that describes the declared type of the field being defined.

3) The degree of the row type RT being defined in the simply containing <row type> is increased
by 1 (one).

4) A field descriptor is created that describes the field being defined. The field descriptor includes
the following:

a) The <field name>.

b) The data type descriptor of the declared type of the field.

c) If the <field definition> contains a <collate clause>, then the <collation name> of the <collate
clause>.

d) The field descriptor is included in the row type descriptor for RT.

e) If <data type> is a reference type, then whether references are checked.

Conformance Rules

1) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any <field
definition>.

2) Without Feature F691, ‘‘Collation and translation’’, and Feature T051, ‘‘Row types’’, a <field
definition> shall not contain a <collate clause>.

3) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
REFERENCES ARE CHECKED.

Scalar expressions 131

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.3 <value specification> and <target specification>

6.3 <value specification> and <target specification>

Function
Specify one or more values, host parameters, or SQL parameters.

Format

<value specification> ::=
<literal>

| <general value specification>

<unsigned value specification> ::=
<unsigned literal>

| <general value specification>

<general value specification> ::=
<host parameter specification>

| <SQL parameter reference>
| CURRENT_PATH
| CURRENT_ROLE
| CURRENT_USER
| SESSION_USER
| SYSTEM_USER
| USER
| VALUE

<simple value specification> ::=
<literal>

| <host parameter name>
| <SQL parameter reference>

<target specification> ::=
<host parameter specification>

| <SQL parameter reference>
| <column reference>

<simple target specification> ::=
<host parameter specification>

| <SQL parameter reference>
| <column reference>

<host parameter specification> ::=
<host parameter name> [<indicator parameter>]

<indicator parameter> ::=
[INDICATOR] <host parameter name>

Syntax Rules

1) The declared type of an <indicator parameter> shall be exact numeric with scale 0 (zero).

2) Each <host parameter name> shall be contained in an <SQL-client module definition>.

132 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.3 <value specification> and <target specification>

3) If USER is specified, then CURRENT_USER is implicit.
NOTE 64 – In an environment where the SQL-implementation conforms to Core SQL, conforming SQL
language that contains either:

A specified or implied <comparison predicate> that compares the <value specification> USER with a
<value specification> other than USER, or

A specified or implied assignment in which the ‘‘value’’ (as defined in Subclause 9.2, ‘‘Store assign-
ment’’) contains the <value specification> USER

will become non-conforming in an environment where the SQL-implementation conforms to some
SQL package that supports character internationalization, unless the character repertoire of the
implementation-defined character set in that environment is identical to the character repertoire of
SQL_IDENTIFIER.

4) The declared type of CURRENT_USER, CURRENT_ROLE, SESSION_USER, SYSTEM_USER,
and CURRENT_PATH is character string. Whether the character string is fixed length or
variable length, and its length if it is fixed length or maximum length if it is variable length,
are implementation-defined. The character set of the character string is SQL_IDENTIFIER.

5) The <value specification> or <unsigned value specification> VALUE shall be contained in a
<domain constraint>. The declared type of an instance of VALUE is the declared type of the
domain to which that domain constraint belongs.

6) If the declared type of the <value specification> or <unsigned value specification> is character
string, then the <value specification> or <unsigned value specification> has the Coercible co-
ercibility characteristic, and the collating sequence is determined by Subclause 4.2.3, ‘‘Rules
determining collating sequence usage’’.

7) A <target specification> or <simple target specification> that is a <column reference> shall be a
new transition variable column reference.
NOTE 65 – ‘‘New transition variable column reference’’ is defined in Subclause 6.5, ‘‘<identifier chain>’’.
Let X denote either a column C or the <key word> VALUE. Given a <boolean value expression>
BVE and X, the notion ‘‘BVE is a known-not-null condition for X’’ is defined recursively as
follows:

a) If BVE is a <predicate>, then

Case:

i) If BVE is a <predicate> of the form ‘‘RVE IS NOT NULL’’, where RVE is a <row value
expression> that simply contains a <row value constructor element> that is a <column
reference> that references C, then BVE is a known-not-null condition for C.

ii) If BVE is the <predicate> ‘‘VALUE IS NOT NULL’’, then BVE is a known-not-null
condition for VALUE.

iii) Otherwise, BVE is not a known-not-null condition for X.

b) If BVE is a <value expression primary>, then

Case:

i) If BVE is of the form ‘‘<left paren> <value expression> <right paren>’’ and the <value
expression> is a known-not-null condition for X, then BVE is a known-not-null condition
for X.

ii) Otherwise, BVE is not a known-not-null condition for X.

Scalar expressions 133

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.3 <value specification> and <target specification>

c) If BVE is a <boolean test>, then let BP be the <boolean primary> immediately contained in
BVE. If BP is a known-not-null condition for X, and <truth value> is not specified, then BVE
is a known-not-null condition for X. Otherwise, BVE is not a known-not-null condition for X.

d) If BVE is of the form ‘‘NOT BT’’, where BT is a <boolean test>, then

Case:

i) If BT is ‘‘CR IS NULL’’, where CR is a column reference that references column C, then
BVE is a known-not-null condition for C.

ii) If BT is ‘‘VALUE IS NULL’’, then BVE is a known-not-null condition for VALUE.

iii) Otherwise, BVE is not a known-not-null condition for X.
NOTE 66 – For simplicity, the rules do not attempt to analyze conditions such as ‘‘NOT NOT A IS
NULL’’, or ‘‘NOT (A IS NULL OR NOT (B = 2))’’

e) If BVE is of the form ‘‘BVE1 AND BVE2’’, then

Case:

i) If either BVE1 or BVE2 is a known-not-null condition for X, then BVE is a known-not-
null condition for X.

ii) Otherwise, BVE is not a known-not-null condition for X.

f) If BVE is of the form ‘‘BVE1 OR BVE2’’, then BVE is not a known-not-null condition for X.
NOTE 67 – For simplicity, this rule does not detect cases such as ‘‘A IS NOT NULL OR A IS NOT
NULL’’, which might be classified as a known-not-null condition.

Access Rules

None.

General Rules

1) A <value specification> or <unsigned value specification> specifies a value that is not selected
from a table.

2) A <host parameter specification> identifies a host parameter or a host parameter and an indica-
tor parameter in an <SQL-client module definition>.

3) A <target specification> specifies a host parameter, an output SQL parameter, or the column of
a new transition variable.

4) If a <host parameter specification> contains an <indicator parameter> and the value of the
indicator parameter is negative, then the value specified by the <host parameter specification>
is null; otherwise, the value specified by a <host parameter specification> is the value of the
host parameter identified by the <host parameter name>.

5) The value specified by a <literal> is the value represented by that <literal>.

6) The value specified by CURRENT_USER is the value of the current user identifier.

7) The value specified by SESSION_USER is the value of the SQL-session user identifier.

134 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.3 <value specification> and <target specification>

8) The value specified by CURRENT_ROLE is the value of the current role name.

9) The value specified by SYSTEM_USER is equal to an implementation-defined string that
represents the operating system user who executed the SQL-client module that contains the
SQL-statement whose execution caused the SYSTEM_USER <general value specification> to be
evaluated.

10) The value specified by CURRENT_PATH is a <schema name list> where <catalog name>s
are <delimited identifier>s and the <unqualified schema name>s are <delimited identifier>s.
Each <schema name> is separated from the preceding <schema name> by a <comma> with no
intervening <space>s. The schemas referenced in this <schema name list> are those referenced
in the SQL-path of the current SQL-session context, in the order in which they appear in that
SQL-path.

11) If a <simple value specification> evaluates to the null value, then an exception condition is
raised: data exception — null value not allowed.

12) A <simple target specification> specifies a host parameter, an output SQL parameter, or a
column of a new transition variable. A <simple target specification> can only be assigned a
value that is not null.

13) If a <target specification> or <simple target specification> is assigned a value that is a zero-
length character string, then it is implementation-defined whether an exception condition is
raised: data exception — zero-length character string.

Conformance Rules

1) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, a <general value
specification> shall not specify CURRENT_PATH.

2) Without Feature F251, ‘‘Domain support’’, a <general value specification> shall not specify
VALUE.

3) Without Feature F321, ‘‘User authorization’’, a <general value specification> shall not specify
CURRENT_USER, SYSTEM_USER, or SESSION_USER.
NOTE 68 – Although CURRENT_USER and USER are semantically the same, in Core SQL,
CURRENT_USER must be specified as USER.

4) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify CURRENT_
ROLE.

Scalar expressions 135

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.4 <contextually typed value specification>

6.4 <contextually typed value specification>

Function
Specify a value whose data type is to be inferred from its context.

Format

<contextually typed value specification> ::=
<implicitly typed value specification>

| <default specification>

<implicitly typed value specification> ::=
<null specification>

| <empty specification>

<null specification> ::=
NULL

<empty specification> ::=
ARRAY <left bracket or trigraph> <right bracket or trigraph>

<default specification> ::=
DEFAULT

Syntax Rules

1) The declared type DT of an <empty specification> ES is ET ARRAY[0], where the element type
ET is determined by the context in which ES appears. ES is effectively replaced by CAST (ES
AS DT).
NOTE 69 – In every such context, ES is uniquely associated with some expression or site of declared
type DT, which thereby becomes the declared type of ES.

2) The declared type DT of a <null specification> NS is determined by the context in which NS
appears. NS is effectively replaced by CAST (NS AS DT).
NOTE 70 – In every such context, NS is uniquely associated with some expression or site of declared
type DT, which thereby becomes the declared type of NS.

3) The declared type DT of a <default specification> DS is the declared type of a <default option>
DO included in some site descriptor, determined by the context in which DS appears. DS is
effectively replaced by CAST (DO AS DT).
NOTE 71 – In every such context, DS is uniquely associated with some site of declared type DT, which
thereby becomes the declared type of DS.

Access Rules

None.

136 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.4 <contextually typed value specification>

General Rules

1) An <empty specification> specifies a collection whose cardinality is zero.

2) A <null specification> specifies the null value.

3) A <default specification> specifies the default value of some associated item.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, <empty specification> shall not be specified.

Scalar expressions 137

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.5 <identifier chain>

6.5 <identifier chain>

Function
Disambiguate a <period>-separated chain of identifiers.

Format

<identifier chain> ::=
<identifier> [{ <period> <identifier> }...]

<basic identifier chain> ::=
<identifier chain>

Syntax Rules

1) Let IC be an <identifier chain>.

2) Let N be the number of <identifier>s immediately contained in IC.

3) Let Ii, 1 (one) � i � N, be the <identifier>s immediately contained in IC, in order from left to
right.

4) Let PIC1 = I1. For each j between 2 and N, let PICj = PICj�1 <period> Ij. PICj is called the j-th
partial identifier chain of IC.

5) Let M be the minimum of N and 4.

6) A column C of a table is said to be refinable if the data type of C is a row type or a structured
type.

7) For at most one j between 1 (one) and M, PICJ is called the basis of IC, and j is called the basis
length of IC. The referent of the basis is a column C of a table or an SQL parameter SP. The
basis, basis length, basis scope, and basis referent of IC are determined as follows:

a) If N = 1 (one), then IC shall be contained within the scope of one or more exposed <ta-
ble or query name>s or <correlation name>s whose associated tables include a column
whose <identifier> is equivalent to I1 or within the scope of a <routine name> whose asso-
ciated <SQL parameter declaration list> includes an SQL parameter whose <identifier> is
equivalent to I1. Let the phrase possible scope tags denote those exposed <table name>s,
<correlation name>s, and <routine name>s.

Case:

i) If the number of possible scope tags in the innermost scope containing a possible scope
tag is 1 (one), then

Case:

1) If the innermost possible scope tag is a <table or query name> or <correlation
name>, then let T be the table associated with the possible scope tag, and let C be
the column of T whose <identifier> is equivalent to I1. PIC1 is the basis of IC, the
basis length is 1 (one), the basis scope is the scope of T, and the basis referent is C.

138 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.5 <identifier chain>

2) If the innermost possible scope tag is a <routine name>, then let SP be the SQL
parameter whose <identifier> is equivalent to I1. PIC1 is the basis of IC, the basis
length is 1 (one), the basis scope is the scope of SP, and the basis referent is SP.

ii) Otherwise, each possible scope tag shall be a <table or query name> or a <correlation
name> of a <table reference> that is directly contained in a <joined table> JT. I1 shall
be a common column name in JT. Let C be the column of JT that is identified by I1.
PIC1 is the basis of IC, the basis length is 1 (one), and the basis referent is C.
NOTE 72 – ‘‘Common column name’’ is defined in Subclause 7.7, ‘‘<joined table>’’.

b) If N > 1 (one), then the basis, basis length, basis scope, and basis referent are defined in
terms of a candidate basis as follows:

i) If IC is contained within the scope of a <routine name> whose associated <SQL param-
eter declaration list> includes an SQL parameter SP whose <identifier> is equivalent to
I1, then PIC1 is a candidate basis of IC, the scope of PIC1 is the scope of SP, and the
referent of PIC1 is SP.

ii) If N = 2 and PIC1 is equivalent to an exposed <correlation name> that is in scope, then
let EN be the exposed <correlation name> that is equivalent to PIC1 and has innermost
scope. If the table associated with EN has a column C whose <identifier> is equivalent
to I2 , then PIC2 is a candidate basis of IC, the scope of PIC2 is the scope of EN, and the
referent of PIC2 is C.

iii) If N > 2 and PIC1 is equivalent to an exposed <correlation name> that is in scope, then
let EN be the exposed <correlation name> that is equivalent to PIC1 and has innermost
scope. If the table associated with EN has a refinable column C whose <identifier> is
equivalent to I2, then PIC2 is a candidate basis of IC, the scope of PIC2 is the scope of
EN, and the referent of PIC2 is C.

iv) If N = 2, 3 or 4, and if PICN�1 is equivalent to an exposed <table or query name> that is
in scope, then let EN be the exposed <table or query name> that is equivalent to PICN�1
and has the innermost scope. If the table T associated with EN has a column C whose
<identifier> is equivalent to IN, then PICN is a candidate basis of IC, the scope of PICN
is the scope of EN, and the referent of PICN is C.

v) There shall be exactly one candidate basis CB with innermost scope. The basis of IC
is CB. The basis length is the length of CB. The basis scope is the scope of CB. The
referent of IC is the referent of CB.

8) Let BL be the basis length of IC.

9) If BL < N, then let TIC be the <value expression primary>:

(PICBL) <period> IBL+1 <period> . . . <period> IN

The Syntax Rules of Subclause 6.23, ‘‘<value expression>’’, are applied to TIC, yielding a col-
umn reference or an SQL parameter reference, and (N � BL) <field reference>s or <method
invocation>s.
NOTE 73 – In this transformation, (PICBL) is interpreted as a <value expression primary> of the
form <left paren> <value expression> <right paren>. PICBL is a <value expression> that is a <value
expression primary> that is an <unsigned value specification> that is either a <column reference> or an
<SQL parameter reference>. The identifiers IBL+1, . . . , IN are parsed using the Syntax Rules of <field
reference> and <method invocation>.

Scalar expressions 139

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.5 <identifier chain>

10) A <basic identifier chain> shall be an <identifier chain> whose basis is the entire identifier
chain.

11) A <basic identifier chain> whose basis referent is a column reference. If the basis length is 2,
and the basis scope is a <trigger definition> whose <trigger action time> is BEFORE, and I1 is
equivalent to the <new values correlation name> of the <trigger definition>, then the column
reference is a new transition variable column reference.

12) A <basic identifier chain> whose basis referent is an SQL parameter is an SQL parameter
reference.

13) The data type of a <basic identifier chain> BIC is the data type of the basis referent of BIC.

14) If the data type of a <basic identifier chain> BIC is character string, then BIC has the Implicit
coercibility attribute, and its collating sequence is the default collating sequence of the basis
referent of BIC.

Access Rules

None.

General Rules

1) Let BIC be a <basic identifier chain>.

2) If BIC is a general column reference, then BIC references the column C that is the basis referent
of BIC in a given row of the table that contains C.

3) If BIC is an SQL parameter reference, then BIC references the SQL parameter SP of a given
invocation of the SQL-invoked routine that contains SP.

Conformance Rules

None.

140 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.6 <column reference>

6.6 <column reference>

Function
Reference a column.

Format

<column reference> ::=
<basic identifier chain>

| MODULE <period> <qualified identifier> <period> <column name>

Syntax Rules

1) Every <column reference> has a qualifying table and a qualifying scope, as defined in succeeding
Syntax Rules.

2) A <column reference> that is a <basic identifier chain> BIC shall be a column reference. The
qualifying scope is the basis scope of BIC and the qualifying table is the table that contains the
basis referent of BIC.

3) If MODULE is specified, then <qualified identifier> shall be contained in an SQL-client module
M, and shall identify a declared local temporary table DLTT of M, and ‘‘MODULE <period>
<qualified identifier>’’ shall be an exposed <table or query name> MPQI, and <column name>
shall identify a column of DLTT. The qualifying table is the table identified by MPQI, and the
qualifying scope is the scope of MPQI.

4) If a <column reference> CR is contained in a <table expression> TE and the qualifying scope of
CR is some <SQL procedure statement>, <trigger definition>, or <table reference> that contains
TE, then CR is an outer reference to the qualifying table of CR.

5) The data type of a <column reference> is the data type of the column that it references.

6) If the data type of a <column reference> is character string, then it has the Implicit coercibility
attribute, and its collating sequence is the default collating sequence of the column that it
references.

Access Rules

1) If CR is a <column reference> whose qualifying table is a base table or a viewed table and that
is contained in any of:

— A <query expression> simply contained in a <cursor specification>, a <view definition> or an
<insert statement>.

— A <sort specification list> contained in a <cursor specification>.

— A <table expression> immediately contained in a <select statement: single row>.

— A <search condition> immediately contained in a <trigger definition>, a <delete statement:
searched> or an <update statement: searched>.

— A <select list> immediately contained in a <select statement: single row>.

Scalar expressions 141

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.6 <column reference>

— A <value expression> simply contained in a <row value expression> immediately contained
in a <set clause>.

then let C be the column referenced by CR.

Case:

a) If <column reference> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
SELECT for C.

b) Otherwise, the current privileges shall include SELECT on C.
NOTE 74 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

2) If CR is a <column reference> that is contained in a <search condition> immediately contained
in an <assertion definition>, then the applicable privileges of the <authorization identifier> that
owns the containing schema shall include REFERENCES on the column referenced by CR.

General Rules

None.

Conformance Rules

1) Without Feature F821, ‘‘Local table references’’, conforming SQL language shall not specify
MODULE.

142 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.7 <SQL parameter reference>

6.7 <SQL parameter reference>

Function
Reference an SQL parameter.

Format

<SQL parameter reference> ::=
<basic identifier chain>

Syntax Rules

1) An <SQL parameter reference> shall be a <basic identifier chain> that is an SQL parameter
reference.

2) The data type of an <SQL parameter reference> is the data type of the SQL parameter that it
references.

3) If the data type of an <SQL parameter reference> is character string, then it has the Implicit
coercibility attribute, and its collating sequence is the default collating sequence of the SQL
parameter that it references.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Scalar expressions 143

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.8 <field reference>

6.8 <field reference>

Function
Reference a field of a row value.

Format

<field reference> ::=
<value expression primary> <period> <field name>

Syntax Rules

1) Let FR be the <field reference>, let VEP be the <value expression primary> immediately con-
tained in FR, and let FN be the <field name> immediately contained in FR.

2) The declared type of VEP shall be a row type. Let RT be that row type.

3) FR is a field reference.

4) FN shall be the name of a field of RT. Let F be that field.

5) The declared type of FR is the declared type of F.

Access Rules

None.

General Rules

1) Let VR be the value of VEP.

2) Case:

a) If VR is the null value, then the value of FR is the null value.

b) Otherwise, the value of FR is the value of the field F of VR.

Conformance Rules

1) Without Feature T051, ‘‘Row types’’, conforming SQL language shall contain no <field refer-
ence>.

144 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.9 <attribute or method reference>

6.9 <attribute or method reference>

Function
Return a value acquired by accessing a column of the row identified by a value of a reference type
or by invoking an SQL-invoked method.

Format

<attribute or method reference> ::=
<value expression primary> <dereference operator> <qualified identifier>

[<SQL argument list>]

<dereference operator> ::= <right arrow>

Syntax Rules

1) The declared type of the <value expression primary> VEP shall be a reference type and the
scope included in its reference type descriptor shall not be empty. Let RT be the referenced type
of VEP.

2) Let QI be the <qualified identifier>. If <SQL argument list> is specified, then let SAL be <SQL
argument list>; otherwise, let SAL be a zero-length string.

3) Case:

a) If QI is equivalent to the attribute name of an attribute of RT and SAL is a zero-length
string, then <attribute or method reference> is effectively replaced by a <dereference opera-
tion> AMR of the form:

VEP -> QI

b) Otherwise, <attribute or method reference> is effectively replaced by a <method reference>
AMR of the form:

VEP -> QI SAL

4) The declared type of <attribute or method reference> is the declared type of AMR.

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall contain no
<attribute or method reference>.

Scalar expressions 145

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.10 <method reference>

6.10 <method reference>

Function
Return a value acquired from invoking an SQL-invoked routine that is a method.

Format

<method reference> ::=
<value expression primary> <dereference operator> <method name>

<SQL argument list>

Syntax Rules

1) The data type of the <value expression primary> VEP shall be a reference type and the scope
included in its reference type descriptor shall not be empty.

2) Let MN be the method name. Let MRAL be the <SQL argument list>.

3) The Syntax Rules of Subclause 6.11, ‘‘<method invocation>’’, are applied to the <method invoca-
tion>:

DEREF (VEP) . MN MRAL

yielding subject routine SR and static SQL argument list SAL.

4) The data type of <method reference> is the data type of the expression:

DEREF (VEP) . MN MRAL

Access Rules

1) Let SCOPE be the table that is the scope of VEP.

Case:

a) If <method reference> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
the table/method privilege for table SCOPE and method SR.

b) Otherwise, the current privileges shall include the table/method privilege for table SCOPE
and method SR.

General Rules

1) The General Rules of Subclause 6.11, ‘‘<method invocation>’’, are applied with SR and SAL as
the subject routine and SQL argument list, respectively, yielding a value V that is the result of
the <routine invocation>.

2) The value of <method reference> is V.

Conformance Rules

1) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall contain no
<method reference>.

146 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.11 <method invocation>

6.11 <method invocation>

Function
Reference an SQL-invoked method of a user-defined type value.

Format

<method invocation> ::=
<direct invocation>

| <generalized invocation>

<direct invocation> ::=
<value expression primary> <period> <method name>
[<SQL argument list>]

<generalized invocation> ::=
<left paren> <value expression primary>

AS <data type> <right paren> <period> <method name>
[<SQL argument list>]

<method selection> ::= <routine invocation>

Syntax Rules

1) Let OR be the <method invocation>, let VEP be the <value expression primary> immediately
contained in the <direct invocation> or <generalized invocation> of OR, and let MN be the
<method name> immediately contained in OR.

2) The declared type of VEP shall be a user-defined type. Let UDT be that user-defined type.

3) If <method invocation> is not immediately contained in <new invocation>, then MN shall not be
equivalent to the <qualified identifier> of the <user-defined type name> of UDT.

4) Case:

a) If <SQL argument list> is specified, then let AL be:

, A1, . . . , An

where Ai, 1 (one) � i � n, are the <SQL argument>s immediately contained in <SQL
argument list>, taken in order of their ordinal position in <SQL argument list>.

b) Otherwise, let AL be a zero-length string.

5) Let TP be an SQL-path, arbitrarily defined, containing the <schema name> of every schema
that includes a descriptor of a supertype or subtype of UDT.

6) If <generalized invocation> is specified, then:

a) Let GE be a <generalized expression> that immediately contains VEP and DT as <value
expression primary> and <user-defined type name>, respectively. Let RI be the following
<method selection>:

MN (GE, AL)

Scalar expressions 147

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.11 <method invocation>

b) Otherwise, let RI be the following <method selection>:

MN (VEP, AL)

7) The Syntax Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with RI and TP as the
<routine invocation> and SQL-path, respectively, yielding subject routine SR and static SQL
argument list SAL.

Access Rules

None.

General Rules

1) The General Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with SR and SAL as
the subject routine and SQL argument list, respectively, yielding value V that is the result of
the <routine invocation>.

2) The value of <method invocation> is V.

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall contain no
<method invocation>.

148 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.12 <static method invocation>

6.12 <static method invocation>

Function
Invoke a static method.

Format

<static method invocation> ::=
<user-defined type> <double colon> <method name> [<SQL argument list>]

<static method selection> ::= <routine invocation>

Syntax Rules

1) Let TN be the <user-defined type name> immediately contained in <user-defined type> and let
T be the user-defined type identified by TN.

2) Let MN be the <method name> immediately contained in <static method invocation>.

3) Case:

a) If <SQL argument list> is specified, then let AL be that <SQL argument list>.

b) Otherwise, let AL be <left paren> <right paren>.

4) Let TP be an SQL-path containing only the <schema name> of every schema that includes a
descriptor of a supertype of T.

5) Let RI be the following <routine invocation>:

MN AL

6) Let SMS be the following <static method selection>:

RI

7) The Syntax Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with RI as the <routine
invocation> immediately contained in the <static method selection> SMS, with TP as the SQL-
path, and with T as the user-defined type of the static SQL-invoked method, yielding subject
routine SR and static SQL argument list SAL.

Access Rules

None.

Scalar expressions 149

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.12 <static method invocation>

General Rules

1) The General Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with SR and SAL as
the subject routine and SQL argument list, respectively, yielding a value V that is the result of
the <routine invocation>.

2) The value of <static method invocation> is V.

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not contain
any <static method invocation>.

150 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.13 <element reference>

6.13 <element reference>

Function
Return an element of an array.

Format

<element reference> ::=
<array value expression>

<left bracket or trigraph> <numeric value expression> <right bracket or trigraph>

Syntax Rules

1) The declared type of an <element reference> is the element type of the specified <array value
expression>.

2) The declared type of <numeric value expression> shall be exact numeric with scale 0 (zero).

Access Rules

None.

General Rules

1) If the value of <array value expression> or <numeric value expression> is the null value, then
the result of <element reference> is the null value.

2) Let the value of <numeric value expression> be i.

Case:

a) If i is greater than zero and less than or equal to the cardinality of <array value expression>,
then the result of <element reference> is the value of the i-th element of the value of <array
value expression>.

b) Otherwise, an exception condition is raised: data exception — array element error.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not contain any
<element reference>.

Scalar expressions 151

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.14 <dereference operation>

6.14 <dereference operation>

Function
Access a column of the row identified by a value of a reference type.

Format

<dereference operation> ::=
<reference value expression> <dereference operator> <attribute name>

Syntax Rules

1) Let RVE be the <reference value expression>. The reference type descriptor of RVE shall
include a scope. Let RT be the referenced type of RVE.

2) Let AN be the <attribute name>. AN shall identify an attribute of RT.

3) The declared type of the result of the <dereference operation> is the declared type of AN.

4) Let S be the name of the referenceable table in the scope of the reference type of RVE.

a) Let OID be the name of the self-referencing column of S.

b) <dereference operation> is equivalent to a <scalar subquery> of the form:

(SELECT AN
FROM S
WHERE S.OID = VEP)

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not contain any
<dereference operation>.

152 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.15 <reference resolution>

6.15 <reference resolution>

Function
Obtain the value referenced by a reference value.

Format

<reference resolution> ::=
DEREF <left paren> <reference value expression> <right paren>

Syntax Rules

1) Let RR be the <reference resolution> and let RVE be the <reference value expression>. The
scope included in the declared type of RVE shall not be empty.

2) The declared type of RR is the structured type that is referenced by the declared type of RVE.

3) Let m be the number of subtables of the table referenced by the scope table name SCOPE
included in the declared type of RVE. Let Si, 1 (one) � i � m, be the subtables, arbitrarily
ordered, of SCOPE.

4) For each Si, 1 (one) � i � m, let STNi be the name included in the descriptor of Si of the
structured type STi associated with Si, let REFCOLi be the self-referencing column of Si, let Ni
be the number of attributes of STi, and let Ai;j, 1 (one) � j � Ni, be the names of the attributes
of STi, therefore also the names of the columns of Si.

5) SCOPE is called the scoped table of RR.

Access Rules

1) Case:

a) If <reference resolution> is contained in a <schema definition>, then the applicable priv-
ileges of the <authorization identifier> that owns the containing schema shall include
SELECT WITH HIERARCHY OPTION on at least one supertable of SCOPE.

b) Otherwise, the current privileges shall includes SELECT WITH HIERARCHY OPTION on
at least one supertable of SCOPE.

NOTE 75 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) The value of <reference resolution> is the value of:

Scalar expressions 153

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.15 <reference resolution>

(
SELECT A1,1 (. . . A1,N1

(STN1(), A1,N1), . . . A1,1)
FROM ONLY S1
WHERE S1.REFCOL1 = RVE
UNION
SELECT A2,1 (. . . A2,N2

(STN2(), A2,N2), . . . A2,1)
FROM ONLY S2
WHERE S2.REFCOL2 = RVE
UNION
.
.
.
UNION
SELECT Am,1 (. . . Am,Nm

(STNm(), Am,Nm), . . . Am,1)
FROM ONLY Sm
WHERE Sm.REFCOLm = RVE

)

NOTE 76 – The evaluation of this General Rule is effectively performed without further Access Rule
checking.

Conformance Rules

1) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not contain
any <reference resolution>.

154 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.16 <set function specification>

6.16 <set function specification>

Function
Specify a value derived by the application of a function to an argument.

Format

<set function specification> ::=
COUNT <left paren> <asterisk> <right paren>

| <general set function>
| <grouping operation>

<general set function> ::=
<set function type>

<left paren> [<set quantifier>] <value expression> <right paren>

<set function type> ::=
<computational operation>

<computational operation> ::=
AVG | MAX | MIN | SUM

| EVERY | ANY | SOME
| COUNT

<grouping operation> ::=
GROUPING <left paren> <column reference> <right paren>

<set quantifier> ::=
DISTINCT

| ALL

Syntax Rules

1) If <set quantifier> is not specified, then ALL is implicit.

2) The argument of COUNT(�) and the argument source of a <general set function> is a table or a
group of a grouped table as specified in Subclause 7.10, ‘‘<having clause>’’, and Subclause 7.11,
‘‘<query specification>’’.

3) Let T be the argument or argument source of a <set function specification>.

4) The <value expression> simply contained in <set function specification> shall not contain a
<set function specification> or a <subquery>. If the <value expression> contains a column
reference that is an outer reference, then that outer reference shall be the only column reference
contained in the <value expression>.
NOTE 77 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

5) If a <set function specification> contains a column reference that is an outer reference, then the
<set function specification> shall be contained in either:

a) A <select list>.

Scalar expressions 155

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.16 <set function specification>

b) A <subquery> of a <having clause>, in which case the qualifying table of the <column
reference> shall be the table referenced by a <table reference> that is directly contained in
the <table expression> that directly contains the <having clause>.

NOTE 78 – Outer reference and ‘‘qualifying scope’’ are defined in Subclause 6.6, ‘‘<column reference>’’.

6) Let DT be the declared type of the <value expression>.

7) If the <set function specification> specifies a <general set function> whose <set qualifier> is
DISTINCT and DT is a user-defined type, then the comparison form of DT shall be FULL.

8) If the <set function specification> specifies a <set function type> that is MAX or MIN and DT is
a user-defined type, then the comparison form of DT shall be FULL.

9) If the <set function specification> specifies a <set function type> that is AVG or SUM, then
DT shall not be a <collection type>, row type, user-defined type, reference type, or large object
string type.

10) If the <set function specification> specifies a <set function type> that is MAX or MIN, then DT
shall not be a <collection type>, row type, reference type, or large object string type.

11) If EVERY, ANY, or SOME is specified, then DT shall be boolean and the declared type of the
result is boolean.

12) If COUNT is specified, then the declared type of the result is exact numeric with implementation-
defined precision and scale of 0 (zero).

13) If MAX or MIN is specified, then the declared type of the result is DT.

14) If SUM or AVG is specified, then:

a) DT shall be a numeric type or an interval type.

b) If SUM is specified and DT is exact numeric with scale S, then the declared type of the
result is exact numeric with implementation-defined precision and scale S.

c) If AVG is specified and DT is exact numeric, then the declared type of the result is ex-
act numeric with implementation-defined precision not less than the precision of DT and
implementation-defined scale not less than the scale of DT.

d) If DT is approximate numeric, then the declared type of the result is approximate numeric
with implementation-defined precision not less than the precision of DT.

e) If DT is interval, then the declared type of the result is interval with the same precision as
DT.

15) If a <grouping operation> is specified, then:

a) <column reference> shall reference a grouping column of T.

b) The declared type of the result is exact numeric with an implementation-defined precision
and a scale of 0 (zero).

16) If the declared type of the result is character string, then the collating sequence and the co-
ercibility characteristic are determined as in Subclause 4.2.3, ‘‘Rules determining collating
sequence usage’’.

156 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.16 <set function specification>

Access Rules

None.

General Rules

1) Case:

a) If COUNT(�) is specified, then the result is the cardinality of T.

b) Otherwise, let TX be the single-column table that is the result of applying the <value
expression> to each row of T and eliminating null values. If one or more null values are
eliminated, then a completion condition is raised: warning — null value eliminated in set
function.

2) Case:

a) If DISTINCT is specified, then let TXA be the result of eliminating redundant duplicate
values from TX, using the comparison rules specified in Subclause 8.2, ‘‘<comparison predi-
cate>’’, to identify the redundant duplicate values.

b) Otherwise, let TXA be TX.

3) Case:

a) If the <general set function> COUNT is specified, then the result is the cardinality of TXA.

b) If TXA is empty, then the result is the null value.

c) If AVG is specified, then the result is the average of the values in TXA.

d) If MAX or MIN is specified, then the result is respectively the maximum or minimum value
in TXA. These results are determined using the comparison rules specified in Subclause 8.2,
‘‘<comparison predicate>’’. If DT is a user-defined type and the comparison of two values
in TXA results in unknown , then the maximum or minimum of TXA is implementation-
dependent.

e) If SUM is specified, then the result is the sum of the values in TXA. If the sum is not within
the range of the declared type of the result, then an exception condition is raised: data
exception — numeric value out of range.

f) If EVERY is specified, then

Case:

i) If the value of some element of TXA is false , then the result is false .

ii) Otherwise, the result is true .

g) If ANY or SOME is specified, then

Case:

i) If the value of some element of TXA is true , then the result is true .

ii) Otherwise, the result is false .

Scalar expressions 157

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.16 <set function specification>

h) If <grouping operation> is specified, then:

i) Let CR be the <column reference> contained in GO.

ii) Let COL1 be the column that is referenced by CR.

iii) Let COL2 be the column corresponding to COL1 in the group-by result GBR of the
innermost <query specification> that contains GO.

iv) Let GCN be the ordinal position of COL2 in the group-by result.

v) Let COL3 be the column in GBR whose ordinal position is GCN+1 (one).

vi) The result of the <grouping operation> is the value of COL3.

i) If <grouping operation> is specified, then let GCN be the ordinality of the column in the
group-by result that is referenced by the <column reference> contained in the <grouping
operation>. The result of the <grouping operation> is the value of that column in the
group-by result whose ordinality is GCN+1.

Conformance Rules

1) Without Feature T031, ‘‘BOOLEAN data type’’, conforming SQL language shall not contain a
<set function type> that specifies EVERY, ANY, or SOME.

2) Without Feature F561, ‘‘Full value expressions’’, or Feature F801, ‘‘Full set function’’, if a
<general set function> specifies DISTINCT, then the <value expression> shall be a column
reference.

3) Without Feature F441, ‘‘Extended set function support’’, if a <general set function> specifies or
implies ALL, then COUNT shall not be specified.

4) Without Feature F441, ‘‘Extended set function support’’, if a <general set function> specifies or
implies ALL, then the <value expression> shall contain a column reference that references a
column of T.

5) Without Feature F441, ‘‘Extended set function support’’, if the <value expression> contains a
column reference that is an outer reference, then the <value expression> shall be a column
reference.

6) Without Feature F441, ‘‘Extended set function support’’, no column reference contained in
a <set function specification> shall reference a column derived from a <value expression>
that generally contains a <set function specification> SFS2 without an intervening <routine
invocation>.

7) Without Feature T431, ‘‘CUBE and ROLLUP’’, conforming SQL language shall not contain a
<set function specification> that is a <grouping operation>.

8) Without Feature S024, ‘‘Enhanced structured types’’, in a <general set function>, if MAX or
MIN is specified, then the <value expression> shall not be of a structured type.

9) Without Feature S024, ‘‘Enhanced structured types’’, the declared type of a <general set func-
tion> shall not be structured type.

158 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.17 <numeric value function>

6.17 <numeric value function>

Function
Specify a function yielding a value of type numeric.

Format

<numeric value function> ::=
<position expression>

| <extract expression>
| <length expression>
| <cardinality expression>
| <absolute value expression>
| <modulus expression>

<position expression> ::=
<string position expression>

| <blob position expression>

<string position expression> ::=
POSITION <left paren> <string value expression>

IN <string value expression> <right paren>

<blob position expression> ::=
POSITION <left paren> <blob value expression>

IN <blob value expression> <right paren>

<length expression> ::=
<char length expression>

| <octet length expression>
| <bit length expression>

<char length expression> ::=
{ CHAR_LENGTH | CHARACTER_LENGTH }

<left paren> <string value expression> <right paren>

<octet length expression> ::=
OCTET_LENGTH <left paren> <string value expression> <right paren>

<bit length expression> ::=
BIT_LENGTH <left paren> <string value expression> <right paren>

<extract expression> ::=
EXTRACT <left paren> <extract field>

FROM <extract source> <right paren>

<extract field> ::=
<primary datetime field>

| <time zone field>

<time zone field> ::=
TIMEZONE_HOUR

| TIMEZONE_MINUTE

<extract source> ::=
<datetime value expression>

| <interval value expression>

Scalar expressions 159

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.17 <numeric value function>

<cardinality expression> ::=
CARDINALITY <left paren> <collection value expression> <right paren>

<absolute value expression> ::=
ABS <left paren> <numeric value expression> <right paren>

<modulus expression> ::=
MOD <left paren> <numeric value expression dividend> <comma>

<numeric value expression divisor><right paren>

<numeric value expression dividend> ::= <numeric value expression>

<numeric value expression divisor> ::= <numeric value expression>

Syntax Rules

1) If <position expression> is specified, then the declared type of the result is exact numeric with
implementation-defined precision and scale 0 (zero).

2) If <string position expression> is specified, then both <string value expression>s shall be <bit
value expression>s or both shall be <character value expression>s having the same character
repertoire.

3) If <extract expression> is specified, then

Case:

a) If <extract field> is a <primary datetime field>, then it shall identify a <primary date-
time field> of the <interval value expression> or <datetime value expression> immediately
contained in <extract source>.

b) If <extract field> is a <time zone field>, then the declared type of the <extract source> shall
be TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE.

4) If <extract expression> is specified, then

Case:

a) If <primary datetime field> does not specify SECOND, then the declared type of the result
is exact numeric with implementation-defined precision and scale 0 (zero).

b) Otherwise, the declared type of the result is exact numeric with implementation-defined
precision and scale. The implementation-defined scale shall not be less than the specified
or implied <time fractional seconds precision> or <interval fractional seconds precision>, as
appropriate, of the SECOND <primary datetime field> of the <extract source>.

5) If a <length expression> is specified, then the declared type of the result is exact numeric with
implementation-defined precision and scale 0 (zero).

6) If <cardinality expression> is specified, then the declared type of the result is exact numeric
with implementation-defined precision and scale 0 (zero).

7) If <absolute value expression> is specified, then the declared type of the result is the declared
type of the immediately contained <numeric value expression>.

160 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.17 <numeric value function>

8) If <modulus expression> is specified, then the declared type of each <numeric value expression>
shall be exact numeric with scale 0 (zero). The declared type of the result is the declared type of
the immediately contained <numeric value expression divisor>.

Access Rules

None.

General Rules

1) If the value of one or more <string value expression>s, <datetime value expression>s, <interval
value expression>s, and <collection value expression>s that are simply contained in a <numeric
value function> is the null value, then the result of the <numeric value function> is the null
value.

2) If <string position expression> is specified, then

Case:

a) If the first <string value expression> has a length of 0 (zero), then the result is 1 (one).

b) If the value of the first <string value expression> is equal to an identical-length substring of
contiguous characters or bits from the value of the second <string value expression>, then
the result is 1 (one) greater than the number of characters or bits within the value of the
second <string value expression> preceding the start of the first such substring.

c) Otherwise, the result is 0 (zero).

3) If <blob position expression> is specified, then:

Case:

a) If the first <blob value expression> has a length of 0 (zero), then the result is 1 (one).

b) If the value of the first <blob value expression> is equal to an identical-length substring
of contiguous octets from the value of the second <blob value expression>, then the result
is 1 (one) greater than the number of octets within the value of the second <blob value
expression> preceding the start of the first such substring.

c) Otherwise, the result is 0 (zero).

4) If <extract expression> is specified, then

Case:

a) If <extract field> is a <primary datetime field>, then the result is the value of the datetime
field identified by that <primary datetime field> and has the same sign as the <extract
source>.
NOTE 79 – If the value of the identified <primary datetime field> is zero or if <extract source> is
not an <interval value expression>, then the sign is irrelevant.

b) Otherwise, let TZ be the interval value of the implicit or explicit time zone associated with
the <datetime value expression>. If <extract field> is TIMEZONE_HOUR, then the result is
calculated as

EXTRACT (HOUR FROM TZ)

Scalar expressions 161

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.17 <numeric value function>

Otherwise, the result is calculated as

EXTRACT (MINUTE FROM TZ)

5) If a <char length expression> is specified, then let S be the <string value expression>.

Case:

a) If the most specific type of S is character string, then the result is the number of characters
in the value of S.
NOTE 80 – The number of characters in a character string is determined according to the seman-
tics of the character set of that character string.

b) Otherwise, the result is OCTET_LENGTH(S).

6) If an <octet length expression> is specified, then let S be the <string value expression>. The
result of the <octet length expression> is the smallest integer not less than the quotient of the
division (BIT_LENGTH(S)/8).

7) If a <bit length expression> is specified, then let S be the <string value expression>. The result
of the <bit length expression> is the number of bits in the value of S.

8) The result of <cardinality expression> is the number of elements of the result of the <collection
value expression>.

9) If <absolute value expression> is specified, then let N be the value of the immediately contained
<numeric value expression>.

Case:

a) If N is the null value, then the result is the null value.

b) If N � 0, then the result is N.

c) Otherwise, the result is �1 * N. If �1 * N is not representable by the result data type, then
an exception condition is raised: data exception — numeric value out of range.

10) If <modulus expression> is specified, then let N be the value of the immediately contained
<numeric value expression dividend> and let M be the value of the immediately contained
<numeric value expression divisor>.

Case:

a) If either N or M is the null value, then the result is the null value.

b) If M is zero, then an exception condition is raised: data exception — division by zero.

c) Otherwise, the result is the unique nonnegative exact numeric value R with scale 0 (zero)
such that all of the following are true:

i) R has the same sign as N.

ii) The absolute value of R is less than the absolute value of M.

iii) N = M * K + R for some exact numeric value K with scale 0 (zero).

162 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.17 <numeric value function>

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, a <numeric value function> shall not be a <cardi-
nality expression>.

2) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <numeric value function> shall
not be an <extract expression>.

3) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, and Feature F411, ‘‘Time zone
specification’’, a <numeric value function> shall not be an <extract expression> that specifies a
<time zone field>.

4) Without Feature F421, ‘‘National character’’, a <string value expression> simply contained in a
<length expression> shall not be of declared type NATIONAL CHARACTER LARGE OBJECT.

5) Without Feature T441, ‘‘ABS and MOD functions’’, conforming language shall not specify ABS
or MOD.

Scalar expressions 163

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

6.18 <string value function>

Function
Specify a function yielding a value of type character string or bit string.

Format

<string value function> ::=
<character value function>

| <blob value function>
| <bit value function>

<character value function> ::=
<character substring function>

| <regular expression substring function>
| <fold>
| <form-of-use conversion>
| <character translation>
| <trim function>
| <character overlay function>
| <specific type method>

<character substring function> ::=
SUBSTRING <left paren> <character value expression> FROM <start position>

[FOR <string length>] <right paren>

<regular expression substring function> ::=
SUBSTRING <left paren> <character value expression> FROM

<character value expression> FOR <escape character> <right paren>

<fold> ::= { UPPER | LOWER } <left paren> <character value expression> <right paren>

<form-of-use conversion> ::=
CONVERT <left paren> <character value expression>

USING <form-of-use conversion name> <right paren>

<character translation> ::=
TRANSLATE <left paren> <character value expression>

USING <translation name> <right paren>

<trim function> ::=
TRIM <left paren> <trim operands> <right paren>

<trim operands> ::=
[[<trim specification>] [<trim character>] FROM] <trim source>

<trim source> ::= <character value expression>

<trim specification> ::=
LEADING

| TRAILING
| BOTH

<trim character> ::= <character value expression>

<character overlay function> ::=
OVERLAY <left paren> <character value expression>
PLACING <character value expression>

164 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.18 <string value function>

FROM <start position>
[FOR <string length>] <right paren>

<specific type method> ::=
<user-defined type value expression> <period> SPECIFICTYPE

<blob value function> ::=
<blob substring function>

| <blob trim function>
| <blob overlay function>

<blob substring function> ::=
SUBSTRING <left paren> <blob value expression> FROM <start position>
[FOR <string length>] <right paren>

<blob trim function> ::=
TRIM <left paren> <blob trim operands> <right paren>

<blob trim operands> ::=
[[<trim specification>] [<trim octet>] FROM] <blob trim source>

<blob trim source> ::= <blob value expression>

<trim octet> ::= <blob value expression>

<blob overlay function> ::=
OVERLAY <left paren> <blob value expression>
PLACING <blob value expression>
FROM <start position>
[FOR <string length>] <right paren>

<bit value function> ::=
<bit substring function>

<bit substring function> ::=
SUBSTRING <left paren> <bit value expression> FROM <start position>

[FOR <string length>] <right paren>

<start position> ::= <numeric value expression>

<string length> ::= <numeric value expression>

Syntax Rules

1) The declared type of <string value function> is the declared type of the immediately contained
<character value function>, <blob value function>, or <bit value function>. If <string value
function> is <character value function>, then the coercibility and collating sequence of <string
value function> are the coercibility and collating sequence, respectively, of the simply contained
<character value function>.

2) The declared type, coercibility, and collating sequence of <character value function> are the
declared type, coercibility, and collating sequence, respectively, of the immediately contained
<character substring function>, <regular expression substring function>, <fold>, <form-of-use
conversion>, <character translation>, <trim function>, or <character overlay function>.

3) The declared type of a <start position> and <string length> shall be exact numeric with scale 0
(zero).

Scalar expressions 165

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

4) If <character substring function> is specified, then:

a) The declared type of the <character substring function> is variable-length character string
with maximum length equal to the fixed length or maximum variable length of the <charac-
ter value expression>. The character repertoire and form-of-use of the <character substring
function> are the same as the character repertoire and form-of-use of the <character value
expression>.

b) The collating sequence and the coercibility characteristic are determined as specified for
monadic operators in Subclause 4.2.3, ‘‘Rules determining collating sequence usage’’, where
the first operand of <character substring function> plays the role of the monadic operand.

5) If <regular expression substring function> is specified, then:

a) The declared types of the <escape character> and the <character value expression>s of the
<regular expression substring function> shall be character string with the same character
repertoire.

b) The declared type of the <regular expression substring function> is variable-length character
string with the same character repertoire and with maximum variable length of the first
<character value expression>.

c) The value of the <escape character> shall have length 1 (one).

d) The collating sequence and the coercibility characteristic are determined as specified for
monadic operators in Subclause 4.2.3, ‘‘Rules determining collating sequence usage’’, where
the first operand of <regular expression substring function> plays the role of the monadic
operand.

6) If <fold> is specified, then:

a) The declared type of the result of <fold> is the declared type of the <character value expres-
sion>.

b) The collating sequence and the coercibility characteristic are determined as specified for
monadic operators in Subclause 4.2.3, ‘‘Rules determining collating sequence usage’’, where
the operand of the <fold> is the monadic operand.

7) If <form-of-use conversion> is specified, then:

a) <form-of-use conversion> shall be simply contained in a <value expression> that is immedi-
ately contained in a <derived column> that is immediately contained in a <select sublist> or
shall immediately contain either a <simply value specification> that is a <host parameter
name> or a <value specification> that is a <host parameter specification>.

b) A <form-of-use conversion name> shall identify a form-of-use conversion.

c) The declared type of the result is variable-length character string with implementation-
defined maximum length. The character set of the result is the same as the character
repertoire of the <character value expression> and form-of-use determined by the form-of-
use conversion identified by the <form-of-use conversion name>. Let CR be that character
repertoire. The result has the Implicit coercibility characteristic and its collating sequence
is the default collating sequence of CR.

166 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.18 <string value function>

8) If <character translation> is specified, then:

a) A <translation name> shall identify a character translation.

b) The declared type of the <character translation> is variable-length character string with
implementation-defined maximum length and character repertoire equal to the character
repertoire of the target character set of the translation. Let CR be that character repertoire.
The result has the Implicit coercibility characteristic and its collating sequence is the default
collating sequence of CR.

9) If <trim function> is specified, then;

a) If FROM is specified, then:

i) Either <trim specification> or <trim character> or both shall be specified.

ii) If <trim specification> is not specified, then BOTH is implicit.

iii) If <trim character> is not specified, then ’ ’ is implicit.

b) Otherwise, let SRC be <trim source>.

TRIM (SRC)

is equivalent to

TRIM (BOTH ’ ’ FROM SRC)

c) The declared type of the <trim function> is variable-length character string with maximum
length equal to the fixed length or maximum variable length of the <trim source>.

d) If a <trim character> is specified, then <trim character> and <trim source> shall be compa-
rable.

e) The character repertoire and form-of-use of the <trim function> are the same as those of the
<trim source>.

f) The collating sequence and the coercibility characteristic are determined as specified for
monadic operators in Subclause 4.2.3, ‘‘Rules determining collating sequence usage’’, where
the <trim source> plays the role of the monadic operand.

10) If <character overlay function is specified, then:

a) Let CV be the first <character value expression>, let SP be the <start position>, and let RS
be the second <character value expression>.

b) If <string length> is specified, then let SL be <string length>; otherwise, let SL be CHAR_
LENGTH(RS).

c) The <character overlay function> is equivalent to:

SUBSTRING (CV FROM 1 FOR SP - 1)
|| RS
|| SUBSTRING (CV FROM SP + SL)

Scalar expressions 167

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

11) If <specific type method> is specified, then the declared type of the <specific type method> is
variable-length character string with maximum length implementation-defined. The character
set of the character string is SQL_IDENTIFIER.

12) The declared type of <blob value function> is the declared type of the immediately contained
<blob substring function>, <blob trim function>, or <blob overlay function>.

13) If <blob substring function> is specified, then the declared type of the <blob substring func-
tion> is binary string with maximum length equal to the maximum length of the <blob value
expression>.

14) If <blob trim function> is specified, then:

a) If FROM is specified, then:

i) Either <trim specification> or <trim octet> or both shall be specified.

ii) If <trim specification> is not specified, then BOTH is implicit.

iii) If <trim octet> is not specified, then X’00’ is implicit.

b) Otherwise, let SRC be <trim source>.

TRIM (SRC)

is equivalent to

TRIM (BOTH X’00’ FROM SRC)

c) The declared type of the <blob trim function> is binary string with maximum length equal
to the maximum length of the <blob trim source>.

15) If <blob overlay function is specified, then:

a) Let BV be the first <blob value expression>, let SP be the <start position>, and let RS be
the second <blob value expression>.

b) If <string length> is specified, then let SL be <string length>; otherwise, let SL be OCTET_
LENGTH(RS).

c) The <blob overlay function> is equivalent to:

SUBSTRING (BV FROM 1 FOR SP - 1)
|| RS
|| SUBSTRING (BV FROM SP + SL)

16) The declared type of <bit value function> is the declared type of the immediately contained <bit
substring function>.

17) If <bit substring function> is specified, then the declared type of the <bit substring function> is
variable-length bit string with maximum length equal to the fixed length or maximum variable
length of the <bit value expression>.

168 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.18 <string value function>

Access Rules

1) Case:

a) If <string value function> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
USAGE for every translation identified by a <translation name> contained in the <string
value expression>.

b) Otherwise, the current privileges shall include USAGE for every translation identified by a
<translation name> contained in the <string value expression>.

NOTE 81 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) The result of <string value function> is the result of the immediately contained <character value
function>, <blob value function>, or <bit value function>.

2) The result of <character value function> is the result of the immediately contained <character
substring function>, <regular expression substring function>, <form-of-use conversion>, <char-
acter translation>, <trim function>, <character overlay function>, or <specific type method>.

3) If <character substring function> is specified, then:

a) Let C be the value of the <character value expression>, let LC be the length of C, and let S
be the value of the <start position>.

b) If <string length> is specified, then let L be the value of <string length> and let E be S+L.
Otherwise, let E be the larger of LC + 1 and S.

c) If either C, S, or L is the null value, then the result of the <character substring function> is
the null value.

d) If E is less than S, then an exception condition is raised: data exception — substring error.

e) Case:

i) If S is greater than LC or if E is less than 1 (one), then the result of the <character
substring function> is a zero-length string.

ii) Otherwise,

1) Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LC+1. Let L1
be E1�S1.

2) The result of the <character substring function> is a character string containing
the L1 characters of C starting at character number S1 in the same order that the
characters appear in C.

4) If <regular expression substring function> is specified, then:

a) Let C be the result of the first <character value expression>, let R be the result of the second
<character value expression>, and let E be the result of the <escape character>.

Scalar expressions 169

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

b) If one or more of C, R or E is the null value, then the result of the <regular expression
substring function> is the null value.

c) Otherwise, R shall contain exactly two occurrences of E followed by the <double quote>
character. There shall exist three substrings, R1, R2, and R3 of R, such that R1, R2, and R3
are regular expressions and

’R’ = ’R1’ || ’E’ || ’"’ || ’R2’ || ’E’ || ’"’ || ’R3’

is true.

d) If the predicate

’C’ SIMILAR TO ’R1’ || ’R2’ || ’R3’ ESCAPE ’E’

is not true, then the result of the <regular expression substring function> is the null value.

e) Otherwise, the result S of the <regular expression substring function> satisfies the following
conditions:

i) S is a substring of C such that there are substrings S1 and S2 and the predicate

’C’ = ’S1’ || ’S’ || ’S2’

is true.

ii) The predicate

’S1’ SIMILAR TO ’R1’ ESCAPE ’E’

is true and, for any proper substring S of S1, the predicate

’S’ SIMILAR TO ’R1’ ESCAPE ’E’

is false.

iii) The predicate

’S3’ SIMILAR TO ’R2’ ESCAPE ’E’

is true and for any proper substring S3 of S, the predicate

’S3’ SIMILAR TO ’R2’ ESCAPE ’E’

is false.

5) If <fold> is specified, then:

a) Let S be the value of the <character value expression>.

b) If S is the null value, then the result of the <fold> is the null value.

170 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.18 <string value function>

c) Case:

i) If UPPER is specified, then the result of the <fold> is a copy of S in which every lower
case character that has a corresponding upper case character or characters in the
character set of S and every title case character that has a corresponding upper case
character or characters in the character set of S is replaced by that upper case character
or characters.

ii) If LOWER is specified, then the result of the <fold> is a copy of S in which every in
which every upper case character that has a corresponding lower case character or char-
acters in the character set of S and every title case character that has a corresponding
lower case character or characters in the character set of S is replaced by that lower
case character or characters.

6) If a <character translation> is specified, then

Case:

a) If the value of <character value expression> is the null value, then the result of the <char-
acter translation> is the null value.

b) If <translation name> identifies a translation descriptor whose indication of how the trans-
lation is performed specifies an SQL-invoked routine TR, then the result of the <character
translation> is the result of the invocation of TR with a single SQL argument that is the
<character value expression> contained in the <character translation>.

c) Otherwise, the value of the <character translation> is the value returned by the translation
identified by the <existing translation name> specified in the translation descriptor of the
translation identified by <translation name>.

7) If a <form-of-use conversion> is specified, then

Case:

a) If the value of <character value expression> is the null value, then the result of the <form-
of-use conversion> is the null value.

b) Otherwise, the value of the <form-of-use conversion> is the value of the <character value
expression> after the application of the form-of-use conversion specified by <form-of-use
conversion name>.

8) If <trim function> is specified, then:

a) Let S be the value of the <trim source>.

b) If <trim character> is specified, then let SC be the value of <trim character>; otherwise, let
SC be <space>.

c) If either S or SC is the null value, then the result of the <trim function> is the null value.

d) If the length in characters of SC is not 1 (one), then an exception condition is raised: data
exception — trim error.

e) Case:

i) If BOTH is specified or if no <trim specification> is specified, then the result of the <trim
function> is the value of S with any leading or trailing characters equal to SC removed.

Scalar expressions 171

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

ii) If TRAILING is specified, then the result of the <trim function> is the value of S with
any trailing characters equal to SC removed.

iii) If LEADING is specified, then the result of the <trim function> is the value of S with
any leading characters equal to SC removed.

9) If <specific type method> is specified, then:

a) Let V be the value of the <user-defined type value expression>.

b) Case:

i) If V is the null value, then RV is the null value.

ii) Otherwise:

1) Let UDT be the most specific type of V.

2) Let UDTN be the <user-defined type name> of UDT.

3) Let CN be the <catalog name> contained in UDTN, let SN be the <unqualified
schema name> contained in UDTN, and let UN be the <qualified identifier> con-
tained in UDTN. Let RV be:

"CN"."SN"."UN"

c) The result of <specific type method> is RV.

10) The result of <blob value function> is the result of the simply contained <blob substring func-
tion>, <blob trim function>, or <blob overlay function>.

11) If <blob substring function> is specified, then

a) Let B be the value of the <blob value expression>, let LB be the length in octets of B, and
let S be the value of the <start position>.

b) If <string length> is specified, then let L be the value of <string length> and let E be S+L.
Otherwise, let E be the larger of LB+1 and S.

c) If either B, S, or L is the null value, then the result of the <blob substring function> is the
null value.

d) If E is less than S, then an exception condition is raised: data exception — substring error.

e) Case:

i) If S is greater than LB or if E is less than 1 (one), then the result of the <blob substring
function> is a zero-length string.

ii) Otherwise:

1) Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LB+1. Let L1
be E1�S1.

2) The result of the <blob substring function> is a binary large object string containing
L1 octets of B starting at octet number S1 in the same order that the octets appear
in B.

172 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.18 <string value function>

12) If <blob trim function> is specified, then

a) Let S be the value of the <trim source>.

b) Let SO be the value of <trim octet>.

c) If either S or SO the null value, then the result of the <blob trim function> is the null value.

d) If the length in octets of SO is not 1 (one), then an exception condition is raised: data
exception — trim error.

e) Case:

i) If BOTH is specified or if no <trim specification> is specified, then the result of the <blob
trim function> is the value of S with any leading or trailing octets equal to SO removed.

ii) If TRAILING is specified, then the result of the <blob trim function> is the value of S
with any trailing octets equal to SO removed.

iii) If LEADING is specified, then the result of the <blob trim function> is the value of S
with any leading octets equal to SO removed.

13) The result of <bit value function> is the result of the simply contained <bit substring function>.

14) If <bit substring function> is specified, then:

a) Let B be the value of the <bit value expression>, let LB be the length in bits of B, and let S
be the value of the <start position>.

b) If <string length> is specified, then let L be the value of <string length> and let E be S+L.
Otherwise, let E be the larger of LB + 1 and S.

c) If either B, S, or L is the null value, then the result of the <bit substring function> is the
null value.

d) If E is less than S, then an exception condition is raised: data exception — substring error.

e) Case:

i) If S is greater than LB or if E is less than 1 (one), then the result of the <bit substring
function> is a zero-length string.

ii) Otherwise,

1) Let S1 be the larger of S and 1 (one). Let E1 be the smaller of E and LB+1. Let L1
be E1�S1.

2) The result of the <bit substring function> is a bit string containing L1 bits of B
starting at bit number S1 in the same order that the bits appear in B.

15) If the result of <string value expression> is a zero-length character string, then it is
implementation-defined whether an exception condition is raised: data exception — zero-length
character string.

Scalar expressions 173

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.18 <string value function>

Conformance Rules

1) Without Feature T581, ‘‘Regular expression substring function’’, a <string value function> shall
not be a <regular expression substring function>.

2) Without Feature T312, ‘‘OVERLAY function’’, conforming SQL language shall not specify a
<character overlay function> or a <blob overlay function>.

3) Without Feature T042, ‘‘Extended LOB data type support’’, conforming Core SQL language shall
not contain any <blob value function>.

4) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of a <character
value function> shall not be CHARACTER LARGE OBJECT or NATIONAL CHARACTER
LARGE OBJECT.

5) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall contain no
<character translation>.

6) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall contain no
<form-of-use conversion>.

7) Without Feature F511, ‘‘BIT data type’’, conforming SQL language shall contain no <bit value
function>.

8) Without Feature F421, ‘‘National character’’, the <character value expression> simply contained
in <character substring function> shall not be of declared type NATIONAL CHARACTER
LARGE OBJECT.

9) Without Feature F421, ‘‘National character’’, <trim source> shall not be of declared type
NATIONAL CHARACTER LARGE OBJECT.

10) Without Feature S261, ‘‘Specific type method’’, conforming SQL language shall not specify
<specific type method>.

174 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.19 <datetime value function>

6.19 <datetime value function>

Function
Specify a function yielding a value of type datetime.

Format

<datetime value function> ::=
<current date value function>

| <current time value function>
| <current timestamp value function>
| <current local time value function>
| <current local timestamp value function>

<current date value function> ::=
CURRENT_DATE

<current time value function> ::=
CURRENT_TIME [<left paren> <time precision> <right paren>]

<current local time value function> ::=
LOCALTIME [<left paren> <time precision> <right paren>]

<current timestamp value function> ::=
CURRENT_TIMESTAMP [<left paren> <timestamp precision> <right paren>]

<current local timestamp value function> ::=
LOCALTIMESTAMP [<left paren> <timestamp precision> <right paren>]

Syntax Rules

1) The declared type of a <current date value function> is DATE. The declared type of a <current
time value function> is TIME WITH TIME ZONE. The declared type of a <current timestamp
value function> is TIMESTAMP WITH TIME ZONE.
NOTE 82 – See the Syntax Rules of Subclause 6.1, ‘‘<data type>’’, for rules governing <time precision>
and <timestamp precision>.

2) If <time precision> TP is specified, then LOCALTIME(TP) is equivalent to:

CAST (CURRENT_TIME(TP) AS TIME(TP) WITHOUT TIME ZONE)

Otherwise, LOCALTIME is equivalent to:

CAST (CURRENT_TIME AS TIME WITHOUT TIME ZONE)

3) If <timestamp precision> TP is specified, then LOCALTIMESTAMP(TP) is equivalent to:

CAST (CURRENT_TIMESTAMP(TP) AS TIMESTAMP(TP) WITHOUT TIME ZONE)

Otherwise, LOCALTIMESTAMP is equivalent to:

CAST (CURRENT_TIMESTAMP AS TIMESTAMP WITHOUT TIME ZONE)

Scalar expressions 175

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.19 <datetime value function>

Access Rules

None.

General Rules

1) The <datetime value function>s CURRENT_DATE, CURRENT_TIME, and CURRENT_
TIMESTAMP respectively return the current date, current time, and current timestamp; the
time and timestamp values are returned with time zone displacement equal to the current time
zone displacement of the SQL-session.

2) If specified, <time precision> and <timestamp precision> respectively determine the precision of
the time or timestamp value returned.

3) Let S be an <SQL procedure statement> that is not generally contained in a <triggered ac-
tion>. All <datetime value function>s that are generally contained, without an intervening
<routine invocation> whose subject routines do not include an SQL function, in <value expres-
sion>s that are contained either in S without an intervening <SQL procedure statement> or
in an <SQL procedure statement> contained in the <triggered action> of a trigger activated
as a consequence of executing S, are effectively evaluated simultaneously. The time of eval-
uation of a <datetime value function> during the execution of S and its activated triggers is
implementation-dependent.
NOTE 83 – Activation of triggers is defined in Subclause 4.35.2, ‘‘Execution of triggers’’.

Conformance Rules

1) Without Feature F555, ‘‘Enhanced seconds precision’’, if LOCALTIME is specified, then <time
precision>, if specified, shall be 0 (zero).

2) Without Feature F555, ‘‘Enhanced seconds precision’’, if LOCALTIMESTAMP is specified, then
<timestamp precision>, if specified, shall be either 0 (zero) or 6.

3) Without Feature F411, ‘‘Time zone specification’’, CURRENT_TIME and CURRENT_TIMESTAMP
shall not be specified.

176 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.20 <interval value function>

6.20 <interval value function>

Function
Specify a function yielding a value of type interval.

Format

<interval value function> ::=
<interval absolute value function>

<interval absolute value function> ::=
ABS <left paren> <interval value expression> <right paren>

Syntax Rules

1) If <interval absolute value expression> is specified, then the declared type of the result is the
declared type of the <interval value expression>.

Access Rules

None.

General Rules

1) If <interval absolute value expression> is specified, then let N be the value of the <interval
value expression>.

Case:

a) If N is the null value, then the result is the null value.

b) If N � 0 (zero), then the result is N.

c) Otherwise, the result is �1 * N.

Conformance Rules

1) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming Core SQL shall contain
no <interval value function>.

Scalar expressions 177

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.21 <case expression>

6.21 <case expression>

Function
Specify a conditional value.

Format

<case expression> ::=
<case abbreviation>

| <case specification>

<case abbreviation> ::=
NULLIF <left paren> <value expression> <comma>

<value expression> <right paren>
| COALESCE <left paren> <value expression>

{ <comma> <value expression> }... <right paren>

<case specification> ::=
<simple case>

| <searched case>

<simple case> ::=
CASE <case operand>
<simple when clause>...
[<else clause>]

END

<searched case> ::=
CASE

<searched when clause>...
[<else clause>]

END

<simple when clause> ::= WHEN <when operand> THEN <result>

<searched when clause> ::= WHEN <search condition> THEN <result>

<else clause> ::= ELSE <result>

<case operand> ::= <value expression>

<when operand> ::= <value expression>

<result> ::=
<result expression>

| NULL

<result expression> ::= <value expression>

178 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.21 <case expression>

Syntax Rules

1) NULLIF (V1, V2) is equivalent to the following <case specification>:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

2) COALESCE (V1, V2) is equivalent to the following <case specification>:

CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END

3) ‘‘COALESCE (V1, V2, . . . , Vn)’’, for n >= 3, is equivalent to the following <case specification>:

CASE WHEN V1 IS NOT NULL THEN V1 ELSE COALESCE (V2, . . . , Vn) END

4) If a <case specification> specifies a <simple case>, then let CO be the <case operand>:

a) CO shall not generally contain a <routine invocation> whose subject routine is an SQL-
invoked routine that is possibly non-deterministic or that possibly modifies SQL-data.

b) The declared type of each <when operand> WO shall be comparable with the declared type
of the <case operand>.

c) The <case specification> is equivalent to a <searched case> in which each <searched when
clause> specifies a <search condition> of the form ‘‘CO=WO’’.

5) At least one <result> in a <case specification> shall specify a <result expression>.

6) If an <else clause> is not specified, then ELSE NULL is implicit.

7) The declared type of a <case specification> is determined by applying Subclause 9.3, ‘‘Data
types of results of aggregations’’, to the declared types of all <result expression>s in the <case
specification>.

Access Rules

None.

General Rules

1) Case:

a) If a <result> specifies NULL, then its value is the null value.

b) If a <result> specifies a <value expression>, then its value is the value of that <value
expression>.

2) Case:

a) If the <search condition> of some <searched when clause> in a <case specification> is true,
then the value of the <case specification> is the value of the <result> of the first (leftmost)
<searched when clause> whose <search condition> is true, cast as the declared type of the
<case specification>.

Scalar expressions 179

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.21 <case expression>

b) If no <search condition> in a <case specification> is true, then the value of the <case ex-
pression> is the value of the <result> of the explicit or implicit <else clause>, cast as the
declared type of the <case specification>.

Conformance Rules

1) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of a <result> sim-
ply contained in a <case expression> shall not be BINARY LARGE OBJECT or CHARACTER
LARGE OBJECT.

2) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data type
support’’, the declared type of a <result> simply contained in a <case expression> shall not be
NATIONAL CHARACTER LARGE OBJECT.

180 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

6.22 <cast specification>

Function
Specify a data conversion.

Format

<cast specification> ::=
CAST <left paren> <cast operand> AS <cast target> <right paren>

<cast operand> ::=
<value expression> | <implicitly typed value specification>

<cast target> ::=
<domain name>

| <data type>

Syntax Rules

1) Case:

a) If a <domain name> is specified, then let TD be the <data type> of the specified domain.

b) If a <data type> is specified, then let TD be the specified <data type>.

2) The declared type of the result of the <cast specification> is TD.

3) If the <cast operand> is a <value expression>, then let SD be the declared type of the <value
expression>.

4) Let C be some column and let CO be the <cast operand> of a <cast specification> CS. C is a leaf
column of CS is CO consists of a single column reference that identifies C or of a single <cast
specification> CS1 for which C is a leaf column.

5) If the <cast operand> specifies an <empty specification>, then TD shall be a collection type.

6) If the <cast operand> is a <value expression> and neither TD nor SD is a collection type, then
the valid combinations of TD and SD in a <cast specification> are given by the following table.
‘‘Y’’ indicates that the combination is syntactically valid without restriction; ‘‘M’’ indicates that
the combination is valid subject to other Syntax Rules in this Subclause being satisfied; and ‘‘N’’
indicates that the combination is not valid:

Scalar expressions 181

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

<data type>
SD of <data type> of TD
<value
expression> EN AN VC FC VB FB D T TS YM DT BO UDT CL BL RT CT RW

EN Y Y Y Y N N N N N M M N M Y N M N N
AN Y Y Y Y N N N N N N N N M Y N M N N
C Y Y Y Y Y Y Y Y Y Y Y Y M Y N M N N
B N N Y Y Y Y N N N N N N M Y N M N N
D N N Y Y N N Y N Y N N N M Y N M N N
T N N Y Y N N N Y Y N N N M Y N M N N
TS N N Y Y N N Y Y Y N N N M Y N M N N
YM M N Y Y N N N N N Y N N M Y N M N N
DT M N Y Y N N N N N N Y N M Y N M N N
BO N N Y Y N N N N N N N Y M Y N M N N
UDT M M M M M M M M M M M M M M M M N N
BL N N N N N N N N N N N N M N Y M N N
RT M M M M M M M M M M M M M M M M N N
CT N N N N N N N N N N N N N N N N M N
RW N N N N N N N N N N N N N N N N N N

Where:

EN = Exact Numeric
AN = Approximate Numeric
C = Character (Fixed- or Variable-length, or character large object)
FC = Fixed-length Character
VC = Variable-length Character
CL = Character Large Object
B = Bit String (Fixed- or Variable-length)
FB = Fixed-length Bit String
VB = Variable-length Bit String
D = Date
T = Time
TS = Timestamp
YM = Year-Month Interval
DT = Day-Time Interval
BO = Boolean
UDT = User-Defined Type
BL = Binary Large Object
RT = Reference type
CT = Collection type
RW = Row type

7) If TD is an interval and SD is exact numeric, then TD shall contain only a single <primary
datetime field>.

8) If TD is exact numeric and SD is an interval, then SD shall contain only a single <primary
datetime field>.

9) If SD is character string and TD is fixed-length, variable-length, or large object character string,
then the character repertoires of SD and TD shall be the same.

10) If TD is a fixed-length, variable-length or large object character string, then the collating se-
quence of the result of the <cast specification> is the default collating sequence for the character
repertoire of TD and the result of the <cast specification> has the Coercible coercibility charac-
teristic.

182 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

11) If either SD or TD is a user-defined type, then there shall be a data type P such that:

a) The type designator of P is in the type precedence list of SD.

b) There is a user-defined cast CFp whose user-defined cast descriptor includes P as the source
data type and TD as the target data type.

c) The type designator of no other data type Q that is included as the source data type in the
user-defined cast descriptor of some user-defined cast CFq that has TD as the target data
type precedes the type designator of P in the type precedence list of SD.

NOTE 84 – Source type is defined in Subclause 4.8, ‘‘User-defined types’’.

12) If either SD or TD is a reference type, then:

a) Let RTSD and RTTD be the referenced types of SD and TD, respectively.

b) If <data type> is specified and contains a <scope clause>, then let STD be that scope.
Otherwise, let STD, possibly empty, be the scope included in the reference type descriptor of
SD.

c) Either RSTD and RTTD shall be compatible, or there shall be a data type P in the type
precedence list of SD such that all of the following are satisfied:

i) There is a user-defined cast CFP whose user-defined cast descriptor includes P as the
source data type and TD as the target data type.

ii) No other data type Q that is included as the source data type in the user-defined cast
descriptor of some user-defined cast CFQ that has TD as the target data type precedes P
in the type precedence list of SD.

13) If SD is a collection type, then:

a) Let ESD be the <element type> of SD.

b) Let ETD be the <element type> of TD.

c) The <cast specification>

a) CAST (VALUE AS ETD)

where VALUE is a <value expression> of declared type ESD, shall be permitted by the
Syntax Rules of this Subclause.

14) If <domain name> is specified, then let D be the domain identified by the <domain name>. If
the <cast specification> is not contained in a <schema definition>, then the schema identified
by the explicit or implicit qualifier of the <domain name> shall include the descriptor of D. If
the <cast specification> is contained in a <schema definition> S, then S shall contain a <schema
element> that creates the descriptor of D.

Access Rules

1) If <domain name> is specified, then

Scalar expressions 183

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

Case:

a) If <cast specification> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
USAGE on the domain identified by <domain name>.

b) Otherwise, the current privileges shall include USAGE on the domain identified by <domain
name>.

NOTE 85 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

2) If either SD or TD is a user-defined type, then

Case:

a) If <cast specification> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
EXECUTE on CFp.

b) Otherwise, the current privileges shall include EXECUTE on CFp.
NOTE 86 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) If the <cast operand> is a <value expression> VE, then let SV be its value.

2) Case:

a) If the <cast operand> specifies NULL, then TV is the null value.

b) If the <cast operand> specifies an <empty specification>, then TV is an empty collection of
declared type TD.

c) If SV is the null value, then the result is the null value.

d) Otherwise, let TV be the result of the <cast specification> as specified in the remaining
General Rules of this Subclause.

3) If either SD or TD is a user-defined type, then:

a) Let CP be the cast function contained in the user-defined cast descriptor of CFp.

b) The General Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with a static SQL
argument list that has a single SQL-argument that is <value expression> and with subject
routine CP, yielding value TR that is the result of the invocation of CP.

c) TV is the result of

CAST (TR AS TD)

4) If either SD or TD is a reference type, then

Case:

a) If RSTD and RTTD are compatible, then:

i) TV is SV.

184 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

ii) The scope in the reference type descriptor of TV is STD.

b) Otherwise:

i) Let CP be the cast function contained in the user-defined cast descriptor of CPP.

ii) The General Rules of Subclause 10.4, ‘‘<routine invocation>’’, are applied with a static
argument list that has a single SQL-argument that is a <value expression> and with
subject routine CP, yielding value TV that is the result of the invocation of CP.

iii) The scope in the reference type descriptor of TV is STD.

5) If SD is an array type, then:

a) Let n be the number of elements in SV. Let SVEi be the i-th element of SV.

b) For i varying from 1 (one) to n, the following <cast specification> is applied:

CAST (SVEi AS ETD)

yielding value TVEi.

c) TV is the array with elements TVEi, 1 (one) � i � n.

6) If TD is exact numeric, then

Case:

a) If SD is exact numeric or approximate numeric, then

Case:

i) If there is a representation of SV in the data type TD that does not lose any leading sig-
nificant digits after rounding or truncating if necessary, then TV is that representation.
The choice of whether to round or truncate is implementation-defined.

ii) Otherwise, an exception condition is raised: data exception — numeric value out of
range.

b) If SD is character string, then SV is replaced by SV with any leading or trailing <space>s
removed.

Case:

i) If SV does not comprise a <signed numeric literal> as defined by the rules for <literal>
in Subclause 5.3, ‘‘<literal>’’, then an exception condition is raised: data exception —
invalid character value for cast.

ii) Otherwise, let LT be that <signed numeric literal>. The <cast specification> is equiva-
lent to

CAST (LT AS TD)

c) If SD is an interval data type, then

Case:

i) If there is a representation of SV in the data type TD that does not lose any leading
significant digits, then TV is that representation.

Scalar expressions 185

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

ii) Otherwise, an exception condition is raised: data exception — numeric value out of
range.

7) If TD is approximate numeric, then

Case:

a) If SD is exact numeric or approximate numeric, then

Case:

i) If there is a representation of SV in the data type TD that does not lose any leading sig-
nificant digits after rounding or truncating if necessary, then TV is that representation.
The choice of whether to round or truncate is implementation-defined.

ii) Otherwise, an exception condition is raised: data exception — numeric value out of
range.

b) If SD is character string, then SV is replaced by SV with any leading or trailing <space>s
removed.

Case:

i) If SV does not comprise a <signed numeric literal> as defined by the rules for <literal>
in Subclause 5.3, ‘‘<literal>’’, then an exception condition is raised: data exception —
invalid character value for cast.

ii) Otherwise, let LT be that <signed numeric literal>. The <cast specification> is equiva-
lent to

CAST (LT AS TD)

8) If TD is fixed-length character string, then let LTD be the length in characters of TD.

Case:

a) If SD is exact numeric, then let YP be the shortest character string that conforms to the
definition of <exact numeric literal> in Subclause 5.3, ‘‘<literal>’’, whose scale is the same as
the scale of SD and whose interpreted value is the absolute value of SV.

If SV is less than 0 (zero), then let Y be the result of

’�’ || YP

Otherwise, let Y be YP.

Case:

i) If Y contains any <SQL language character> that is not in the repertoire of TD, then an
exception condition is raised: data exception — invalid character value for cast.

ii) If the length in characters LY of Y is equal to LTD, then TV is Y.

iii) If the length in characters LY of Y is less than LTD, then TV is Y extended on the right
by LTD�LY <space>s.

iv) Otherwise, an exception condition is raised: data exception — string data, right trunca-
tion.

186 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

b) If SD is approximate numeric, then:

i) Let YP be a character string as follows:

Case:

1) If SV equals 0 (zero), then YP is ’0E0’.

2) Otherwise, YP is the shortest character string that conforms to the definition of
<approximate numeric literal> in Subclause 5.3, ‘‘<literal>’’, whose interpreted value
is equal to the absolute value of SV and whose <mantissa> consists of a single
<digit> that is not ’0’ (zero), followed by a <period> and an <unsigned integer>.

ii) If SV is less than 0 (zero), then let Y be the result of

’�’ || YP

Otherwise, let Y be YP.

iii) Case:

1) If Y contains any <SQL language character> that is not in the repertoire of TD, then
an exception condition is raised: data exception — invalid character value for cast.

2) If the length in characters LY of Y is equal to LTD, then TV is Y.

3) If the length in characters LY of Y is less than LTD, then TV is Y extended on the
right by LTD�LY <space>s.

4) Otherwise, an exception condition is raised: data exception — string data, right
truncation.

c) If SD is fixed-length character string, variable-length character string, or large object char-
acter string, then

Case:

i) If the length in characters of SV is equal to LTD, then TV is SV.

ii) If the length in characters of SV is larger than LTD, then TV is the first LTD characters
of SV. If any of the remaining characters of SV are non-<space> characters, then a
completion condition is raised: warning — string data, right truncation.

iii) If the length in characters M of SV is smaller than LTD, then TV is SV extended on the
right by LTD�M <space>s.

d) If SD is a fixed-length bit string or variable-length bit string, then let LSV be the value of
BIT_LENGTH(SV) and let B be the BIT_LENGTH of the character with the smallest BIT_
LENGTH in the form-of-use of TD. Let PAD be the value of the remainder of the division
LSV/B. Let NC be a character whose bits all have the value 0 (zero).

If PAD is not 0 (zero), then append (B � PAD) 0-valued bits to the least significant end of
SV; a completion condition is raised: warning — implicit zero-bit padding.

Let SVC be the possibly padded value of SV expressed as a character string without regard
to valid character encodings and let LTDS be a character string of LTD characters of value
NC characters in the form-of-use of TD.

Scalar expressions 187

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

TV is the result of

SUBSTRING (SVC || LTDS FROM 1 FOR LTD)

Case:

i) If the length of TV is less than the length of SVC, then a completion condition is raised:
warning — string data, right truncation.

ii) If the length of TV is greater than the length of SVC, then a completion condition is
raised: warning — implicit zero-bit padding.

e) If SD is a datetime data type or an interval data type, then let Y be the shortest character
string that conforms to the definition of <literal> in Subclause 5.3, ‘‘<literal>’’, and such that
the interpreted value of Y is SV and the interpreted precision of Y is the precision of SD. If
SV is an interval, then <sign> shall be specified within <unquoted interval string> in the
literal Y.

Case:

i) If Y contains any <SQL language character> that is not in the repertoire of TD, then an
exception condition is raised: data exception — invalid character value for cast.

ii) If the length in characters LY of Y is equal to LTD, then TV is Y.

iii) If the length in characters LY of Y is less than LTD, then TV is Y extended on the right
by LTD�LY <space>s.

iv) Otherwise, an exception condition is raised: data exception — string data, right trunca-
tion.

f) If SD is boolean, then

Case:

i) If SV is true and LTD is not less than 4, then TV is ’TRUE’ extended on the right by
LTD�4 <space>s.

ii) If SV is false and LTD is not less than 5, then TV is ’FALSE’ extended on the right by
LTD�5 <space>s.

iii) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

9) If TD is variable-length character string or large object character string, then let MLTD be the
maximum length in characters of TD.

Case:

a) If SD is exact numeric, then let YP be the shortest character string that conforms to the
definition of <exact numeric literal> in Subclause 5.3, ‘‘<literal>’’, whose scale is the same as
the scale of SD and whose interpreted value is the absolute value of SV.

If SV is less than 0 (zero), then let Y be the result of

’�’ || YP

Otherwise, let Y be YP.

Case:

188 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

i) If Y contains any <SQL language character> that is not in the repertoire of TD, then an
exception condition is raised: data exception — invalid character value for cast.

ii) If the length in characters LY of Y is less than or equal to MLTD, then TV is Y.

iii) Otherwise, an exception condition is raised: data exception — string data, right trunca-
tion.

b) If SD is approximate numeric, then

i) Let YP be a character string as follows:

Case:

1) If SV equals 0 (zero), then YP is ’0E0’.

2) Otherwise, YP is the shortest character string that conforms to the definition of
<approximate numeric literal> in Subclause 5.3, ‘‘<literal>’’, whose interpreted value
is equal to the absolute value of SV and whose <mantissa> consists of a single
<digit> that is not ’0’, followed by a <period> and an <unsigned integer>.

ii) If SV is less than 0 (zero), then let Y be the result of

’�’ || YP

Otherwise, let Y be YP.

iii) Case:

1) If Y contains any <SQL language character> that is not in the repertoire of TD, then
an exception condition is raised: data exception — invalid character value for cast.

2) If the length in characters LY of Y is less than or equal to MLTD, then TV is Y.

3) Otherwise, an exception condition is raised: data exception — string data, right
truncation.

c) If SD is fixed-length character string, variable-length character string, or large object char-
acter string, then

Case:

i) If the length in characters of SV is less than or equal to MLTD, then TV is SV.

ii) If the length in characters of SV is larger than MLTD, then TV is the first MLTD
characters of SV. If any of the remaining characters of SV are non-<space> characters,
then a completion condition is raised: warning — string data, right truncation.

d) If SD is a fixed-length bit string or variable-length bit string, then let LSV be the value of
BIT_LENGTH(SV) and let B be the BIT_LENGTH of the character with the smallest BIT_
LENGTH in the form-of-use of TD. Let PAD be the value of the remainder of the division
LSV/B.

If PAD is not 0 (zero), then append (B � PAD) 0-valued bits to the least significant end of
SV; a completion condition is raised: warning — implicit zero-bit padding.

Let SVC be the possible padded value of SV expressed as a character string without regard
to valid character encodings.

Scalar expressions 189

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

Case:

i) If CHARACTER_LENGTH (SVC) is not greater than MLTD, then TV is SVC.

ii) Otherwise, TV is the result of

SUBSTRING (SVC FROM 1 FOR MLTD)

If the length of TV is less than the length of SVC, then a completion condition is raised:
warning — string data, right truncation.

e) If SD is a datetime data type or an interval data type then let Y be the shortest character
string that conforms to the definition of <literal> in Subclause 5.3, ‘‘<literal>’’, and such that
the interpreted value of Y is SV and the interpreted precision of Y is the precision of SD. If
SV is a negative interval, then <sign> shall be specified within <unquoted interval string>
in the literal Y.

Case:

i) If Y contains any <SQL language character> that is not in the repertoire of TD, then an
exception condition is raised: data exception — invalid character value for cast.

ii) If the length in characters LY of Y is less than or equal to MLTD, then TV is Y.

iii) Otherwise, an exception condition is raised: data exception — string data, right trunca-
tion.

f) If SD is boolean, then

Case:

i) If SV is true and MLTD is not less than 4, then TV is ’TRUE’.

ii) If SV is false and MLTD is not less than 5, then TV is ’FALSE’.

iii) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

10) If TD and SD are binary string data types, then let MLTD be the maximum length in octets of
TD.

Case:

a) If the length in octets of SV is less than or equal to MLTD, then TV is SV.

b) If the length in octets of SV is larger than MLTD, then TV is the first MLTD octets of SV
and a completion condition is raised: warning — string data, right truncation.

11) If TD is fixed-length bit string, then let LTD be the length in bits of TD. Let BLSV be the result
of BIT_LENGTH(SV).

Case:

a) If BLSV is equal to LTD, then TV is SV expressed as a bit string with a length in bits of
BLSV.

b) If BLSV is larger than LTD, then TV is the first LTD bits of SV expressed as a bit string
with a length in bits of LTD, and a completion condition is raised: warning — string data,
right truncation.

190 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

c) If BLSV is smaller than LTD, then TV is SV expressed as a bit string extended on the right
with LTD�BLSV bits whose values are all 0 (zero) and a completion condition is raised:
warning — implicit zero-bit padding.

12) If TD is variable-length bit string, then let MLTD be the maximum length in bits of TD. Let
BLSV be the result of BIT_LENGTH(SV).

Case:

a) If BLSV is less than or equal to MLTD, then TV is SV expressed as a bit string with a
length in bits of BLSV.

b) If BLSV is larger than MLTD, then TV is the first MLTD bits of SV expressed as a bit string
with a length in bits of MLTD and a completion condition is raised: warning — string data,
right truncation.

13) If TD is the datetime data type DATE, then

Case:

a) If SD is character string, then SV is replaced by

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> or for <unquoted date string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) If a <datetime value> does not conform to the natural rules for dates or times according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid datetime format.

iii) Otherwise, an exception condition is raised: data exception — invalid datetime format.

b) If SD is a date, then TV is SV.

c) If SD is the datetime data type TIMESTAMP WITHOUT TIME ZONE, then TV is the year,
month, and day <primary datetime field>s of SV.

d) If SD is the datetime data type TIMESTAMP WITH TIME ZONE, then TV is computed by:

CAST (CAST (SV AS TIMESTAMP WITHOUT TIME ZONE) AS DATE)

14) Let STZD be the default time zone displacement of the SQL-session.

15) If TD is the datetime data type TIME WITHOUT TIME ZONE, then let TSP be the <time
precision> of TD.

Case:

a) If SD is character string, then SV is replaced by:

TRIM (BOTH ’ ’ FROM VE)

Case:

Scalar expressions 191

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

i) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TIME(TSP) WITH TIME
ZONE, then let TV1 be that value and let TV be the value of:

CAST (TV1 AS TIME(TSP) WITHOUT TIME ZONE)

iii) If a <datetime value> does not conform to the natural rules for dates or times according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid datetime format.

iv) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

b) If SD is TIME WITHOUT TIME ZONE, then TV is SV, with implementation-defined round-
ing or truncation if necessary.

c) If SD is TIME WITH TIME ZONE, then let SVUTC be the UTC component of SV and let
SVTZ be the time zone displacement of SV. TV is SVUTC + SVTZ, computed modulo 24
hours, with implementation-defined rounding or truncation if necessary.

d) If SD is TIMESTAMP WITHOUT TIME ZONE, then TV is the hour, minute, and second
<primary datetime field>s of SV, with implementation-defined rounding or truncation if
necessary.

e) If SD is TIMESTAMP WITH TIME ZONE, then TV is:

CAST (CAST (SV AS TIMESTAMP(TSP) WITHOUT TIME ZONE) AS TIME(TSP)
WITHOUT TIME ZONE)

16) If TD is the datetime data type TIME WITH TIME ZONE, then let TSP be the <time precision>
of TD.

Case:

a) If SD is character string, then SV is replaced by:

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TIME(TSP) WITHOUT
TIME ZONE, then let TV1 be that value and let TV be the value of:

CAST (TV1 AS TIME(TSP) WITH TIME ZONE)

iii) If a <datetime value> does not conform to the natural rules for dates or times according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid datetime format.

192 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

iv) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

b) If SD is TIME WITH TIME ZONE, then TV is SV, with implementation-defined rounding or
truncation if necessary.

c) If SD is TIME WITHOUT TIME ZONE, then the UTC component of TV is SV� STZD, com-
puted modulo 24 hours, with implementation-defined rounding or truncation if necessary,
and the time zone component of TV is STZD.

d) If SD is TIMESTAMP WITH TIME ZONE, then TV is the hour, minute, and second
<primary datetime field>s of SV, with implementation-defined rounding or truncation if
necessary, and the time zone component of TV is the time zone displacement of SV.

e) If SD is TIMESTAMP WITHOUT TIME ZONE, then TV is:

CAST (CAST (SV AS TIMESTAMP(TSP) WITH TIME ZONE) AS TIME(TSP) WITH
TIME ZONE)

17) If TD is the datetime data type TIMESTAMP WITHOUT TIME ZONE, then let TSP be the
<timestamp precision> of TD.

Case:

a) If SD is character string, then SV is replaced by:

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TIMESTAMP(TSP) WITH
TIME ZONE, then let TV1 be that value and let TV be the value of:

CAST (TV1 AS TIMESTAMP(TSP) WITHOUT TIME ZONE)

iii) If a <datetime value> does not conform to the natural rules for dates or times according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid datetime format.

iv) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

b) If SD is a date, then the <primary datetime field>s hour, minute, and second of TV are set
to 0 (zero) and the <primary datetime field>s year, month, and day of TV are set to their
respective values in SV.

c) If SD is TIME WITHOUT TIME ZONE, then the <primary datetime field>s year, month,
and day of TV are set to their respective values in an execution of CURRENT_DATE and
the <primary datetime field>s hour, minute, and second of TV are set to their respective
values in SV, with implementation-defined rounding or truncation if necessary.

Scalar expressions 193

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

d) If SD is TIME WITH TIME ZONE, then TV is:

CAST (CAST (SV AS TIMESTAMP WITH TIME ZONE)

AS TIMESTAMP WITHOUT TIME ZONE)

e) If SD is TIMESTAMP WITHOUT TIME ZONE, then TV is SV, with implementation-defined
rounding or truncation if necessary.

f) If SD is TIMESTAMP WITH TIME ZONE, then let SVUTC be the UTC component of
SV and let SVTZ be the time zone displacement of SV. TV is SVUTC + SVTZ, with
implementation-defined rounding or truncation if necessary.

18) If TD is the datetime data type TIMESTAMP WITH TIME ZONE, then let TSP be the <time
precision> of TD.

Case:

a) If SD is character string, then SV is replaced by:

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’, can
be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) If the rules for <literal> or for <unquoted time string> in Subclause 5.3, ‘‘<literal>’’,
can be applied to SV to determine a valid value of the data type TIMESTAMP(TSP)
WITHOUT TIME ZONE, then let TV1 be that value and let TV be the value of:

CAST (TV1 AS TIMESTAMP(TSP) WITH TIME ZONE)

iii) If a <datetime value> does not conform to the natural rules for dates or times according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid datetime format.

iv) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

b) If SD is a date, then TV is:

CAST (CAST (SV AS TIMESTAMP(TSP) WITHOUT TIME ZONE)

AS TIMESTAMP(TSP) WITH TIME ZONE)

c) If SD is TIME WITHOUT TIME ZONE, then TC is:

CAST (CAST (SV AS TIMESTAMP(TSP) WITHOUT TIME ZONE)

AS TIMESTAMP(TSP) WITH TIME ZONE)

d) If SD is TIME WITH TIME ZONE, then the <primary datetime field>s of TV are set to their
respective values in an execution of CURRENT_DATE and the <primary datetime field>s
hour, minute, and second are set to their respective values in SV, with implementation-
defined rounding or truncation if necessary. The time zone component of TV is set to the
time zone component of SV.

e) If SD is TIMESTAMP WITHOUT TIME ZONE, then the UTC component of TV is SV�
STZD, with a time zone displacement of STZD.

194 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.22 <cast specification>

f) If SD is TIMESTAMP WITH TIME ZONE, then TV is SV with implementation-defined
rounding or truncation, if necessary.

19) If TD is interval, then

Case:

a) If SD is exact numeric, then

Case:

i) If the representation of SV in the data type TD would result in the loss of leading
significant digits, then an exception condition is raised: data exception — interval field
overflow.

ii) Otherwise, TV is that representation.

b) If SD is character string, then SV is replaced by

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> or for <unquoted interval string> in Subclause 5.3, ‘‘<literal>’’,
can be applied to SV to determine a valid value of the data type TD, then let TV be that
value.

ii) Otherwise,

1) If a <datetime value> does not conform to the natural rules for intervals according
to the Gregorian calendar, then an exception condition is raised: data exception —
invalid interval format.

2) Otherwise, an exception condition is raised: data exception — invalid datetime
format.

c) If SD is interval and TD and SD have the same interval precision, then TV is SV.

d) If SD is interval and TD and SD have different interval precisions, then let Q be the least
significant <primary datetime field> of TD.

i) Let Y be the result of converting SV to a scalar in units Q according to the natural rules
for intervals as defined in the Gregorian calendar (that is, there are 60 seconds in a
minute, 60 minutes in an hour, 24 hours in a day, and 12 months in a year).

ii) Normalize Y to conform to the <interval qualifier> ‘‘P TO Q’’ of TD (again, observing
the rules that there are 60 seconds in a minute, 60 minutes in an hour, 24 hours in a
day, and 12 months in a year). Whether to truncate or round in the least significant
field of the result is implementation-defined. If this would result in loss of precision of
the leading datetime field of Y, then an exception condition is raised: data exception —
interval field overflow.

iii) TV is the value of Y.

20) If TD is boolean, then

Scalar expressions 195

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.22 <cast specification>

Case:

a) If SD is character string, then SV is replaced by

TRIM (BOTH ’ ’ FROM VE)

Case:

i) If the rules for <literal> in Subclause 5.3, ‘‘<literal>’’, can be applied to SV to determine
a valid value of the data type TD, then let TV be that value.

ii) Otherwise, an exception condition is raised: data exception — invalid character value for
cast.

b) If SD is boolean, then TV is SV.

21) If the <cast specification> contains a <domain name> and that <domain name> refers to a
domain that contains a <domain constraint> and if TV does not satisfy the <check constraint>
of the <domain constraint>, then an exception condition is raised: integrity constraint violation.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, <cast target> shall not be a <domain name>.

2) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of <cast operand>
shall not be BINARY LARGE OBJECT or CHARACTER LARGE OBJECT.

3) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data type
support’’, the declared type of <cast operand> shall not be NATIONAL CHARACTER LARGE
OBJECT.

4) Without Feature S043, ‘‘Enhanced reference types’’, if the declared data type of <cast operand>
is a reference type, then <cast target> shall specify a <data type> that is a reference type.

196 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.23 <value expression>

6.23 <value expression>

Function
Specify a value.

Format

<value expression> ::=
<numeric value expression>

| <string value expression>
| <datetime value expression>
| <interval value expression>
| <boolean value expression>
| <user-defined type value expression>
| <row value expression>
| <reference value expression>
| <collection value expression>

<user-defined type value expression> ::=
<value expression primary>

<reference value expression> ::=
<value expression primary>

<collection value expression> ::=
<value expression primary>

<value expression primary> ::=
<parenthesized value expression>

| <nonparenthesized value expression primary>

<parenthesized value expression> ::=
<left paren> <value expression> <right paren>

<nonparenthesized value expression primary> ::=
<unsigned value specification>

| <column reference>
| <set function specification>
| <scalar subquery>
| <case expression>
| <cast specification>
| <subtype treatment>
| <attribute or method reference>
| <reference resolution>
| <collection value constructor>
| <routine invocation>
| <field reference>
| <element reference>
| <method invocation>
| <static method invocation>
| <new specification>

<collection value constructor> ::=
<array value expression>

Scalar expressions 197

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.23 <value expression>

Syntax Rules

1) The declared type of a <value expression> is the declared type of the <numeric value expres-
sion>, <string value expression>, <datetime value expression>, <interval value expression>,
<boolean value expression>, <user-defined type value expression>, <row value expression>,
<collection value expression>, or <reference value expression>, respectively.

2) The declared type of a <value expression primary> is the declared type of the immediately con-
tained <unsigned value specification>, <column reference>, <set function specification>, <scalar
subquery>, <case expression>, <value expression>, <cast specification>, <subtype treatment>,
<attribute or method reference>, <reference resolution>, <collection value constructor>, <field
reference>, <element reference>, <method invocation>, or <static method invocation>, or the
effective returns type of the immediately contained <routine invocation>, respectively.

3) The declared type of a <user-defined type value expression> is the declared type of the immedi-
ately contained <value expression primary>, which shall be a user-defined type.

4) The declared type of a <reference value expression> is the declared type of the immediately
contained <value expression primary>, which shall be a reference type.

5) The declared type of a <collection value expression> is the declared type of the immediately
contained <value expression primary>, which shall be a collection type.

6) If the declared type of a <value expression primary> is character string, then the collating
sequence and coercibility characteristic of the <value expression primary> are the collating
sequence and coercibility attribute of the <unsigned value specification>, <column reference>,
<set function specification>, <scalar subquery>, <case expression>, <value expression>, or <cast
specification> immediately contained in the <value expression primary>.

7) The declared type of a <collection value constructor> is the collection type of the <array value
expression> that it immediately contains.

8) Let C be some column. Let VE be the <value expression>. C is an underlying column of VE if
and only if C is identified by some column reference contained in VE.

Access Rules

None.

General Rules

1) The value of a <value expression> is the value of the immediately contained <numeric value ex-
pression>, <string value expression>, <datetime value expression>, <interval value expression>,
<boolean value expression>, <user-defined type value expression>, <row value expression>,
<collection value expression>, or <reference value expression>.

2) When a <value expression> V is evaluated for a row R of a table, each reference to a column of
that table by a column reference CR directly contained in V is the value of that column in that
row.

3) The value of a <collection value expression> is the value of its immediately contained <value
expression primary>.

4) The value of a <collection value constructor> is the value of the <array value constructor> that
it immediately contains.

198 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.23 <value expression>

5) The value of a <value expression primary> is the value of the immediately contained <unsigned
value specification>, <column reference>, <set function specification>, <scalar subquery>, <case
expression>, <value expression>, <cast specification>, <subtype treatment>, <collection value
constructor>, <field reference>, <element reference>, <method invocation>, <static method
invocation>, <routine invocation>, or <attribute or method reference>.

6) The value of a <reference value expression> RVE is the value of the <value expression primary>
immediately contained in RVE.

Conformance Rules

1) Without Feature T031, ‘‘BOOLEAN data type’’, a <value expression> shall not be a <boolean
value expression>.

2) Without Feature S091, ‘‘Basic array support’’, a <value expression> shall not specify a <collec-
tion value expression>.

3) Without Feature S091, ‘‘Basic array support’’, a <value expression primary> shall not be a
<collection value constructor>.

4) Without Feature S161, ‘‘Subtype treatment’’, a <value expression primary> shall not be a
<subtype treatment>.

5) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <value expression> shall not be
an <interval value expression>.

6) Without Feature S041, ‘‘Basic reference types’’, a <value expression> shall not be a <reference
value expression>.

Scalar expressions 199

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.24 <new specification>

6.24 <new specification>

Function
Invoke a method on a newly-constructed value of a structured type.

Format

<new specification> ::=
NEW <routine invocation>

<new invocation> ::=
<method invocation>

Syntax Rules

1) Let RN be the <routine name> immediately contained in the <routine invocation>. Let MN be
the <qualified identifier> immediately contained in RN.

2) Let S be the schema identified by the implicit or explicit <schema name> of RN. S shall include
a user-defined type descriptor of an instantiable user-defined type whose user-defined type name
is RN.

3) The <new specification>

NEW RN(a1, a2, ..., an)

is equivalent to the <new invocation>

RN().MN(a1, a2, ..., an)

Access Rules

1) Let T be the user-defined type identified by RN.

a) If <new specification> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
USAGE on T.

b) Otherwise, the current privileges shall include USAGE on T.

General Rules

None.

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming Core SQL language shall not
contain any <new specification>.

200 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.25 <subtype treatment>

6.25 <subtype treatment>

Function
Modify the declared type of an expression.

Format

<subtype treatment> ::=
TREAT <left paren> <subtype operand> AS <target data type> <right paren>

<subtype operand> ::= <value expression>

<target data type> ::=
<user-defined type>

Syntax Rules

1) The declared type VT of the <value expression> shall be a structured type.

2) Let DT be the structured type identified by the <user-defined type name> simply contained in
<user-defined type>.

3) VT shall be a supertype of DT.

4) The declared type of the result of the <subtype treatment> is DT.

Access Rules

None.

General Rules

1) Let V be the value of the <value expression>.

2) If DT is a proper subtype of the most specific type of V, then an exception condition is raised:
invalid target type specification.
NOTE 87 – ‘‘proper subtype’’ and ‘‘most specific type’’ are defined in Subclause 4.8.3, ‘‘Subtypes and
supertypes’’.

3) The value of the result of the <subtype treatment> is V.

Conformance Rules

1) Without Feature S161, ‘‘Subtype treatment’’, conforming Core SQL Language shall contain no
<subtype treatment>.

Scalar expressions 201

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.26 <numeric value expression>

6.26 <numeric value expression>

Function
Specify a numeric value.

Format

<numeric value expression> ::=
<term>

| <numeric value expression> <plus sign> <term>
| <numeric value expression> <minus sign> <term>

<term> ::=
<factor>

| <term> <asterisk> <factor>
| <term> <solidus> <factor>

<factor> ::=
[<sign>] <numeric primary>

<numeric primary> ::=
<value expression primary>

| <numeric value function>

Syntax Rules

1) If the declared type of both operands of a dyadic arithmetic operator is exact numeric, then the
declared type of the result is exact numeric, with precision and scale determined as follows:

a) Let S1 and S2 be the scale of the first and second operands respectively.

b) The precision of the result of addition and subtraction is implementation-defined, and the
scale is the maximum of S1 and S2.

c) The precision of the result of multiplication is implementation-defined, and the scale is S1+
S2.

d) The precision and scale of the result of division is implementation-defined.

2) If the declared type of either operand of a dyadic arithmetic operator is approximate numeric,
then the declared type of the result is approximate numeric. The precision of the result is
implementation-defined.

3) The declared type of a <factor> is that of the immediately contained <numeric primary>.

4) The declared type of a <numeric primary> shall be numeric.

Access Rules

None.

202 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.26 <numeric value expression>

General Rules

1) If the value of any <numeric primary> simply contained in a <numeric value expression> is the
null value, then the result of the <numeric value expression> is the null value.

2) If the <numeric value expression> contains only a <numeric primary>, then the result of the
<numeric value expression> is the value of the specified <numeric primary>.

3) The monadic arithmetic operators <plus sign> and <minus sign> (+ and �, respectively) specify
monadic plus and monadic minus, respectively. Monadic plus does not change its operand.
Monadic minus reverses the sign of its operand.

4) The dyadic arithmetic operators <plus sign>, <minus sign>, <asterisk>, and <solidus> (+, �, �,
and =, respectively) specify addition, subtraction, multiplication, and division, respectively. If
the value of a divisor is zero, then an exception condition is raised: data exception — division by
zero.

5) If the type of the result of an arithmetic operation is exact numeric, then

Case:

a) If the operator is not division and the mathematical result of the operation is not exactly
representable with the precision and scale of the result data type, then an exception condi-
tion is raised: data exception — numeric value out of range.

b) If the operator is division and the approximate mathematical result of the operation rep-
resented with the precision and scale of the result data type loses one or more leading
significant digits after rounding or truncating if necessary, then an exception condition is
raised: data exception — numeric value out of range. The choice of whether to round or
truncate is implementation-defined.

6) If the most specific type of the result of an arithmetic operation is approximate numeric
and the exponent of the approximate mathematical result of the operation is not within the
implementation-defined exponent range for the result data type, then an exception condition is
raised: data exception — numeric value out of range.

Conformance Rules

None.

Scalar expressions 203

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.27 <string value expression>

6.27 <string value expression>

Function
Specify a character string value or a bit string value.

Format

<string value expression> ::=
<character value expression>

| <bit value expression>
| <blob value expression>

<character value expression> ::=
<concatenation>

| <character factor>

<concatenation> ::=
<character value expression> <concatenation operator> <character factor>

<character factor> ::=
<character primary> [<collate clause>]

<character primary> ::=
<value expression primary>

| <string value function>

<blob value expression> ::=
<blob concatenation>

| <blob factor>

<blob factor> ::= <blob primary>

<blob primary> ::=
<value expression primary>

| <string value function>

<blob concatenation> ::=
<blob value expression> <concatenation operator> <blob factor>

<bit value expression> ::=
<bit concatenation>

| <bit factor>

<bit concatenation> ::=
<bit value expression> <concatenation operator> <bit factor>

<bit factor> ::= <bit primary>

<bit primary> ::=
<value expression primary>

| <string value function>

204 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.27 <string value expression>

Syntax Rules

1) The declared type of a <character primary> shall be character string.

2) Character strings of different character repertoires shall not be mixed in a <character value ex-
pression>. The character repertoire of a <character value expression> is the character repertoire
of its components.

3) Case:

a) If <concatenation> is specified, then:

Let D1 be the declared type of the <character value expression> and let D2 be the declared
type of the <character factor>. Let M be the length in characters of D1 plus the length in
characters of D2. Let VL be the implementation-defined maximum length of a variable-
length character string and let FL be the implementation-defined maximum length of a
fixed-length character string.

Case:

i) If the declared type of the <character value expression> or <character factor> is
variable-length character string, then the declared type of the <concatenation> is
variable-length character string with maximum length equal to the lesser of M and
VL.

ii) If the declared type of the <character value expression> and <character factor> is fixed-
length character string, then M shall not be greater than FL and the declared type of
the <concatenation> is fixed-length character string with length M.

b) Otherwise, the declared type of the <character value expression> is the declared type of the
<character factor>.

4) Case:

a) If <character factor> is specified, then

Case:

i) If <collate clause> is specified, then the <character value expression> has the collating
sequence given in <collate clause>, and has the Explicit coercibility characteristic.

ii) Otherwise, if <value expression primary> or <string value function> are specified,
then the collating sequence and coercibility characteristic of the <character factor>
are specified in Subclause 6.3, ‘‘<value specification> and <target specification>’’, and
Subclause 6.18, ‘‘<string value function>’’, respectively.

b) If <concatenation> is specified, then the collating sequence and the coercibility characteristic
are determined as specified for dyadic operators in Subclause 4.2.3, ‘‘Rules determining
collating sequence usage’’.

5) The declared type of <blob primary> shall be binary string.

6) If <blob concatenation> is specified, then let M be the length in octets of the <blob value expres-
sion> plus the length in octets of the <blob factor> and let VL be the implementation-defined
maximum length of a binary string. The declared type of <blob concatenation> is binary string
with maximum length equal to the lesser of M and VL.

Scalar expressions 205

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.27 <string value expression>

7) The declared type of a <bit primary> shall be bit string.

8) Case:

a) If <bit concatenation> is specified, then let D1 be the declared type of the <bit value ex-
pression>, let D2 be the declared type of the <bit factor>, let M be the length in bits of D1
plus the length in bits of D2, let VL be the implementation-defined maximum length of a
variable-length bit string, and let FL be the implementation-defined maximum length of a
fixed-length bit string.

Case:

i) If the declared type of the <bit value expression> or <bit factor> is variable-length bit
string, then the declared type of the <bit concatenation> is variable-length bit string
with maximum length equal to the lesser of M and VL.

ii) If the declared type of the <bit value expression> and <bit factor> is fixed-length bit
string, then M shall not be greater than FL and the declared type of the <bit concatena-
tion> is fixed-length bit string with length M.

iii) Otherwise, the declared type of a <bit value expression> is the declared type of the <bit
factor>.

Access Rules

None.

General Rules

1) If the value of any <character primary>, <bit primary>, or <blob primary> simply contained in
a <string value expression> is the null value, then the result of the <string value expression> is
the null value.

2) If <concatenation> is specified, then let S1 and S2 be the result of the <character value expres-
sion> and <character factor>, respectively.

Case:

a) If either S1 or S2 is the null value, then the result of the <concatenation> is the null value.

b) Otherwise, let S be the string consisting of S1 followed by S2 and let M be the length of S.

Case:

i) If the most specific type of either S1 or S2 is variable-length character string, then

Case:

1) If M is less than or equal to VL, then the result of the <concatenation> is S with
length M.

2) If M is greater than VL and the right-most M�VL characters of S are all the <space>
character, then the result of the <concatenation> is the first VL characters of S with
length VL.

206 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.27 <string value expression>

3) Otherwise, an exception condition is raised: data exception — string data, right
truncation.

ii) If the most specific types of both S1 and S2 are fixed-length character string, then the
result of the <concatenation> is S.

3) If <bit concatenation> is specified, then let S1 and S2 be the result of the <bit value expression>
and <bit factor>, respectively.

Case:

a) If either S1 or S2 is the null value, then the result of the <bit concatenation> is the null
value.

b) Otherwise, let S be the string consisting of S1 followed by S2 and let M be the length in bits
of S.

Case:

i) If the most specific type of either S1 or S2 is variable-length bit string, then

Case:

1) If M is less than or equal to VL, then the result of the <bit concatenation> is S with
length M.

2) If M is greater than VL and the right-most M�VL bits of S are all 0-valued, then
the result of the <bit concatenation> is the first VL bits of S with length VL.

3) Otherwise, an exception condition is raised: data exception — string data, right
truncation.

ii) If the most specific types of both S1 and S2 are fixed-length bit string, then the result of
the <bit concatenation> is S.

4) If <blob concatenation> is specified, then let S1 and S2 be the result of the <blob value expres-
sion> and <blob factor>, respectively.

Case:

a) If either S1 or S2 is the null value, then the result of the <blob concatenation> is the null
value.

b) Otherwise, let S be the string consisting of S1 followed by S2 and let M be the length in
octets of S.

Case:

i) If M is less or equal to VL, then the result of the <blob concatenation> is S with length
M.

ii) If M is greater than VL and the right-most M�VL octets of S are all X’00’, then the
result of the <blob concatenation> is the first VL octets of S with length VL.

iii) Otherwise, an exception condition is raised: data exception — string data, right trunca-
tion.

Scalar expressions 207

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.27 <string value expression>

5) If the result of the <character value expression> is a zero-length character string, then it is
implementation-defined whether an exception condition is raised: data exception — zero-length
character string.

Conformance Rules

1) Without Feature T042, ‘‘Extended LOB data type support’’, neither operand of <concatenation>
shall be of declared type CHARACTER LARGE OBJECT.

2) Without Feature T042, ‘‘Extended LOB data type support’’, neither operand of <blob concatena-
tion> shall be of declared type BINARY LARGE OBJECT.

3) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data type sup-
port’’, neither operand of <concatenation> shall be of declared type NATIONAL CHARACTER
LARGE OBJECT.

4) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collate clause>.

5) Without Feature F511, ‘‘BIT data type’’, conforming SQL language shall contain no <bit value
expression>.

208 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.28 <datetime value expression>

6.28 <datetime value expression>

Function
Specify a datetime value.

Format

<datetime value expression> ::=
<datetime term>

| <interval value expression> <plus sign> <datetime term>
| <datetime value expression> <plus sign> <interval term>
| <datetime value expression> <minus sign> <interval term>

<datetime term> ::=
<datetime factor>

<datetime factor> ::=
<datetime primary> [<time zone>]

<datetime primary> ::=
<value expression primary>

| <datetime value function>

<time zone> ::=
AT <time zone specifier>

<time zone specifier> ::=
LOCAL

| TIME ZONE <interval primary>

Syntax Rules

1) The declared type of a <datetime primary> shall be datetime.

2) If the <datetime value expression> immediately contains neither <plus sign> nor <minus sign>,
then the precision of the result of the <datetime value expression> is the precision of the <value
expression primary> or <datetime value function> that it simply contains.

3) If the declared type of the <datetime primary> is DATE, then <time zone> shall not be specified.

4) Case:

a) If <time zone> is specified and the declared type of <datetime primary> is TIMESTAMP
WITHOUT TIME ZONE or TIME WITHOUT TIME ZONE, then the declared type of <date-
time term> is TIMESTAMP WITH TIME ZONE or TIME WITH TIME ZONE, respectively,
with the same fractional seconds precision as <datetime primary>.

b) Otherwise, the declared type of <datetime term> is the same as the declared type of <date-
time primary>.

Scalar expressions 209

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.28 <datetime value expression>

5) If the <datetime value expression> immediately contains either <plus sign> or <minus sign>,
then:

a) The <interval value expression> or <interval term> shall contain only <primary datetime
field>s that are contained within the <datetime value expression> or <datetime term>.

b) The result of the <datetime value expression> contains the same <primary datetime field>s
that are contained in the <datetime value expression> or <datetime term>, with a fractional
seconds precision that is the greater of the fractional seconds precisions, if any, of either the
<datetime value expression> and <interval term>, or the <datetime term> and <interval
value expression> that it simply contains.

6) The declared type of the <interval primary> immediately contained in a <time zone specifier>
shall be INTERVAL HOUR TO MINUTE.

Access Rules

None.

General Rules

1) If the value of any <datetime primary>, <interval value expression>, <datetime value expres-
sion>, or <interval term> simply contained in a <datetime value expression> is the null value,
then the result of the <datetime value expression> is the null value.

2) If <time zone> is specified and the <interval primary> immediately contained in <time zone
specifier> is null, then the result of the <datetime value expression> is the null value.

3) The value of a <datetime primary> is the value of the immediately contained <value expression
primary> or <datetime value function>.

4) In the following General Rules, arithmetic is performed so as to maintain the integrity of the
datetime data type that is the result of the <datetime term> or <datetime value expression>.
This may involve carry from or to the immediately next more significant <primary datetime
field>. If the data type of the <datetime term> or <datetime value expression> is time with
or without time zone, then arithmetic on the HOUR <primary datetime field> is undertaken
modulo 24. If the <interval value expression> or <interval term> is a year-month interval, then
the DAY field of the result is the same as the DAY field of the <datetime term> or <datetime
value expression>.

5) The value of a <datetime term> is determined as follows. Let DT be the declared type, DV
the UTC component of the value, and TZD the time zone component, if any, of the <datetime
primary> simply contained in the <datetime term>, and let STZD be the current default time
zone displacement of the SQL-session.

Case:

a) If <time zone> is not specified, then the value of <datetime term> is DV.

b) Otherwise:

i) Case:

1) If DT is datetime with time zone, then the UTC component of the <datetime term>
is DV.

210 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.28 <datetime value expression>

2) Otherwise, the UTC component of the <datetime term> is DV � STZD.

ii) Case:

1) If LOCAL is specified, then let TZ be STZD.

2) If TIME ZONE is specified, then, if the value of the <interval primary> immediately
contained in <time zone specifier> is less than INTERVAL -’12:59’ or greater than
INTERVAL +’13:00’, then an exception condition is raised: data exception — in-
valid time zone displacement value. Otherwise, let TZ be the value of the <interval
primary> simply contained in <time zone>.

iii) The time zone component of the value of the <datetime term> is TZ.

6) If a <datetime value expression> immediately contains the operator <plus sign> or <minus
sign>, then the time zone component, if any, of the result is the same as the time zone compo-
nent of the immediately contained <datetime term> or <datetime value expression>. The UTC
component of the result is effectively evaluated as follows:

a) Case:

i) If <datetime value expression> immediately contains the operator <plus sign> and
the <interval value expression> or <interval term> is not negative, or if <datetime
value expression> immediately contains the operator <minus sign> and the <interval
term> is negative, then successive <primary datetime field>s of the <interval value
expression> or <interval term> are added to the corresponding fields of the <datetime
value expression> or <datetime term>.

ii) Otherwise, successive <primary datetime field>s of the <interval value expression> or
<interval term> are subtracted from the corresponding fields of the <datetime value
expression> or <datetime term>.

b) If, after the preceding step, any <primary datetime field> of the result is outside the permis-
sible range of values for the field or the result is invalid based on the natural rules for dates
and times, then an exception condition is raised: data exception — datetime field overflow.
NOTE 88 – For the permissible range of values for <primary datetime field>s, see Table 11, ‘‘Valid
values for datetime fields’’.

Conformance Rules

1) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, <datetime value expression> shall
not specify <plus sign> or <minus sign>.

2) Without Feature F411, ‘‘Time zone specification’’, <datetime factor> shall not specify <time
zone>.

Scalar expressions 211

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.29 <interval value expression>

6.29 <interval value expression>

Function
Specify an interval value.

Format

<interval value expression> ::=
<interval term>

| <interval value expression 1> <plus sign> <interval term 1>
| <interval value expression 1> <minus sign> <interval term 1>
| <left paren> <datetime value expression> <minus sign>

<datetime term> <right paren> <interval qualifier>

<interval term> ::=
<interval factor>

| <interval term 2> <asterisk> <factor>
| <interval term 2> <solidus> <factor>
| <term> <asterisk> <interval factor>

<interval factor> ::=
[<sign>] <interval primary>

<interval primary> ::=
<value expression primary>

| <interval value function>

<interval value expression 1> ::= <interval value expression>

<interval term 1> ::= <interval term>

<interval term 2> ::= <interval term>

Syntax Rules

1) The declared type of an <interval value expression> is interval. The declared type of a <value
expression primary> immediately contained in an <interval primary> shall be interval.

2) Case:

a) If the <interval value expression> simply contains an <interval qualifier> IQ, then the
declared type of the result is INTERVAL IQ.

b) If the <interval value expression> is an <interval term>, then the result of the <interval
value expression> contains the same interval fields as the <interval primary>. If the <in-
terval primary> contains a seconds field, then the result’s fractional seconds precision is the
same as the <interval primary>’s fractional seconds precision.

c) If <interval term 1> is specified, then the result contains every interval field that is con-
tained in the result of either <interval value expression 1> or <interval term 1>, and, if both
contain a seconds field, then the fractional seconds precision of the result is the greater of
the two fractional seconds precisions.
NOTE 89 – Interval fields are effectively defined by Table 6, ‘‘Fields in year-month INTERVAL
values’’, and Table 7, ‘‘Fields in day-time INTERVAL values’’.

212 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.29 <interval value expression>

3) Case:

a) If <interval term 1> is a year-month interval, then <interval value expression 1> shall be a
year-month interval.

b) If <interval term 1> is a day-time interval, then <interval value expression 1> shall be a
day-time interval.

4) If <datetime value expression> is specified, then <datetime value expression> and <datetime
term> shall be comparable.

Access Rules

None.

General Rules

1) If an <interval term> specifies ‘‘<term> * <interval factor>’’, then let T and F be respectively the
value of the <term> and the value of the <interval factor>. The result of the <interval term> is
the result of F * T.

2) If the value of any <interval primary>, <datetime value expression>, <datetime term>, or
<factor> that is simply contained in an <interval value expression> is the null value, then the
result of the <interval value expression> is the null value.

3) If IP is an <interval primary>, then

Case:

a) If IP immediately contains a <value expression primary>, then the value of IP is the value
of VEP.

b) If IP is an <interval value function> IVF, then the value of IP is the value of IVF.

4) If the <sign> of an <interval factor> is <minus sign>, then the value of the <interval factor> is
the negative of the value of the <interval primary>; otherwise, the value of an <interval factor>
is the value of the <interval primary>.

5) If <interval term 2> is specified, then:

a) Let X be the value of <interval term 2> and let Y be the value of <factor>.

b) Let P and Q be respectively the most significant and least significant <primary datetime
field>s of <interval term 2>.

c) Let E be an exact numeric result of the operation

CAST (CAST (X AS INTERVAL Q) AS E1)

where E1 is an exact numeric data type of sufficient scale and precision so as to not lose
significant digits.

d) Let OP be the operator � or = specified in the <interval value expression>.

e) Let I, the result of the <interval value expression> expressed in terms of the <primary
datetime field> Q, be the result of

CAST ((E OP Y) AS INTERVAL Q).

Scalar expressions 213

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.29 <interval value expression>

f) The result of the <interval value expression> is

CAST (I AS INTERVAL W)

where W is an <interval qualifier> identifying the <primary datetime field>s P TO Q, but
with <interval leading field precision> such that significant digits are not lost.

6) If <interval term 1> is specified, then let P and Q be respectively the most significant and least
significant <primary datetime field>s in <interval term 1> and <interval value expression 1>,
let X be the value of <interval value expression 1>, and let Y be the value of <interval term 1>.

a) Let A be an exact numeric result of the operation

CAST (CAST (X AS INTERVAL Q) AS E1)

where E1 is an exact numeric data type of sufficient scale and precision so as to not lose
significant digits.

b) Let B be an exact numeric result of the operation

CAST (CAST (Y AS INTERVAL Q) AS E2)

where E2 is an exact numeric data type of sufficient scale and precision so as to not lose
significant digits.

c) Let OP be the operator + or � specified in the <interval value expression>.

d) Let I, the result of the <interval value expression> expressed in terms of the <primary
datetime field> Q, be the result of:

CAST ((A OP B) AS INTERVAL Q)

e) The result of the <interval value expression> is

CAST (I AS INTERVAL W)

where W is an <interval qualifier> identifying the <primary datetime field>s P TO Q, but
with <interval leading field precision> such that significant digits are not lost.

7) If <datetime value expression> is specified, then let Y be the least significant <primary datetime
field> specified by <interval qualifier>. Let DTE be the <datetime value expression>, let DT be
the <datetime term>, and let MSP be the implementation-defined maximum seconds precision.
Evaluation of <interval value expression> proceeds as follows:

a) Case:

i) If the declared type of <datetime value expression> is TIME WITH TIME ZONE, then
let A be the value of:

CAST (DTE AT LOCAL AS TIME(MSP) WITHOUT TIME ZONE)

ii) If the declared type of <datetime value expression> is TIMESTAMP WITH TIME ZONE,
then let A be the value of:

CAST (DTE AT LOCAL AS TIMESTAMP(MSP) WITHOUT TIME ZONE)

iii) Otherwise, let A be the value of DTE.

214 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.29 <interval value expression>

b) Case:

i) If the declared type of <datetime term> is TIME WITH TIME ZONE, then let B be the
value of:

CAST (DT AT LOCAL AS TIME(MSP) WITHOUT TIME ZONE)

ii) If the declared type of <datetime term> is TIMESTAMP WITH TIME ZONE, then let B
be the value of:

CAST (DT AT LOCAL AS TIMESTAMP(MSP) WITHOUT TIME ZONE)

iii) Otherwise, let B be the value of DTE.

c) A and B are converted to integer scalars A2 and B2 respectively in units Y as displacements
from some implementation-dependent start datetime.

d) The result is determined by effectively computing A2�B2 and then converting the difference
to an interval using an <interval qualifier> whose <end field> is Y and whose <start field> is
sufficiently significant to avoid loss of significant digits. The difference of two values of type
TIME (with or without time zone) is constrained to be between �24:00:00 and +24:00:00
(excluding each end point); it is implementation-defined which of two non-zero values in
this range is the result, although the computation shall be deterministic. That interval is
then converted to an interval using the specified <interval qualifier>, rounding or truncating
if necessary. The choice of whether to round or truncate is implementation-defined. If the
required number of significant digits exceeds the implementation-defined maximum number
of significant digits, then an exception condition is raised: data exception — interval field
overflow.

Conformance Rules

1) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language shall not
contain any <interval value expression>.

Scalar expressions 215

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.30 <boolean value expression>

6.30 <boolean value expression>

Function
Specify a boolean value.

Format

<boolean value expression> ::=
<boolean term>

| <boolean value expression> OR <boolean term>

<boolean term> ::=
<boolean factor>

| <boolean term> AND <boolean factor>

<boolean factor> ::=
[NOT] <boolean test>

<boolean test> ::=
<boolean primary> [IS [NOT] <truth value>]

<truth value> ::=
TRUE

| FALSE
| UNKNOWN

<boolean primary> ::=
<predicate>

| <parenthesized boolean value expression>
| <nonparenthesized value expression primary>

<parenthesized boolean value expression> ::=
<left paren> <boolean value expression> <right paren>

Syntax Rules

1) The declared type of a <value expression primary> shall be boolean.

2) IF NOT is specified in a <boolean test>, then let BP be the contained <boolean primary> and let
TV be the contained <truth value>. The <boolean test> is equivalent to:

(NOT (BP IS TV))

3) Let X denote either a column C or the <key word> VALUE. Given a <boolean value expression>
BVE and X, the notion ‘‘BVE is a known-not-null condition for X’’ is defined recursively as
follows:

a) If BVE is a <predicate>, then

Case:

i) If BVE is a <predicate> of the form ‘‘RVE IS NOT NULL’’, where RVE is a <row value
expression> that simply contains a <row value constructor element> that is a <column
reference> that references C, then BVE is a known-not-null condition for C.

216 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.30 <boolean value expression>

ii) If BVE is the <predicate> ‘‘VALUE IS NOT NULL’’, then BVE is a known-not-null
condition for VALUE.

iii) Otherwise, BVE is not a known-not-null condition for X.

b) If BVE is a <value expression primary>, then

Case:

i) If BVE is of the form ‘‘<left paren> <value expression> <right paren>’’ and the <value
expression> is a known-not-null condition for X, then BVE is a known-not-null condition
for X.

ii) Otherwise, BVE is not a known-not-null condition for X.

c) If BVE is a <boolean test>, then let BP be the <boolean primary> immediately contained in
BVE. If BP is a known-not-null condition for X, and <truth value> is not specified, then BVE
is a known-not-null condition for X. Otherwise, BVE is not a known-not-null condition for X.

d) If BVE is of the form ‘‘NOT BT’’, where BT is a <boolean test>, then

Case:

i) If BT is ‘‘CR IS NULL’’, where CR is a column reference that references column C, then
BVE is a known-not-null condition for C.

ii) If BT is ‘‘VALUE IS NULL’’, then BVE is a known-not-null condition for VALUE.

iii) Otherwise, BVE is not a known-not-null condition for X.
NOTE 90 – For simplicity, this rule does not attempt to analyze conditions such as ‘‘NOT NOT A IS
NULL’’, or ‘‘NOT (A IS NULL OR NOT (B = 2))’’

e) If BVE is of the form ‘‘BVE1 AND BVE2’’, then

Case:

i) If either BVE1 or BVE2 is a known-not-null condition for X, then BVE is a known-not-
null condition for X.

ii) Otherwise, BVE is not a known-not-null condition for X.

f) If BVE is of the form ‘‘BVE1 OR BVE2’’, then BVE is not a known-not-null condition for X.
NOTE 91 – For simplicity, this rule does not detect cases such as ‘‘A IS NOT NULL OR A IS NOT
NULL’’, which might be classified as a known-not-null condition.

Access Rules

None.

Scalar expressions 217

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.30 <boolean value expression>

General Rules

1) The result is derived by the application of the specified boolean operators (‘‘AND’’, ‘‘OR’’, ‘‘NOT’’,
and ‘‘IS’’) to the results derived from each <boolean primary>. If boolean operators are not
specified, then the result of the <boolean value expression> is the result of the specified <boolean
primary>.

2) NOT (true) is false , NOT (false) is true , and NOT (unknown) is unknown .

3) Table 13, ‘‘Truth table for the AND boolean operator’’, Table 14, ‘‘Truth table for the OR boolean
operator’’, and Table 15, ‘‘Truth table for the IS boolean operator’’ specify the semantics of AND,
OR, and IS, respectively.

Table 13—Truth table for the AND boolean operator

AND true false unknown

true true false unknown

false false false false

unknown unknown false unknown

Table 14—Truth table for the OR boolean operator

OR true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Table 15—Truth table for the IS boolean operator

IS TRUE FALSE UNKNOWN

true true false false

false false true false

unknown false false true

Conformance Rules

1) Without Feature T031, ‘‘BOOLEAN data type’’, a <boolean primary> shall not specify a <non-
parenthesized value expression primary>.

2) Without Feature F571, ‘‘Truth value tests’’, a <boolean test> shall not specify a <truth value>.

218 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.31 <array value expression>

6.31 <array value expression>

Function
Specify an array value.

Format

<array value expression> ::=
<array value constructor>

| <array concatenation>
| <value expression primary>

<array concatenation> ::=
<array value expression 1> <concatenation operator> <array value expression 2>

<array value expression 1> ::= <array value expression>

<array value expression 2> ::= <array value expression>

Syntax Rules

1) The declared type of <value expression primary> shall be an array type.

2) The declared type of the <array value expression> is the declared type of the immediately
contained <array value constructor>, <array concatenation>, or <value expression primary>.

3) If <array concatenation> is specified, then:

a) Let DT be the data type determined by applying Subclause 9.3, ‘‘Data types of results
of aggregations’’, to the declared types of <array value expression 1> and <array value
expression 2>.

b) Let IMDC be the implementation-defined maximum cardinality of an array type.

c) The declared type of the result of <array concatenation> is an array type whose element is
the element type of DT and whose maximum cardinality is the lesser of IMDC and the sum
of the maximum cardinality of <array value expression 1> and the maximum cardinality of
<array value expression 2>.

Access Rules

None.

General Rules

1) The value of the result of <array value expression> is the value of the immediately contained
<array value constructor>, <array concatenation>, or <value expression primary>.

2) If <array concatenation> is specified, then:

a) Let AV1 be the value of <array value expression 1> and let AV2 be the value of <array value
expression 2>.

Scalar expressions 219

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
6.31 <array value expression>

b) If either AV1 or AV2 is the null value, then the result of the <array concatenate function> is
the null value.

c) Otherwise, the result is the array comprising every element of AV1 followed by every ele-
ment of AV2.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not contain any
<array value expression>.

220 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
6.32 <array value constructor>

6.32 <array value constructor>

Function
Specify construction of an array.

Format

<array value constructor> ::=
<array value list constructor>

<array value list constructor> ::=
ARRAY <left bracket or trigraph> <array element list> <right bracket or trigraph>

<array element list> ::=
<array element> [{ <comma> <array element> }...]

<array element> ::=
<value expression>

Syntax Rules

1) The declared type of the <array value constructor> is an array type with element declared type
DT, where DT is the declared type determined by applying Subclause 9.3, ‘‘Data types of results
of aggregations’’, to the declared types of the <array element>s immediately contained in the
<array element list> of this <array value constructor>.

Access Rules

None.

General Rules

1) The result of <array value constructor> is an array whose i-th element is the value of the i-th
<array element> immediately contained in the <array element list>, cast as the data type of
DT.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not contain any
<array value constructor>.

Scalar expressions 221

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

222 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

7 Query expressions

7.1 <row value constructor>

Function
Specify a value or list of values to be constructed into a row or partial row.

Format

<row value constructor> ::=
<row value constructor element>

| [ROW] <left paren> <row value constructor element list> <right paren>
| <row subquery>

<row value constructor element list> ::=
<row value constructor element>

[{ <comma> <row value constructor element> }...]

<row value constructor element> ::=
<value expression>

<contextually typed row value constructor> ::=
<contextually typed row value constructor element>

| [ROW]
<left paren>
<contextually typed row value constructor element list>

<right paren>

<contextually typed row value constructor element list> ::=
<contextually typed row value constructor element>

[{ <comma> <contextually typed row value constructor element> }...]

<contextually typed row value constructor element> ::=
<value expression>

| <contextually typed value specification>

Syntax Rules

1) A <row value constructor element> immediately contained in a <row value constructor> shall
not be a <value expression> of the form ‘‘<left paren> <value expression> <right paren>’’.
NOTE 92 – This Rule removes a syntactic ambiguity. A <row value constructor> of this form is per-
mitted, but is parsed in the form ‘‘<left paren> <row value constructor element list> <right paren>’’.

2) A <row value constructor element> immediately contained in a <row value constructor> shall
not be a <value expression> that is a <row value expression>.
NOTE 93 – This Rule removes a syntactic ambiguity, since otherwise a <row value constructor> could
be a <row value expression>, and a <row value expression> could be a <row value constructor>.

3) Let RVC be the <row value constructor>.

Query expressions 223

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.1 <row value constructor>

Case:

a) If RVC immediately contains a <row subquery>, then the declared type of RVC is the
declared type of that <subquery>.

b) Otherwise, the declared type of RVC is a row type described by a sequence of (<field name>,
<data type>) pairs, corresponding in order to each <row value constructor element> X
simply contained in RVC. The data type is the declared type of X and the <field name> is
implementation-dependent and not equivalent to the <column name> name of any column
or field, other than itself, of a table referenced by any <table reference> contained in the
SQL-statement.

4) The degree of a <row value constructor> is the degree of its declared type.

Access Rules

None.

General Rules

1) The value of a <null specification> is the null value.

2) The value of a <default specification> is determined according to the General Rules of
Subclause 11.5, ‘‘<default clause>’’.

3) The value of an <empty specification> is an empty collection.

4) Case:

a) If the <row value constructor> immediately contains a <row value constructor element> X,
then the result of the <row value constructor> is a row containing a single column whose
value is the value of X.

b) If a <row value constructor element list> is specified, then the result of the <row value
constructor> is a row of columns, the value of whose i-th column is the value of the i-th
<row value constructor element> in the <row value constructor element list>.

c) If the <row value constructor> is a <row subquery>, then:

i) Let R be the result of the <row subquery> and let D be the degree of R.

ii) If the cardinality of R is 0 (zero), then the result of the <row value constructor> is D
null values.

iii) If the cardinality of R is 1 (one), then the result of the <row value constructor> is R.

Conformance Rules

1) Without Feature T051, ‘‘Row types’’, ROW shall not be specified.

2) Without Feature S091, ‘‘Basic array support’’, <empty specification> shall not be specified.

3) Without Feature F641, ‘‘Row and table constructors’’, a <row value constructor> that is not
simply contained in a <table value constructor> shall not contain more than one <row value
constructor element>.

224 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.1 <row value constructor>

4) Without Feature F641, ‘‘Row and table constructors’’, a <row value constructor> shall not be a
<row subquery>.

Query expressions 225

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.2 <row value expression>

7.2 <row value expression>

Function
Specify a row value.

Format

<row value expression> ::=
<row value special case>

| <row value constructor>

<contextually typed row value expression> ::=
<row value special case>

| <contextually typed row value constructor>

<row value special case> ::=
<value specification>

| <value expression>

Syntax Rules

1) The declared type of a <row value special case> shall be a row type.

2) The declared type of a <row value expression> is the declared type of the immediately contained
<row value special case> or <row value constructor>.

3) The declared type of a <contextually typed row value expression> is the declared type of the
immediately contained <row value special case> or <contextually typed row value constructor>.

Access Rules

None.

General Rules

1) A <row value special case> specifies the row value denoted by the <value specification>or <value
expression>.

2) A <row value expression> specifies the row value denoted by the <row value special case> or
<row value constructor>.

3) A <contextually typed row value expression> specifies the row value denoted by the <row value
special case> or <contextually typed row value constructor>.

Conformance Rules

1) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any <row value
expression> or <contextually typed row value expression> that immediately contains <row value
special case>.

226 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.3 <table value constructor>

7.3 <table value constructor>

Function
Specify a set of <row value expression>s to be constructed into a table.

Format

<table value constructor> ::=
VALUES <row value expression list>

<row value expression list> ::=
<row value expression> [{ <comma> <row value expression> }...]

<contextually typed table value constructor> ::=
VALUES <contextually typed row value expression list>

<contextually typed row value expression list> ::=
<contextually typed row value expression>

[{ <comma> <contextually typed row value expression> }...]

Syntax Rules

1) All <row value expression>s immediately contained in a <row value expression list> shall be of
the same degree.

2) All <contextually typed row value expression>s immediately contained in a <contextually typed
row value expression list> shall be of the same degree.

3) A <table value constructor> or a <contextually typed table value constructor> is possibly non-
deterministic if it contains a <routine invocation> whose subject routine is an SQL-invoked
routine that is possibly non-deterministic.

4) Let TVC be some <table value constructor> consisting of n <row value expression>s or some
or <contextually typed table value constructor> consisting of n <contextually typed row value
expression>s. Let RVEi, 1 (one) � i � n, denote the i-th <row value expression> or the i-th
<contextually typed row value expression>. The row type of TVC is determined by applying
Subclause 9.3, ‘‘Data types of results of aggregations’’, to the row types RVEi, 1 (one) � i � n.

Access Rules

None.

General Rules

1) If the result of any <row value expression> or <contextually typed row value expression> is the
null value, then an exception condition is raised: data exception — null row not permitted in
table.

2) The result T of a <table value constructor> or <contextually typed table value constructor>
TVC is a table whose cardinality is the number of <row value expression>s or the number of
<contextually typed row value expression>s in TVC. If R is the result of n such expressions,
then R occurs n times in T.

Query expressions 227

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.3 <table value constructor>

Conformance Rules

1) Without Feature F641, ‘‘Row and table constructors’’, the <row value expression list> of a <table
value constructor> shall contain exactly one <row value constructor> RVE. RVE shall be of the
form ‘‘(<row value constructor element list>)’’.

2) Without Feature F641, ‘‘Row and table constructors’’, conforming SQL language shall not con-
tain any <table value constructor>.

228 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.4 <table expression>

7.4 <table expression>

Function
Specify a table or a grouped table.

Format

<table expression> ::=
<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]

Syntax Rules

1) The result of a <table expression> is a derived table, whose row type RT is the row type of the
result of the application of the last of the immediately contained clauses specified in the <table
expression>.

2) A <table expression> is possibly non-deterministic if it contains a <routine invocation> whose
subject routine is an SQL-invoked routine that is possibly non-deterministic.

3) Let C be some column. Let TE be the <table expression>. C is an underlying column of TE if
and only if C is an underlying column of some column reference contained in TE.

Access Rules

None.

General Rules

1) If all optional clauses are omitted, then the result of the <table expression> is the same as
the result of the <from clause>. Otherwise, each specified clause is applied to the result of
the previously specified clause and the result of the <table expression> is the result of the
application of the last specified clause.

Conformance Rules

None.

Query expressions 229

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.5 <from clause>

7.5 <from clause>

Function
Specify a table derived from one or more tables.

Format

<from clause> ::=
FROM <table reference list>

<table reference list> ::=
<table reference> [{ <comma> <table reference> }...]

Syntax Rules

1) Let TRL be the ordering of <table reference list>. No element TRi in TRL shall contain an outer
reference to an element TRj, where i � j.

2) Case:

a) If the <table reference list> immediately contains a single <table reference>, then the
descriptor of the result of the <table reference list> is the same as the descriptor of the table
identified by that <table reference>. The row type RT of the result of the <table reference
list> is the row type of the table identified by the <table reference>.

b) If the <table reference list> immediately contains more than one <table reference>, then the
descriptors of the columns of the result of the <table reference list> are the descriptors of the
columns of the tables identified by the <table reference>s, in the order in which the <table
reference>s appear in the <table reference list> and in the order in which the columns are
defined within each table. The row type RT of the result of the <table reference list> is
determined by the sequence SCD of column descriptors of the result as follows:

i) Let n be the number of column descriptors in SCD. RT has n fields.

ii) For i ranging from 1 (one) to n, the field name of the i-th field descriptor in RT is the
column name included in the i-th column descriptor in SCD.

iii) For i ranging from 1 (one) to n, the data type descriptor of the i-th field descriptor in RT
is

Case:

1) If the i-th descriptor in SCD includes a domain name DN, then the data type de-
scriptor included in the descriptor of the domain identified by DN.

2) Otherwise, the data type descriptor included in the i-th column descriptor in SCD.

3) The descriptor of the result of the <from clause> is the same as the descriptor of the result of
the <table reference list>.

230 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.5 <from clause>

Access Rules

None.

General Rules

1) Let TRLR be the result of TRL.

Case:

a) If TRL simply contains a single <table reference>, TR, then TRLR is the result of TR.

b) If TRL simply contains n <table reference>s, where n > 1, then let TRLP be the <table
reference list> formed by taking the first n�1 elements of TRL in order, let TRLL be the
last element of TRL, and let TRLPR be the result of TRLP. For every row Ri in TRLPR, let
TRLLRi be the corresponding evaluation of TRLL under all outer references contained in
TRLL. Let SUBRi be the table containing every row formed by concatenating Ri with some
row of TRLLRi. Every row RR in SUBRi is a row in TRLR, and the number of occurrences
of RR in TRLR is the sum of the numbers of occurrences of RR in every occurrence of
SUBRi.

The result of the <table reference list> is TRLR with the columns reordered according to the
ordering of the descriptors of the columns of the <table reference list>.

2) The result of the <from clause> is TRLR.

Conformance Rules

None.

Query expressions 231

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.6 <table reference>

7.6 <table reference>

Function
Reference a table.

Format

<table reference> ::=
<table primary>

| <joined table>

<table primary> ::=
<table or query name> [[AS] <correlation name>

[<left paren> <derived column list> <right paren>]]
| <derived table> [AS] <correlation name>

[<left paren> <derived column list> <right paren>]
| <lateral derived table> [AS] <correlation name>

[<left paren> <derived column list> <right paren>]
| <collection derived table> [AS] <correlation name>

[<left paren> <derived column list> <right paren>]
| <only spec>

[[AS] <correlation name>
[<left paren> <derived column list> <right paren>]]

| <left paren> <joined table> <right paren>

<only spec> ::=
ONLY <left paren> <table or query name> <right paren>

<lateral derived table> ::=
LATERAL <left paren> <query expression> <right paren>

<collection derived table> ::=
UNNEST <left paren> <collection value expression> <right paren>

[WITH ORDINALITY]

<derived table> ::= <table subquery>

<table or query name> ::=
<table name>

| <query name>

<derived column list> ::= <column name list>

<column name list> ::=
<column name> [{ <comma> <column name> }...]

Syntax Rules

1) If a <table reference> TR specifies a <collection derived table> CDT, then let C be the <col-
lection value expression> immediately contained in CDT, let CN be the <correlation name>
immediately contained in TR, and let TEMP be an <identifier> that is not equivalent to CN nor
to any other <identifier> contained in TR.

a) Case:

i) If TR specifies a <derived column list> DCL, then

232 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.6 <table reference>

Case:

1) If CDT specifies WITH ORDINALITY, then DCL shall contain 2 <column name>s.
Let N1 and N2 be respectively the first and second of those <column name>s.

2) Otherwise, DCL shall contain 1 (one) <column name>; let N1 be that <column
name>. Let N2 be a <column name> that is not equivalent to N1, CN, TEMP, or
any other <identifier> contained in TR.

ii) Otherwise, let N1 and N2 be two <column name>s that are not equivalent to one an-
other nor to CN, TEMP, or any other <identifier> contained in TR.

b) Let RECQP be:

WITH RECURSIVE TEMP(N1, N2) AS
(SELECT C[1] AS N1, 1 AS N2

FROM (VALUES(1)) AS CN
WHERE 0 < CARDINALITY(C)

UNION
SELECT C[N2+1] AS N1, N2+1 AS N2
FROM TEMP
WHERE N2 < CARDINALITY(C)

)

c) Case:

i) If TR specifies a <derived column list> DCL, then let PDCLP be

(DCL)

ii) Otherwise, let PDCLP be a zero-length string.

d) Case:

i) If CDT specifies WITH ORDINALITY, then let ELDT be:

LATERAL (RECQP SELECT * FROM TEMP AS CN PDCLP)

ii) Otherwise, let ELDT be:

LATERAL (RECQP SELECT N1 FROM TEMP AS CN PDCLP)

e) CDT is equivalent to the <lateral derived table> ELDT.

2) A <correlation name> immediately contained in a <table reference> TR is exposed by TR. A
<table or query name> immediately contained in a <table reference> TR is exposed by TR if and
only if TR does not specify a <correlation name>.

3) Case:

a) If a <table reference> TR is contained in a <from clause> FC with no intervening <derived
table>, then the scope clause SC of TR is the <select statement: single row> or innermost

Query expressions 233

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.6 <table reference>

<query specification> that contains FC. The scope of the exposed <correlation name> or ex-
posed <table or query name> of TR is the <select list>, <where clause>, <group by clause>,
and <having clause> of SC, together with every <lateral derived table> that is simply con-
tained in FC and is preceded by TR, and every <collection derived table> that is simply
contained in FC and is preceded by TR, and the <join condition> of all <joined table>s
contained in SC that contain TR.

b) Otherwise, the scope clause SC of TR is the outermost <joined table> that contains TR
with no intervening <derived table>. The scope of the exposed <correlation name> or ex-
posed <table or query name> of TR is the <join condition> of SC and of all <joined table>s
contained in SC that contain TR.

4) A <table or query name> that is exposed by a <table reference> TR shall not be the same as any
other <table or query name> that is exposed by a <table reference> with the same scope clause
as TR.

5) A <correlation name> that is exposed by a <table reference> TR shall not be the same as any
other <correlation name> that is exposed by a <table reference> with the same scope clause as
TR and shall not be the same as the <qualified identifier> of any <table or query name> that is
exposed by a <table reference> with the same scope clause as TR.

6) A <table or query name> immediately contained in a <table reference> TR has a scope clause
and scope defined by that <table reference> if and only if the <table or query name> is exposed
by TR.

7) If TR immediately contains <only spec> OS and the table identified by the <table or query
name> TN is not a typed table, then OS is equivalent to TN.

8) No <column name> shall be specified more than once in a <derived column list>.

9) If a <derived column list> is specified in a <table reference>, then the number of <column
name>s in the <derived column list> shall be the same as the degree of the table specified by
the <derived table>, the <lateral derived table>, or the <table or query name> of that <table
reference>, and the name of the i-th column of that <derived table> or the effective name of the
i-th column of that <table or query name> is the i-th <column name> in that <derived column
list>.

10) The row type of a <lateral derived table> is the row type of the immediately contained <query
expression>.

11) Case:

a) If no <derived column list> is specified, then the row type RT of the <table reference> is
the row type of its immediately contained <table or query name>, <derived table>, <lateral
derived table>, or <joined table>.

b) Otherwise, the row type RT of the <table reference> is described by a sequence of (<field
name>, <data type>) pairs, where the <field name> in the i-th pair is the i-th <column
name> in the <derived column list> and the <data type> in the i-th pair is the declared
type of the i-th column of the <derived table>, <joined table>, or <lateral derived table>,
of the table identified by the <table or query name> immediately contained in the <table
reference>.

234 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.6 <table reference>

12) A <derived table> or <lateral derived table> is an updatable derived table if and only if the
<query expression> simply contained in the <subquery> of the <table subquery> of the <derived
table> is updatable.

13) A <derived table> or <lateral derived table> is an insertable-into derived table if and only if the
<query expression> simply contained in the <subquery> of the <table subquery> of the <derived
table> is insertable-into.

14) A <collection derived table> is not updatable.

15) Case:

a) If TR simply contains a <table name> that identifies a base table, then every column of the
table identified by TR is called an updatable column of TR.

b) If TR simply contains a <table name> that identifies a view, then every updatable column of
the view identified by TR is called an updatable column of TR.

c) If TR immediately contains a <derived table> or <lateral derived table>, then every updat-
able column of the table identified by the <query expression> simply contained in <derived
table> is called an updatable column of TR.

16) If the <table or query name> immediately contained in <table reference> is not a query name
in scope, then let T be the table identified by the <table name> immediately contained in <table
or query name>. If the <table reference> is not contained in a <schema definition>, then the
schema identified by the explicit or implicit qualifier of the <table name> shall include the
descriptor of T. If the <table reference> is contained in a <schema definition> S, then the
schema identified by the explicit or implicit qualifier of the <table name> shall include the
descriptor of T, or S shall contain a <schema element> that creates the descriptor of T.
NOTE 94 – ‘‘query name in scope’’ is defined in Subclause 7.12, ‘‘<query expression>’’.

Access Rules

1) If <table reference> immediately contains a <table or query name> that is a <table name>,
then:

a) Let T be the table identified by the <table name> immediately contained in the <table or
query name> immediately contained in <table reference>.

b) If T is a base table or a viewed table and the <table reference> is contained in any of:

— A <query expression> simply contained in a <cursor specification>, a <view definition>,
or an <insert statement>.

— A <table expression> or <select list> immediately contained in a <select statement:
single row>.

— A <search condition> immediately contained in a <delete statement: searched> or an
<update statement: searched>.

— A <value expression> simply contained in a <row value expression> immediately con-
tained in a <set clause>.

then

Case:

Query expressions 235

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.6 <table reference>

i) If <table reference> is contained in an <SQL schema statement> then, the applica-
ble privileges of the <authorization identifier> that owns the containing schema shall
include SELECT on at least one column of T.

ii) Otherwise, the current privileges shall include SELECT on at least one column of T.
NOTE 95 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

c) If the <table reference> is contained in a <query expression> simply contained in a <view
definition> then the applicable privileges of the <authorization identifier> that owns the
view shall include SELECT for at least one column of T.

d) If TR immediately contains <only spec>, then

Case:

i) If <table reference> is contained in a <schema definition>, then the applicable privileges
of the <authorization identifier> that owns the containing schema shall include SELECT
WITH HIERARCHY OPTION on at least one supertable of T.

ii) Otherwise, the current privileges shall include SELECT WITH HIERARCHY OPTION
on at least one supertable of T.

NOTE 96 – ‘‘applicable privileges’’ and current privileges are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

General Rules

1) A <correlation name> or exposed <table or query name> contained in a <table reference> defines
that <correlation name> or <table or query name> to be an identifier of the table identified by
the <table or query name> or <derived table> of that <table reference>.

2) If the <table reference> simply contains a <table name> TN and TN identifies a view or a base
table T, then

Case:

a) If ONLY is specified, then the <table reference> references the table that consists of every
row in T, except those rows that have a subrow in a proper subtable of T.

b) Otherwise, the <table reference> references the table that consists of every row of T.

3) If a <lateral derived table> LDT immediately containing <query expression> QE is specified,
then the result of LDT is the result of QE.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, a <table reference> shall not contain a <collection
derived table>.

2) Without Feature T491, ‘‘LATERAL derived table’’, conforming SQL language shall not specify a
<lateral derived table>.

3) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, a <table refer-
ence> shall not contain a <query name>.

4) Without Feature S111, ‘‘ONLY in query expressions’’, a <table reference> shall not specify ONLY.

236 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.6 <table reference>

5) Without Feature F591, ‘‘Derived tables’’, conforming SQL language shall not specify a <derived
table>.

Query expressions 237

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.7 <joined table>

7.7 <joined table>

Function
Specify a table derived from a Cartesian product, inner or outer join, or union join.

Format

<joined table> ::=
<cross join>

| <qualified join>
| <natural join>
| <union join>

<cross join> ::=
<table reference> CROSS JOIN <table primary>

<qualified join> ::=
<table reference> [<join type>] JOIN <table reference>

<join specification>

<natural join> ::=
<table reference> NATURAL [<join type>] JOIN <table primary>

<union join> ::=
<table reference> UNION JOIN <table primary>

<join specification> ::=
<join condition>

| <named columns join>

<join condition> ::= ON <search condition>

<named columns join> ::=
USING <left paren> <join column list> <right paren>

<join type> ::=
INNER

| <outer join type> [OUTER]

<outer join type> ::=
LEFT

| RIGHT
| FULL

<join column list> ::= <column name list>

Syntax Rules

1) No <column name> contained in a <column name list> shall identify a column whose declared
type is a large object string or an array type.

2) Let TR1 and TR2 be the first and second <table reference>s of the <joined table>, respectively.
Let T1 and T2 be the tables identified by TR1 and TR2, respectively. Let TA and TB be the
correlation names of TR1 and TR2, respectively. Let CP be:

238 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.7 <joined table>

SELECT * FROM TR1, TR2

3) A <joined table> is possibly non-deterministic if either T1 or T2 is possibly non-deterministic.

4) If a <qualified join> or <natural join> is specified and a <join type> is not specified, then INNER
is implicit.

5) If a <qualified join> containing a <join condition> is specified, then:

a) Each column reference directly contained in the <search condition> shall unambiguously
reference a column of T1 or T2 or be an outer reference.

b) If a <value expression> directly contained in the <search condition> is a <set function
specification>, then the <joined table> shall be contained in a <having clause> or <select
list> and the <set function specification> shall contain a column reference that is an outer
reference.

NOTE 97 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

6) If neither NATURAL is specified nor a <join specification> immediately containing a <named
columns join> is specified, then the descriptors of the columns of the result of the <joined
table> are the same as the descriptors of the columns of CP, with the possible exception of the
nullability characteristics of the columns.

7) If NATURAL is specified or if a <join specification> immediately containing a <named columns
join> is specified, then:

a) If NATURAL is specified, then let common column name be a <column name> that is the
<column name> of exactly one column of T1 and the <column name> of exactly one column
of T2. T1 shall not have any duplicate common column names and T2 shall not have any
duplicate common column names. Let corresponding join columns refer to all columns of T1
and T2 that have common column names, if any.

b) If a <named columns join> is specified, then every <column name> in the <join column
list> shall be the <column name> of exactly one column of T1 and the <column name> of
exactly one column of T2. Let common column name be the name of such a column. Let
corresponding join columns refer to the columns of T1 and T2 identified in the <join column
list>.

c) Let C1 and C2 be a pair of corresponding join columns contained in T1 and T2, respectively.
C1 and C2 shall be comparable.

d) If there is at least one corresponding join column, then let SLCC be a <select list> of <de-
rived column>s of the form

COALESCE (TA.C, TB.C) AS C

for every column C that is a corresponding join column, taken in order of their ordinal
positions in T1.

e) If T1 contains at least one column that is not a corresponding join column, then let SLT1 be
a <select list> of <derived column>s of the form

TA.C

for every column C of T1 that is not a corresponding join column, taken in order of their
ordinal positions in T1.

Query expressions 239

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.7 <joined table>

f) If T2 contains at least one column that is not a corresponding join column, then let SLT2 be
a <select list> of <derived column>s of the form

TB.C

for every column C of T2 that is not a corresponding join column, taken in order of their
ordinal positions in T2.

g) Let the <select list> SL be defined as

Case:

i) If all of the columns of T1 and T2 are corresponding join columns, then let SL be
‘‘SLCC’’.

ii) If T1 contains no corresponding join columns and T2 contains no corresponding join
columns, then let SL be ‘‘SLT1, SLT2’’.

iii) If T1 contains no columns other than corresponding join columns, then let SL be ‘‘SLCC,
SLT2’’.

iv) If T2 contains no columns other than corresponding join columns, then let SL be ‘‘SLCC,
SLT1’’.

v) Otherwise, let SL be ‘‘SLCC, SLT1, SLT2’’.

The descriptors of the columns of the result of the <joined table>, with the possible exception
of the nullability characteristics of the columns, are the same as the descriptors of the
columns of the result of

SELECT SL FROM TR1, TR2

8) The declared type of the rows of the <joined table> is the row type RT defined by the sequence of
(<field name>, <data type>) pairs indicated by the sequence of column descriptors of the <joined
table> taken in order.

9) For every column CR of the result of the <joined table> that is not a corresponding join column
and that corresponds to a column C1 of T1, CR is possibly nullable if any of the following
conditions are true:

a) RIGHT, FULL, or UNION is specified, or

b) INNER, LEFT, or CROSS JOIN is specified or implicit and C1 is possibly nullable.

10) For every column CR of the result of the <joined table> that is not a corresponding join column
and that corresponds to a column C2 of T2, CR is possibly nullable if any of the following
conditions are true:

a) LEFT, FULL, or UNION is specified, or

b) INNER, RIGHT, or CROSS JOIN is specified or implicit and C2 is possibly nullable.

11) For every column CR of the result of the <joined table> that is a corresponding join column
and that corresponds to a column C1 of T1 and C2 of T2, CR is possibly nullable if any of the
following conditions are true:

a) LEFT or FULL is specified and C1 is possibly nullable, or

240 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.7 <joined table>

b) RIGHT or FULL is specified and C2 is possibly nullable.

Access Rules

None.

General Rules

1) Case:

a) If <union join> is specified, then let T be the empty set.

b) If a <cross join> is specified, then let T be the multiset of rows of CP.

c) If a <join condition> is specified, then let T be the multiset of rows of CP for which the
specified <search condition> is true.

d) If NATURAL is specified or <named columns join> is specified, then

Case:

i) If there are corresponding join columns, then let T be the multiset of rows of CP for
which the corresponding join columns have equal values.

ii) Otherwise, let T be the multiset of rows of CP.

2) Let P1 be the multiset of rows of T1 for which there exists in T some row that is the concatena-
tion of some row R1 of T1 and some row R2 of T2. Let P2 be the multiset of rows of T2 for which
there exists in T some row that is the concatenation of some row R1 of T1 and some row R2 of
T2.

3) Let U1 be those rows of T1 that are not in P1 and let U2 be those rows of T2 that are not in P2.

4) Let D1 and D2 be the degree of T1 and T2, respectively. Let X1 be U1 extended on the right
with D2 columns containing the null value. Let X2 be U2 extended on the left with D1 columns
containing the null value.

5) Let XN1 and XN2 be effective distinct names for X1 and X2, respectively. Let TN be an effective
name for T.

Case:

a) If INNER or <cross join> is specified, then let S be the multiset of rows of T.

b) If LEFT is specified, then let S be the multiset of rows resulting from:

SELECT � FROM T
UNION ALL

SELECT � FROM X1

c) If RIGHT is specified, then let S be the multiset of rows resulting from:

SELECT � FROM T
UNION ALL

SELECT � FROM X2

Query expressions 241

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.7 <joined table>

d) If FULL is specified, then let S be the multiset of rows resulting from:

SELECT � FROM T
UNION ALL
SELECT � FROM X1
UNION ALL

SELECT � FROM X2

e) If UNION is specified, then let S be the multiset of rows resulting from:

SELECT � FROM X1
UNION ALL

SELECT � FROM X2

6) Let SN be an effective name of S.

Case:

a) If NATURAL is specified or a <named columns join> is specified, then:

i) Let CSi be a name for the i-th column of S. Column CSi of S corresponds to the i-
th column of T1 if i is less than or equal to D1. Column CSj of S corresponds to the
(j�D1)-th column of T2 for j greater than D1.

ii) If there is at least one corresponding join column, then let SLCC be a <select list> of
derived columns of the form

COALESCE (CSi, CSj)

for every pair of columns CSi and CSj, where CSi and CSj correspond to columns of T1
and T2 that are a pair of corresponding join columns.

iii) If T1 contains one or more columns that are not corresponding join columns, then let
SLT1 be a <select list> of the form:

CSi

for every column CSi of S that corresponds to a column of T1 that is not a corresponding
join column, taken in order of their ordinal position in S.

iv) If T2 contains one or more columns that are not corresponding join columns, then let
SLT2 be a <select list> of the form:

CSj

for every column CSj of S that corresponds to a column of T2 that is not a corresponding
join column, taken in order of their ordinal position in S.

v) Let the <select list> SL be defined as:

1) If all the columns of T1 and T2 are corresponding join columns, then let SL be

SLCC

2) If T1 contains no corresponding join columns and T2 contains no corresponding join
columns, then let SL be

SLT1, SLT2

3) If T1 contains no columns other than corresponding join columns, then let SL be

SLCC, SLT2

242 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.7 <joined table>

4) If T2 contains no columns other than corresponding join columns, then let SL be

SLCC, SLT1

5) Otherwise, let SL be

SLCC, SLT1, SLT2

6) The result of the <joined table> is the multiset of rows resulting from:

SELECT SL FROM SN

vi) Otherwise, the result of the <joined table> is S.

Conformance Rules

1) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall contain no
<cross join>.

2) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not specify
UNION JOIN.

3) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not specify
NATURAL.

4) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not specify
FULL.

Query expressions 243

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.8 <where clause>

7.8 <where clause>

Function
Specify a table derived by the application of a <search condition> to the result of the preceding
<from clause>.

Format

<where clause> ::= WHERE <search condition>

Syntax Rules

1) Let T be the result of the preceding <from clause>. Each column reference directly contained in
the <search condition> shall unambiguously reference a column of T or be an outer reference.
NOTE 98 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

2) If the <value expression> directly contained in the <search condition> is a <set function speci-
fication>, then the <where clause> shall be contained in a <having clause> or <select list> and
every column reference contained in the <set function specification> shall be an outer reference.

NOTE 99 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

3) No column reference contained in a <subquery> in the <search condition> that references a
column of T shall be specified in a <set function specification>.

Access Rules

None.

General Rules

1) The <search condition> is applied to each row of T. The result of the <where clause> is a table
of those rows of T for which the result of the <search condition> is true.

2) Each <subquery> in the <search condition> is effectively executed for each row of T and the
results used in the application of the <search condition> to the given row of T. If any executed
<subquery> contains an outer reference to a column of T, then the reference is to the value of
that column in the given row of T.
NOTE 100 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

Conformance Rules

1) Without Feature F441, ‘‘Extended set function support’’, a <value expression> directly contained
in the <search condition> shall not contain a <column reference> that references a <derived
column> that generally contains a <set function specification> without an intervening <routine
invocation>.

244 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

7.9 <group by clause>

Function
Specify a grouped table derived by the application of the <group by clause> to the result of the
previously specified clause.

Format

<group by clause> ::=
GROUP BY <grouping specification>

<grouping specification> ::=
<grouping column reference>

| <rollup list>
| <cube list>
| <grouping sets list>
| <grand total>
| <concatenated grouping>

<rollup list> ::=
ROLLUP <left paren> <grouping column reference list> <right paren>

<cube list> ::=
CUBE <left paren> <grouping column reference list> <right paren>

<grouping sets list> ::=
GROUPING SETS <left paren> <grouping set list> <right paren>

<grouping set list> ::=
<grouping set> [{ <comma> <grouping set> }...]

<concatenated grouping> ::=
<grouping set> <comma> <grouping set list>

<grouping set> ::=
<ordinary grouping set>

| <rollup list>
| <cube list>
| <grand total>

<ordinary grouping set> ::=
<grouping column reference>

| <left paren> <grouping column reference list> <right paren>

<grand total> ::= <left paren> <right paren>

<grouping column reference list> ::=
<grouping column reference> [{ <comma> <grouping column reference> }...]

<grouping column reference> ::=
<column reference> [<collate clause>]

Query expressions 245

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.9 <group by clause>

Syntax Rules

1) Each <column reference> in the <group by clause> shall unambiguously reference a column of
the table resulting from the <from clause>. A column referenced in a <group by clause> is a
grouping column.
NOTE 101 – ‘‘Column reference’’ is defined in Subclause 6.6, ‘‘<column reference>’’.

2) If the declared type of a grouping column is a user-defined type DT, then the comparison form
of DT shall be FULL.

3) Let QS be the <query specification> that simply contains the <group by clause>, and let SL, FC,
WC, and HC be the <select list>, the <from clause>, the <where clause> if any, and the <having
clause> if any, respectively, that are simply contained in QS.

4) Let SING be the <select list> constructed by removing from SL every <select sublist> that is
not a <derived column> that contains at least one <set function specification>.

5) The declared type of a grouping column shall not be large object string, an array type, or a
distinct type whose source type is large object string or an array type.

6) For every grouping column, if <collate clause> is specified, then the declared type of the column
reference shall be character string. The column descriptor of the corresponding column in the
result has the collating sequence specified in <collate clause> and the coercibility characteristic
Explicit.

7) If <grouping specification> immediately contains <rollup list>, then let GCRi range over the n
<grouping column reference>s contained in the <rollup list>. QS is equivalent to:

SELECT SL
FC
WC
GROUP BY GROUPING SETS (

(GCR1, GCR2, ..., GCRn),
(GCR1, GCR2, ..., GCRn-1),
(GCR1, GCR2, ..., GCRn-2),
...
(GCR1),
())

HC

NOTE 102 – The resulting <group by clause> is a <grouping set list> that contains a <grouping set> for
every proper sublist of <grouping column reference list> of the <rollup list> by dropping elements from
the right, one by one.

8) If <grouping specification> immediately contains <cube list>, then let GCRi range over the n
<grouping column reference>s contained in the <cube list>. QS is equivalent to:

246 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

SELECT SL
FC
WC
GROUP BY GROUPING SETS (
(GCR1, GCR2, ..., GCRn-2, GCRn-1, GCRn),
(GCR1, GCR2, ..., GCRn-2, GCRn-1),
(GCR1, GCR2, ..., GCRn-2, GCRn),
(GCR1, GCR2, ..., GCRn-2),
...
(GCR1),
(GCR2, ..., GCRn-2, GCRn-1, GCRn),
(GCR2, ..., GCRn-2, GCRn-1),
(GCR2, ..., GCRn-2, GCRn),
(GCR2, ..., GCRn-2),
...
(GCR2),
(GCR3, ..., GCRn-2, GCRn-1, GCRn),
(GCR3, ..., GCRn-2, GCRn-1),
(GCR3, ..., GCRn-2, GCRn),
(GCR3, ..., GCRn-2),
...
(GCR3),
...
(GCRn),
())

HC

NOTE 103 – The resulting <group by clause> is a <grouping set list> that contains a <grouping set> for
all possible combinations of the grouping columns in the <grouping column reference list> of the <cube
list>.

9) If <group by clause> contains a <grouping set list> that contains one or more <rollup list>s or
<cube list>s, then:

a) Let m be the number of <grouping set>s contained in the <grouping set list>.

b) Let GSi, 1 � i � m, range over the <grouping set>s contained in the <grouping set list>.

c) For each GSi:

i) If GSi is a <grand total>, then let ni be 0 (zero). If GSi is a <grouping column refer-
ence>, then let ni be 1 (one). Otherwise, let ni be the number of <grouping column
reference>s contained in the <grouping column reference list>.

ii) Let GCRi;j, 1 � j � ni, range over the <grouping column reference>s contained in GSi in
the order in which they occur in GSi.
NOTE 104 – Column references within GCRi need not be distinct. That is, it may be the case
that GCRi;x = GCRi;y for some x 6= y.

iii) Case:

1) If GSi is an <ordinary grouping set> or a <grand total>, then let GSSUBi be the
GSi.

2) If GSi is a <rollup list>, then let GSSUBi be:

Query expressions 247

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.9 <group by clause>

(GCRi,1, GCRi,2, ..., GCRi,ni),
(GCRi,1, GCRi,2, ..., GCRi,ni-1),
(GCRi,1, GCRi,2, ..., GCRi,ni-2),
...
(GCRi,1),
()

NOTE 105 – GSSUBi is a list of <ordinary grouping set>s that contains a <grouping
set> for every proper sublist of the <grouping column reference list> of the <rollup list> by
dropping elements from the right, one by one.

3) If GSi is a <cube list>, then let GSSUBi be:

(GCRi,1, GCRi,2, ...,
GCRi,ni-2, GCRi,ni-1, GCRi,ni),

(GCRi,1, GCRi,2, ...,
GCRi,ni-2, GCRi,ni-1),

(GCRi,1, GCRi,2, ...,
GCRi,ni-2, GCRi,ni)),

(GCRi,1, GCRi,2, ...,
GCRi,ni-2),

...
(GCRi,1),
(GCRi,2, ..., GCRi,ni-2,

GCRi,(ni)-1, GCRi,ni),
(GCRi,2, ..., GCRi,ni-2,

GCRi,(ni)-1),
(GCRi,2, ..., GCRi,ni-2,

GCRi,ni),
(GCRi,2, ..., GCRi,ni-2),
...
(GCRi,2),
(GCRi,3, ..., GCRi,ni-2,

GCRi,ni-1, GCRi,ni),
(GCRi,3, ..., GCRi,ni-2,

GCRi,ni-1),
(GCRi,3, ..., GCRi,ni-2,

GCRi,ni),
(GCRi,3, ..., GCRi,ni-2),
(GCRi,3),
...
(GCRi,ni),
()

NOTE 106 – GSSUBi is a list of <ordinary grouping set>s that contains a <grouping set>
for all possible combinations of the grouping columns in the <grouping column reference list>
of the <cube list>.

iv) QS is equivalent to:

SELECT SL
FC
WC
GROUP BY GROUPING SETS (GSSUB1, GSSUB2, ..., GSSUBm)
HC

10) If <grouping specification> immediately contains a <concatenated grouping>, then:

a) Let m be the number of <grouping set>s contained in the <concatenated grouping>.

248 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

b) Let GSi, 1 � i � m, range over the <grouping set>s contained in the <concatenated group-
ing>.

c) For each GSi:

i) If GSi is a <grand total>, then let ni be 0 (zero). If GSi is a <grouping column refer-
ence>, then let ni be 1 (one). Otherwise, let ni be the number of <grouping column
reference>s contained in the <grouping column reference list>.

ii) Let GCRi;j, 1 � j � ni, range over the <grouping column reference>s contained in GSi in
the order in which they occur in GSi.
NOTE 107 – Column references within GCRi need not be distinct. That is, it may be the case
that GCRi;x = GCRi;y for some x 6= y.

iii) Case:

1) If GSi is an <ordinary grouping set> or a <grand total>, then let GSFACTORi be
GSi.

2) If GSi is a <rollup list>, then let GSFACTORi be:

(
(GCRi,1, GCRi,2, ..., GCRi,ni),
(GCRi,1, GCRi,2, ..., GCRi,ni-1),
(GCRi,1, GCRi,2, ..., GCRi,ni-2),
...
(GCRi,1),
()

)

NOTE 108 – GSFACTORi is a list of <ordinary grouping set>s that contains a <grouping
set> for every proper sublist of <grouping column reference list> of the <rollup list> by
dropping elements from the right, one by one.

3) If GSi is a <cube list>, then let GSFACTORi be:

Query expressions 249

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.9 <group by clause>

(
(GCRi,1, GCRi,2, ..., GCRi,ni-2,

GCRi,ni-1, GCRi,n),
(GCRi,1, GCRi,2, ..., GCRi,ni-2,

GCRi,ni-1),
(GCRi,1, GCRi,2, ..., GCRi,ni-2,

GCRi,n),
(GCRi,1, GCRi,2, ..., GCRi,ni-2),
...
(GCRi,1),
(GCRi,2, ..., GCRi,ni-2, GCRi,ni-1,

GCRi,n),
(GCRi,2, ..., GCRi,ni-2, GCRi,ni-1),
(GCRi,2, ..., GCRi,ni-2, GCRi,n),
(GCRi,2, ..., GCRi,ni-2),
...
(GCRi,2),
(GCRi,3, ..., GCRi,ni-2, GCRi,ni-1,

GCRi,n),
(GCRi,3, ..., GCRi,ni-2, GCRi,ni-1),
(GCRi,3, ..., GCRi,ni-2, GCRi,n),
(GCRi,3, ..., GCRi,ni-2),
(GCRi,3),
...
(GCRi,ni),
()

)

NOTE 109 – GSFACTORi is a list of <ordinary grouping set>s that contains a <grouping
set> for all possible combinations of the grouping columns in the <grouping column reference
list> of the <cube list>.

d) Let CGPRODUCTm be defined as follows:

i) Let CGPRODUCT1 be GSFACTOR1.

ii) For i ranging from 2 to m,

Case:

1) If CGPRODUCTi�1 is a <grand total>, then let CGPRODUCTi be GSFACTORi.

2) If GSFACTORi is a <grand total>, then let CGPRODUCTi be CGPRODUCTi�1.

3) If neither CGPRODUCTi�1 nor GSFACTORi is a <grand total>, then:
NOTE 110 – CGPRODUCTi�1 and GSFACTORi can be either a <ordinary grouping set>
or a list of <ordinary grouping set>s. GSFACTORi will be a list of <ordinary grouping set>s
only when the original GSi was either a <rollup list> or a <cube list>.

A) If CGPRODUCTi�1 is an <ordinary grouping set>, then let STi�1 be 1 (one);
otherwise, let STi�1 be the number of <ordinary grouping set>s contained in the
list of <ordinary grouping set>s.

B) Let GSTi�1;j, 1 � j � STi�1, range over the <ordinary grouping set>s contained
in CGPRODUCTi�1. Let Ni�1;j be the number of <grouping column reference>s
contained in the <grouping column reference list> of GSTi�1;j.

C) Let GCRTi�1;j;k, 1 � k � Ni�1;j, range over the <grouping column reference>s
contained in GSTi�1;j.
NOTE 111 – Column references within GCRTi�1;j need not be distinct. That is, it may
be the case that GCRTi�1;j;x = GCRTi�1;j;y for some x 6= y.

250 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

D) If GSFACTORi is an <ordinary grouping set>, then let Si be 1 (one); other-
wise, let Si be the number of <ordinary grouping set>s contained in the list of
<ordinary grouping set>s.

E) Let GSi;j, 1 � j � Si, range over the <ordinary grouping set>s contained in
GSFACTORi. Let Ni;j be the number of <grouping column reference>s contained
in the <grouping column reference list> of GSi;j.

F) Let GCRi;j;k, 1 � k � Ni;j, range over the <grouping column reference>s con-
tained in GSi;j.
NOTE 112 – Column references within GCRi;j need not be distinct. That is, it may be
the case that GCRi;j;x = GCRTi;j;y for some x 6= y.

G) CGPRODUCTi is a list of <ordinary grouping sets> constructed as follows:

(
(GCRTi-1, 1, 1,
GCRTi-1, 1, 2, ...
GCRTi-1, 1, Ni-1,1,
GCRi, 1, 1,
GCRi, 1, 2, ...
GCRi, 1, Ni,1),

(GCRTi-1, 1, 1,
GCRTi-1, 1, 2, ...
GCRTi-1, 1, Ni-1,1,
GCRi, 2, 1,
GCRi, 2, 2, ...
GCRi, 2, Ni,2),

...

(GCRTi-1, 1, 1,
GCRTi-1, 1, 2, ...
GCRTi-1, 1, Ni-1,1,
GCRi, Si, 1,
GCRi, Si, 2, ...
GCRi, Si, Ni,Si

),

(GCRTi-1, 2, 1,
GCRTi-1, 2, 2, ...
GCRTi-1, 2, Ni-1,2,
GCRi, 1, 1,
GCRi, 1, 2, ...
GCRi, 1, Ni,1),

(GCRTi-1, 2, 1,
GCRTi-1, 2, 2, ...
GCRTi-1, 2, Ni-1,2,
GCRi, 2, 1,
GCRi, 2, 2, ...
GCRi, 2, Ni,2),

...

(GCRTi-1, 2, 1,
GCRTi-1, 2, 2, ...
GCRTi-1, 2, Ni-1,2,
GCRi, Si, 1,
GCRi, Si, 2, ...
GCRi, Si, Ni,Si

),

Query expressions 251

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.9 <group by clause>

...

(GCRTi-1, STi, 1,
GCRTi-1, STi, 2, ...
GCRTi-1, STi, Ni-1, STi

,

GCRi, 1, 1,
GCRi, 1, 2, ...
GCRi, 1, Ni,1),

(GCRTi-1, STi, 1,
GCRTi-1, STi, 2, ...
GCRTi-1, STi, Ni-1, STi

,

GCRi, 2, 1,
GCRi, 2, 2, ...
GCRi, 2, Ni,2),

...

(GCRTi-1, STi, 1,
GCRTi-1, STi, 2, ...
GCRTi-1, STi, Ni-1, STi

,

GCRi, Si, 1,
GCRi, Si, 2, ...
GCRi, Si, Ni, Si

)

)

e) If CGPRODUCTm is <grand total> or an <ordinary grouping set>, then let CGPRODUCTm
be (CGPRODUCTm).

f) QS is equivalent to:

SELECT SL
FC
WC
GROUP BY GROUPING SETS CGPRODUCTm
HC

11) If <grouping specification> immediately contains a <grouping set list> that contains only <ordi-
nary grouping set>s or <grand total>, then:

a) Let m be the number of <grouping set>s contained in the <grouping set list>.

b) Let GSi, 1 � i � m, range over the <grouping set>s contained in the <grouping set list>.

c) Let p be the number of distinct <column reference>s that are contained in the <group by
clause>.

d) Let PC be an ordered list of these <column reference>s ordered according to their left-to-
right occurrence in the list.

e) Let PCk, 1 � k � p, be the k-th <column reference> in PC.

f) Let DTPCk be the declared type of the column identified by PCk.

g) Let CNPCk be the column name of the column identified by PCk.

252 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

h) For each GSi:

i) If GSi is a <grand total>, then let ni be 0 (zero). If GSi is a <grouping column refer-
ence>, then let ni be 1 (one). Otherwise, let ni be the number of <grouping column
reference>s contained in the <grouping column reference list>.

ii) Let GCRi;j, 1 � j � ni, range over the <grouping column reference>s contained in GSi.

iii) Let COMMON_TABLE be an implementation-dependent <query name> not equivalent
to any other <query name> contained in the innermost containing <query expression>.

iv) Case:

1) If GSi is an <ordinary grouping set>, then

A) Case:

I) If PCk = GCRi;j for some j, 1 � j � ni, then let PCi;k be CNPCk and let
PCBITi;k be 0 (zero).

II) Otherwise, let PCi;k be

CAST(NULL AS DTPCk) AS CNPCk

and let PCBITi;k be 1 (one).
NOTE 113 – PCi;k is the <select sublist> representative of PCk for GSi and PCBITi;k is
the grouping function result of PCk for GSi.

B) Let GSSQLi be:

SELECT
PCi,1, PCBITi,1,
PCi,2, PCBITi,2,
...
PCi,p, PCBITi,p,
SING

FROM COMMON_TABLE
GROUP BY GCRi,1, ..., GCRi,ni

2) If GSi is a <grand total>, then let GSSQLi be

SELECT CAST(NULL AS DTPC1)
AS CNPC1, 1,

CAST(NULL AS DTPC2)
AS CNPC2, 1,

.

.

.
CAST(NULL AS DTPCp)
AS CNPCp, 1,

SING
FROM COMMON_TABLE

Query expressions 253

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.9 <group by clause>

v) QS is equivalent to:

WITH
COMMON_TABLE AS
(SELECT * FC WC),

GROUP_BY_RESULT1 AS
(GSSQL1
UNION ALL
GSSQL2
UNION ALL
.
.
.
UNION ALL
GSSQLm)

SELECT SL FROM GROUP_BY_RESULT1 HC

NOTE 114 – GROUPBYRESULT1 is the group-by result of QS.

12) If the <grouping specification> specified by <group by clause> GBC contains no <rollup list>,
<cube list>, or <grouping sets list>, then let GCRi range over the n <grouping column refer-
ence>s contained in the <group by clause>. Let GBR0 be:

SELECT GCR1, 0, ..., GCRn, 0, SING
FC
WC
GBC

GBR0 is the group-by result of QS.

Access Rules

None.

General Rules

1) If no <where clause> is specified, then let T be the result of the preceding <from clause>;
otherwise, let T be the result of the preceding <where clause>.

2) Case:

a) If there are no grouping columns, then the result of the <group by clause> is the grouped
table consisting of T as its only group.

b) Otherwise, the result of the <group by clause> is a partitioning of the rows of T into the
minimum number of groups such that, for each grouping column of each group, no two
values of that grouping column are distinct. If the declared type of a grouping column is a
user-defined type and the comparison of that column for two rows of T results in unknown,
then the assignment of those rows to groups in the result of the <group by clause> is
implementation-dependent.

3) When a <search condition> or <value expression> is applied to a group, a reference to a group-
ing column is a reference to the common value in that column of the rows in that group.
NOTE 115 – Where application of the General Rules of Subclause 8.2, ‘‘<comparison predicate>’’,
results in the formation of a group with values that are equal, but of different lengths or containing

254 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.9 <group by clause>

different sequences of characters in the same grouping column, the value selected as the common value
of that grouping column in that group is implementation-dependent. See Subclause 8.2, ‘‘<comparison
predicate>’’.

Conformance Rules

1) Without Feature T431, ‘‘CUBE and ROLLUP’’, conforming SQL language shall not specify
ROLLUP or CUBE.

2) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collate clause>.

3) Without Feature S024, ‘‘Enhanced structured types’’, a <column reference> simply contained in
a <group by clause> shall not reference a column of a structured type.

Query expressions 255

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.10 <having clause>

7.10 <having clause>

Function
Specify a grouped table derived by the elimination of groups that do not satisfy a <search condi-
tion>.

Format

<having clause> ::= HAVING <search condition>

Syntax Rules

1) Let HC be the <having clause>. Let TE be the <table expression> that immediately contains
HC. If TE does not immediately contain a <group by clause>, then GROUP BY () is implicit. Let
T be the descriptor of the table defined by the <group by clause> GBC immediately contained in
TE and let R be the result of GBC.

2) Let G be the set consisting of every column referenced by a <column reference> contained in
GBC.

3) Each column reference directly contained in the <search condition> shall unambiguously refer-
ence a column that is functionally dependent on G or be an outer reference.
NOTE 116 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

4) Each column reference contained in a <subquery> in the <search condition> that references a
column of T shall reference a column that is functionally dependent on G or shall be specified
within a <set function specification>.

5) The <having clause> is possibly non-deterministic if it contains a reference to a column C of
T that has a data type of datetime with a time zone displacement value, character string, or
user-defined type and at least one of the following is true:

a) C is specified within a <set function specification> that specifies MIN or MAX.

b) C is functionally dependent on G.

6) The row type of the result of the <having clause> is the row type RT of T.

Access Rules

None.

General Rules

1) The <search condition> is applied to each group of R. The result of the <having clause> is a
grouped table of those groups of R for which the result of the <search condition> is true.

2) When the <search condition> is applied to a given group of R, that group is the argument or ar-
gument source of each <set function specification> directly contained in the <search condition>,
unless the <column reference> in the <set function specification> is an outer reference.

256 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.10 <having clause>

3) Each <subquery> in the <search condition> is effectively evaluated for each group of R and the
result used in the application of the <search condition> to the given group of R. If any evaluated
<subquery> contains an outer reference to a column of T, then the reference is to the values of
that column in the given group of R.
NOTE 117 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

Conformance Rules

None.

Query expressions 257

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.11 <query specification>

7.11 <query specification>

Function
Specify a table derived from the result of a <table expression>.

Format

<query specification> ::=
SELECT [<set quantifier>] <select list>
<table expression>

<select list> ::=
<asterisk>

| <select sublist> [{ <comma> <select sublist> }...]

<select sublist> ::=
<derived column>

| <qualified asterisk>

<qualified asterisk> ::=
<asterisked identifier chain> <period> <asterisk>

| <all fields reference>

<asterisked identifier chain> ::=
<asterisked identifier> [{ <period> <asterisked identifier> }...]

<asterisked identifier> ::= <identifier>

<derived column> ::=
<value expression> [<as clause>]

<as clause> ::= [AS] <column name>

<all fields reference> ::=
<value expression primary> <period> <asterisk>

Syntax Rules

1) Let T be the result of the <table expression>.

2) Let TQS be the table that is the result of a <query specification>.

3) Case:

a) If the <select list> ‘‘�’’ is simply contained in a <subquery> that is immediately contained in
an <exists predicate>, then the <select list> is equivalent to a <value expression> that is an
arbitrary <literal>.

b) Otherwise, the <select list> ‘‘�’’ is equivalent to a <value expression> sequence in which each
<value expression> is a column reference that references a column of T and each column of
T is referenced exactly once. The columns are referenced in the ascending sequence of their
ordinal position within T.

4) The degree of the table specified by a <query specification> is equal to the cardinality of the
<select list>.

258 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.11 <query specification>

5) If a <set quantifier> DISTINCT is specified and one of the columns of T has a declared type DT
that is a user-defined type, then the comparison form of DT shall be FULL.

6) The ambiguous case of an <all fields reference> whose <value expression primary> takes the
form of an <asterisked identifier chain> shall be analyzed first as an <asterisked identifier
chain> to resolve the ambiguity.

7) If <asterisked identifier chain> is specified, then:

a) Let IC be an <asterisked identifier chain>.

b) Let N be the number of <asterisked identifier>s immediately contained in IC.

c) Let Ii, 1 (one) � i � N, be the <asterisked identifier>s immediately contained in IC, in order
from left to right.

d) Let PIC1 be I1. For each J between 2 and N, let PICJ be PICJ�1.IJ. PICJ is called the J-th
partial identifier chain of IC.

e) Let M be the minimum of N and 3.

f) For at most one J between 1 and M, PICJ is called the basis of IC, and J is called the
basis length of IC. The referent of the basis is a table T, a column C of a table, or an SQL
parameter SP. The basis and basis scope of IC are defined in terms of a candidate basis,
according to the following rules:

i) If IC is contained within the scope of a <routine name> whose associated <SQL param-
eter declaration list> includes an SQL parameter SP whose <identifier> is equivalent to
I1, then PIC1 is a candidate basis of IC, and the scope of PIC1 is the scope of SP.

ii) If N = 2 and PIC1 is equivalent to an exposed <correlation name> that is in scope, then
let EN be the exposed <correlation name> that is equivalent to PIC1 and has innermost
scope. If the table associated with EN has a column C of row type whose <identifier> is
equivalent to I2, then PIC2 is a candidate basis of IC and the scope of PIC2 is the scope
of EN.

iii) If N > 2 and PIC1 is equivalent to an exposed <correlation name> that is in scope, then
let EN be the exposed <correlation name> that is equivalent to PIC1 and has innermost
scope. If the table associated with EN has a column C of row type or structured type
whose <identifier> is equivalent to I2, then PIC2 is a candidate basis of IC and the scope
of PIC2 is the scope of EN.

iv) If N � 3 and PICN is equivalent to an exposed <table or query name> that is in scope,
then let EN be the exposed <table or query name> that is equivalent to PICN and has
the innermost scope. PICN is a candidate basis of IC, and the scope of PICN is the scope
of EN.

v) There shall be exactly one candidate basis CB with innermost scope. The basis of IC is
CB. The basis scope is the scope of CB.

g) Case:

i) If the basis is a <table or query name> or <correlation name>, then let TQ be the table
associated with the basis. The <select sublist> is equivalent to a <value expression>
sequence in which each <value expression> is a column reference CR that references a
column of TQ that is not a common column of a <joined table>. Each column of TQ that

Query expressions 259

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.11 <query specification>

is not a referenced common column shall be referenced exactly once. The columns shall
be referenced in the ascending sequence of their ordinal positions within TQ.

ii) Otherwise let BL be the length of the basis of IC.

Case:

1) If BL = N, then the <select sublist> IC.* is equivalent to (IC).*.

2) Otherwise, the <select sublist> IC.* is equivalent to:

(PICBL) . IBL+1 IN . *

NOTE 118 – The equivalent syntax in either case will be analyzed as <all fields reference>
::= <value expression primary> <period> <asterisk>

8) The data type of the <value expression primary> VEP specified in an <all fields reference> AFR
shall be some row type VER. Let F1, . . . , Fn be the field names of VER. AFR is equivalent to:

VEP . F1 , ... , VEP . Fn

9) Let C be some column. Let QS be the <query specification>. Let DCi, for i ranging from 1 (one)
to the number of <derived column>s inclusively, be the i-th <derived column> simply contained
in the <select list> of QS. For all i, C is an underlying column of DCi, and of any column
reference that identifies DCi, if and only if C is an underlying column of the <value expression>
of DCi, or C is an underlying column of the <table expression> immediately contained in QS.

10) Each column reference directly contained in each <value expression> and each column reference
contained in a <set function specification> directly contained in each <value expression> shall
unambiguously reference a column of T.

11) A <query specification> is possibly non-deterministic if any of the following conditions are true:

a) The <set quantifier> DISTINCT is specified and one of the columns of T has a data type of
character string, user-defined type, TIME WITH TIME ZONE, or TIMESTAMP WITH TIME
ZONE.

b) The <query specification> contains a <routine invocation> whose subject routine is an
SQL-invoked routine that is possibly non-deterministic.

c) The <query specification> directly contains a <having clause> that is possibly non-
deterministic.

d) The <select list> contains a reference to a column C of T that has a data type of character
string, user-defined type, TIME WITH TIME ZONE, or TIMESTAMP WITH TIME ZONE,
and either

i) C is specified with a <set function specification> that specifies MIN or MAX, or

ii) C is a grouping column of T.

12) If <table expression> does not immediately contain a <group by clause> and <select list> con-
tains either a <value expression> that contains a <set function specification> that contains
a reference to a column of T or a <value expression> that directly contains a <set function
specification> that does not contain an outer reference, then GROUP BY () is implicit.

260 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.11 <query specification>

13) If T is a grouped table, then let G be the set consisting of every column referenced by a <column
reference> contained in the <group by clause> immediately contained in <table expression>. In
each <value expression>, each <column reference> that references a column of T shall reference
some column C that is functionally dependent on G or shall be contained in a <set function
specification>.

14) Each column of TQS has a column descriptor that includes a data type descriptor that is the
same as the data type descriptor of the <value expression> from which the column was derived.

15) Case:

a) If the i-th <derived column> in the <select list> specifies an <as clause> that contains a
<column name> CN, then the <column name> of the i-th column of the result is CN.

b) If the i-th <derived column> in the <select list> does not specify an <as clause> and the
<value expression> of that <derived column> is a single column reference, then the <column
name> of the i-th column of the result is the <column name> of the column designated by
the column reference.

c) Otherwise, the <column name> of the i-th column of the <query specification> is
implementation-dependent and not equivalent to the <column name> of any column, other
than itself, of a table referenced by any <table reference> contained in the SQL-statement.

16) A column of TQS is known not null if and only if one of the following conditions apply:

a) It does not contain any of the following:

i) A column reference for a column C that is possibly nullable.

ii) An <indicator parameter>.

iii) An SQL parameter.

iv) A <routine invocation>, <method reference>, or <method invocation> whose subject
routine is an SQL-invoked routine that either is an SQL routine or is an external
routine that specifies or implies PARAMETER STYLE SQL.

v) A <subquery>.

vi) CAST (NULL AS X) (where X represents a <data type> or a <domain name>).

vii) CURRENT_USER, CURRENT_ROLE, or SYSTEM_USER.

viii) A <set function specification> that does not contain COUNT.

ix) A <case expression>.

x) A <field reference>.

xi) An <element reference>.

xii) A <dereference operation>.

xiii) A <reference resolution>.

Query expressions 261

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.11 <query specification>

b) An implementation-defined rule by which the SQL-implementation can correctly deduce that
the value of the column cannot be null.

17) Let TREF be the <table reference>s that are simply contained in the <from clause> of the <table
expression>. The simply underlying tables of the <query specification> are the <table or query
name>s and <derived table>s contained in TREF without an intervening <derived table>.

18) The terms key-preserving and one-to-one are defined as follows:

a) Let UT denote some simply underlying table of QS, let UTCOLS be the set of columns of
UT, let QSCOLS be the set of columns of QS, and let QSCN be an exposed <table name> or
exposed <correlation name> for UT whose scope clause is QS.
NOTE 119 – ‘‘strong candidate key’’ is defined in Subclause 4.19, ‘‘Candidate keys’’.

b) QS is said to be key-preserving with respect to UT if there is some strong candidate key
CKUT of UT such that every member of CKUT has some counterpart under QSCN in
QSCOLS.
NOTE 120 – ‘‘Counterpart’’ is defined in Subclause 4.18.1, ‘‘General rules and definitions’’. It
follows from this condition that every row in QS corresponds to exactly one row in UT, namely that
row in UT that has the same combined value in the columns of CKUT as the row in QS. There may
be more than one row in QS that corresponds to a single row in UT.

c) QS is said to be one-to-one with respect to UT if and only if QS is key-preserving with respect
to UT, UT is updatable, and there is some strong candidate key CKQS of QS such that every
member of CKQS is a counterpart under UT of some member of UTCOLS.
NOTE 121 – It follows from this condition that every row in UT corresponds to at most one row in
QS, namely that row in QS that has the same combined value in the columns of CKQS as the row in
UT.

19) A <query specification> is potentially updatable if and only if the following conditions hold:

a) DISTINCT is not specified.

b) Of those <derived column>s in the <select list> that are column references, no column
reference appears more than once in the <select list>.

c) The <table expression> immediately contained in QS does not simply contain a <group by
clause> or a <having clause>.

20) A <query specification> QS is insertable-into if and only if every simply underlying table of QS
is insertable-into.

21) If a <query specification> QS is potentially updatable, then

Case:

a) If the <from clause> of the <table expression> specifies exactly one <table reference>, then
a column of QS is said to be an updatable column if it has a counterpart in TR that is
updatable.
NOTE 122 – The notion of updatable columns of table references is defined in Subclause 7.6,
‘‘<table reference>’’.

b) Otherwise, a column of QS is said to be an updatable column if it has a counterpart in some
column of some simply underlying table UT of QS such that QS is one-to-one with respect to
UT.

262 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.11 <query specification>

22) A <query specification> is updatable if it is potentially updatable and it has at least one updat-
able column.

23) A <query specification> QS is simply updatable if it is updatable, the <from clause> immediately
contained in the <table expression> immediately contained in QS contains exactly one <table
reference>, and every result column of QS is updatable.

24) The row type RT of TQS is defined by the sequence of (<field name>, <data type>) pairs indi-
cated by the sequence of column descriptors of TQS taken in order.

Access Rules

None.

General Rules

1) Case:

a) If T is not a grouped table, then each <value expression> is applied to each row of T yielding
a table TEMP of M rows, where M is the cardinality of T. The i-th column of the table
contains the values derived by the evaluation of the i-th <value expression>.

Case:

i) If the <set quantifier> DISTINCT is not specified, then the result of the <query specifi-
cation> is TEMP.

ii) If the <set quantifier> DISTINCT is specified, then the result of the <query specifica-
tion> is the table derived from TEMP by the elimination of all redundant duplicate rows.

b) If T is a grouped table, then

Case:

i) If T has 0 (zero) groups, then the result of the <query specification> is an empty table.

ii) If T has one or more groups, then each <value expression> is applied to each group
of T yielding a table TEMP of M rows, where M is the number of groups in T. The
i-th column of TEMP contains the values derived by the evaluation of the i-th <value
expression>. When a <value expression> is applied to a given group of T, that group
is the argument or argument source of each <set function specification> in the <value
expression>.

Case:

1) If the <set quantifier> DISTINCT is not specified, then the result of the <query
specification> is TEMP.

2) If the <set quantifier> DISTINCT is specified, then the result of the <query specifica-
tion> is the table derived from TEMP by the elimination of all redundant duplicate
rows.

Query expressions 263

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.11 <query specification>

Conformance Rules

1) Without Feature F801, ‘‘Full set function’’, the <set quantifier> DISTINCT shall not be spec-
ified more than once in a <query specification>, excluding any <subquery> of that <query
specification>.

2) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not specify <all fields
reference>.

3) Without Feature T301, ‘‘Functional dependencies’’, if T is a grouped table, then in each <value
expression>, each <column reference> that references a column of T shall reference a grouping
column or be specified in a <set function specification>.

4) Without Feature S024, ‘‘Enhanced structured types’’, if any column in the result of a <query
specification> is of structured type, then DISTINCT shall not be specified or implied.

5) Without Feature T111, ‘‘Updatable joins, unions, and columns’’, a <query specification> QS is
not updatable if it is not simply updatable.

264 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

7.12 <query expression>

Function
Specify a table.

Format

<query expression> ::=
[<with clause>] <query expression body>

<with clause> ::= WITH [RECURSIVE] <with list>

<with list> ::=
<with list element> [{ <comma> <with list element> }...]

<with list element> ::=
<query name>
[<left paren> <with column list> <right paren>]
AS <left paren> <query expression> <right paren>
[<search or cycle clause>]

<with column list> ::= <column name list>

<query expression body> ::=
<non-join query expression>

| <joined table>

<non-join query expression> ::=
<non-join query term>

| <query expression body> UNION [ALL | DISTINCT]
[<corresponding spec>] <query term>

| <query expression body> EXCEPT [ALL | DISTINCT]
[<corresponding spec>] <query term>

<query term> ::=
<non-join query term>

| <joined table>

<non-join query term> ::=
<non-join query primary>

| <query term> INTERSECT [ALL | DISTINCT]
[<corresponding spec>] <query primary>

<query primary> ::=
<non-join query primary>

| <joined table>

<non-join query primary> ::=
<simple table>

| <left paren> <non-join query expression> <right paren>

<simple table> ::=
<query specification>

| <table value constructor>
| <explicit table>

Query expressions 265

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

<explicit table> ::= TABLE <table name>

<corresponding spec> ::=
CORRESPONDING [BY <left paren> <corresponding column list> <right paren>]

<corresponding column list> ::= <column name list>

Syntax Rules

1) If <with clause> is specified, then:

a) If a <with clause> WC immediately contains RECURSIVE, then WC and its <with list
element>s are said to be potentially recursive. Otherwise they are said to be non-recursive.

b) Let n be the number of <with list element>s and let WLEi and WLEj be the i-th and j-th
<with list element>s for every (i,j) with i ranging from 1 (one) to n and j ranging from i+1
to n. If WLEi is not potentially recursive, then it shall not immediately contain the <query
name> immediately contained in WLEj.

c) If the <with clause> is non-recursive, then for all i between 1 (one) and n, the scope of the
<query name> WQN immediately contained in WLEi is the <query expression> immediately
contained in every <with list element> WLEk, where k ranges from i+1 to n, and the <query
expression body> immediately contained in <query expression>. A <table or query name>
contained in this scope that immediately contains WQN is a query name in scope.

d) If the <with clause> is potentially recursive, then for all i between 1 (one) and n, the scope
of the <query name> WQN immediately contained in WLEi is the <query expression>
immediately contained in every <with list element> WLEk, where k ranges from 1 (one) to
n, and the <query expression body> immediately contained in <query expression>. A <table
or query name> contained in this scope that immediately contains WQN is a query name in
scope.

e) For every <with list element> WLE, let WQE be the <query expression> specified by WLE
and let WQT be the table defined by WQE.

i) If any two columns of WQT have equivalent names or if WLE is potentially recursive,
then WLE shall specify a <with column list>. If WLE specifies a <with column list>
WCL, then:

1) Equivalent <column name>s shall not be specified more than once in WCL.

2) The number of <column name>s in WCL shall be the same as the degree of WQT.

ii) No column in WQT shall have a coercibility characteristic of No collating sequence.

f) A query name dependency graph QNDG of a potentially recursive <with list> WL is a di-
rected graph such that, for i ranging from 1 (one) to the number of <query name>s contained
in WL:

i) Each node represents a <query name> WQNi immediately contained in a <with list
element> WLEi of WL.

ii) Each arc from a node WQNi to a node WQNj represents the fact that WQNj is contained
in the <query expression> immediately contained in WLEi. WQNi is said to depend
immediately on WQNj.

266 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

g) For a potentially recursive <with list> WL with n elements, and for i ranging from 1 (one)
to n, let WLEi be the i-th <with list element> of WL, let WQNi be the <query name> imme-
diately contained in WLEi, let WQEi be the <query expression> immediately contained in
WLEi, let WQTi be the table defined by WQEi, and let QNDG be the query name dependency
graph of WL.

i) WL is said to be recursive if QNDG contains at least one cycle.

Case:

1) If QDNG contains an arc from WQNi to itself, then WLEi, WQNi, and WQTi are said
to be recursive. WQNi is said to belong to the stratum of WQEi.

2) If QDNG contains a cycle comprising WQNi, ..., WQNk, with k 6= i, then it is said
that WQNi, ..., WQNk are recursive and mutually recursive to each other, WQTi, ...,
WQTk are recursive and mutually recursive to each other, and WLEi, ..., WLEk are
recursive and mutually recursive to each other.

For each j ranging from i to k, WQNj belongs to the stratum of WQEi,..., and WQEk.

3) Among the WQEi, ... WQEk of a given stratum, there shall be at least one <query
expression>, say WQEj, such that:

A) WQEj is a <non-join query expression> that immediately contains UNION.

B) WQEj has one operand that does not contain WQNi, ..., WQNk. This operand is
said to be the non-recursive operand of WQEj.

C) WQEj is said to be an anchor expression, and WQNj an anchor name.

D) Let CCCG be the subgraph of QNDG that contains no nodes other than WQNi,
..., WQNk. For any anchor name WQNj, remove the arcs to those query names
WQNl that are contained in WQEj. The remaining graph SCCGP shall not
contain any cycle.

ii) If WLEi is recursive, then:

1) If WQEi contains at most one WQNk that belongs to the stratum of WQEi, then
WLEi is linearly recursive.

2) Otherwise, let WQEi contain any two <query name>s WQNk and WQNl, both of
which belong to the stratum of WQEi.

Case:

A) WLEi is linearly recursive if each of the following conditions is satisfied:

I) WQEi does not contain a <table reference list> that contains both WQNk and
WQNl.

II) WQEi does not contain a <joined table> such that TR1 and TR2 are the first
and second <table reference>s, respectively, and TR1 and TR2 contain WQNk
and WQNl, respectively, except for union join.

III) WQEi does not contain a <table expression> that immediately contains a
<from clause> that contains WQNk, and immediately contains a <where
clause> containing a <subquery> that contains WQNl.

Query expressions 267

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

B) Otherwise, WLEi is said to be non-linearly recursive.

iii) For each WLEi, for i ranging from 1 (one) to n, and for each WQNj that belongs to the
stratum of WQEi:

1) WQEi shall not contain a <non-join query expression> that contains WQNj and
immediately contains EXCEPT where the right operand of EXCEPT contains WQNj.

2) WQEi shall not contain a <routine invocation> with an <SQL argument list> that
contains one or more <SQL argument>s that immediately contain a <value expres-
sion> that contains WQNj.

3) WQEi shall not contain a <table subquery> TSQ that contains WQNj, unless TSQ
is immediately contained in a <table reference> that is immediately contained in a
<table expression> that is immediately contained in a <query specification> that is
immediately contained in a <non-join query expression> that is WQEi.

4) WQEi shall not contain a <query specification> QS such that:

A) QS immediately contains a <table expression> TE that contains WQNj, and

B) QS immediately contains a <select list> SL or TE immediately contains a <hav-
ing clause> HC and SL or TE contain a <set function specification>.

5) WQEi shall not contain a <non-join query term> that contains WQNj and immedi-
ately contains INTERSECT ALL or EXCEPT ALL.

6) WQEi shall not contain a <qualified join> QJ in which:

A) QJ immediately contains a <join type> that specifies FULL and a <table refer-
ence> that contains WQNj.

B) QJ immediately contains a <join type> that specifies LEFT and a <table refer-
ence> following the <join type> that contains WQNj.

C) QJ immediately contains a <join type> that specifies RIGHT and a <table refer-
ence> preceding the <join type> that contains WQNj.

7) WQEi shall not contain a <natural join> QJ in which:

A) QJ immediately contains a <join type> that specifies FULL and a <table refer-
ence> or <table primary> that contains WQNj.

B) QJ immediately contains a <join type> that specifies LEFT and a <table pri-
mary> following the <join type> that contains WQNj.

C) QJ immediately contains a <join type> that specifies RIGHT and a <table refer-
ence> preceding the <join type> that contains WQNj.

iv) If WLEi is recursive, then WLEi shall be linearly recursive.

v) WLEi is said to be expandable if all of the following are true:

1) WLEi is recursive.

2) WLEi is linearly recursive.

268 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

3) WQEi is a <non-join query expression> that immediately contains UNION or
UNION ALL. Let QELi and QTRi be the <query expression> and the <query term>
immediately contained in WQEi. WQNi shall not be contained in QELi, and QTRi
shall be a <query specification>.

4) WQNi is not mutually recursive.

h) If a <with list element> WLE is not expandable, then it shall not immediately contain a
<search or cycle clause>.

2) Let T be the table specified by the <query expression>.

3) The <explicit table>

TABLE <table name>

is equivalent to the <query expression>

(SELECT * FROM <table name>)

4) Let set operator be UNION ALL, UNION DISTINCT, EXCEPT ALL, EXCEPT DISTINCT,
INTERSECT ALL, or INTERSECT DISTINCT.

5) If UNION, EXCEPT, or INTERSECT is specified and neither ALL nor DISTINCT is specified,
then DISTINCT is implicit.

6) <query expression> QE1 is updatable if and only if for every <query expression> or <query
specification> QE2 that is simply contained in QE1:

a) QE1 contains QE2 without an intervening <non-join query expression> that specifies
UNION DISTINCT, EXCEPT ALL, or EXCEPT DISTINCT.

b) If QE1 simply contains a <non-join query expression> NJQE that specifies UNION ALL,
then:

i) NJQE immediately contains a <query expression> LO and a <query term> RO such that
no leaf generally underlying table of LO is also a leaf generally underlying table of RO.

ii) For every column of NJQE, the underlying columns in the tables identified by LO and
RO, respectively, are either both updatable or not updatable.

c) QE1 contains QE2 without an intervening <non-join query term> that specifies INTERSECT.

d) QE2 is updatable.

7) <query expression> QE1 is insertable-into if and only if QE1 simply contains exactly one <query
expression> or <query specification> QE2 and QE2 is insertable-into.

8) Case:

a) If a <simple table> is a <query specification>, then the column descriptor of the i-th column
of the <simple table> is the same as the column descriptor of the i-th column of the <query
specification>.

b) If a <simple table> is an <explicit table>, then the column descriptor of the i-th column
of the <simple table> is the same as the column descriptor of the i-th column of the table
identified by the <table name> contained in the <explicit table>.

Query expressions 269

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

c) Otherwise, the column descriptor of the i-th column of the <simple table> is the same as
the column descriptor of the i-th column of the <table value constructor>, except that the
<column name> is implementation-dependent and not equivalent to the <column name> of
any column, other than itself, of any table referenced by a <table reference> contained in
the outermost SQL-statement.

9) Case:

a) If a <non-join query primary> is a <simple table>, then the column descriptor of the i-th
column of the <non-join query primary> is the same as the column descriptor of the i-th
column of that <simple table>.

b) Otherwise, the column descriptor of the i-th column of the <non-join query primary> is the
same as the column descriptor of the i-th column of the <non-join query expression>.

10) Case:

a) If a <query primary> is a <non-join query primary>, then the column descriptor of the i-th
column of the <query primary> is the same as the column descriptor of the i-th column of
that <non-join query primary>.

b) Otherwise, the column descriptor of the i-th column of the <query primary> is the same as
the column descriptor of the i-th column of the <joined table>.

11) If a set operator is specified in a <non-join query term> or a <non-join query expression>, then:

a) Let T1, T2, and TR be respectively the first operand, the second operand, and the result of
the <non-join query term> or <non-join query expression>.

b) Let TN1 and TN2 be the effective names for T1 and T2, respectively.

c) If the set operator is UNION DISTINCT, EXCEPT DISTINCT, or INTERSECT DISTINCT
and any column of T1 or T2 has a declared type DT that is a user-defined type, then the
comparison form of DT shall be FULL.

12) If a set operator is specified in a <non-join query term> or a <non-join query expression>, then
let OP be the set operator.

Case:

a) If CORRESPONDING is specified, then:

i) Within the columns of T1, equivalent <column name>s shall not be specified more than
once and within the columns of T2, equivalent <column name>s shall not be specified
more than once.

ii) At least one column of T1 shall have a <column name> that is the <column name> of
some column of T2.

iii) Case:

1) If <corresponding column list> is not specified, then let SL be a <select list> of those
<column name>s that are <column name>s of both T1 and T2 in the order that those
<column name>s appear in T1.

270 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

2) If <corresponding column list> is specified, then let SL be a <select list> of those
<column name>s explicitly appearing in the <corresponding column list> in the
order that these <column name>s appear in the <corresponding column list>. Every
<column name> in the <corresponding column list> shall be a <column name> of
both T1 and T2.

iv) The <non-join query term> or <non-join query expression> is equivalent to:

(SELECT SL FROM TN1) OP (SELECT SL FROM TN2)

b) If CORRESPONDING is not specified, then T1 and T2 shall be of the same degree.

13) If the <non-join query term> is a <non-join query primary>, then the declared type of the <non-
join query term> is that of the <non-join query primary>. If the <non-join query primary> has
column descriptors, then the column descriptor of the i-th column of the <non-join query term>
is the same as the column descriptor of the i-th column of the <non-join query primary>.

14) If the <non-join query term> immediately contains a set operator, then

a) Case:

i) Let C be the <column name> of the i-th column of T1. If the <column name> of the i-th
column of T2 is C, then the <column name> of the i-th column of TR is C.

ii) Otherwise, the <column name> of the i-th column of TR is implementation-dependent
and not equivalent to the <column name> of any column, other than itself, of any table
referenced by any <table reference> contained in the SQL-statement.

b) The declared type of the i-th column of TR is determined by applying Subclause 9.3, ‘‘Data
types of results of aggregations’’, to the declared types of the i-th column of T1 and the i-th
column of T2. If the i-th columns of either T1 or T2 are known not nullable, then the i-th
column of TR is known not nullable; otherwise, the i-th column of TR is possibly nullable.

15) Case:

a) If a <query term> is a <non-join query term> that has column descriptors, then the column
descriptor of the i-th column of the <query term> is the same as the column descriptor of
the i-th column of the <non-join query term>.

b) If the <query term> is a <joined table>, then the column descriptor of the i-th column of the
<query term> is the same as the column descriptor of the i-th column of the <joined table>.

16) Case:

a) If the <non-join query term> has column descriptors, then the column descriptor of the i-th
column of the <non-join query expression> is the same as the column descriptor of the i-th
column of the <non-join query term>.

b) If a <non-join query expression> immediately contains a set operator, then

i) Case:

1) Let C be the <column name> of the i-th column of T1. If the <column name> of the
i-th column of T2 is C, then the <column name> of the i-th column of TR is C.

Query expressions 271

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

2) Otherwise, the <column name> of the i-th column of TR is implementation-
dependent and not equivalent to the <column name> of any column, other than
itself, of any table referenced by any <table reference> contained in the SQL-
statement.

ii) If TR is not the result of an anchor expression, then the declared type of the i-th column
of TR is determined by applying the Syntax Rules of Subclause 9.3, ‘‘Data types of
results of aggregations’’, to the declared types of the i-th column of T1 and the i-th
column of T2.

Case:

1) If the <non-join query expression> immediately contains EXCEPT, then if the i-
th column of T1 is known not nullable, then the i-th column of TR is known not
nullable; otherwise, the i-th column of TR is possibly nullable.

2) Otherwise, if the i-th columns of both T1 and T2 are known not nullable, then the
i-th column of TR is known not nullable; otherwise, the i-th column of TR is possibly
nullable.

iii) If TR is the result of an anchor expression ARE, then:

1) Let l be the number of recursive tables that belong to the stratum of ARE. For j
ranging from 1 (one) to l, let WQTj be those tables. Of the operands T1 and T2
of TR, let TNREC be the operand that is the result of the non-recursive operand
of ARE and let TREC be the other operand. The i-th column of TR is said to be
recursively referred to if there exists at least one k, 1 � k � l, such that a column of
WQTk is an underlying column of the i-th column of TREC. Otherwise, that column
is said to be not recursively referred to.

2) If the i-th column of TR is not recursively referred to, then the declared type of the
i-th column of TR is determined by applying Subclause 9.3, ‘‘Data types of results
of aggregations’’, to the declared types of the i-th column of T1 and the i-th column
of T2. If the i-th columns of either T1 or T2 are known not nullable, then the i-th
column of TR is known not nullable; otherwise, the i-th column of TR is possibly
nullable.

3) If the i-th column of TR is recursively referred to, then:

A) The i-th column of TR is possibly nullable.

B) Case:

I) If T1 is TNREC, then if the i-th column of TR is recursively referred to, then
the declared type of the i-th column of TR is the same as the declared type
of the i-th column of T1.

II) If T2 is TNREC, then if the i-th column of TR is recursively referred to, then
the declared type of the i-th column of TR is the same as the declared type
of the i-th column of T2.

17) Case:

a) If a <query expression body> is a <non-join query expression> that has column descriptors,
then the column descriptors of the i-th column of the <query expression body> and of the

272 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

immediately containing <query expression> are the same as the column descriptor of the
i-th column of the <non-join query expression>.

b) If a <query expression body> is a <joined table>, then the column descriptors of the i-th col-
umn of the <query expression body> and of the immediately containing <query expression>
are the same as the column descriptor of the i-th column of the <joined table>.

18) The simply underlying tables of QE are the <table or query name>s, <query specification>s,
and <derived table>s contained, without an intervening <derived table> or an intervening <join
condition>, in the <query expression body> immediately contained in QE.

19) A <query expression> is possibly non-deterministic if any of the following are true:

a) The <query expression> is a <non-join query primary> that is possibly non-deterministic.

b) The <query expression> is a <joined table> that is possibly non-deterministic.

c) UNION, EXCEPT, or INTERSECT is specified and either of the first or second operands is
possibly non-deterministic.

d) Both of the following are true:

i) T contains a set operator UNION and ALL is not specified, or T contains either of the
set operators EXCEPT or INTERSECT.

ii) Either of the following are true:

1) The first or second operand contains a column that has a declared type of character
string.

2) The first or second operand contains a column that has a declared type of datetime
with a time zone displacement.

20) The underlying columns of each column of QE and of QE itself are defined as follows:

a) A column of a <table value constructor> has no underlying columns.

b) The underlying columns of every i-th column of a <simple table> ST are the underlying
columns of the i-th column of the table immediately contained in ST. A column of ST is
called an updatable column of ST if the underlying column of ST is updatable; otherwise,
this column is not updatable.

c) If no set operator is specified, then the underlying columns of every i-th column of QE are
the underlying columns of the i-th column of the <simple table> simply contained in QE.
A column of such a QE is called an updatable column of QE if its underlying column is
updatable; otherwise, this column is not updatable.

d) If a set operator is specified, then the underlying columns of every i-th column of QE are
the underlying columns of the i-th column of T1 and those of the i-th column of T2. If a set
operator UNION ALL is specified, then a column of that QE is called an updatable column
of QE if both its underlying columns of T1 and T2 are updatable.

e) Let C be some column. C is an underlying column of QE if and only if C is an underlying
column of some column of QE.

21) If the declared type of any column of a <query term> is large object string, then ALL shall be
specified.

Query expressions 273

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

22) If the declared type of any column of a <query primary> is large object string, then ALL shall
be specified.

23) A <query expression> QE shall not generally contain a <routine invocation> whose subject
routine is an SQL-invoked routine that possibly modifies SQL-data, unless QE is a <table
value constructor> and is immediately contained in an <insert columns and source> that is
immediately contained in an <insert statement>.

Access Rules

None.

General Rules

1) If a non-recursive <with clause> is specified, then:

a) For every <with list element> WLE, let WQN be the <query name> immediately contained
in WLE. Let WQE be the <query expression> immediately contained in WLE. Let WLT
be the table resulting from evaluation of WQE, with each column name replaced by the
corresponding element of the <with column list>, if any, immediately contained in WLE.

b) Every <table reference> contained in <query expression> that specifies WQN identifies
WLT.

2) If a potentially recursive <with clause> WC is specified, then:

a) Let n be the number of <with list element>s WLEi of the <with list> WL immediately
contained in WC. For i ranging from 1 (one) to n, let WQNi and WQEi be the <query name>s
and the <query expression>s immediately contained in WLEi, and let WQTi be the table
resulting from the evaluation of WLEi. Let WLPj be the elements of a partitioning of WL
such that each WLPj contains all WLEi that belong to one stratum, and let m be the number
of partitions. Let the partition dependency graph PDG of WL be a directed graph such that:

i) Each partition WLPj of WL is represented by exactly one node of PDG.

ii) There is an arc from the node representing WLPj to the node representing WLPk if and
only if WLPj contains at least one WLEi, WLPk contains at least one WLEh, and WQEi
contains the <query name> WQNh.

b) While the set of nodes of PDG is not empty, do:

i) Evaluate the partitions of PDG that have no outgoing arc.

ii) Remove the partitions and their incoming arcs from PDG.

c) Let LIP be some partition of WL. Let m be the number of <with list element>s in LIP, and
for i ranging from 1 (one) to m, let WLEi be a <with list element> of LIP, and let WQNi
and WQEi be the <query name> and <query expression> immediately contained in WLEi.
Let SQEi be the set of <query expression>s contained in WQEi. Let SQE be a set of <query
expression>s such that a <query expression> belongs to SQE if and only if it is contained in
some WQEi. Let p be the number of <query expression>s in SQE and let AQEi, 1� k � p
be the k-th <query expression> belonging to SQE.

i) Every <query expression> AQEk that contains a recursive query name in scope is
marked as recursive.

274 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

ii) Let RTk and WTk be tables whose row type is the row type of AQEk. Let RTk and
WTk be initially empty. RTk and WTk are said to be associated with AQEk. If AQEk is
immediately contained in some WQEi, then RTk and WTk are said to be the intermediate
result table and working table, respectively, associated with the <query name> WQNi.

iii) If a <query expression> AQEk not marked as recursive is immediately contained in a
<non-join query expression> that is marked as recursive and that specifies UNION, then
AQEi is marked as iteration ignorable.

iv) For each AQEk,

Case:

1) If AQEk consists of a <query specification> that immediately contains DISTINCT,
then AQEk suppresses duplicates.

2) If AQEk consists of a <non-join query expression> or <non-join query term> that
explicitly or implicitly immediately contains DISTINCT, then AQEk suppresses
duplicates.

3) Otherwise, AQEk does not suppress duplicates.

v) If an AQEk is not marked as recursive, then let RTk and WTk be the result of AQEk.

vi) For every RTk, let RTNk be the name of RTk. If AQEk is not marked as recursive, then
replace AQEk with:

TABLE RTNk

vii) For every WQEi of LIP, let the recursive query names in scope denote the associated
result tables. Evaluate every WQEi. For every AQEk contained in any such WQEi, let
RTk and WTk be the result of AQEk.
NOTE 123 – This ends the initialization phase of the evaluation of a partition.

viii) For every AQEk of LIP that is marked as iteration ignorable, let RTk be an empty table.

ix) While some WTk of LIP is not empty, do:

1) Let the recursive query names in scope of LIP denote the associated working tables.

2) Evaluate every WQEi of LIP.

3) For every AQEk that is marked as recursive,

Case:

A) If AQEk suppresses duplicates, then let WTk be the result of AQEk EXCEPT
RTNk.

B) Otherwise, let WTk be the result of AQEk.

4) For every WTk, let WTNk be the table name of WTk. Let RTk be the result of:

TABLE WTNk UNION ALL TABLE RTNk

Query expressions 275

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

x) Any reference to WQNi identifies the intermediate result table RTk associated with
WQNi.

3) Case:

a) If no set operator is specified, then T is the result of the specified <simple table> or <joined
table>.

b) If a set operator is specified, then the result of applying the set operator is a table containing
the following rows:

i) Let R be a row that is a duplicate of some row in T1 or of some row in T2 or both. Let
m be the number of duplicates of R in T1 and let n be the number of duplicates of R in
T2, where m � 0 and n � 0.

ii) If DISTINCT is specified or implicit, then

Case:

1) If UNION is specified, then

Case:

A) If m > 0 or n > 0, then T contains exactly one duplicate of R.

B) Otherwise, T contains no duplicate of R.

2) If EXCEPT is specified, then

Case:

A) If m > 0 and n = 0, then T contains exactly one duplicate of R.

B) Otherwise, T contains no duplicate of R.

3) If INTERSECT is specified, then

Case:

A) If m > 0 and n > 0, then T contains exactly one duplicate of R.

B) Otherwise, T contains no duplicates of R.

iii) If ALL is specified, then

Case:

1) If UNION is specified, then the number of duplicates of R that T contains is (m+ n).

2) If EXCEPT is specified, then the number of duplicates of R that T contains is the
maximum of (m � n) and 0 (zero).

3) If INTERSECT is specified, then the number of duplicates of R that T contains is
the minimum of m and n.

NOTE 124 – See the General Rules of Subclause 8.2, ‘‘<comparison predicate>’’.

276 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.12 <query expression>

4) If a set operator is specified, then for each column whose declared type is interval, let UDT be in
turn the declared type of the corresponding column of T and let SV be the value of the column
in each row of the first and second operands. The value of the corresponding column of T in the
corresponding row of T is

CAST (SV AS UDT)

5) Case:

a) If EXCEPT is specified and a row R of T is replaced by some row RR, then the row of T1
from which R is derived is replaced by RR.

b) If INTERSECT is specified, then:

i) If a row R is inserted into T, then:

1) If T1 does not contain a row whose value equals the value of R, then R is inserted
into T1.

2) If T1 contains a row whose value equals the value of R and no row of T is derived
from that row, then R is inserted into T1.

3) If T2 does not contain a row whose value equals the value of R, then R is inserted
into T2.

4) If T2 contains a row whose value equals the value of R and no row of T is derived
from that row, then R is inserted into T2.

ii) If a row R is replaced by some row RR, then:

1) The row of T1 from which R is derived is replaced with RR.

2) The row of T2 from which R is derived is replaced with RR.

Conformance Rules

1) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, a <query expres-
sion> shall not specify a <with clause>.

2) Without Feature T131, ‘‘Recursive query’’, a <query expression> shall not specify RECURSIVE.

3) Without Feature F661, ‘‘Simple tables’’, a <simple table> shall not be a <table value construc-
tor> except in an <insert statement>.

4) Without Feature F661, ‘‘Simple tables’’, conforming SQL language shall contain no <explicit
table>.

5) Without Feature F302, ‘‘INTERSECT table operator’’, a <query term> shall not specify
INTERSECT.

6) Without Feature F301, ‘‘CORRESPONDING in query expressions’’, a <query expression> shall
not specify CORRESPONDING.

7) Without Feature T551, ‘‘Optional key words for default syntax’’, conforming SQL language shall
contain no explicit UNION DISTINCT, EXCEPT DISTINCT, or INTERSECT DISTINCT.

Query expressions 277

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.12 <query expression>

8) Without Feature S024, ‘‘Enhanced structured types’’, if any column in the result of a <query
expression> is of structured type, then DISTINCT shall not be specified or implied, and neither
INTERSECT nor EXCEPT shall be specified.

9) Without Feature T111, ‘‘Updatable joins, unions, and columns’’, a <non-join query expression>
that immediately contains UNION is not updatable.

10) Without Feature F304, ‘‘EXCEPT ALL table operator’’, a <query expression> shall not specify
EXCEPT ALL.

278 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.13 <search or cycle clause>

7.13 <search or cycle clause>

Function
Specify the generation of ordering and cycle detection information in the result of recursive query
expressions.

Format

<search or cycle clause> ::=
<search clause>

| <cycle clause>
| <search clause> <cycle clause>

<search clause> ::=
SEARCH <recursive search order> SET <sequence column>

<recursive search order> ::=
DEPTH FIRST BY <sort specification list>

| BREADTH FIRST BY <sort specification list>

<sequence column> ::= <column name>

<cycle clause> ::=
CYCLE <cycle column list>
SET <cycle mark column> TO <cycle mark value>
DEFAULT <non-cycle mark value>
USING <path column>

<cycle column list> ::=
<cycle column> [{ <comma> <cycle column> }...]

<cycle column> ::= <column name>

<cycle mark column> ::= <column name>

<path column> ::= <column name>

<cycle mark value> ::= <value expression>

<non-cycle mark value> ::= <value expression>

Syntax Rules

1) Let WLEC be an expandable <with list element> immediately containing a <search or cycle
clause>.

2) Let WQN be the <query name>, WCL the <with column list>, and WQE the <query expression>
immediately contained in WLEC. Let OP be the set operator immediately contained in WQE,
and let TLO and TRO be the first and the second operand of OP, respectively.

a) Let TROSL be the <select list> of TRO. Let WQNTR be the <table reference> immediately
contained in the <from clause> immediately contained in the <table expression> TROTE
immediately contained in TRO such that WQNTR immediately contains WQN.

Query expressions 279

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.13 <search or cycle clause>

Case:

i) If WQNTR immediately contains a <correlation name>, then let WQNCRN be this
correlation name.

ii) Otherwise, let WQNCRN be WQN.

b) Case:

i) If WLEC contains a <search clause> SC, then let SQC the <sequence column> and SO
be the <recursive search order> immediately contained in SC. Let SPL be the <sort
specification list> immediately contained in SO.

1) SQC shall not be contained in WCL.

2) Every <column name> of SPL shall also be contained in WCL. No <column name>
shall be specified more than once in SPL.

3) Case:

A) If SO immediately contains DEPTH, then let SCEX1 be

WQNCRN.SQC

let SCEX2 be

SQC || ARRAY [ROW(SPL)]

and let SCIN be

ARRAY [ROW(SPL)]

B) If SO immediately contains BREADTH, then let SCEX1 be

(SELECT OC.*
FROM (VALUES (WQNCRN.SQC))

OC(LEVEL, SPL))

let SCEX2 be

ROW(SQC.LEVEL + 1, SPL)

and let SCIN be

ROW(0, SPL)

ii) If WLEC contains a <cycle clause> CC, then let CCL be the <cycle column list>, let
CMC be the <cycle mark column>, let CMV be the <cycle mark value>, let CMD be the
<non-cycle mark value>, and let CPA be the <path column> immediately contained in
CC.

1) Every <column name> of CCL shall be contained in WCL. No <column name> shall
be specified more than once in CCL.

2) CMC and CPA shall not be equivalent to each other and not equivalent to any
<column name> of WCL.

3) The declared type of CMV and CMD shall be character string of length 1 (one). CMV
and CMD shall be literals and CMV shall not be equal to CMD.

280 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.13 <search or cycle clause>

4) Let CCEX1 be

WQNCRN.CMC, WQNCRN.CPA

Let CCEX2 be

CASE WHEN ROW(CCL) IN (SELECT P.* FROM TABLE(CPA) P)
THEN CMV ELSE CMD END,

CPA || ARRAY [ROW(CCL)]

Let CCIN be

CMD, ARRAY [ROW(CCL)]

Let NCCON1 be

CMC <> CMV

iii) Case:

1) If WLEC contains only a <search clause>, then let EWCL be

WCL, SQC

Let ETLOSL be

WCL, SCIN

Let ETROSL be

WCL, SCEX2

Let ETROSL1 be

TROSL, SCEX1

Let NCCON be

TRUE

2) If WLEC contains only a <cycle clause>, then let EWCL be

WCL, CMC, CPA

Let ETLOSL be

WCL, CCIN

Let ETROSL be

WCL, CCEX2

Let ETROSL1 be

TROSL, CCEX1

Let NCCON be

NCCON1

3) If WLEC contains both a <search clause> and a <cycle clause> CC, then:

A) The <column name>s SQC, CMC, and CPA shall not be equivalent to each other.

B) Let EWCL be

WCL, SQC, CMC, CPA

Query expressions 281

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.13 <search or cycle clause>

Let ETLOSL be

WCL, SCIN, CCIN

Let ETROSL be

WCL, SCEX2, CCEX2

Let ETROSL1 be

TROSL, SCEX1, CCEX1

C) Let NCCON be

NCCON1

c) WLEC is equivalent to the expanded with list element

WQN(EWCL) AS
(SELECT ETLOSL FROM (TLO) TLOCRN(WCL)
OP
SELECT ETROSL
FROM (SELECT ETROSL1 TROTE) TROCRN(EWCL)
WHERE NCCON

)

Access Rules

None.

General Rules

None.

Conformance Rules

None.

282 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
7.14 <subquery>

7.14 <subquery>

Function
Specify a scalar value, a row, or a table derived from a <query expression>.

Format

<scalar subquery> ::= <subquery>

<row subquery> ::= <subquery>

<table subquery> ::= <subquery>

<subquery> ::=
<left paren> <query expression> <right paren>

Syntax Rules

1) The degree of a <scalar subquery> shall be 1 (one).

2) The degree of a <row subquery> shall be greater than 1 (one).

3) Let QE be the <query expression> simply contained in <subquery>.

4) The declared type of a <scalar subquery> is the declared type of the column of QE.

5) The declared types of the columns of a <row subquery> or <table subquery> are the declared
types of the respective columns of QE.

Access Rules

None.

General Rules

1) If the cardinality of a <row subquery> is greater than 1 (one), then an exception condition is
raised: cardinality violation.

2) Let SS be a <scalar subquery>.

Case:

a) If the cardinality of SS is greater than 1 (one), then an exception condition is raised: cardi-
nality violation.

b) If the cardinality of SS is 0 (zero), then the value of the <scalar subquery> is the null value.

c) Otherwise, let C be the column of <query expression> simply contained in SS. The value of
SS is the value of C in the unique row of the result of the <scalar subquery>.

Query expressions 283

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
7.14 <subquery>

3) During the evaluation of a <subquery>, an atomic execution context is active. When the <sub-
query> completes, all savepoints that were established during its evaluation are destroyed.

Conformance Rules

1) Without Feature T501, ‘‘Enhanced EXISTS predicate’’, if a <table subquery> is simply contained
in an <exists predicate>, then the <select list> of every <query specification> directly contained
in the <table subquery> shall comprise either an <asterisk> or a single <derived column>.

284 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

8 Predicates

8.1 <predicate>

Function
Specify a condition that can be evaluated to give a boolean value.

Format

<predicate> ::=
<comparison predicate>

| <between predicate>
| <in predicate>
| <like predicate>
| <null predicate>
| <quantified comparison predicate>
| <exists predicate>
| <unique predicate>
| <match predicate>
| <overlaps predicate>
| <similar predicate>
| <distinct predicate>
| <type predicate>

Syntax Rules

None.

Access Rules

None.

General Rules

1) The result of a <predicate> is the truth value of the immediately contained <comparison pred-
icate>, <between predicate>, <in predicate>, <like predicate>, <null predicate>, <quantified
comparison predicate>, <exists predicate>, <unique predicate>, <match predicate>, <overlaps
predicate>, <similar predicate>, <distinct predicate>, or <type predicate>.

Conformance Rules

1) Without Feature T141, ‘‘SIMILAR predicate’’, conforming SQL language shall contain no <simi-
lar predicate>.

2) Without Feature T151, ‘‘DISTINCT predicate’’, conforming SQL language shall contain no
<distinct predicate>.

3) Without Feature S151, ‘‘Type predicate’’, conforming SQL language shall contain no <type
predicate>.

Predicates 285

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.1 <predicate>

4) Without Feature F741, ‘‘Referential MATCH types’’, conforming SQL language shall not contain
a <match predicate>.

5) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language shall not
contain any <overlaps predicate>.

6) Without Feature F291, ‘‘UNIQUE predicate’’, conforming SQL language shall not contain any
<unique predicate>.

286 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.2 <comparison predicate>

8.2 <comparison predicate>

Function
Specify a comparison of two row values.

Format

<comparison predicate> ::=
<row value expression> <comp op> <row value expression>

<comp op> ::=
<equals operator>

| <not equals operator>
| <less than operator>
| <greater than operator>
| <less than or equals operator>
| <greater than or equals operator>

Syntax Rules

1) The two <row value expression>s shall be of the same degree.

2) Let corresponding fields be fields with the same ordinal position in the two <row value expres-
sion>s.

3) The declared types of the corresponding fields of the two <row value expression>s shall be
comparable.

4) Let Rx and Ry respectively denote the first and second <row value expression>s.

5) Let N be the number of fields in the declared type of Rx. Let Xi, 1 (one) � i � N, be the i-th
field in the declared type of Rx and let Yi be the i-th field in the declared type of Ry. For each
i:

a) If the declared type of Xi or Yi is large object string, reference type, or array type, then
<comp op> shall be either <equals operator> or <not equals operator>.

b) Case:

i) If the declared types of Xi and Yi are user-defined types, then:

1) Let UDT1 and UDT2 be respectively the declared types of Xi and Yi. UDT1 and
UDT2 shall be in the same type family. UDT1 and UDT2 shall have comparison
types.
NOTE 125 – ‘‘Comparison type’’ is defined in Subclause 4.8.4, ‘‘User-defined type compari-
son and assignment’’.

NOTE 126 – The comparison form and comparison categories included in the user-defined
type descriptors of both UDT1 and UDT2 are constrained to be the same — they must be the
same throughout a type family. If the comparison category is either STATE or RELATIVE,
then the comparison functions of UDT1 and UDT2 are constrained to be equivalent; if the
comparison category is MAP, they are not constrained to be equivalent.

Predicates 287

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.2 <comparison predicate>

2) If the declared types of Xi and Yi are reference types, then the referenced type of the
declared type of Xi and the referenced type of the declared type of Yi shall have a
common supertype.

3) If <less than operator>, <greater than operator>, <less than or equals operator>, or
<greater than or equals operator> is specified, then the comparison form of UDT1
shall be FULL.

NOTE 127 – If the comparison form is FULL, then the comparison category is constrained to
be RELATIVE or MAP; if the comparison form is EQUALS, then the comparison category is also
permitted to be STATE.

ii) If the declared types of Xi and Yi are character strings, then the pair-wise comparison
collating sequence used to compare Xi and Yi is determined by Subclause 4.2.3, ‘‘Rules
determining collating sequence usage’’. The applicable column in the table shall not
indicate ‘‘Not permitted: invalid syntax’’.

iii) If the declared types of Xi and Yi are array types in which the declared type of the
elements are ETx and ETy, respectively, then let RV1 and RV2 be <value expression>s
whose declared types are respectively ETx and ETy. The Syntax Rules of this Subclause
are applied to:

RV1 <comp op> RV2

iv) If the declared types of Xi and Yi are row types, then let RV1 and RV2 be <value
expression>s whose declared types are respectively that of Xi and Yi. The Syntax Rules
of this Subclause are applied to:

RV1 <comp op> RV2

6) Let CP be the <comparison predicate> ‘‘Rx <comp op> Ry’’.

Case:

a) If the <comp op> is <not equals operator>, then CP is equivalent to:

NOT(Rx = Ry)

b) If the <comp op> is <greater than operator>, then CP is equivalent to:

(Ry < Rx)

c) If the <comp op> is <less than or equals operator>, then CP is equivalent to:

(Rx < Ry
OR

Ry = Rx)

d) If the <comp op> is <greater than or equals operator>, then CP is equivalent to:

(Ry < Rx
OR

Ry = Rx)

288 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.2 <comparison predicate>

Access Rules

None.

General Rules

1) Let XV and YV be two values represented by <value expression>s X and Y, respectively. The
result of:

X <comp op> Y

is determined as follows:

Case:

a) If either XV or YV is the null value, then

X <comp op> Y

is unknown .

b) Otherwise,

Case:

i) If the declared types of XV and YV are row types with degree N, then let Xi, 1 (one)� i
� N, denote a <value expression> whose value and declared type is that of the i-th field
of XV and let Yi denote a <value expression> whose value and declared type is that of
the i-th field of YV. The result of

X <comp op> Y

is determined as follows:

1) X = Y is true if and only if Xi = Yi is true for all i.

2) X < Y is true if and only if Xi = Yi is true for all i < n and Xn < Yn for some n.

3) X = Y is false if and only if NOT (Xi = Yi) is true for some i.

4) X < Y is false if and only if X = Y is true or Y < X is true .

5) X <comp op> Y is unknown if X <comp op> Y is neither true nor false .

ii) If the declared types of XV and YV are array types with cardinalities N1 and N2,
respectively, then let Xi, 1 (one) � i � N1, denote a <value expression> whose value and
declared type is that of the i-th element of XV and let Yi denote a <value expression>
whose value and declared type is that of the i-th element of YV. The result of

X <comp op> Y

is determined as follows:

1) X = Y is true if N1 = 0 (zero) and N2 = 0 (zero).

Predicates 289

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.2 <comparison predicate>

2) X = Y is true if N1 = N2 and, for all i, Xi = Yi is true .

3) X = Y is false if and only if N1 6= N2 or NOT (Xi = Yi) is true , for some i.

4) X <comp op> Y is unknown if X <comp op> Y is neither true nor false .

iii) If the declared types of XV and YV are user-defined types, then let UDTx and UDTy be
respectively the declared types of XV and YV. The result of

X <comp op> Y

is determined as follows:

1) If the comparison category of UDTx is MAP, then let HF1 be the <routine name>
of the comparison function of UDTx and let HF2 be the <routine name> of the
comparison function of UDTy. If HF1 is an SQL-invoked function that is a method,
then let HFX be X.HF1; otherwise, let HFX be HF1(X). If HF2 is an SQL-invoked
function that is a method, then let HFY be Y.HF2; otherwise, let HFY be HF2(Y).

X <comp op> Y

has the same result as

HFX <comp op> HFY

2) If the comparison category of UDTx is RELATIVE, then:

A) Let RF be the <routine name> of the comparison function of UDTx.

B) X = Y

has the same result as

RF (X, Y) = 0

C) X < Y

has the same result as

RF (X, Y) = -1

D) X <> Y

has the same result as

RF (X, Y) <> 0

E) X > Y

290 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.2 <comparison predicate>

has the same result as

RF (X, Y) = 1

F) X <= Y

has the same result as

RF (X, Y) = -1 OR RF (X, Y) = 0

G) X >= Y

has the same result as

RF (X, Y) = 1 OR RF (X, Y) = 0

3) If the comparison category of UDTx is STATE, then:

A) Let SF be the <routine name> of the comparison function of UDTx.

B) X = Y

has the same result as

SF (X, Y) = TRUE

C) X <> Y

has the same result as

SF (X, Y) = FALSE

NOTE 128 – Rules for the comparison of user-defined types in which <comp op> is other than
<equals operator> or <less than operator> are included for informational purposes only, since
such predicates are equivalent to other <comparison predicate>s whose <comp op> is <equals
operator> or <less than operator>.

iv) Otherwise, the result of

X <comp op> Y

is true or false as follows:

1) X = Y

is true if and only if XV and YV are equal.

2) X < Y

is true if and only if XV is less than YV.

3) X <comp op> Y

Predicates 291

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.2 <comparison predicate>

is false if and only if

X <comp op> Y

is not true

2) Numbers are compared with respect to their algebraic value.

3) The comparison of two character strings is determined as follows:

a) Let CS be the collating sequence indicated in Subclause 4.2.3, ‘‘Rules determining collating
sequence usage’’, based on the declared types of the two character strings.

b) If the length in characters of X is not equal to the length in characters of Y, then the shorter
string is effectively replaced, for the purposes of comparison, with a copy of itself that has
been extended to the length of the longer string by concatenation on the right of one or more
pad characters, where the pad character is chosen based on CS. If CS has the NO PAD
characteristic, then the pad character is an implementation-dependent character different
from any character in the character set of X and Y that collates less than any string under
CS. Otherwise, the pad character is a <space>.

c) The result of the comparison of X and Y is given by the collating sequence CS.

d) Depending on the collating sequence, two strings may compare as equal even if they are
of different lengths or contain different sequences of characters. When any of the opera-
tions MAX, MIN, and DISTINCT reference a grouping column, and the UNION, EXCEPT,
and INTERSECT operators refer to character strings, the specific value selected by these
operations from a set of such equal values is implementation-dependent.

NOTE 129 – If the coercibility characteristic of the comparison is Coercible, then the collating sequence
used is the default defined for the character repertoire. See also other Syntax Rules in this Subclause,
Subclause 10.6, ‘‘<character set specification>’’, and Subclause 11.30, ‘‘<character set definition>’’.

4) The comparison of two binary string values, X and Y, is determined by comparison of their
octets with the same ordinal position. If Xi and Yi are the values of the i-th octets of X and Y,
respectively, and if Lx is the length in octets of X AND Ly is the length in octets of Y, then X is
equal to Y if and only if Ly = Ly and if Xi = Yi for all i.

5) The comparison of two bit string values, X and Y, is determined by comparison of their bits with
the same ordinal position. If Xi and Yi are the values of the i-th bits of X and Y, respectively,
and if LX is the length in bits of X and LY is the length in bits of Y, then:

a) X is equal to Y if and only if LX = LY and Xi = Yi for all i.

b) X is less than Y if and only if:

i) LX < LY and Xi = Yi for all i less than or equal to LX; or

ii) Xi = Yi for all i < n and Xn = 0 and Yn = 1 for some n less than or equal to the minimum
of LX and LY.

6) The comparison of two datetimes is determined according to the interval resulting from their
subtraction. Let X and Y be the two values to be compared and let H be the least significant

292 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.2 <comparison predicate>

<primary datetime field> of X and Y, including fractional seconds precision if the data type is
time or timestamp.

a) X is equal to Y if and only if

(X - Y) INTERVAL H = INTERVAL ’0’ H

is true .

b) X is less than Y if and only if

(X - Y) INTERVAL H < INTERVAL ’0’ H

is true .
NOTE 130 – Two datetimes are comparable only if they have the same <primary datetime field>s; see
Subclause 4.7.1, ‘‘Datetimes’’.

7) The comparison of two intervals is determined by the comparison of their corresponding values
after conversion to integers in some common base unit. Let X and Y be the two intervals to be
compared. Let A TO B be the specified or implied datetime qualifier of X and C TO D be the
specified or implied datetime qualifier of Y. Let T be the least significant <primary datetime
field> of B and D and let U be a datetime qualifier of the form T(N), where N is an <interval
leading field precision> large enough so that significance is not lost in the CAST operation.

Let XVE be the <value expression>

CAST (X AS INTERVAL U)

Let YVE be the <value expression>

CAST (Y AS INTERVAL U)

a) X is equal to Y if and only if

CAST (XVE AS INTEGER) = CAST (YVE AS INTEGER)

is true .

b) X is less than Y if and only if

CAST (XVE AS INTEGER) < CAST (YVE AS INTEGER)

is true .

8) In comparisons of boolean values, true is greater than false

9) The result of comparing two reference values X and Y is determined by the comparison of their
octets with the same ordinal position. Let Lx be the length in octets of X and let Ly be the
length in octets of Y. Let Xi and Yi, 1 (one) � i � Lx, be the values of the i-th octets of X and Y,
respectively. X is equal to Y if and only if Lx = Ly and, for all i, Xi = Yi.

Predicates 293

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.2 <comparison predicate>

Conformance Rules

1) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared row type
of a <row value expression> that is simply contained in a <comparison predicate> shall be of
declared type large object string.

2) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared type of a <row
value expression> that is simply contained in a <comparison predicate> shall be of a structured
type.

294 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.3 <between predicate>

8.3 <between predicate>

Function
Specify a range comparison.

Format

<between predicate> ::=
<row value expression> [NOT] BETWEEN
[ASYMMETRIC | SYMMETRIC]
<row value expression> AND <row value expression>

Syntax Rules

1) If neither SYMMETRIC nor ASYMMETRIC is specified, then ASYMMETRIC is implicit.

2) Let X, Y, and Z be the first, second, and third <row value expression>s, respectively.

3) ‘‘X NOT BETWEEN SYMMETRIC Y AND Z’’ is equivalent to ‘‘NOT (X BETWEEN SYMMETRIC
Y AND Z)’’.

4) ‘‘X BETWEEN SYMMETRIC Y AND Z’’ is equivalent to ‘‘((X BETWEEN ASYMMETRIC Y AND
Z) OR (X BETWEEN ASYMMETRIC Z AND Y))’’.

5) ‘‘X NOT BETWEEN ASYMMETRIC Y AND Z’’ is equivalent to ‘‘NOT (X BETWEEN
ASYMMETRIC Y AND Z)’’.

6) ‘‘X BETWEEN ASYMMETRIC Y AND Z’’ is equivalent to ‘‘X>=Y AND X<=Z’’.

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature T461, ‘‘Symmetric <between predicate>’’, conforming SQL language shall not
specify SYMMETRIC or ASYMMETRIC.

2) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared type of a <row
value expression> that is simply contained in a <between predicate> shall be of a structured
type.

Predicates 295

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.4 <in predicate>

8.4 <in predicate>

Function
Specify a quantified comparison.

Format

<in predicate> ::=
<row value expression>
[NOT] IN <in predicate value>

<in predicate value> ::=
<table subquery>

| <left paren> <in value list> <right paren>

<in value list> ::=
<row value expression> { <comma> <row value expression> }...

Syntax Rules

1) Let IVL be an <in value list>.

(IVL)

is equivalent to the <table value constructor>:

(VALUES IVL)

2) Let RVC be the <row value expression> and let IPV be the <in predicate value>.

3) The expression

RVC NOT IN IPV

is equivalent to

NOT (RVC IN IPV)

4) The expression

RVC IN IPV

is equivalent to

RVC = ANY IPV

Access Rules

None.

General Rules

None.

296 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.4 <in predicate>

Conformance Rules

1) Without Feature F561, ‘‘Full value expressions’’, conforming SQL language shall not contain
a <row value expression> immediately contained in an <in value list> that is not a <value
specification>.

2) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared row type
of a <row value expression> or a <table subquery> contained in an <in predicate> shall be of
declared type large object string.

3) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared row type of a
<row value expression> or a <table subquery> that is simply contained in an <in predicate>
shall be of a structured type.

4) Without Feature S024, ‘‘Enhanced structured types’’, no <value expression> simply contained in
an <in value list> shall be of a structured type.

Predicates 297

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.5 <like predicate>

8.5 <like predicate>

Function
Specify a pattern-match comparison.

Format

<like predicate> ::=
<character like predicate>

| <octet like predicate>

<character like predicate> ::=
<character match value> [NOT] LIKE <character pattern>
[ESCAPE <escape character>]

<character match value> ::= <character value expression>

<character pattern> ::= <character value expression>

<escape character> ::= <character value expression>

<octet like predicate> ::=
<octet match value> [NOT] LIKE <octet pattern>
[ESCAPE <escape octet>]

<octet match value> ::= <blob value expression>

<octet pattern> ::= <blob value expression>

<escape octet> ::= <blob value expression>

Syntax Rules

1) The declared types of <character match value>, <character pattern>, and <escape charac-
ter> shall be character string. <character match value>, <character pattern>, and <escape
character> shall be comparable.

2) The declared types of <octet match value>, <octet pattern>, and <escape octet> shall be binary
string.

3) If <character like predicate> is specified, then:

a) Let MC be the <character value expression> of the <character match value>, let PC be the
<character value expression> of the <character pattern>, and let EC be the <character value
expression> of the <escape character> if one is specified.

b) MC NOT LIKE PC

is equivalent to

NOT (MC LIKE PC)

c) MC NOT LIKE PC ESCAPE EC

298 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.5 <like predicate>

is equivalent to

NOT (MC LIKE PC ESCAPE EC)

d) Case:

i) If <escape character> is not specified, then the collating sequence used for the <like
predicate> is determined by Table 3, ‘‘Collating sequence usage for comparisons’’, taking
<character match value> as comparand 1 (one) and <character pattern> as comparand
2.

ii) Otherwise, let C1 be the coercibility characteristic and collating sequence of the <char-
acter match value>, and C2 be the coercibility characteristic and collating sequence of
the <character pattern>. Let C3 be the resulting coercibility characteristic and collating
sequence as determined by Table 2, ‘‘Collating coercibility rules for dyadic operators’’,
taking C1 as the operand 1 (one) coercibility and C2 as the operand 2 coercibility. The
collating sequence used for the <like predicate> is determined by Table 3, ‘‘Collating se-
quence usage for comparisons’’, taking C3 as the coercibility characteristic and collating
sequence of comparand 1 (one) and <escape character> as comparand 2.

4) If <octet like predicate> is specified, then:

a) Let MB be the <blob value expression> of the <octet match value>, let PB be the <blob value
expression> of the <octet pattern>, and let EB be the <blob value expression> of the <escape
octet> if one is specified.

b) MB NOT LIKE PB

is equivalent to

NOT (MB LIKE PB)

c) MB NOT LIKE PB ESCAPE EB

is equivalent to

NOT (MB LIKE PB ESCAPE EB)

Access Rules

None.

General Rules

1) Let MCV be the value of MC and let PCV be the value of PC. If EC is specified, then let ECV be
its value.

2) Let MBV be the value of MB and let PBV be the value of PB. If EB is specified, then let EBV be
its value.

3) If <character like predicate> is specified, then:

a) Case:

i) If ESCAPE is not specified and either MCV or PCV are null values, then the result of

MC LIKE PC

Predicates 299

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.5 <like predicate>

is unknown.

ii) If ESCAPE is specified and one or more of MCV, PCV and ECV are null values, then the
result of

MC LIKE PC ESCAPE EC

is unknown.
NOTE 131 – If none of MCV, PCV, and ECV (if present) are null values, then the result is either
true or false.

b) Case:

i) If an <escape character> is specified, then:

1) If the length in characters of ECV is not equal to 1, then an exception condition is
raised: data exception — invalid escape character.

2) If there is not a partitioning of the string PCV into substrings such that each sub-
string has length 1 (one) or 2, no substring of length 1 (one) is the escape character
ECV, and each substring of length 2 is the escape character ECV followed by either
the escape character ECV, an <underscore> character, or the <percent> character,
then an exception condition is raised: data exception — invalid escape sequence.

If there is such a partitioning of PCV, then in that partitioning, each substring with
length 2 represents a single occurrence of the second character of that substring.
Each substring with length 1 (one) that is the <underscore> character represents an
arbitrary character specifier. Each substring with length 1 (one) that is the <per-
cent> character represents an arbitrary string specifier. Each substring with length
1 (one) that is neither the <underscore> character nor the <percent> character
represents the character that it contains.

ii) If an <escape character> is not specified, then each <underscore> character in PCV
represents an arbitrary character specifier, each <percent> character in PCV represents
an arbitrary string specifier, and each character in PCV that is neither the <underscore>
character nor the <percent> character represents itself.

c) The string PCV is a sequence of the minimum number of substring specifiers such that each
<character representation> of PCV is part of exactly one substring specifier. A substring
specifier is an arbitrary character specifier, an arbitrary string specifier, or any sequence
of <character representation>s other than an arbitrary character specifier or an arbitrary
string specifier.

d) Case:

i) If MCV and PCV are character strings whose lengths are variable and if the lengths of
both MCV and PCV are 0 (zero), then

MC LIKE PC

is true.

ii) The <predicate>

MC LIKE PC

is true if there exists a partitioning of MCV into substrings such that:

300 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.5 <like predicate>

1) A substring of MCV is a sequence of 0 (zero) or more contiguous <character repre-
sentation>s of MCV and each <character representation> of MCV is part of exactly
one substring.

2) If the i-th substring specifier of PCV is an arbitrary character specifier, the i-th
substring of MCV is any single <character representation>.

3) If the i-th substring specifier of PCV is an arbitrary string specifier, then the i-th
substring of MCV is any sequence of 0 (zero) or more <character representation>s.

4) If the i-th substring specifier of PCV is neither an arbitrary character specifier nor
an arbitrary string specifier, then the i-th substring of MCV is equal to that sub-
string specifier according to the collating sequence of the <like predicate>, without
the appending of <space> characters to MCV, and has the same length as that
substring specifier.

5) The number of substrings of MCV is equal to the number of substring specifiers of
PCV.

iii) Otherwise,

MC LIKE PC

is false.

4) If <octet like predicate> is specified, then:

a) Case:

i) If ESCAPE is not specified and either MBV or PBV are null values, then the result of

MB LIKE PB

is unknown.

ii) If ESCAPE is specified and one or more of MBV, PBV and EBV are null values, then the
result of

MB LIKE PB ESCAPE EB

is unknown.
NOTE 132 – If none of MBV, PBV, and EBV (if present) are null values, then the result is either
true or false.

b) <percent> in the context of an <octet like predicate> has the same bit pattern as a <percent>
in the SQL_TEXT character repertoire.

c) <underscore> in the context of an <octet like predicate> has the same bit pattern as an
<underscore> in the SQL_TEXT character repertoire.

d) Case:

i) If an <escape octet> is specified, then:

1) If the length in octets of EBV is not equal to 1, then an exception condition is raised:
data exception — invalid escape octet.

Predicates 301

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.5 <like predicate>

2) If there is not a partitioning of the string PBV into substrings such that each sub-
string has length 1 (one) or 2, no substring of length 1 (one) is the escape octet
EBV, and each substring of length 2 is the escape octet EBV followed by either the
escape octet EBV, an <underscore> octet, or the <percent> octet, then an exception
condition is raised: data exception — invalid escape sequence.

If there is such a partitioning of PBV, then in that partitioning, each substring
with length 2 represents a single occurrence of the second octet of that substring.
Each substring with length 1 (one) that is the <underscore> octet represents an
arbitrary octet specifier. Each substring with length 1 (one) that is the <percent>
octet represents an arbitrary string specifier. Each substring with length 1 (one)
that is neither the <underscore> octet nor the <percent> octet represents the octet
that it contains.

ii) If an <escape octet> is not specified, then each <underscore> octet in PBV represents
an arbitrary octet specifier, each <percent> octet in PBV represents an arbitrary string
specifier, and each octet in PBV that is neither the <underscore> octet nor the <percent>
octet represents itself.

e) The string PBV is a sequence of the minimum number of substring specifiers such that
each portion of PBV is part of exactly one substring specifier. A substring specifier is an
arbitrary octet specifier, and arbitrary string specifier, or any sequence of octets other than
an arbitrary octet specifier or an arbitrary string specifier.

f) Case:

i) If the lengths of both MBV and PBV are 0 (zero), then

MB LIKE PB

is true.

ii) The <predicate>

MB LIKE PB

is true if there exists a partitioning of MBV into substrings such that:

1) A substring of MBV is a sequence of 0 (zero) or more contiguous octets of MBV and
each octet of MBV is part of exactly one substring.

2) If the i-th substring specifier of PBV is an arbitrary octet specifier, the i-th substring
of MBV is any single octet.

3) the i-th substring specifier of PBV is an arbitrary string specifier, then the i-th
substring of MBV is any sequence of 0 (zero) or more octets.

4) If the i-th substring specifier of PBV is an neither an arbitrary character specifier
not an arbitrary string specifier, then the i-th substring of MBV has the same length
and bit pattern as that of the substring specifier.

5) The number of substrings of MBV is equal to the number of substring specifiers of
PBV.

iii) Otherwise:

MB LIKE PB

302 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.5 <like predicate>

is false.

Conformance Rules

1) Without Feature T042, ‘‘Extended LOB data type support’’, a <like predicate> shall not be an
<octet like predicate>.

2) Without Feature F281, ‘‘LIKE enhancements’’, the <character match value> shall be a column
reference.

3) Without Feature F281, ‘‘LIKE enhancements’’, a <character pattern> shall be a <value specifica-
tion>.

4) Without Feature F281, ‘‘LIKE enhancements’’, an <escape character> shall be a <value specifi-
cation>.

5) Without Feature T042, ‘‘Extended LOB data type support’’, a <character value expression>
simply contained in a <like predicate> shall not be of declared type BINARY LARGE OBJECT
or CHARACTER LARGE OBJECT

6) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data type
support’’, a <character value expression> simply contained in a <like predicate> shall not be of
declared type NATIONAL CHARACTER LARGE OBJECT.

Predicates 303

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.6 <similar predicate>

8.6 <similar predicate>

Function
Specify a character string similarity by means of a regular expression.

Format

<similar predicate> ::=
<character match value> [NOT] SIMILAR TO <similar pattern>
[ESCAPE <escape character>]

<similar pattern> ::= <character value expression>

<regular expression> ::=
<regular term>

| <regular expression> <vertical bar> <regular term>

<regular term> ::=
<regular factor>

| <regular term> <regular factor>

<regular factor> ::=
<regular primary>

| <regular primary> <asterisk>
| <regular primary> <plus sign>

<regular primary> ::=
<character specifier>

| <percent>
| <regular character set>
| <left paren> <regular expression> <right paren>

<character specifier> ::=
<non-escaped character>

| <escaped character>

<non-escaped character> ::= !! See the Syntax Rules

<escaped character> ::= !! See the Syntax Rules

<regular character set> ::=
<underscore>

| <left bracket> <character enumeration>... <right bracket>
| <left bracket> <circumflex> <character enumeration>... <right bracket>
| <left bracket> <colon> <regular character set identifier> <colon> <right bracket>

<character enumeration> ::=
<character specifier>

| <character specifier> <minus sign> <character specifier>

<regular character set identifier> ::= <identifier>

304 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.6 <similar predicate>

Syntax Rules

1) The declared types of <character match value>, <similar pattern>, and <escape character> shall
be character string. <character match value>, <similar pattern>, and <escape character> shall
be comparable.

2) Let CM be the <character match value> and let SP be the <similar pattern>. If <escape charac-
ter> EC is specified, then

CM NOT SIMILAR TO SP ESCAPE EC

is equivalent to

NOT (CM SIMILAR TO SP ESCAPE EC)

If <escape character> EC is not specified, then

CM NOT SIMILAR TO SP

is equivalent to

NOT (CM SIMILAR TO SP)

3) The value of the <identifier> that is a <regular character set identifier> shall be either ALPHA,
UPPER, LOWER, DIGIT, or ALNUM.

4) Case:

a) If <escape character> is not specified, then the collating sequence used for the <similar
predicate> is determined by Table 3, ‘‘Collating sequence usage for comparisons’’, taking
<character match value> as comparand 1 (one) and <similar pattern> as comparand 2.

b) Otherwise, let C1 be the coercibility characteristic and collating sequence of the <character
match value>, and C2 be the coercibility characteristic and collating sequence of the <sim-
ilar pattern>. Let C3 be the resulting coercibility characteristic and collating sequence as
determined by Table 2, ‘‘Collating coercibility rules for dyadic operators’’, taking C1 as the
operand 1 (one) coercibility and C2 as the operand 2 coercibility. The collating sequence used
for the <similar predicate> is determined by Table 3, ‘‘Collating sequence usage for compar-
isons’’, taking C3 as the coercibility characteristic and collating sequence of comparand 1
(one) and <escape character> as comparand 2.

It is implementation-defined, whether all, some, or no collating sequences other than the default
collating sequence for the character set of the <character match value> can be used as the
collating sequence of the <similar predicate>.

5) A <non-escaped character> is any single character from the character set of the <similar pat-
tern> that is not a <left bracket>, <right bracket>, <left paren>, <right paren>, <vertical bar>,
<circumflex>, <minus sign>, <plus sign>, <asterisk>, <underscore>, <percent>, or the character
specified by the result of the <character value expression> of <escape character>. A <character
specifier> that is a <non-escaped character> represents itself.

6) An <escaped character> is a sequence of two characters: the character specified by the result
of the <character value expression> of <escape character>, followed by a second character that
is a <left bracket>, <right bracket>, <left paren>, <right paren>, <vertical bar>, <circumflex>,
<minus sign>, <plus sign>, <asterisk>, <underscore>, <percent>, or the character specified by
the result of the <character value expression> of <escape character>. A <character specifier>
that is an <escaped character> represents its second character.

Predicates 305

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.6 <similar predicate>

7) A <character enumeration> shall not be specified in a way that both its first and its last <char-
acter specifier>s are <non-escaped character>s that are <colon>s.

Access Rules

None.

General Rules

1) Let MCV be the result of the <character value expression> of the <character match value> and
let PCV be the result of the <character value expression> of the <similar pattern>. If EC is
specified, then let ECV be its value.

2) If the result of the <character value expression> of the <similar pattern> is not a zero-length
string and does not have the format of a <regular expression>, then an exception condition is
raised: data exception — invalid regular expression.

3) If an <escape character> is specified, then: If the length in characters of ECV is not equal to 1
(one), then an exception condition is raised: data exception — invalid escape character.

a) If ECV is one of <left bracket>, <right bracket>, <left paren>, <right paren>, <vertical bar>,
<circumflex>, <minus sign>, <plus sign>, <asterisk>, <underscore> or <percent> and ECV
occurs in the <regular expression> except in an <escaped character>, then an exception
condition is raised: data exception — invalid use of escape character.

b) If ECV is a <colon> and the <regular expression> contains a <regular character set iden-
tifier>, then an exception condition is raised: data exception — escape character conflict.

4) Case:

a) If ESCAPE is not specified, then if either or both of MCV and PCV are the null value, then
the result of

CM SIMILAR TO SP

is unknown.

b) If ESCAPE is specified, then if one or more of MCV, PCV, and ECV are the null value, then
the result of

CM SIMILAR TO SP ESCAPE EC

is unknown.
NOTE 133 – If none of MCV, PCV, and ECV (if present) are the null value, then the result is either
true or false.

5) The set of characters in a <character enumeration> is defined as

a) If the enumeration is specified in the form ‘‘<character specifier> <minus sign> <character
specifier>’’, then the set of all characters that collate greater than or equal to the character
represented by the left <character specifier> and less than or equal to the character repre-
sented by the right <character specifier>, according to the collating sequence of the pattern
P.

b) Otherwise, the character that the <character specifier> in the <character enumeration>
represents.

306 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.6 <similar predicate>

6) Let R be the result of the <character value expression> of the <similar pattern>. The regu-
lar language L(R) of the <similar pattern> is a (possibly infinite) set of strings. It is defined
recursively for well-formed <regular expression>s Q, Q1, and Q2 by the following rules:

a) L(Q1 <vertical bar> Q2)

is the union of L(Q1) and L(Q2)

b) L(Q <asterisk>)

is the set of all strings that can be constructed by concatenating zero or more strings from
L(Q).

c) L(Q <plus sign>)

is the set of all strings that can be constructed by concatenating one or more strings from
L(Q).

d) L(<character specifier>)

is a set that contains a single string of length 1 (one) with the character that the <character
specifier> represents

e) L(<percent>)

is the set of all strings of any length (zero or more) from the character set of the pattern P.

f) L(<left paren> Q <right paren>)

is equal to L(Q)

g) L(<underscore>)

is the set of all strings of length 1 (one) from the character set of the pattern P.

h) L(<left bracket> <character enumeration> <right bracket>)

is the set of all strings of length 1 (one) from the set of characters in the <character enumer-
ation>s.

i) L(<left bracket> <circumflex> <character enumeration> <right bracket>)

is the set of all strings of length 1 (one) with characters from the character set of the pattern
P that are not contained in the set of characters in the <character enumeration>.

j) L(<left bracket> <colon> ALPHA <colon> <right bracket>)

is the set of all character strings of length 1 (one) that are <simple Latin letter>s.

k) L(<left bracket> <colon> UPPER <colon> <right bracket>)

is the set of all character strings of length 1 (one) that are <simple Latin upper case letter>s.

l) L(<left bracket> <colon> LOWER <colon> <right bracket>)

is the set of all character strings of length 1 (one) that are <simple Latin lower case letter>s.

m) L(<left bracket> <colon> DIGIT <colon> <right bracket>)

is the set of all character strings of length 1 (one) that are <digit>s.

Predicates 307

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.6 <similar predicate>

n) L(<left bracket> <colon> ALNUM <colon> <right bracket>)

is the set of all character strings of length 1 (one) that are <simple Latin letter>s or <digit>s.

o) L(Q1 || Q2)

is the set of all strings that can be constructed by concatenating one element of L(Q1) and
one element of L(Q2).

p) L(Q)

is the set of the zero-length string, if Q is an empty regular expression.

7) The <similar predicate>

CM SIMILAR TO SP

is true, if there exists at least one element X of L(R) that is equal to MCV according to the
collating sequence of the <similar predicate>; otherwise, it is false.
NOTE 134 – The <similar predicate> is defined differently from equivalent forms of the LIKE predicate.
In particular, blanks at the end of a pattern and collating sequences are handled differently.

Conformance Rules

1) Without Feature T141, ‘‘SIMILAR predicate’’, conforming SQL language shall contain no <simi-
lar predicate>.

308 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.7 <null predicate>

8.7 <null predicate>

Function
Specify a test for a null value.

Format

<null predicate> ::=
<row value expression> IS [NOT] NULL

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let R be the value of the <row value expression>.

2) If every value in R is the null value, then ‘‘R IS NULL’’ is true; otherwise, it is false.

3) If no value in R is the null value, then ‘‘R IS NOT NULL’’ is true; otherwise, it is false.
NOTE 135 – For all R, ‘‘R IS NOT NULL’’ has the same result as ‘‘NOT R IS NULL’’ if and only if R is
of degree 1. Table 16, ‘‘<null predicate> semantics’’, specifies this behavior.

Table 16—<null predicate> semantics

Expression
R IS
NULL R IS NOT NULL NOT R IS NULL

NOT R IS NOT
NULL

degree 1: null true false false true

degree 1: not null false true true false

degree > 1: all null true false false true

degree > 1: some null false false true true

degree > 1: none null false true true false

Conformance Rules

None.

Predicates 309

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.8 <quantified comparison predicate>

8.8 <quantified comparison predicate>

Function
Specify a quantified comparison.

Format

<quantified comparison predicate> ::=
<row value expression> <comp op> <quantifier> <table subquery>

<quantifier> ::= <all> | <some>

<all> ::= ALL

<some> ::= SOME | ANY

Syntax Rules

1) Let RV1 and RV2 be <value expression>s whose declared types are respectively that of the <row
value expression> and the row type of the <table subquery>. The Syntax Rules of Subclause 8.2,
‘‘<comparison predicate>’’, are applied to:

RV1 <comp op> RV2

Access Rules

None.

General Rules

1) Let R be the result of the <row value expression> and let T be the result of the <table sub-
query>.

2) The result of ‘‘R <comp op> <quantifier> T’’ is derived by the application of the implied <com-
parison predicate> ‘‘R <comp op> RT’’ to every row RT in T:

Case:

a) If T is empty or if the implied <comparison predicate> is true for every row RT in T, then
‘‘R <comp op> <all> T’’ is true.

b) If the implied <comparison predicate> is false for at least one row RT in T, then ‘‘R <comp
op> <all> T’’ is false.

c) If the implied <comparison predicate> is true for at least one row RT in T, then ‘‘R <comp
op> <some> T’’ is true.

d) If T is empty or if the implied <comparison predicate> is false for every row RT in T, then
‘‘R <comp op> <some> T’’ is false.

e) If ‘‘R <comp op> <quantifier> T’’ is neither true nor false, then it is unknown .

310 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.8 <quantified comparison predicate>

Conformance Rules

1) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared row
type of a <row value expression> or a <table subquery> contained in a <quantified comparison
predicate> shall be of declared type large object string.

2) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared row type of a
<row value expression> shall be of a structured type.

Predicates 311

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.9 <exists predicate>

8.9 <exists predicate>

Function
Specify a test for a non-empty set.

Format

<exists predicate> ::=
EXISTS <table subquery>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the result of the <table subquery>.

2) If the cardinality of T is greater than 0 (zero), then the result of the <exists predicate> is true;
otherwise, the result of the <exists predicate> is false.

Conformance Rules

None.

312 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.10 <unique predicate>

8.10 <unique predicate>

Function
Specify a test for the absence of duplicate rows.

Format

<unique predicate> ::=
UNIQUE <table subquery>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the result of the <table subquery>.

2) If there are no two rows in T such that the value of each column in one row is non-null and
is equal to the value of the corresponding column in the other row according to Subclause 8.2,
‘‘<comparison predicate>’’, then the result of the <unique predicate> is true; otherwise, the
result of the <unique predicate> is false.

Conformance Rules

1) Without Feature F291, ‘‘UNIQUE predicate’’, conforming SQL language shall not contain any
<unique predicate>.

2) Without Feature F291, ‘‘UNIQUE predicate’’ and Feature S024, ‘‘Enhanced structured types’’, no
column of the result of the <table subquery> shall be of structured type.

Predicates 313

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.11 <match predicate>

8.11 <match predicate>

Function
Specify a test for matching rows.

Format

<match predicate> ::=
<row value expression> MATCH [UNIQUE] [SIMPLE | PARTIAL | FULL]

<table subquery>

Syntax Rules

1) The row type of the <row value constructor> and the row type of the <table subquery> shall be
comparable.

2) The collating sequence for each pair of respective values in the <match predicate> is determined
in the same manner as described in Subclause 8.2, ‘‘<comparison predicate>’’.

3) If neither SIMPLE, PARTIAL, nor FULL is specified, then SIMPLE is implicit.

Access Rules

None.

General Rules

1) Let R be the <row value expression>.

2) If SIMPLE is specified or implicit, then

Case:

a) If some value in R is the null value, then the <match predicate> is true.

b) If no value in R is the null value, then

Case:

i) If UNIQUE is not specified and there exists a (possibly non-unique) row RTi of the
<table subquery> such that

R = RTi

then the <match predicate> is true.

ii) If UNIQUE is specified and there is a unique row RTi of the <table subquery> such that

R = RTi

then the <match predicate> is true.

iii) Otherwise, the <match predicate> is false.

314 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.11 <match predicate>

3) If PARTIAL is specified, then

Case:

a) If all values in R are the null value, then the <match predicate> is true.

b) Otherwise,

Case:

i) If UNIQUE is not specified and there exists a (possibly non-unique) row RTi of the
<table subquery> such that each non-null value of R equals its corresponding value in
RTi, then the <match predicate> is true.

ii) If UNIQUE is specified and there is a unique row RTi of the <table subquery> such
that each non-null value of R equals its corresponding value in RTi, then the <match
predicate> is true.

iii) Otherwise, the <match predicate> is false.

4) If FULL is specified, then

Case:

a) If all values in R are the null value, then the <match predicate> is true.

b) If no values in R are the null value, then

Case:

i) If UNIQUE is not specified and there exists a (possibly non-unique) row RTi of the
<table subquery> such that

R = RTi

then the <match predicate> is true.

ii) If UNIQUE is specified and there exists a unique row RTi of the <table subquery> such
that

R = RTi

then the <match predicate> is true.

iii) Otherwise, the <match predicate> is false.

c) Otherwise, the <match predicate> is false.

Conformance Rules

1) Without Feature F741, ‘‘Referential MATCH types’’, conforming SQL language shall not contain
any <match predicate>.

2) Without Feature F741, ‘‘Referential MATCH types’’, and Feature S024, ‘‘Enhanced structured
types’’, no subfield of the declared row type of the <row value expression> shall be of a struc-
tured type and no column of the result of the <table subquery> shall be of a structured type.

Predicates 315

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.12 <overlaps predicate>

8.12 <overlaps predicate>

Function
Specify a test for an overlap between two datetime periods.

Format

<overlaps predicate> ::=
<row value expression 1> OVERLAPS <row value expression 2>

<row value expression 1> ::= <row value expression>

<row value expression 2> ::= <row value expression>

Syntax Rules

1) The degrees of <row value expression 1> and <row value expression 2> shall both be 2.

2) The declared types of the first field of <row value expression 1> and the first field of <row value
expression 2> shall both be datetime data types and these data types shall be comparable.
NOTE 136 – Two datetimes are comparable only if they have the same <primary datetime field>s; see
Subclause 4.7.1, ‘‘Datetimes’’.

3) The declared type of the second field of each <row value expression> shall be a datetime data
type or INTERVAL.

Case:

a) If the declared type is INTERVAL, then the precision of the declared type shall be such that
the interval can be added to the datetime data type of the first column of the <row value
expression>.

b) If the declared type is a datetime data type, then it shall be comparable with the datetime
data type of the first column of the <row value expression>.

Access Rules

None.

General Rules

1) Let D1 be the value of the first field of <row value expression 1> and D2 be the value of the first
field of <row value expression 2>.

2) Case:

a) If the most specific type of the second field of <row value expression 1> is a datetime data
type, then let E1 be the value of the second field of <row value expression 1>.

b) If the most specific type of the second field of <row value expression 1> is INTERVAL, then
let I1 be the value of the second field of <row value expression 1>. Let E1 = D1+ I1.

316 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.12 <overlaps predicate>

3) If D1 is the null value or if E1 < D1, then let S1 = E1 and let T1 = D1. Otherwise, let S1 = D1
and let T1 = E1.

4) Case:

a) If the most specific type of the second field of <row value expression 2> is a datetime data
type, then let E2 be the value of the second field of <row value expression 2>.

b) If the most specific type of the second field of <row value expression 2> is INTERVAL, then
let I2 be the value of the second field of <row value expression 2>. Let E2 = D2+ I2.

5) If D2 is the null value or if E2 < D2, then let S2 = E2 and let T2 = D2. Otherwise, let S2 = D2
and let T2 = E2.

6) The result of the <overlaps predicate> is the result of the following expression:

(S1 > S2 AND NOT (S1 >= T2 AND T1 >= T2))
OR

(S2 > S1 AND NOT (S2 >= T1 AND T2 >= T1))
OR

(S1 = S2 AND (T1 <> T2 OR T1 = T2))

Conformance Rules

1) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language shall not
contain any <overlaps predicate>.

Predicates 317

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.13 <distinct predicate>

8.13 <distinct predicate>

Function
Specify a test of whether two row values are distinct

Format

<distinct predicate> ::=
<row value expression 3> IS DISTINCT FROM <row value expression 4>

<row value expression 3> ::= <row value expression>

<row value expression 4> ::= <row value expression>

Syntax Rules

1) The two <row value expression>s shall be of the same degree.

2) Let respective values be values with the same ordinal position.

3) The declared types of the respective values of the two <row value expression>s shall be compa-
rable.

4) Let X be a value in the first <row value expression> and let Y be the respective value in the
second <row value expression>.

Access Rules

None.

General Rules

1) The result of the <distinct predicate> is either true or false.

2) Two <row value expression>s are distinct if, for any pair of respective values X and Y, X IS
DISTINCT FROM Y is true.

3) Case:

a) If the declared type of X or Y is an array type, then ‘‘X IS DISTINCT FROM Y’’ is effectively
computed as follows:

i) Let NX be the number of elements in X; let NY be the number of elements in Y.

ii) Let EXi be the i-th element of X; let EYi be the i-th element of Y.

iii) Case:

1) If NX is not equal to NY, then ‘‘X IS DISTINCT FROM Y’’ is true.

2) If NX equals zero and NY equals zero, then ‘‘X IS DISTINCT FROM Y’’ is false.

318 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.13 <distinct predicate>

3) If ‘‘EXi IS DISTINCT FROM EYi’’ is false for all i between 1 (one) and NX, then ‘‘X
IS DISTINCT FROM Y’’ is false.

4) Otherwise, ‘‘X IS DISTINCT FROM Y’’ is true.

b) Otherwise,

Case:

i) ‘‘X IS DISTINCT FROM Y’’ is false if either:

1) X and Y are the null value, or

2) X = Y according to Subclause 8.2, ‘‘<comparison predicate>’’.

ii) Otherwise, ‘‘X IS DISTINCT FROM Y’’ is true.

4) If two <row value expression>s are not distinct, then they are said to be duplicates. If a number
of <row value expression>s are all duplicates of each other, then all except one are said to be
redundant duplicates.

Conformance Rules

1) Without Feature T151, ‘‘DISTINCT predicate’’, conforming SQL language shall not specify any
<distinct predicate>.

2) Without Feature T151, ‘‘DISTINCT predicate’’, and Feature S024, ‘‘Enhanced structured types’’,
no subfield of the declared row type of either <row value expression> shall be of a structured
type.

Predicates 319

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.14 <type predicate>

8.14 <type predicate>

Function
Specify a type test.

Format

<type predicate> ::=
<user-defined type value expression> IS [NOT] OF
<left paren> <type list> <right paren>

<type list> ::=
<user-defined type specification>

[{ <comma> <user-defined type specification> }...]

<user-defined type specification> ::=
<inclusive user-defined type specification>

| <exclusive user-defined type specification>

<inclusive user-defined type specification> ::=
<user-defined type>

<exclusive user-defined type specification> ::=
ONLY <user-defined type>

Syntax Rules

1) For each <user-defined type name> UDTN contained in a <user-defined type specification>, the
schema identified by the implicit or explicit schema name of UDTN shall include a user-defined
type descriptor whose name is equivalent to the <qualified identifier> of UDTN.

2) Let the term specified type refer to a user-defined type that is specified by a <user-defined type
name> contained in a <user-defined type specification>. A type specified by an <inclusive user-
defined type specification> is inclusively specified; a type specified by an <exclusive user-defined
type specification> is exclusively specified.

3) If T1 and T2 are specified types, then T1 shall be a member of the subtype family of T2.
NOTE 137 – The term ‘‘subtype family’’ is defined in Subclause 4.8.3, ‘‘Subtypes and supertypes’’. If T1
is a member of the subtype family of T2, then it follows that the subtype family of T1 and the subtype
family of T2 are the same set of types.

4) Let UVE be the <user-defined type value expression>. Let TL be the <type list>.

5) A <type predicate> of the form

UVE IS NOT OF (TL)

is equivalent to

NOT (UVE IS OF (TL))

Access Rules

None.

320 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
8.14 <type predicate>

General Rules

1) Let V be the result of evaluating the <user-defined type value expression>.

2) Let ST be the set consisting of every type that is either some exclusively specified type, or a
subtype of some inclusively specified type.

3) Let TPR be the result of evaluating the <type predicate>.

Case:

a) If V is the null value, then TPR is unknown .

b) If the most specific type of V is a member of ST, then TPR is true .

c) Otherwise, TPR is false .

Conformance Rules

1) Without Feature S151, ‘‘Type predicate’’, conforming SQL language shall not contain a <type
predicate>.

Predicates 321

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
8.15 <search condition>

8.15 <search condition>

Function
Specify a condition that is true, false, or unknown, depending on the value of a <boolean value
expression>.

Format

<search condition> ::=
<boolean value expression>

Syntax Rules

None.

Access Rules

None.

General Rules

1) When a <search condition> S is evaluated against a row of a table, each reference to a column
of that table by a column reference directly contained in S is a reference to the value of that
column in that row.

2) The result of the <search condition> is the result of the <boolean value expression>.

Conformance Rules

None.

322 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

9 Data assignment rules and routine determination

9.1 Retrieval assignment

Function
Specify rules for assignments that to targets that do not support null values or that support null
values with indicator parameters (e.g., assigning SQL-data to host parameters).

Syntax Rules

1) Let T and V be a TARGET and VALUE specified in an application of this Subclause.

2) If the declared type of T is bit string, binary string, numeric, boolean, datetime, interval, or a
user-defined type, then either the declared type of V shall be a mutually assignable bit string
type, a binary string type, a numeric type, a boolean type, a mutually assignable datetime type,
a mutually assignable interval type, or a subtype of the declared type of T, respectively, or an
appropriate user-defined cast function UDCF shall be available to assign V to T.
NOTE 138 – ‘‘Appropriate user-defined cast function’’ is defined in Subclause 4.13, ‘‘Data conversions’’.

NOTE 139 – ‘‘subtype’’ is defined in Subclause 4.8.3, ‘‘Subtypes and supertypes’’.

3) If the declared type of T is character string, then

Case:

a) If T is either a locator parameter of an external routine or a host parameter that is a
character large object locator parameter, then the declared type of V shall be character large
object type and the character string type of T and the declared type of V shall be mutually
assignable.

b) Otherwise, the declared type of V shall be a mutually assignable character string type.

4) If the declared type of T is a reference type, then the declared type of V shall be a reference type
whose referenced type is a subtype of the referenced type of T.

5) If the declared type of T is a row type, then:

a) The declared type of V shall be a row type.

b) The degree of V shall be the same as the degree of T. Let n be that degree.

c) Let TTi, 1 (one) � i � n, be the declared type of the i-th field of T, let VTi be the declared
type of the i-th field of V, let T1i be an arbitrary target whose declared type is TTi, and let
V1i be an arbitrary expression whose declared type is VTi. For each i, 1 (one) � i � n, the
Syntax Rules of this Subclause apply to Ti Vi, as TARGET and VALUE, respectively.

6) If the declared type of T is an array type, then:

a) The declared type of V shall be an array type.

Data assignment rules and routine determination 323

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.1 Retrieval assignment

b) Let TT be the element type of the declared type of T, let VT be the element type of the
declared type of V, let T1 be an arbitrary target whose declared type is TT, and let V1 be an
arbitrary expression whose declared type is VT. The Syntax Rules of this Subclause apply to
T1 and V1, as TARGET and VALUE, respectively.

Access Rules

None.

General Rules

1) If the declared type of V is not assignable to the declared type of T, then for the remaining
General Rules of this Subclause V is effectively replaced by the result of evaluating the expres-
sion UDCF(V).

2) If V is the null value and T is a host parameter, then

Case:

a) If an indicator parameter is specified for T, then that indicator parameter is set to�1.

b) If no indicator parameter is specified for T, then an exception condition is raised: data
exception — null value, no indicator parameter.

3) If V is not the null value, T is a host parameter, and T has an indicator parameter, then

Case:

a) If the declared type of T is character string, bit string, or binary string and the length M
in characters, bits, or octets, respectively, of V is greater than the length in characters,
bits, or octets, respectively, of T, then the indicator parameter is set to M. If M exceeds the
maximum value that the indicator parameter can contain, then an exception condition is
raised: data exception — indicator overflow.

b) Otherwise, the indicator parameter is set to 0 (zero).

4) If V is not the null value, then

Case:

a) If the declared type of T is fixed-length character string with length in characters L and the
length in characters of V is equal to L, then the value of T is set to V.

b) If the declared type of T is fixed-length character string with length in characters L, and the
length in characters of V is greater than L, then the value of T is set to the first L characters
of V and a completion condition is raised: warning — string data, right truncation.

c) If the declared type of T is fixed-length character string with length in characters L, and the
length in characters M of V is smaller than L, then the first M characters of T are set to V,
and the last L�M characters of T are set to <space>s.

d) If the declared type of T is variable-length character string and the length in characters M
of V is not greater than the maximum length in characters of T, then the value of T is set to
V and the length in characters of T is set to M.

324 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.1 Retrieval assignment

e) If the declared type of T is variable-length character string and the length in characters of
V is greater than the maximum length in characters L of T, then the value of T is set to
the first L characters of V, then the length in characters of T becomes L, and a completion
condition is raised: warning — string data, right truncation.

f) If the declared type of T is character large object string and the length in characters M of V
is not greater than the maximum length in characters of T, then the value of T is set to V
and the length in characters of T is set to M.

g) If the declared type of T is character large object string and the length in characters of V
is greater than the maximum length in characters L of T, then the value of T is set to the
first L characters of V, the length in characters of T becomes L, and a completion condition
is raised: warning — string data, right truncation.

h) If the declared type of T is fixed-length bit string with length in bits L and the length in bits
of V is equal to L, then the value of T is set to V.

i) If the declared type of T is fixed-length bit string with length in bits L and the length in bits
of V is greater than L, then the value of T is set to the first L bits of V and a completion
condition is raised: warning — string data, right truncation.

j) If the declared type of T is fixed-length bit string with length in bits L and the length in bits
M of V is smaller than L, then the first M bits of T are set to V, the remaining bits of T are
set to bits each with the value of 0 (zero), and a completion condition is raised: warning —
implicit zero-bit padding.

k) If the declared type of T is variable-length bit string and the length in bits M of V is not
greater than the maximum length in bits of T, then the value of T is set to V and the length
in bits of T is set to M.

l) If the declared type of T is variable-length bit string, and the length in bits of V is greater
than the maximum length in bits L of T, then the value of T is set to the first L bits of V,
the length in bits of T is set to L, and a completion condition is raised: warning — string
data, right truncation.

m) If the declared type of T is binary string and the length in octets M of V is not greater than
the maximum length in octets of T, then the value of T is set to V and the length in octets
of T is set to M.

n) If the declared type of T is binary string and the length in octets of V is greater than the
maximum length in octets L of T, then the value of T is set to the first L octets of V, the
length in octets of T becomes L, and a completion condition is raised: warning — string
data, right truncation.

o) If the declared type of T is numeric, then

Case:

i) If V is a member of the declared type of T, then T is set to V.

ii) If a member of the declared type of T can be obtained from V by rounding or trunca-
tion, then T is set to that value. If the declared type of T is exact numeric, then it
is implementation-defined whether the approximation is obtained by rounding or by
truncation.

Data assignment rules and routine determination 325

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.1 Retrieval assignment

iii) Otherwise, an exception condition is raised: data exception — numeric value out of
range.

p) If the declared type of T is boolean, then the value of T is set to V.

q) If the declared type DT of T is datetime, then

i) If only one of DT and the declared type of V is datetime with time zone, then V is
effectively replaced by

CAST (V TO DT)

ii) Case:

1) If V is a member of the declared type of T, then T is set to V.

2) If a member of the declared type of T can be obtained from V by rounding or
truncation, then T is set to that value. It is implementation-defined whether the
approximation is obtained by rounding or truncation.

3) Otherwise, an exception condition is raised: data exception — datetime field overflow.

r) If the declared type of T is interval, then

Case:

i) If V is a member of the declared type of T, then T is set to V.

ii) If a member of the declared type of T can be obtained from V by rounding or truncation,
then T is set to that value. It is implementation-defined whether the approximation is
obtained by rounding or by truncation.

iii) Otherwise, an exception condition is raised: data exception — interval field overflow.

s) If the declared type of T is a row type, then the General Rules of this Subclause are applied
to the i-th element of T and the i-th element of V as TARGET and VALUE, respectively.

t) If the declared type of T is a user-defined type, then the value of T is set to V.

u) If the declared type of T is a reference type, then the value of T is set to V.

v) If the declared type of T is an array type, then

Case:

i) If the maximum cardinality L of T is equal to the cardinality M of V, then the elements
of T are set to the values of the corresponding elements of V by applying the General
Rules of this Subclause to each pair of elements with the element of T as TARGET and
the element of V as VALUE.

ii) If the maximum cardinality L of T is smaller than the cardinality M of V, then the
elements of T are set to the values of the first L corresponding elements of V by applying
the General Rules of this Subclause to each pair of elements with the element of T as
TARGET and the element of V as VALUE; a completion condition is raised: warning —
array data, right truncation.

326 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.1 Retrieval assignment

iii) If the maximum cardinality L of T is greater than the cardinality M of V, then the M
first elements of T are set to the values of the corresponding elements of V by applying
the General Rules of this Subclause to each pair of elements with the element of T as
TARGET and the element of V as VALUE. The cardinality of the value of T is M.
NOTE 140 – The maximum cardinality L of T is unchanged.

Conformance Rules

None.

Data assignment rules and routine determination 327

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.2 Store assignment

9.2 Store assignment

Function
Specify rules for assignments where the target permits null without the use of indicator parameters,
such as storing SQL-data or setting the value of SQL parameters.

Syntax Rules

1) Let T and V be a TARGET and VALUE specified in an application of this Subclause.

2) If the declared type of T is character string, bit string, binary string, numeric, boolean, datetime,
interval, or a user-defined type, then either the declared type of V shall be a mutually assignable
character string type, a mutually assignable bit string type, a binary string type, a numeric
type, a boolean type, a mutually assignable datetime type, a mutually assignable interval type,
or a subtype of the declared type of T, respectively, or an appropriate user-defined cast function
UDCF shall be available to assign V to T.
NOTE 141 – ‘‘Appropriate user-defined cast function’’ is defined in Subclause 4.13, ‘‘Data conversions’’.

NOTE 142 – ‘‘subtype’’ is defined in Subclause 4.8.3, ‘‘Subtypes and supertypes’’.

3) If the declared type of T is a reference type, then the declared type of V shall be a reference type
whose referenced type is a subtype of the referenced type of T.

4) If the declared type of T is a row type, then:

a) The declared type of V shall be a row type.

b) The degree of V shall be the same as the degree of T. Let n be that degree.

c) Let TTi, 1 (one) � i � n, be the declared type of the i-th field of T, let VTi be the declared
type of the i-th field of V, let T1i be an arbitrary target whose declared type is TTi, and let
V1i be an arbitrary expression whose declared type is VTi. For each i, 1 (one) � i � n, the
Syntax Rules of this Subclause apply to Ti Vi, as TARGET and VALUE, respectively.

5) If the declared type of T is an array type, then:

a) The declared type of V shall be an array type.

b) Let TT be the element type of the declared type of T, let VT be the element type of the
declared type of V, let T1 be an arbitrary target whose declared type is TT, and let V1 be an
arbitrary expression whose declared type is VT. The Syntax Rules of this Subclause apply to
T1 and V1, as TARGET and VALUE, respectively.

Access Rules

None.

General Rules

1) If the declared type of V is not assignable to the declared type of T, then for the remaining
General Rules of this Subclause V is effectively replaced by the result of evaluating the expres-
sion UDCF(V).

328 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.2 Store assignment

2) Case:

a) If V is the null value, then

Case:

i) If V is specified using NULL, then T is set to the null value.

ii) If V is a host parameter and contains an indicator parameter, then

Case:

1) If the value of the indicator parameter is equal to �1, then T is set to the null value.

2) If the value of the indicator parameter is less than �1, then an exception condition
is raised: data exception — invalid indicator parameter value.

iii) Otherwise, T is set to the null value.

b) Otherwise,

Case:

i) If the declared type of T is fixed-length character string with length in characters L and
the length in characters of V is equal to L, then the value of T is set to V.

ii) If the declared type of T is fixed-length character string with length in characters L and
the length in characters M of V is larger than L, then

Case:

1) If the rightmost M�L characters of V are all <space>s, then the value of T is set to
the first L characters of V.

2) If one or more of the rightmost M�L characters of V are not <space>s, then an
exception condition is raised: data exception — string data, right truncation.

iii) If the declared type of T is fixed-length character string with length in characters L and
the length in characters M of V is less than L, then the first M characters of T are set to
V and the last L�M characters of T are set to <space>s.

iv) If the declared type of T is variable-length character string and the length in characters
M of V is not greater than the maximum length in characters of T, then the value of T
is set to V and the length in characters of T is set to M.

v) If the declared type of T is variable-length character string and the length in characters
M of V is greater than the maximum length in characters L of T, then

Case:

1) If the rightmost M�L characters of V are all <space>s, then the value of T is set to
the first L characters of V and the length in characters of T is set to L.

2) If one or more of the rightmost M�L characters of V are not <space>s, then an
exception condition is raised: data exception — string data, right truncation.

Data assignment rules and routine determination 329

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.2 Store assignment

vi) If the declared type of T is character large object string and the length in characters M
of V is not greater than the maximum length in characters of T, then the value of T is
set to V and the length in characters of T is set to M.

vii) If the declared type of T is character large object string and the length in characters M
of V is greater than the maximum length in characters L of T, then

Case:

1) If the rightmost M�L characters of V are all <space>s, then the value of T is set to
the first L characters of V and the length in characters of T is set to L.

2) If one or more of the rightmost M�L characters of V are not <space>s, then an
exception condition is raised: data exception — string data, right truncation.

viii) If the declared type of T is fixed-length bit string with length in bits L and the length in
bits of V is equal to L, then the value of T is set to V.

ix) If the declared type of T is fixed-length bit string with length in bits L and the length
in bits M of V is greater than L, then an exception condition is raised: data exception —
string data, right truncation.

x) If the declared type of T is fixed-length bit string with length in bits L and the length in
bits M of V is less than L, then an exception condition is raised: data exception — string
data, length mismatch.

xi) If the declared type of T is variable-length bit string and the length in bits M of V is not
greater than the maximum length in bits of T, then the value of T is set to V and the
length in bits of T is set to M.

xii) If the declared type of T is variable-length bit string, and the length in bits M of V is
greater than the maximum length in bits L of T, then an exception condition is raised:
data exception — string data, right truncation.

xiii) If the declared type of T is binary string and the length in octets M of V is not greater
than the maximum length in octets of T, then the value of T is set to V and the length
in octets of T is set to M.

xiv) If the declared type of T is binary string and the length in octets M of V is greater than
the maximum length in octets L of T, then

Case:

1) If the rightmost M�L octets of V are all equal to X’00’, then the value of T is set to
the first L octets of V and the length in octets of T is set to L.

2) If one or more of the rightmost M�L octets of V are not equal to X’00’, then an
exception condition is raised: data exception — string data, right truncation.

xv) If the declared type of T is numeric, then

Case:

1) If V is a member of the declared type of T, then T is set to V.

330 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.2 Store assignment

2) If a member of the declared type of T can be obtained from V by rounding or trunca-
tion, then T is set to that value. If the declared type of T is exact numeric, then it
is implementation-defined whether the approximation is obtained by rounding or by
truncation.

3) Otherwise, an exception condition is raised: data exception — numeric value out of
range.

xvi) If the declared type DT of T is datetime, then

1) If only one of DT and the declared type of V is datetime with time zone, then V is
effectively replaced by

CAST (V TO DT)

2) Case:

A) If V is a member of the declared type of T, then T is set to V.

B) If a member of the declared type of T can be obtained from V by rounding or
truncation, then T is set to that value. It is implementation-defined whether the
approximation is obtained by rounding or truncation.

C) Otherwise, an exception condition is raised: data exception — datetime field
overflow.

xvii) If the declared type of T is interval, then

Case:

1) If V is a member of the declared type of T, then T is set to V.

2) If a member of the declared type of T can be obtained from V by rounding or
truncation, then T is set to that value. It is implementation-defined whether the
approximation is obtained by rounding or by truncation.

3) Otherwise, an exception condition is raised: data exception — interval field overflow.

xviii) If the declared type of T is boolean, then the value of T is set to V.

xix) If the declared type of T is a row type, then the General Rules of this Subclause are
applied to the i-th element of T and the i-th element of V as TARGET and VALUE,
respectively.

xx) If the declared type of T is a user-defined type, then the value of T is set to V.

xxi) If the declared type of T is a reference type, then the value of T is set to V.

xxii) If the declared type of T is an array type, then

Case:

1) If the maximum cardinality L of T is equal to the cardinality M of V, then the
elements of T are set to the values of the corresponding elements of V by applying
the General Rules of this Subclause to each pair of elements with the element of T
as TARGET and the element of V as VALUE.

Data assignment rules and routine determination 331

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.2 Store assignment

2) If the maximum cardinality L of T is smaller than the cardinality M of V, then

Case:

A) If the rightmost M�L elements of V are all null, then the elements of T are
set to the values of the first L corresponding elements of V by applying the
General Rules of this Subclause to each pair of elements with the element of T
as TARGET and the element of V as VALUE.

B) If one or more of the rightmost M�L elements of V are not null, then an excep-
tion condition is raised: data exception — array data, right truncation.

3) If the maximum cardinality L of T is greater than the cardinality M of V, then
the M first elements of T are set to the values of the corresponding elements of V
by applying the General Rules of this Subclause to each pair of elements with the
element of T as TARGET and the element of V as VALUE. The cardinality of the
value of T is set to M.
NOTE 143 – The maximum cardinality L of T is unchanged.

Conformance Rules

None.

332 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.3 Data types of results of aggregations

9.3 Data types of results of aggregations

Function
Specify the result data type of the result of an aggregation over values of compatible data types,
such as <case expression>s, <collection value expression>s, or a column in the result of a <query
expression>.

Syntax Rules

1) Let DTS be a set of data types specified in an application of this Subclause.

2) All of the data types in DTS shall be comparable.

3) Case:

a) If any of the data types in DTS is character string, then all data types in DTS shall be
character string, and all of them shall have the same character repertoire. That char-
acter repertoire is the character repertoire of the result. The character set of the result
is the character set of one of the data types in DTS. The specific character set chosen is
implementation-dependent. The collating sequence and the coercibility characteristic are
determined as specified in Table 2, ‘‘Collating coercibility rules for dyadic operators’’.

Case:

i) If any of the data types in DTS is character large object string, then the result data
type is character large object string with maximum length in characters equal to the
maximum of the lengths in characters and maximum lengths in characters of the data
types in DTS.

ii) If any of the data types in DTS is variable-length character string, then the result data
type is variable-length character string with maximum length in characters equal to the
maximum of the lengths in characters and maximum lengths in characters of the data
types in DTS.

iii) Otherwise, the result data type is fixed-length character string with length in characters
equal to the maximum of the lengths in characters of the data types in DTS.

b) If any of the data types in DTS is bit string, then all data types in DTS shall be bit string.

Case:

i) If any of the data types in DTS is variable-length bit string, then the result data type
is variable-length bit string with maximum length in bits equal to the maximum of the
lengths in bits and maximum lengths in bits of the data types in DTS.

ii) Otherwise, the result data type is fixed-length bit string with length in bits equal to the
maximum of the lengths in bits of the data types in DTS.

c) If any of the data types in DTS is binary string, then the result data type is binary string
with maximum length in octets equal to the maximum of the lengths in octets and maximum
lengths in octets of the data types in DTS.

d) If all of the data types in DTS are exact numeric, then the result data type is exact numeric
with implementation-defined precision and with scale equal to the maximum of the scales of
the data types in DTS.

Data assignment rules and routine determination 333

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.3 Data types of results of aggregations

e) If any data type in DTS is approximate numeric, then each data type in DTS shall be
numeric and the result data type is approximate numeric with implementation-defined
precision.

f) If some data type in DTS is a datetime data type, then every data type in DTS shall be a
datetime data type having the same datetime fields. The result data type is a datetime data
type having the same datetime fields, whose fractional seconds precision is the largest of the
fractional seconds precisions in DTS. If some data type in DTS has a timezone displacement
value, then the result has a timezone displacement value; otherwise, the result does not
have a timezone displacement value.

g) If any data type in DTS is interval, then each data type in DTS shall be interval. If the
precision of any data type in DTS specifies YEAR or MONTH, then the precision of each
data type shall specify only YEAR or MONTH. If the precision of any data type in DTS
specifies DAY, HOUR, MINUTE, or SECOND(N), then the precision of no data type of DTS
shall specify the <primary datetime field>s YEAR and MONTH. The result data type is
interval with precision ‘‘S TO E’’, where S and E are the most significant of the <start
field>s and the least significant of the <end field>s of the data types in DTS, respectively.

h) If any data type in DTS is boolean, then each data type in DTS shall be boolean. The result
data type is boolean.

i) If any data type in DTS is a row type, then each data type in DTS shall be a row type with
the same degree and the data type of each field in the same ordinal position of every row
type shall be comparable. The result data type is a row defined by an ordered sequence of
(<field name>, data type) pairs FDi, where data type is the data type resulting from the
application of this Subclause to the set of data types of fields in the same ordinal position as
FDi in every row type in DTS and <field name is determined as follows:

Case:

i) If the names of fields in the same ordinal position as FDi in every row type in DTS is F,
then the <field name> in FDi is F.

ii) Otherwise, the <field name> in FDi is implementation-dependent.

j) If any data type in DTS is an array type then every data type in DTS shall be an array
type. The data type of the result is array type with element data type ETR, where ETR is
the data type resulting from the application of this Subclause to the set of element types of
the array types of DTS, and maximum cardinality equal to the maximum of the maximum
cardinalities of the data types in DTS.

k) If any data type in DTS is a reference type, then there shall exist a subtype family STF such
that each data type in DTS is a member of STF. Let RT be the minimal common supertype
of each data type in DTS.

Case:

i) If the data type descriptor of every data type in DTS includes a <scope table name
list> and every table name that appears in some such <scope table name list> appears
in every such <scope table name list>, then let STNL be a <scope table name list>
consisting of every such table name in some order, arbitrarily chosen. The result data
type is:

RT SCOPE(STNL)

ii) Otherwise, the result data type is RT.

334 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.3 Data types of results of aggregations

l) Otherwise, there shall exist a subtype family STF such that each data type in DTS is a
member of STF. The result data type is the minimal common supertype of each data type in
DTS.
NOTE 144 – Minimal common supertype is defined in Subclause 4.8.3, ‘‘Subtypes and supertypes’’.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Data assignment rules and routine determination 335

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.4 Subject routine determination

9.4 Subject routine determination

Function
Determine the subject routine of a given routine invocation.

Syntax Rules

1) Let SR and AL be respectively a set of SQL-invoked routines, arbitrarily ordered, and the <SQL
argument list> specified in an application of this Subclause.

2) Let n be the number of SQL-invoked routines in SR. Let Ri, 1 (one) � i � n, be the i-th SQL-
invoked routine in SR in the ordering of SR.

3) Let m be the number of SQL arguments in AL. Let Aj, 1 (one) � j � m, be the j-th SQL argu-
ment in AL.

4) Let SDTAj be the declared type of Aj.

5) Let SDTPi;j be the type designator of the declared type of the j-th SQL parameter of Ri.

6) For r varying from 1 (one) to m, if there is more than one SQL-invoked routine in SR, then for
each pair of SQL-invoked routines { Rp, Rq } in SR, if SDTPp;r � SDTPq;r in the type precedence
list of SDTAr, then eliminate Rq from SR.
NOTE 145 – The ‘‘type precedence list’’ of a given type is determined by Subclause 9.5, ‘‘Type prece-
dence list determination’’.

7) The set of subject routines is the set of SQL-invoked routines remaining in SR.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

336 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.5 Type precedence list determination

9.5 Type precedence list determination

Function
Determine the type precedence list of a given type.

Syntax Rules

1) Let DT be the data type specified in an application of this Subclause.

2) The type precedence list TPL of DT is a list of data type names as specified in the Syntax Rules
of this Subclause.

3) Let ‘‘A � B’’ represent ‘‘A has precedence over B’’ and let ‘‘A ' B’’ represent ‘‘A has the same
precedence as B’’.

4) If DT is a user-defined type, then let DTN be the type designator of DT.
NOTE 146 – The type designator of a user-defined type is the type name included in its user-defined
type descriptor.

Case:

a) If DT is a maximal supertype, then TPL is

DTN

b) Otherwise:

i) Let ST be the set of supertypes of DT. Let n be the number of data types in ST.

ii) For each data type T in ST, the following set P of precedence relationships � is valid:

1) For all direct supertypes Ti of T, T � Ti.

2) For all direct supertypes Ti and Tj of T, if Ti occurs immediately prior to Tj in the
<subtype clause> of <user-defined type body> of T, then Ti � Tj.

iii) TPL is constructed as follows:

1) TPL is initially empty.

2) For i ranging from 1 (one) to n:

A) Let NT be the set of types in ST such that no other type Tj in ST � a type Tk in
NT according to P.

B) Case:

I) If there is exactly one type Tk in NT, then the type designator of Tk is placed
next in TPL and all relationships of the form ‘‘Tk � Tr’’ are removed from P,
where Tr is any other type in ST.

II) If there is more than one type Tk in NT, then the type Tk that has a direct
subtype that occurs closest to the tail of the portion of TPL constructed so
far is placed next in TPL and all relationships of the form ‘‘Tk � Tr’’ are
removed from P, where Tr is any other type in ST.

III) Otherwise, TPL is empty.

Data assignment rules and routine determination 337

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.5 Type precedence list determination

5) If DT is fixed-length character string, then TPL is

CHARACTER, CHARACTER VARYING, CHARACTER LARGE OBJECT

6) If DT is variable-length character string, then TPL is

CHARACTER VARYING, CHARACTER LARGE OBJECT

7) If DT is binary string, then TPL is

BINARY LARGE OBJECT

8) If DT is fixed-length bit string, then TPL is

BIT, BIT VARYING

9) If DT is variable-length bit character string, then TPL is

BIT VARYING

10) If DT is numeric, then:

a) Let NDT be the following set of numeric types: SMALLINT, INTEGER, NUMERIC,
DECIMAL, REAL, FLOAT, and DOUBLE PRECISION.

If the radix of any of the exact numeric types SMALLINT, INTEGER, NUMERIC, or
DECIMAL is decimal, then let ‘‘precision’’ mean the product of log2(10) and the actual
specified or implementation-defined precision.

b) Let Ti and Tj be valid data types in NDT. The following set P of precedence relationships
between Ti and Tj shall be valid:

i) If the implementation-defined precision of INTEGER is greater than the implementation-
defined precision of SMALLINT, then SMALLINT � INTEGER; otherwise, SMALLINT
' INTEGER.

ii) Case:

1) If the implementation-defined maximum precision of DECIMAL is greater than the
implementation-defined precision of INTEGER, then INTEGER � DECIMAL.

2) If the implementation-defined maximum precision of DECIMAL is equal to the
implementation-defined precision of INTEGER, then INTEGER ' DECIMAL.

3) Otherwise, DECIMAL � INTEGER and

Case:

A) If the implementation-defined maximum precision of DECIMAL is greater
than the implementation-defined precision of SMALLINT, then SMALLINT
� DECIMAL,

B) If the implementation-defined maximum precision of SMALLINT is greater
than the implementation-defined precision of DECIMAL, then DECIMAL �

SMALLINT.

C) Otherwise, SMALLINT ' DECIMAL.

338 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.5 Type precedence list determination

iii) Case:

1) If the implementation-defined maximum precision of NUMERIC is greater than the
implementation-defined precision of INTEGER, then INTEGER� NUMERIC.

2) If the implementation-defined maximum precision of NUMERIC is equal to the
implementation-defined precision of INTEGER, then INTEGER' NUMERIC.

3) Otherwise, NUMERIC � INTEGER and

Case:

A) If the implementation-defined maximum precision of NUMERIC is greater
than the implementation-defined precision of SMALLINT, then SMALLINT �

NUMERIC.

B) If the implementation-defined precision of SMALLINT is greater than the
implementation-defined maximum precision of NUMERIC, then NUMERIC
� SMALLINT.

C) Otherwise, SMALLINT ' NUMERIC.

iv) Case:

1) If the implementation-defined maximum precision of NUMERIC is greater than
the implementation-defined maximum precision of DECIMAL, then DECIMAL �

NUMERIC.

2) If the implementation-defined maximum precision of NUMERIC is equal to the
implementation-defined maximum precision of DECIMAL, then DECIMAL '

NUMERIC.

3) Otherwise, NUMERIC � DECIMAL.

v) REAL � DOUBLE PRECISION

vi) Case:

1) If the implementation-defined maximum precision of FLOAT is greater than the
implementation-defined precision of REAL, then REAL � FLOAT.

2) If the implementation-defined maximum precision of FLOAT is equal to the
implementation-defined precision of REAL, then FLOAT ' REAL.

3) Otherwise, FLOAT � REAL.

vii) Case:

1) If the implementation-defined maximum precision of FLOAT is greater than
the implementation-defined precision of DOUBLE PRECISION, then DOUBLE
PRECISION � FLOAT.

2) If the implementation-defined maximum precision of FLOAT is equal to the
implementation-defined precision of DOUBLE PRECISION, then FLOAT '

DOUBLE PRECISION.

3) Otherwise, FLOAT � DOUBLE PRECISION.

Data assignment rules and routine determination 339

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.5 Type precedence list determination

viii) Let MAXEX be whichever of INTEGER, NUMERIC, and DECIMAL has the greatest
precedence and let MINAP be whichever of REAL and FLOAT has the least precedence.
MAXEX � MINAP.

c) Let PTC be the transitive closure of P.

d) TPL is determined as follows:

i) TPL is initially empty.

ii) Let ST be the set of types containing DT and every type T in NDT for which the prece-
dence relationship DT � T or DT ' T is in PTC.

iii) Let n be the number of types in ST.

iv) For i ranging from 1 (one) to n:

1) Let NT be the set of types Tk in ST such that there is no other type Tj in ST for
which Tj � Tk according to PTC.

2) Case:

A) If there is exactly one type Tk in NT, then Tk is placed next in TPL and all
relationships of the form Tk � Tr are removed from PTC, where Tr is any type
in ST.

B) If there is more than one type Tk in NT, then every type Ts in NT is assigned
the same position in TPL as Tk and all relationships of the forms Tk � Tr, Tk '
Tr, Ts � Tr, and Ts ' Tr are removed from PTC, where Tr is any type in ST.

11) If DT specifies a year-month interval type, then TPL is

INTERVAL YEAR

12) If DT specifies a day-time interval type, then TPL is

INTERVAL DAY

13) If DT specifies DATE, then TPL is

DATE

14) If DT specifies TIME, then TPL is

TIME

15) If DT specifies TIMESTAMP, then TPL is

TIMESTAMP

16) If DT specifies BOOLEAN, then TPL is

BOOLEAN

17) If DT is a collection type, then let CTC be the <collection type constructor> specified in DT.

Let n be the number of elements in the type precedence list for the element type of DT. For i
ranging from 1 (one) to n, let RIOi be the i-th such element. TPL is

RIO1 CTC, RIO2 CTC, ..., RIOn CTC

340 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.5 Type precedence list determination

18) If DT is a reference type, then let n be the number of elements in the type precedence list for
the referenced type of DT. For i ranging from 1 (one) to n, let KAWi be the i-th such element.
TPL is

KAW1, KAW2, ..., KAWn

19) If DT is a row type, then TPL is

ROW

NOTE 147 – This rule is placed only to avoid the confusion that might arise if row types were not
mentioned in this Subclause. As a row type cannot be used as a <parameter type>, the type precedence
list of a row type is never referenced.

Conformance Rules

None.

Data assignment rules and routine determination 341

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.6 Host parameter mode determination

9.6 Host parameter mode determination

Function
Determine the parameter mode for a given host parameter.

Syntax Rules

1) Let PD and SPS be a <host parameter declaration> and an <SQL procedure statement> speci-
fied in an application of this Subclause.

2) Let P be the host parameter specified by PD and let PN be the <host parameter name> immedi-
ately contained in PD.

3) Whether P is an input host parameter, an output host parameter, or both an input host param-
eter and an output host parameter is determined as follows:

Case:

a) If PD is a <status parameter>, then P is an output host parameter.

b) Otherwise,

Case:

i) If PN is contained in an <SQL argument> Ai of the <SQL argument list> of a <routine
invocation> immediately contained in a <call statement> that is contained in SPS, then:

1) Let R be the subject routine of the <routine invocation>.

2) Let PRi be the i-th SQL parameter of R.

3) Case:

A) If PN is contained in a <host parameter specification> that is the <target specifi-
cation> that is simply contained in Ai and PRi is an output SQL parameter, then
P is an output host parameter.

B) If PN is contained in a <host parameter specification> that is the <target specifi-
cation> that is simply contained in Ai and PRi is both an input SQL parameter
and an output SQL parameter, then P is both an input host parameter and an
output host parameter.

C) Otherwise, P is an input host parameter.

ii) If PN is contained in a <value specification> or a <simple value specification> that is
contained in SPS, and PN is not contained in a <target specification> or a <simple
target specification> that is contained in SPS, then P is an input host parameter.

iii) If PN is contained in a <target specification> or a <simple target specification> that is
contained in SPS, and PN is not contained in a <value specification> or a <simple value
specification> that is contained in SPS, then P is an output host parameter.

342 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.6 Host parameter mode determination

iv) If PN is contained in a <value specification> or a <simple value specification> that is
contained in SPS, and in a <target specification> or a <simple target specification>
that is contained in SPS, then P is both an input host parameter and an output host
parameter.

v) Otherwise, P is neither an input host parameter nor an output host parameter.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Data assignment rules and routine determination 343

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
9.7 Type name determination

9.7 Type name determination

Function
Determine an <identifier> given the name of a predefined data type.

Syntax Rules

1) Let DT be the <predefined type> specified in an application of this Subclause.

2) Let FNSDT be the <identifier> resulting from an application of this Subclause, defined as
follows.

Case:

a) If DT specifies CHARACTER, then let FNSDT be ‘‘CHAR’’.

b) If DT specifies CHARACTER VARYING, then let FNSDT be ‘‘VARCHAR’’.

c) If DT specifies CHARACTER LARGE OBJECT, then let FNSDT be ‘‘CLOB’’.

d) If DT specifies BINARY LARGE OBJECT, then let FNSDT be ‘‘BLOB’’.

e) If DT specifies BIT, then let FNSDT be ‘‘BIT’’.

f) If DT specifies BIT VARYING, then let FNSDT be ‘‘BITVAR’’.

g) If DT specifies SMALLINT, then let FNSDT be ‘‘SMALLINT’’.

h) If DT specifies INTEGER, then let FNSDT be ‘‘INTEGER’’.

i) If DT specifies DECIMAL, then let FNSDT be ‘‘DECIMAL’’.

j) If DT specifies NUMERIC, then let FNSDT be ‘‘NUMERIC’’.

k) If DT specifies REAL, then let FNSDT be ‘‘REAL’’.

l) If DT specifies FLOAT, then let FNSDT be ‘‘FLOAT’’.

m) If DT specifies DOUBLE PRECISION, then let FNSDT be ‘‘DOUBLE’’.

n) If DT specifies DATE, then let FNSDT be ‘‘DATE’’.

o) If DT specifies TIME, then let FNSDT be ‘‘TIME’’.

p) If DT specifies TIMESTAMP, then let FNSDT be ‘‘TIMESTAMP’’.

q) If DT specifies INTERVAL, then let FNSDT be ‘‘INTERVAL’’.

Access Rules

None.

344 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
9.7 Type name determination

General Rules

None.

Conformance Rules

None.

Data assignment rules and routine determination 345

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

346 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

10 Additional common elements

10.1 <interval qualifier>

Function
Specify the precision of an interval data type.

Format

<interval qualifier> ::=
<start field> TO <end field>

| <single datetime field>

<start field> ::=
<non-second primary datetime field>

[<left paren> <interval leading field precision> <right paren>]

<end field> ::=
<non-second primary datetime field>

| SECOND [<left paren> <interval fractional seconds precision> <right paren>]

<single datetime field> ::=
<non-second primary datetime field>

[<left paren> <interval leading field precision> <right paren>]
| SECOND [<left paren> <interval leading field precision>

[<comma> <interval fractional seconds precision>] <right paren>]

<primary datetime field> ::=
<non-second primary datetime field>

| SECOND

<non-second primary datetime field> ::= YEAR | MONTH | DAY | HOUR | MINUTE

<interval fractional seconds precision> ::= <unsigned integer>

<interval leading field precision> ::= <unsigned integer>

Syntax Rules

1) There is an ordering of significance of <primary datetime field>s. In order from most significant
to least significant, the ordering is: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. A
<start field> or <single datetime field> with an <interval leading field precision> i is more sig-
nificant than a <start field> or <single datetime field> with an <interval leading field precision>
j if i>j. An <end field> or <single datetime field> with an <interval fractional seconds precision>
i is less significant than an <end field> or <single datetime field> with an <interval fractional
seconds precision> j if i>j.

2) If TO is specified, then <start field> shall be more significant than <end field> and <start
field> shall not specify MONTH. If <start field> specifies YEAR, then <end field> shall specify
MONTH.

Additional common elements 347

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.1 <interval qualifier>

3) The maximum value of <interval leading field precision> is implementation-defined, but shall
not be less than 2.

4) The maximum value of <interval fractional seconds precision> is implementation-defined, but
shall not be less than 6.

5) An <interval leading field precision>, if specified, shall be greater than 0 (zero) and shall not be
greater than the implementation-defined maximum. If <interval leading field precision> is not
specified, then an <interval leading field precision> of 2 is implicit.

6) An <interval fractional seconds precision>, if specified, shall be greater than or equal to 0 (zero)
and shall not be greater than the implementation-defined maximum. If SECOND is specified
and <interval fractional seconds precision> is not specified, then an <interval fractional seconds
precision> of 6 is implicit.

7) The precision of a field other than the <start field> or <single datetime field> is

Case:

a) If the field is not SECOND, then 2.

b) Otherwise, 2 digits before the decimal point and the explicit or implicit <interval fractional
seconds precision> after the decimal point.

Access Rules

None.

General Rules

1) An item qualified by an <interval qualifier> contains the datetime fields identified by the
<interval qualifier>.

Case:

a) If the <interval qualifier> specifies a <single datetime field>, then the <interval qualifier>
identifies a single <primary datetime field>. Any reference to the most significant or least
significant <primary datetime field> of the item refers to that <primary datetime field>.

b) Otherwise, the <interval qualifier> identifies those datetime fields from <start field> to <end
field>, inclusive.

2) An <interval leading field precision> specifies

Case:

a) If the <primary datetime field> is SECOND, then the number of decimal digits of precision
before the specified or implied decimal point of the seconds <primary datetime field>.

b) Otherwise, the number of decimal digits of precision of the first <primary datetime field>.

3) An <interval fractional seconds precision> specifies the number of decimal digits of precision
following the specified or implied decimal point in the <primary datetime field> SECOND.

4) The length in positions of an item of type interval is computed as follows.

348 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.1 <interval qualifier>

Case:

a) If the item is a year-month interval, then

Case:

i) If the <interval qualifier> is a <single datetime field>, then the length in positions of the
item is the implicit or explicit <interval leading field precision> of the <single datetime
field>.

ii) Otherwise, the length in positions of the item is the implicit or explicit <interval leading
field precision> of the <start field> plus 2 (the length of the <non-second primary date-
time field> that is the <end field>) plus 1 (one, the length of the <minus sign> between
the <years value> and the <months value> in a <year-month literal>).

b) Otherwise,

Case:

i) If the <interval qualifier> is a <single datetime field> that does not specify SECOND,
then the length in positions of the item is the implicit or explicit <interval leading field
precision> of the <single datetime field>.

ii) If the <interval qualifier> is a <single datetime field> that specifies SECOND, then the
length in positions of the item is the implicit or explicit <interval leading field precision>
of the <single datetime field> plus the implicit or explicit <interval fractional seconds
precision>. If <interval fractional seconds precision> is greater than zero, then the
length in positions of the item is increased by 1 (the length in positions of the <period>
between the <seconds integer value> and the <seconds fraction>).

iii) Otherwise, let participating datetime fields mean the datetime fields that are less signif-
icant than the <start field> and more significant than the <end field> of the <interval
qualifier>. The length in positions of each participating datetime field is 2.

Case:

1) If <end field> is SECOND, then the length in positions of the item is the implicit or
explicit <interval leading field precision>, plus 3 times the number of participating
datetime fields (each participating datetime field has length 2 positions, plus the
<minus sign>s or <colon>s that precede them have length 1 (one) position), plus
the implicit or explicit <interval fractional seconds precision>, plus 3 (the length
in positions of the <end field> other than any <fractional seconds precision> plus
the length in positions of its preceding <colon>). If <interval fractional seconds
precision> is greater than zero, then the length in positions of the item is increased
by 1 (the length in positions of the <period> within the field identified by the <end
field>).

2) Otherwise, the length in positions of the item is the implicit or explicit <interval
leading field precision>, plus 3 times the number of participating datetime fields
(each participating datetime field has length 2 positions, plus the <minus sign>s
or <colon>s that precede them have length 1 (one) position), plus 2 (the length in
positions of the <end field>), plus 1 (one, the length in positions of the <colon>
preceding the <end field>).

Additional common elements 349

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.1 <interval qualifier>

Conformance Rules

1) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language shall not
contain any <interval qualifier>.

350 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.2 <language clause>

10.2 <language clause>

Function
Specify a standard programming language.

Format

<language clause> ::=
LANGUAGE <language name>

<language name> ::=
ADA | C | COBOL | FORTRAN | MUMPS | PASCAL | PLI | SQL

Syntax Rules

None.

Access Rules

None.

General Rules

1) The standard programming language specified by the clause is defined in the International
Standard identified by the <language name> keyword. Table 17, ‘‘Standard programming
languages’’, specifies the relationship.

Additional common elements 351

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.2 <language clause>

Table 17—Standard programming languages

Language
keyword Relevant standard

ADA ISO/IEC 8652

C ISO/IEC 9899

COBOL ISO 1989

FORTRAN ISO 1539

MUMPS ISO/IEC 11756

PASCAL ISO/IEC 7185 and ISO/IEC 10206

PLI ISO 6160

SQL ISO/IEC 9075

Conformance Rules

None.

352 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.3 <path specification>

10.3 <path specification>

Function
Specify an order for searching for an SQL-invoked routine.

Format

<path specification> ::=
PATH <schema name list>

<schema name list> ::=
<schema name> [{ <comma> <schema name> }...]

Syntax Rules

1) No two <schema name>s contained in <schema name list> shall be equivalent.

2) If no <schema name> in <schema name list> SO contains the <qualified identifier> INFORMATION_
SCHEMA, then SO is effectively replaced by

INFORMATION_SCHEMA, SO

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming SQL
language shall not contain any <path specification>.

Additional common elements 353

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

10.4 <routine invocation>

Function
Invoke an SQL-invoked routine.

Format

<routine invocation> ::=
<routine name> <SQL argument list>

<routine name> ::=
[<schema name> <period>] <qualified identifier>

<SQL argument list> ::=
<left paren> [<SQL argument> [{ <comma> <SQL argument> }...]] <right paren>

<SQL argument> ::=
<value expression>

| <generalized expression>
| <target specification>

<generalized expression> ::=
<value expression> AS <user-defined type>

Syntax Rules

1) Let RI be the <routine invocation>, let TP be the SQL-path (if any), and let UDTSM be the
user-defined type of the static SQL-invoked method (if any) specified in an application of this
Subclause.

2) Let RN be the <routine name> immediately contained in the <routine invocation> RI.

3) If RI is immediately contained in a <call statement>, then the <SQL argument list> of RI shall
not contain a <generalized expression> without an intervening <routine invocation>.

4) Case:

a) If RI is immediately contained in a <call statement>, then an SQL-invoked routine R is
a possibly candidate routine for RI (henceforth, simply ‘‘possibly candidate routine’’) if R
is an SQL-invoked procedure and the <qualified identifier> of the <routine name> of R is
equivalent to the <qualified identifier> of RN.

b) If RI is immediately contained in a <method invocation>, then an SQL-invoked routine R
is a possibly candidate routine for RI if R is an SQL-invoked method and the <qualified
identifier> of the <routine name> of R is equivalent to the <qualified identifier> of RN and
the method specification descriptor for R does not include a STATIC indication.

c) If RI is immediately contained in a <static method invocation>, then an SQL-invoked
routine R is a possibly candidate routine for RI if R is an SQL-invoked method and the
<qualified identifier> of the <routine name> of R is equivalent to the <qualified identifier>
of RN and the method specification descriptor MSD for R includes a STATIC indication
and MSD is included in a user-defined type descriptor for UDTSM or for some supertype of
UDTSM.

354 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

d) Otherwise, an SQL-invoked routine R is a possibly candidate routine for RI if R is an SQL-
invoked function that is not an SQL-invoked method and the <qualified identifier> of the
<routine name> of R is equivalent to the <qualified identifier> of RN.

5) Case:

a) If RI is contained in an <SQL schema statement>, then an <SQL-invoked routine> R is an
executable routine if and only if R is a possibly candidate routine and the applicable privi-
leges of the <authorization identifier> that owns the containing schema include EXECUTE
on R.

b) Otherwise, an <SQL-invoked routine> R is an executable routine if and only if R is a possibly
candidate routine and the current privileges include EXECUTE on R.

NOTE 148 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

6) Case:

a) If <SQL argument list> does not immediately contain at least one <SQL argument>, then
an invocable routine is an executable routine that has no SQL parameters.

b) Otherwise:

i) Let NA be the number of <SQL argument>s in the <SQL argument list> AL of RI. Let
Ai be the i-th <SQL argument> in AL.

ii) Let the static SQL argument list of RI be AL.

iii) Let Pi be the i-th SQL parameter of an executable routine. An invocable routine is an
SQL-invoked routine R1 that is an executable routine such that:

1) RI has NA SQL parameters.

2) If RI is not immediately contained in a <call statement>, then for each Pi,

Case:

A) If the declared type of Pi is a user-defined data type, then:

I) Let STi be the set of subtypes of the declared type of Ai.

II) The type designator of the declared type of Pi shall be in the type precedence
list of the data type of some type in STi.
NOTE 149 – ‘‘type precedence list’’ is defined in Subclause 9.5, ‘‘Type precedence
list determination’’.

B) Otherwise, the type designator of the declared type of Pi shall be in the type
precedence list of the declared type of Ai.
NOTE 150 – ‘‘type precedence list’’ is defined in Subclause 9.5, ‘‘Type precedence list
determination’’.

7) If <SQL argument list> does not immediately contain at least one <SQL argument>, then:

a) Let AL be an empty list of SQL arguments.

Additional common elements 355

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

b) The subject routine of RI is defined as follows:

i) If RN does not contain a <schema name>, then:

1) Case:

A) If RI is immediately contained in a <static method selection>, then let DP be TP.

B) If the routine execution context of the current SQL-session indicates that an
SQL-invoked routine is active, then let DP be the routine SQL-path of that
routine execution context.

C) Otherwise,

Case:

I) If RI is contained in a <schema definition>, then let DP be the SQL-path of
that <schema definition>.

II) If RI is contained in a <preparable statement> that is prepared in the
current SQL-session by an <execute immediate statement> or a <prepare
statement> or in a <direct SQL statement> that is invoked directly, then let
DP be the SQL-path of the current SQL-session.

III) Otherwise, let DP be the SQL-path of the <SQL-client module definition>
that contains RI.

2) The subject routine of RI is an SQL-invoked routine R1 such that:

A) R1 is an invocable routine.

B) The <schema name> of the schema of R1 is in DP.

C) Case:

I) If the routine descriptor of R1 does not include a STATIC indication, then
there is no other invocable routine R2 for which the the <schema name>
of the schema that includes R2 precedes in DP the <schema name> of the
schema that includes R1.

II) If the routine descriptor of R1 includes a STATIC indication, then there is no
other invocable routine R2 for which the user-defined type described by the
user-defined descriptor that includes the routine descriptor of R2 is a subtype
of the user-defined type described by the user-defined type descriptor that
includes the routine descriptor of R1.

ii) If RN contains a <schema name> SN, then

Case:

1) If SN is ‘‘INFORMATION_SCHEMA’’, then the single candidate routine of RI is the
built-in function identified by <routine name>.

2) Otherwise, SN shall be the <schema name> of a schema S. The subject routine of RI
is the invocable routine (if any) contained in S.

c) There shall be exactly one subject routine of RI.

356 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

d) If RI is not immediately contained in a <call statement>, then the effective returns data type
of RI is the result data type of the subject routine of RI.

e) Let the static SQL argument list of RI be an empty list of SQL arguments.

8) If <SQL argument list> immediately contains at least one <SQL argument>, then:

a) The <data type> of each <value expression> immediately contained in a <generalized expres-
sion> shall be a subtype of the structured type identified by the <user-defined type name>
simply contained in the <user-defined type> that is immediately contained in <generalized
expression>.

b) The set of candidate routines of RI is defined as follows:

Case:

i) If RN does not contain a <schema name>, then:

1) Case:

A) If RI is immediately contained in a <method selection> or a <static method
selection>, then let DP be TP.

B) If the routine execution context of the current SQL-session indicates that an
SQL-invoked routine is active, then let DP be the routine SQL-path of that
routine execution context.

C) Otherwise,

Case:

I) If RI is contained in a <schema definition>, then let DP be the SQL-path of
that <schema definition>.

II) If RI is contained in a <preparable statement> that is prepared in the
current SQL-session by an <execute immediate statement> or a <prepare
statement> or in a <direct SQL statement> that is invoked directly, then let
DP be the SQL-path of the current SQL-session.

III) Otherwise, let DP be the SQL-path of the <SQL-client module definition>
that contains RI.

2) The candidate routines of RI are the set union of invocable routines of all schemas
whose <schema name> is in DP.

ii) If RN contains a <schema name> SN, then

Case:

1) If SN is ‘‘INFORMATION_SCHEMA’’, then the single candidate routine of RI is the
built-in function identified by <routine name>.

2) Otherwise, SN shall be the <schema name> of a schema S. The candidate routines
of RI are the invocable routines (if any) contained in S.

Additional common elements 357

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

c) Case:

i) If RI is immediately contained in a <call statement>, then:

1) Let XAL be AL.

2) The subject routine SR of XAL is the SQL-invoked routine R1 that is a candidate
routine of RI such that there is no other candidate routine R2 for which the <schema
name> of the schema that includes R2 precedes in DP the <schema name> of the
schema that includes R1.

3) Let PL be the list of SQL parameters Pi of SR.

4) For each Pi that is an output SQL parameter or both an input SQL parameter and
an output SQL parameter, Ai shall be a <target specification>.

A) If Ai is a <host parameter specification>, then Pi shall be assignable to Ai,
according to the Syntax Rules of Subclause 9.1, ‘‘Retrieval assignment’’, with Ai
and Pi as TARGET and VALUE, respectively.

B) If Ai is the <SQL parameter name> of an SQL parameter of an SQL-invoked
routine, then Pi shall be assignable to Ai, according to the Syntax Rules of
Subclause 9.2, ‘‘Store assignment’’, with Ai and Pi as TARGET and VALUE,
respectively.

5) For each Pi that is an input SQL parameter but not an output parameter, Ai shall
be a <value expression> or <generalized expression>.

6) For each Pi that is an input SQL parameter or both an input SQL parameter and
an output SQL parameter, Ai shall be assignable to Pi, according to the Syntax
Rules of Subclause 9.2, ‘‘Store assignment’’, with Pi and Ai as TARGET and VALUE,
respectively.

ii) Otherwise:

1) Ai shall be a <value expression> or <generalized expression>.

2) Case:

A) If Ai is a <generalized expression>, then let TSi be the data type identified by
the <user-defined type name> simply contained in the <user-defined type> that
is immediately contained in the <generalized expression>.

B) Otherwise, let TSi be the data type whose data type name is included in the
data type descriptor of the data type of Ai.

3) For each Ai, let Vi be a value arbitrarily chosen whose declared type is TSi. Let
XAL be an <SQL argument list> with N <SQL argument>s derived from val-
ues Vi ordered according to their ordinal position i in XAL. The Syntax Rules of
Subclause 9.4, ‘‘Subject routine determination’’, are applied to the candidate routines
of RI and XAL, yielding a set of candidate subject routines CSR.

Case:

A) If RN contains a <schema name>, then there shall be exactly one candidate
subject routine in CSR. The subject routine SR is the candidate subject routine
in CSR.

358 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

B) Otherwise:

I) There shall be at least one candidate subject routine in CSR.

II) Case:

1) If there is exactly one candidate subject routine in CSR, then the subject
routine SR is the candidate subject routine in CSR.

2) If there is more than one candidate subject routine in CSR, then

Case:

a) If RI is not immediately contained in a <static method selection>,
then the subject routine SR is an SQL-invoked routine R1 in CSR
such that there is no other candidate subject routine R2 in CSR for
which the <schema name> of the schema that includes R2 precedes
in DP the <schema name> of the schema that includes R1.

b) Otherwise, the subject routine SR is an SQL-invoked routine R1 in
CSR such that there is no other candidate subject routine R2 in CSR
for which the <user-defined type described by the user-defined type
descriptor that includes the routine descriptor of R2 is a subtype of
the user-defined type described by the user-defined type descriptor
that includes the routine descriptor of R1.

4) The subject routine of RI is the subject routine SR.

5) Let PL be the list of SQL parameters Pi of SR.

6) For each Pi, Ai shall be assignable to Pi according to the Syntax Rules of
Subclause 9.2, ‘‘Store assignment’’, with Pi and Ai as TARGET and VALUE, re-
spectively.

7) The effective returns data type of RI is defined as follows:

A) Case:

I) If SR is a type-preserving function, then let Pi be the result SQL parameter
of SR. If Ai contains a <generalized expression>, then let RT be the declared
type of the <value expression> contained in the <generalized expression> of
Ai; otherwise, let RT be the declared type of Ai.

II) Otherwise, let RT be the result data type of SR.

B) The effective returns data type of RI is RT.

9) If SR is a constructor function, then RI shall be immediately contained in a <new invocation>.

Access Rules

None.

Additional common elements 359

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

General Rules

1) Let SAL and SR be the static SQL argument list and subject routine of the <routine invocation>
as specified in an application of this Subclause.
NOTE 151 – ‘‘static SQL argument list’’ and ‘‘subject routine’’ are defined by the Syntax Rules of this
Subclause.

2) Case:

a) If SAL is empty, then let the dynamic SQL argument list DAL be SAL.

b) Otherwise:

i) Each SQL argument Ai in SAL is evaluated, in an implementation-dependent order, to
obtain a value Vi.

ii) Let the dynamic SQL argument list DAL be the list of values Vi in order.

iii) Case:

1) If SR is an instance SQL-invoked method, then:

A) Let SM be the set of SQL-invoked methods M that satisfy the following condi-
tions:

I) The <routine name> of SR and the <routine name> of M have equivalent
<qualified identifier>s.

II) SR and M have the name number N of SQL parameters. Let PSRi, 1 (one)
� i � N, be the i-th SQL parameter of SR and PMi, 1 (one) � i � N, be the
i-th SQL parameter of M.

III) The declared type of the subject parameter of M is a subtype of the declared
type of the subject parameter of SR.

IV) The declared type of PMj, 2 � j � N, is compatible with the declare type of
PSRj.
NOTE 152 – SR is an element of the set SM.

B) SM is the set of overriding methods of SR and every SQL-invoked method M in
SM is an overriding method of SR.

C) If the first SQL argument A1 in SAL contains a <generalized expression>, then
let DT1 be the data type identified by the <user-defined type name> contained in
the <generalized expression> of A1; otherwise, let DT1 be the most specific type
of the first value V1 in DAL.

D) Let R be the SQL-invoked method in SM such that there is no other SQL-
invoked method M1 in SM for which the type designator of the declared type
of the subject parameter of M1 precedes that of the declared type of the subject
parameter of R in the type precedence list of DT1.

2) Otherwise, let R be SR.

3) Let N and PN be the number of values Vi in DAL. Let Ti be the declared type of the i-th SQL
parameter Pi of R. For i ranging from 1 (one) to PN,

360 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

Case:

a) If Pi is an input SQL parameter or both an input SQL parameter and an output SQL pa-
rameter, then let CPVi be the result of the assignment of Vi to a target of type Ti according
to the rules of Subclause 9.2, ‘‘Store assignment’’.

b) Otherwise, let CPVi be an implementation-defined value of declared type Ti.

4) If R is a built-in function BIF, then

Case:

a) If the syntax for invoking BIF is defined in ISO/IEC 9075, then the result of <routine
invocation> is as defined for that syntax in ISO/IEC 9075.

b) Otherwise, the result of <routine invocation> is implementation-defined.

5) If R is an external routine, then:

a) Let P be the program identified by the external name of R.

b) For i ranging from 1 (one) to N, let Pi be the i-th SQL parameter of R and let Ti be the
declared type of Pi.

Case:

i) If Pi is an input SQL parameter or both an input SQL parameter and an output SQL
parameter, then

Case:

1) If Pi is a locator parameter, then CPVi is replaced by the locator value that uniquely
identifies the value of CPVi.

2) If Ti is a user-defined type, and Pi is not a locator parameter, then:

A) Let FSFi be the SQL-invoked routine identified by the specific name of the from-
sql function associated with Pi in the routine descriptor of R. Let RTi be the
result data type of FSFi.

B) The General Rules of this Subclause are applied with a static SQL argument list
that has a single argument that is CPVi and subject routine FSFi.

C) Let RVi be the result of the invocation of FSFi. CPVi is replaced by RVi.

ii) Otherwise,

Case:

1) If Pi is a locator parameter, then CPVi is replaced with an implementation-
dependent value of type INTEGER.

2) If Ti is a user-defined type and Pi is not a locator parameter, then:

A) Let FSFi be the SQL-invoked routine identified by the specific name of the from-
sql function associated with Pi in the routine descriptor of R. Let RTi be the
result data type of FSFi.

B) CPVi is replaced by an implementation-defined value of type RTi.

Additional common elements 361

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

6) Preserve the current SQL-session context CSC and create a new SQL-session context RSC
derived from CSC as follows:

a) Set the current default catalog name, the current default unqualified schema name, the
current character set name substitution value, the SQL-path of the current SQL-session,
the current default time zone, and the contents of all SQL dynamic descriptor areas to
implementation-defined values.

b) Set the values of the current SQL-session identifier, the identities of all instances of global
temporary tables, the current constraint mode for each integrity constraint, the current
transaction access mode, the current transaction isolation level, and the current transaction
diagnostics area limit to their values in CSC.

c) Case:

i) If R is an SQL routine, then remove from RSC the identities of all instances of created
local temporary tables, declared local temporary tables that are defined by <temporary
table declaration>s that are contained in <SQL-client module definition>s, and the
cursor position of all open cursors.

ii) Otherwise:

1) Remove from RSC the identities of all instances of created local temporary tables
that are referenced in <SQL-client module definition>s that are not the <SQL-client
module definition> of P, declared local temporary tables that are defined by <tem-
porary table declaration>s that are contained in <SQL-client module definition>s
that are not the <SQL-client module definition> of P, and the cursor position of all
open cursors that are defined by <declare cursor>s that are contained in <SQL-client
module definition>s that are not the <SQL-client module definition> of P.

2) It is implementation-defined whether the identities of all instances of created local
temporary tables that are referenced in the <SQL-client module definition> of P,
declared local temporary tables that are defined by <temporary table declaration>s
that are contained in the <SQL-client module definition> of P, and the cursor posi-
tion of all open cursors that are defined by <declare cursor>s that are contained in
the <SQL-client module definition> of P are removed from RSC.

d) Indicate in the routine execution context of RSC that the SQL-invoked routine R is active.

e) Indicate in the routine execution context of RSC whether or not containing SQL, reading
SQL-data, or modifying SQL-data is permitted.
NOTE 153 – Such an indication is derived from the routine descriptor of R.

f) Set the SQL-session user identifier of RSC to the current user identifier of CSC.

g) Set the authorization stack of RSC to empty.

h) Append a new pair of identifiers to the authorization stack of RSC such that the user
identifier is the SQL-session user identifier of RSC and the role name is the current role
name of CSC.

362 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

i) Case:

i) If R is an external routine, then:

1) If the external security characteristic of R is DEFINER, then in that new pair of
identifiers:

A) If the routine authorization identifier is a user identifier, then set the user
identifier of RSC to the routine authorization identifier of R and set the role
name of RSC to the null value.

B) Otherwise, set the role name of RSC to the routine authorization identifier of R
and set the user identifier of RSC to the null value.

2) If the external security characteristic of R is IMPLEMENTATION DEFINED, then
in that new pair of identifiers set the user identifier and the role name of RSC to
implementation-defined values.

3) If the external security characteristic of R is INVOKER, then in that new pair of
identifiers maintain the user identifier and the role name of RSC unchanged.

4) Set the current authorization identifier of RSC to be the external routine authoriza-
tion identifier of R.

5) Set the routine SQL-path of RSC to be the external routine SQL-path of R.

6) If R possibly contains SQL, possibly reads SQL-data, or possibly modifies SQL-data,
then set the SQL-session module of RSC to be the module M of P; otherwise, set the
SQL-session module of RSC to be an implementation-defined module.

ii) Otherwise:

1) In that new pair of identifiers, set the user identifier of RSC to be the routine
authorization identifier of R and set the role name of RSC to be the null value.

2) Set the routine SQL-path of RSC to be the routine SQL-path of R.

3) Set the SQL-session module of RSC to be the SQL-session module of CSC.

j) RSC becomes the current SQL-session context.

7) Case:

a) If R possibly contains SQL and containing SQL is not permitted, then an exception condition
is raised: external routine exception — containing SQL not permitted.

b) If R possibly reads SQL-data and reading SQL-data is not permitted, then:

i) If R is an external routine, then an exception condition is raised: external routine
exception — reading SQL-data not permitted.

ii) Otherwise, an exception condition is raised: SQL routine exception — reading SQL-data
not permitted.

Additional common elements 363

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

c) If R possibly modifies SQL-data and modifying SQL-data is not permitted, then:

i) If R is an external routine, then an exception condition is raised: external routine
exception — modifying SQL-data not permitted.

ii) Otherwise, an exception condition is raised: SQL routine exception — modifying SQL-
data not permitted.

d) If R does not possibly modify SQL-data, then the routine execution context is set to indicate
that modifying SQL-data is not permitted.

e) If R does not possibly read SQL-data, then the routine execution context is set to indicate
that neither modifying nor reading SQL-data is permitted.

f) If R does not possibly contain SQL, then the routine execution context is set to indicate that
neither modifying SQL-data, reading SQL-data, nor containing SQL is permitted.

NOTE 154 – Otherwise, the routine execution context is unaltered.

8) If R is an SQL routine, then

Case:

a) If R is an SQL-invoked method whose routine descriptor does not include a STATIC indica-
tion and if CP1 is the null value, then:

i) Let RV be the null value.

ii) If R is a mutator, then an exception condition is raised: data exception — null instance
used in mutator function.

b) If R is a null-call function and if any of CPVi is the null value, then let RV be the null value.

c) Otherwise:

i) For i ranging from 1 (one) to PN, set the value of Pi to CPVi.

ii) The General Rules of Subclause 13.5, ‘‘<SQL procedure statement>’’, are evaluated with
the <SQL routine body> of R as the executing statement.

iii) If, before the completion of the execution of the <SQL routine body> of R, an attempt is
made to execute an SQL-transaction statement or an SQL-connection statement, then
an exception condition is raised: SQL routine exception — prohibited SQL-statement
attempted.

iv) If reading SQL-data is not permitted and, before the completion of the execution of the
<SQL routine body> of R, an attempt is made to execute an <SQL procedure state-
ment> that possibly reads SQL-data, then an exception condition is raised: SQL routine
exception — reading SQL-data not permitted.

v) If modifying SQL-data is not permitted and, before the completion of the execution
of the <SQL routine body> of R, an attempt is made to execute an SQL-data change
statement or an SQL-schema statement, then an exception condition is raised: SQL
routine exception — modifying SQL-data not permitted.

364 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

vi) If there is an unhandled exception or completion condition other than successful comple-
tion at completion of the execution of the <SQL routine body> or R, then that condition
is re-raised by the <routine invocation>.

vii) If R is an SQL-invoked function, then:

1) If no <return statement> is executed before completion of the execution of the <SQL
routine body> of R, then an exception condition is raised: SQL routine exception —
function executed no return statement.

2) Otherwise, let RV be the returned value of the execution of the <SQL routine body>
of R.
NOTE 155 – ‘‘Returned value’’ is defined in Subclause 15.2, ‘‘<return statement>’’.

viii) If R is an SQL-invoked procedure, then for each SQL parameter of R that is an output
SQL parameter or both an input SQL parameter and an output SQL parameter, set the
value of CPVi to the value of Pi.

9) If R is an external routine, then:

a) The method and time of binding of P to the schema or SQL-server module that includes R is
implementation-defined.

b) If R specifies PARAMETER STYLE SQL, then

i) Case:

1) If R is an SQL-invoked function, then the effective SQL parameter list ESPL of R is
set as follows:

A) For i ranging from 1 (one) to PN, the i-th entry in ESPL is set to CPVi.

B) For i equal to PN+1, the i-th entry in ESPL is the result data item.

C) For i ranging from (PN+1)+1 to (PN+1)+N, the i-th entry in ESPL is the SQL
indicator argument corresponding to CPVi.

D) For i equal to (PN+1)+N+1, the i-th entry in ESPL is the SQL indicator argu-
ment corresponding to the result data item.

E) For i equal to (PN+1)+(N+1)+1, the i-th entry in ESPL is the exception data item.

F) For i equal to (PN+1)+(N+1)+2, the i-th entry in ESPL is the routine name text
item.

G) For i equal to (PN+1)+(N+1)+3, the i-th entry in ESPL is the specific name text
item.

H) For i equal to (PN+1)+(N+1)+4, the i-th entry in ESPL is the message text item.

I) If R is an array-returning external function, then for i equal to (PN+1)+(N+1)+5,
the i-th entry in ESPL is the save area data item and for i equal to (PN+1)+(N+1)+6,
the i-th entry in ESPL is the call type data item.

J) Set the value of the SQL indicator argument corresponding to the result data
item (that is, SQL argument value list entry (PN+1)+N+1) to 0 (zero).

Additional common elements 365

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

K) For i ranging from 1 (one) to PN, if CPVi is the null value, then set entry
(PN+1)+i (that is, the i-th SQL indicator argument corresponding to CPVi to
�1); otherwise, set entry (PN+1)+i (that is, the i-th SQL indicator argument
corresponding to CPVi) to 0 (zero).

L) If R is an array-returning external function, then set the value of the save data
item (that is, SQL argument value list entry (PN+1)+(N+1)+5) to 0 (zero) and
set the value of the call type data item (that is, SQL argument value list entry
(PN+1)+(N+1)+6) to �1.

2) Otherwise, the effective SQL parameter list ESPL of R is set as follows:

A) For i ranging from 1 (one) to PN, the i-th entry in ESPL is CPVi.

B) For i ranging from PN+1 to PN+N, the i-th entry in ESPL is the SQL indicator
argument corresponding to CPVi.

C) For i equal to (PN+N)+1, the i-th entry in ESPL is the exception data item.

D) For i equal to (PN+N)+2, the i-th entry in ESPL is the routine name text item.

E) For i equal to (PN+N)+3, the i-th entry in ESPL is the specific name text item.

F) For i equal to (PN+N)+4, the i-th entry in ESPL is the message text item.

G) For i ranging from 1 (one) to PN, if CPVi is the null value, then set entry PN+i
in ESPL (that is, the i-th SQL indicator argument corresponding to CPVi) to
�1; otherwise, set entry PN+i in ESPL (that is, the i-th SQL indicator argument
corresponding to CPVi) to 0 (zero).

ii) The exception data item is set to ’00000’.

iii) The routine name text item is set to the <schema qualified name> of the routine name
of R.

iv) The specific name text item is set to the <qualified identifier> of the specific name of R.

v) The message text item is set to a zero-length string.

c) If R specifies PARAMETER STYLE GENERAL, then the effective SQL parameter list ESPL
of R is set as follows:

i) For i ranging from 1 (one) to PN, if any CPVi is the null value, then an exception
condition is raised: external routine invocation exception — null value not allowed.

ii) For i ranging from 1 (one) to PN, the i-th entry in ESPL is set to CPVi.

d) If R specifies DETERMINISTIC and if different executions of P with identical SQL ar-
gument value lists do not produce identical results, then the results are implementation-
dependent.

e) Let EN be the number of entries in ESPL. Let ESPi be the i-th effective SQL parameter in
ESPL.

366 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

f) Case:

i) If R is an SQL-invoked method whose routine descriptor does not include a STATIC
indication and if CPV1 is the null value, then P is assumed to have been executed. If,
in addition, R is a mutator, then an exception condition is raised: data exception — null
instance used in mutator function.

ii) If R is a null-call function and if any of CPVi is the null value, then P is assumed to
have been executed.

iii) Otherwise:

1) If R is not an array-returning external function, then P is executed with a list of
EN parameters PDi whose parameter names are PNi and whose values are set as
follows:

A) Depending on whether the language of R specifies ADA, C, COBOL, FORTRAN,
MUMPS, PASCAL, or PLI, let the operative data type correspondences table
be Table 18, ‘‘Data type correspondences for Ada’’, Table 19, ‘‘Data type corre-
spondences for C’’, Table 20, ‘‘Data type correspondences for COBOL’’, Table 21,
‘‘Data type correspondences for Fortran’’, Table 22, ‘‘Data type correspondences
for MUMPS’’, Table 23, ‘‘Data type correspondences for Pascal’’, or Table 24,
‘‘Data type correspondences for PL/I’’, respectively. Refer to the two columns of
the operative data type correspondences table as the ‘‘SQL data type’’ column
and the ‘‘host data type’’ column.

B) For i varying from 1 (one) to EN, the <data type> DTi of PDi is the data type
listed in the host data type column of the row in the data type correspondences
table whose value in the SQL data type column corresponds to the data type of
ESPi.

C) The value of PDi is set to the value of ESPi.

2) If R is an array-returning external function, then:

A) Let AR be an array whose declared type is the result data type of R.

B) The General Rules of Subclause 10.13, ‘‘Execution of array-returning functions’’,
are applied with AR, ESPL, and P as ARRAY, EFFECTIVE SQL PARAMETER
LIST, and PROGRAM, respectively.

3) If, before the completion of any execution of P, an attempt is made to execute an
SQL-transaction statement or an SQL-connection statement, then an exception con-
dition is raised: external routine exception — prohibited SQL-statement attempted.

4) If containing SQL is not permitted and, before the completion of any execution of P,
an attempt is made to execute an <SQL procedure statement> that possibly contains
SQL, then an exception condition is raised: external routine exception — containing
SQL not permitted.

5) If reading SQL-data is not permitted and, before the completion of any execution
of P, an attempt is made to execute an <SQL procedure statement> that possibly
reads SQL-data, then an exception condition is raised: external routine exception —
reading SQL-data not permitted.

Additional common elements 367

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

6) If modifying SQL-data is not permitted and, before the completion of any execution
of P, an attempt is made to execute an SQL-data change statement or an SQL-
schema statement, then an exception condition is raised: external routine exception
— modifying SQL-data not permitted.

7) If the language specifies ADA (respectively C, COBOL, FORTRAN, MUMPS,
PASCAL, PLI) and P is not a standard-conforming Ada program (respectively C,
COBOL, Fortran, MUMPS, Pascal, PL/I program), then the results of any execution
of P are implementation-dependent.

g) After the completion of any execution of P:

i) It is implementation-defined whether:

1) For every open cursor CR that is associated with RSC and that is defined by a
<declare cursor> that is contained in the <SQL-client module definition> of P:

A) The following SQL-statement is effectively executed:

CLOSE CR

B) CR is destroyed.

2) Every instance of created local temporary tables and every instance of declared local
temporary tables that is associated with RSC is destroyed.

3) For every prepared statement PS prepared by P in the current SQL-transaction that
has not been deallocated by P:

A) Let SSN be the <SQL statement name> that identifies PS.

B) The following SQL-statement is effectively executed:

DEALLOCATE PREPARE SSN

ii) For i varying from 1 (one) to EN, the value of ESPi is set to the value of PDi.

Case:

1) If the exception data item has the value ’00000’, then the execution of P was success-
ful.

2) If the first two characters of the exception data item are equal to the SQLSTATE
condition code class value for external routine exception, then an exception condition
is raised: external routine exception, using a subclass code equal to the final three
characters of the value of the exception data item.

3) If the first two characters of the exception data item are equal to the SQLSTATE
condition code class value for warning and the third character of the exception data
item is ’H’, then a completion condition is raised: warning, using a subclass code
equal to the final three characters of the value of the exception data item.

4) Otherwise, an exception condition is raised: external routine invocation exception —
invalid SQLSTATE returned.

iii) If the exception data item is not ’00000’ and R specified PARAMETER STYLE SQL, then
the message text item is stored in the diagnostics area.

368 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

h) If R is an SQL-invoked function, then:

i) Case:

1) If R is an SQL-invoked method whose routine descriptor does not include a STATIC
indication and if CPV1 is the null value, then let RDI be the null value.

2) If R is a null-call function, R is not an array-returning external function, and if any
of CPVi is the null value, then let RDI be the null value.

3) If R is not a null-call function, R specifies PARAMETER STYLE SQL, and entry
(PN+1)+N+1 in ESPL (that is, SQL indicator argument N+1 corresponding to the
result data item) is negative, then let RDI be the null value.

4) Otherwise,

A) Case:

I) If R is not a null-call function, R is not an array-returning external function,
R specifies PARAMETER STYLE SQL, and entry (PN+1)+N+1 in ESPL (that
is, SQL indicator argument N+1 corresponding to the result data item) is not
negative, then let ERDI be the value of the result data item.

II) If R is not a null-call function, R is an array-returning external function, and
R specifies PARAMETER STYLE SQL, then let ERDI be AR.

III) If R is not a null-call function and R specifies PARAMETER STYLE
GENERAL, then let ERDI be the value returned from P.
NOTE 156 – The value returned from P is passed to the SQL-implementation in
an implementation-dependent manner. An argument value list entry is not used for
this purpose.

B) Case:

I) If the routine descriptor of R indicates that the return value is a locator,
then

Case:

1) If RT is a binary large object type, then let RDI be the binary large object
value corresponding to ERDI.

2) If RT is a character large object type, then let RDI be the character large
object value corresponding to ERDI.

3) If RT is array type, then let RDI be the array value corresponding to
ERDI.

4) If RT is a user-defined type, then let RDI be the user-defined type value
corresponding to ERDI.

II) Otherwise, if R specifies <result cast>, then let CRT be the <data type>
specified in <result case>; otherwise, let CRT be the <returns data type> of
R.

Additional common elements 369

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

Case:

1) If R specifies <result cast> and the routine descriptor of R indicates that
the <result cast> has a locator indication, then

Case:

a) If CRT is a binary large object type, then let RDI be the binary large
object value corresponding to ERDI.

b) If CRT is a character large object type, then let RDI be the character
large object value corresponding to ERDI.

c) If CRT is an array type, then let RDI be the array value correspond-
ing to ERDI.

d) If CRT is a user-defined type, then let RDI be the user-defined type
value corresponding to ERDI.

2) Otherwise, if CRT is a user-defined type, then:

a) Let TSF be the SQL-invoked routine identified by the specific name
of the to-sql function associated with the result of R.

b) Case:

i) If TSF is an SQL-invoked method, then the General Rules of this
Subclause are applied with a static SQL argument list whose
first element is the value returned by the invocation of:

CRT()

and whose second element is ERDI, and the subject routine TSF.

ii) Otherwise, the General Rules of this Subclause are applied with
a static SQL argument list that has a single SQL argument that
is ERDI, and the subject routine TSF.

c) Let RDI be the result of invocation of TSF.

ii) If R specified a <result cast>, then let RT be the <returns data type> of R and let RV be
the result of:

CAST (RDI AS RT)

Otherwise, let RV be RDI.

i) If R is an SQL-invoked procedure, then for each Pi, 1 (one) � i � PN, that is an output SQL
parameter or both an input SQL parameter and an output SQL parameter,

Case:

i) If R specifies PARAMETER STYLE SQL and entry (PN+1)+i in ESPL (that is, the i-th
SQL indicator argument corresponding to CPVi) is negative, then CPVi is set to the null
value.

370 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

ii) If R specifies PARAMETER STYLE SQL, and entry (PN+1)+i in ESPL (that is, the i-th
SQL indicator argument corresponding to CPVi) is not negative, and a value was not
assigned to the i-th entry in ESPL, then CPVi is set to an implementation-defined value
of type Ti.

iii) Otherwise:
NOTE 157 – In this case, either R specifies PARAMETER STYLE SQL and entry (PN+1)+i
in SQPL (that is, the i-th SQL indicator argument corresponding to CPVi) is not negative
and a value was assigned to the i-th entry in ESPL, or else R specifies PARAMETER STYLE
GENERAL.

1) Let EVi be the i-th entry in ESPL. Let Ti be the <data type> of Pi.

2) Case:

A) If Pi is a locator parameter, then

Case:

I) If Ti is a binary large object type, then CPVi is set to the binary large object
value corresponding to EVi.

II) If Ti is a character large object type, then CPVi is set to the character large
object value corresponding to EVi.

III) If Ti is an array type, then CPVi is set to the array value corresponding to
EVi.

IV) If Ti is a user-defined type, then CPVi is set to the user-defined type value
corresponding to EVi.

B) If Ti is a user-defined type, then:

I) Let TSFi be the SQL-invoked function identified by the specific name of the
to-sql function associated with Pi in the routine descriptor of R.

II) Case:

i) If TSF is an SQL-invoked method, then the General Rules of this
Subclause are applied with a static SQL argument list whose first el-
ement is the value returned by the invocation of:

Ti()

and whose second element is EVi, and the subject routine TSFi.

ii) Otherwise, the General Rules of this Subclause are applied with a static
SQL argument list that has a single SQL argument that is EVi, and the
subject routine TSFi.

III) CPVi is set to the result of an invocation of TSFi.

C) Otherwise, CPVi is set to EVi.

Additional common elements 371

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.4 <routine invocation>

10) Case:

a) If R is an SQL-invoked function, then:

i) Let ERDT be the effective returns data type of the <routine invocation>.

ii) Let the result of the <routine invocation> be the result of assigning RV to a target of
declared type ERDT according to the rules of Subclause 9.2, ‘‘Store assignment’’.

b) Otherwise, for each SQL parameter Pi of R that is an output SQL parameter or both an
input SQL parameter and an output SQL parameter, let TSi be the <target specification> of
the corresponding <SQL argument> Ai.

Case:

i) If TSi is a <host parameter specification>, then CPVi is assigned to TSi according to the
rules of Subclause 9.1, ‘‘Retrieval assignment’’.

ii) If TSi is the <SQL parameter name> of an SQL parameter of an SQL-invoked routine,
then CPVi is assigned to TSi according to the rules of Subclause 9.2, ‘‘Store assign-
ment’’.

11) If the subject routine is a procedure whose descriptor PR includes a maximum number of
dynamic result sets that is greater than zero, then a sequence of result sets RRS is returned to
INV.

a) Let MAX be maximum number of dynamic result sets included in PR.

b) Let OPN be the actual number of result set cursors declared in the body of the subject
routine that remain open when control is returned to INV.

c) Case:

i) If OPN is greater than MAX, then:

1) Let RTN be MAX.

2) A completion condition is raised: warning — attempt to return too many result sets.

ii) Otherwise, let RTN be OPN.

d) Let FRC be the ordered set of result set cursors that remain open when PR returns to INV.
Let FRCi, 1 � i � RTN, be the i-th cursor in FRC, let FRCNi be the <cursor name> that
identifies FRCi, and let RSi be the result set of FRCi.

e) Let NXTi, 1 � i � RTN, be the ordinal number of the row of RSi that would be retrieved if
the following SQL-statement were executed:

FETCH NEXT FROM FRCNi INTO . . .

f) Let TOTi, 1 � i � RTN, be the original cardinality of RSi when established by the opening
of FRCi.

g) Let RRS be the ordered set of returned result sets RRSi, 1 � i � RTN, comprising the rows
of RSi at ordinal positions ROWi;j, NXTi � j � TOTi.

h) A completion condition is raised: warning — dynamic result sets returned.

372 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.4 <routine invocation>

i) RSi, 1 � i � RTN, is returned to INV.

12) Prepare CSC to become the current SQL-session context:

a) Set the value of the current constraint mode for each integrity constraint in CSC to the
value of the current constraint mode for each integrity constraint in RSC.

b) Set the value of the current transaction access mode in CSC to the value of the current
transaction access mode in RSC.

c) Set the value of the current transaction isolation level in CSC to the value of the current
transaction isolation level in RSC.

d) Set the value of the current transaction diagnostics area limit in CSC to the value of the
current transaction diagnostics area limit in RSC.

e) Replace the identities of all instances of global temporary tables in CSC with the identities
of the instances of global temporary tables in RSC.

13) CSC becomes the current SQL-session context.

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not specify a
<generalized expression>.

2) Without Feature S201, ‘‘SQL routines on arrays’’, the declared type of an <SQL argument> shall
not be an array type.

Additional common elements 373

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.5 <privileges>

10.5 <privileges>

Function
Specify privileges.

Format

<privileges> ::=
<object privileges> ON <object name>

<object name> ::=
[TABLE] <table name>

| DOMAIN <domain name>
| COLLATION <collation name>
| CHARACTER SET <character set name>
| TRANSLATION <translation name>
| TYPE <user-defined type name>
| <specific routine designator>

<object privileges> ::=
ALL PRIVILEGES

| <action> [{ <comma> <action> }...]

<action> ::=
SELECT

| SELECT <left paren> <privilege column list> <right paren>
| SELECT <left paren> <privilege method list> <right paren>
| DELETE
| INSERT [<left paren> <privilege column list> <right paren>]
| UPDATE [<left paren> <privilege column list> <right paren>]
| REFERENCES [<left paren> <privilege column list> <right paren>]
| USAGE
| TRIGGER
| UNDER
| EXECUTE

<privilege method list> ::=
<specific routine designator> [{ <comma> <specific routine designator> }...]

<privilege column list> ::= <column name list>

<grantee> ::=
PUBLIC

| <authorization identifier>

<grantor> ::=
CURRENT_USER

| CURRENT_ROLE

Syntax Rules

1) ALL PRIVILEGES is equivalent to the specification of all of the privileges on <object name> for
which the <grantor> has grantable privilege descriptors.

374 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.5 <privileges>

2) If the <object name> of the <grant statement> or <revoke statement> specifying <privileges>
specifies <table name>, then let T be the table identified by that <table name>. T shall not be a
declared local temporary table.

3) If <object name> specifies a <domain name>, <collation name>, <character set name>, <trans-
lation name>, or <user-defined type name>, then <privileges> shall specify USAGE. Otherwise,
USAGE shall not be specified.

4) If <object name> specifies a <table name> that identifies a base table, then <privileges> may
specify TRIGGER; otherwise, TRIGGER shall not be specified.

5) If <object name> specifies a <user-defined type name> that identifies a structured type or
specifies a <table name>, then <privileges> may specify UNDER; otherwise, UNDER shall not
be specified.

6) If T is a temporary table, then <privileges> shall specify ALL PRIVILEGES.

7) If the object identified by <object name> of the <grant statement> or <revoke statement> is an
SQL-invoked routine, then <privileges> shall specify EXECUTE; otherwise, EXECUTE shall not
be specified.

8) The <object privileges> specify one or more privileges on the object identified by <object name>.

9) Each <column name> in a <privilege column list> shall identify a column of T.

10) If <privilege method list> is specified, then <object name> shall specify a <table name> that
identifies a table of a structured type TY and each <specific routine designator> in the <privilege
method list> shall identify a method of TY.

11) UPDATE (<privilege column list>) is equivalent to the specification of UPDATE (<column
name>) for each <column name> in <privilege column list>. INSERT (<privilege column list>)
is equivalent to the specification of INSERT (<column name>) for each <column name> in <priv-
ilege column list>. REFERENCES (<privilege column list>) is equivalent to the specification of
REFERENCES (<column name>) for each <column name> in <privilege column list>. SELECT
(<privilege column list>) is equivalent to the specification of SELECT (<column name>) for
each <column name> in <privilege column list>. SELECT (<privilege method list>) is equiv-
alent to the specification of SELECT (<specific routine designator>) for each <specific routine
designator> in <privilege method list>.

Access Rules

None.

General Rules

1) Case:

a) If a <grantor> of CURRENT_USER is specified and the current user identifier is the null
value, then an exception condition is raised: invalid grantor.

b) If a <grantor> of CURRENT_ROLE is specified and the current role name is the null value,
then an exception condition is raised: invalid grantor.

Additional common elements 375

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.5 <privileges>

2) A <grantee> of PUBLIC denotes at all times a list of <grantee>s containing all of the <autho-
rization identifier>s in the SQL-environment.

3) The set of applicable roles for an <authorization identifier> consists of all roles defined by the
role authorization descriptors whose grantee is that <authorization identifier> or PUBLIC,
together with all other roles they contain.

4) The set of user privileges for a <user identifier> consists of all privileges defined by the privilege
descriptors whose grantee is either that <user identifier> or PUBLIC.

5) The set of role privileges for a <role name> consists of all privileges defined by the privilege
descriptors whose grantee is either that <role name>, PUBLIC, or one of the applicable roles of
that <role name>.

6) The set of applicable privileges for an <authorization identifier> is defined to be:

a) If that <authorization identifier> is a <user identifier>, then the set of user privileges for
that <authorization identifier>.

b) If that <authorization identifier> is a <role name>, then the set of role privileges for that
<authorization identifier>.

7) The phrase enabled roles refers to:

a) If the value of the current role name of the current SQL-session is a null value, then the
empty set.

b) Otherwise, the set of roles defined by the current role name of the current SQL-session
together with its applicable roles.

8) The phrase enabled authorization identifiers refers to the set of <authorization identifier>s
defined by the enabled roles together with the current user identifier of the current SQL-session,
if its value is not a null value.

9) The phrase enabled privileges refers to:

a) If the value of the current role name of the current SQL-session is a null value, then the
empty set.

b) Otherwise, the set of privileges defined by the role privileges of the current role name of the
current SQL-session.

10) The phrase current user privileges refers to:

a) If the value of the current user identifier of the current SQL-session is a null value, then the
empty set.

b) Otherwise, the set of privileges defined by the user privileges of the current user identifier
of the current SQL-session.

11) The phrase current privileges refers to the set of privileges defined by the current user privileges
together with those defined by the enabled privileges.

12) A role A identified by <role name> is said to contain the set of roles identified by role authoriza-
tion descriptors as having been granted to A, together with all other roles that are contained by
roles in the set.

376 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.5 <privileges>

13) SELECT (<column name>) specifies the SELECT privilege on the indicated column and implies
one or more column privilege descriptors.

14) SELECT (<specific routine designator>) specifies the SELECT privilege on the indicated method
for the table identified by <object name> and implies one or more table/method privilege de-
scriptors.

15) SELECT with neither <privilege column list> nor <privilege method list> specifies the SELECT
privilege on all columns of T including any columns subsequently added to T and implies a
table privilege descriptor and one or more column privilege descriptors. If T is a table of a
structured type TY, then SELECT also specifies the SELECT privilege on all methods of the
type TY, including any methods subsequently added to the type TY, and implies one or more
table/method privilege descriptors.

16) UPDATE (<column name>) specifies the UPDATE privilege on the indicated column and im-
plies one or more column privilege descriptors. If the <privilege column list> is omitted, then
UPDATE specifies the UPDATE privilege on all columns of T, including any column subse-
quently added to T and implies a table privilege descriptor and one or more column privilege
descriptors.

17) INSERT (<column name>) specifies the INSERT privilege on the indicated column and im-
plies one or more column privilege descriptors. If the <privilege column list> is omitted, then
INSERT specifies the INSERT privilege on all columns of T, including any column subsequently
added to T and implies a table privilege descriptor and one or more column privilege descriptors.

18) REFERENCES (<column name>) specifies the REFERENCES privilege on the indicated column
and implies one or more column privilege descriptors. If the <privilege column list> is omitted,
then REFERENCES specifies the REFERENCES privilege on all columns of T, including any
column subsequently added to T and implies a table privilege descriptor and one or more column
privilege descriptors.

19) B has the WITH ADMIN OPTION on a role if a role authorization descriptor identifies the
role as granted to B WITH ADMIN OPTION or a role authorization descriptor identifies it as
granted WITH ADMIN OPTION to another applicable role for B.

Conformance Rules

1) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not contain a
<grantor>.

2) Without Feature T211, ‘‘Basic trigger capability’’, an <action> shall not specify TRIGGER.

3) Without Feature S081, ‘‘Subtables’’, an <action> shall not specify UNDER on an <object name>
that specifies a <table name>.

4) Without Feature S023, ‘‘Basic structured types’’, an <action> shall not specify UNDER on an
<object name> that specifies a <user-defined type name> that identifies a structured type.

5) Without Feature S024, ‘‘Enhanced structured types’’, an <action> shall not specify USAGE on
an <object name> that specifies a <user-defined type name> that identifies a structured type.

6) Without Feature T281, ‘‘SELECT privilege with column granularity’’, an <action> that specifies
SELECT shall not contain a <privilege column list>.

Additional common elements 377

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.5 <privileges>

7) Without Feature F731, ‘‘INSERT column privileges’’, an <action> that specifies INSERT shall
not contain a <privilege column list>.

8) Without Feature F691, ‘‘Collation and translation’’, in conforming SQL language, an <object
name> shall not specify COLLATION or TRANSLATION.

9) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’, in
conforming SQL language, an <object name> shall not specify CHARACTER SET.

10) Without Feature F251, ‘‘Domain support’’, in conforming SQL language, an <object name> shall
not specify DOMAIN.

11) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not contain
a <privilege method list>.

378 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.6 <character set specification>

10.6 <character set specification>

Function
Identify a character set.

Format

<character set specification> ::=
<standard character set name>

| <implementation-defined character set name>
| <user-defined character set name>

<standard character set name> ::= <character set name>

<implementation-defined character set name> ::= <character set name>

<user-defined character set name> ::= <character set name>

Syntax Rules

1) The <standard character set name>s and <implementation-defined character set name>s that
are supported are implementation-defined.

2) A character set identified by a <standard character name>, or by an <implementation-defined
character set name> has associated with it a privilege descriptor that was effectively defined by
the <grant statement>

GRANT USAGE ON CHARACTER SET CS TO PUBLIC

where CS is the <character set name> contained in the <character set specification>. The
grantor of the privilege descriptor is set to the special grantor value ‘‘_SYSTEM’’.

3) The <standard character set name>s shall include: SQL_CHARACTER, GRAPHIC_IRV, ASCII_
GRAPHIC, LATIN1, ISO8BIT, ASCII_FULL, UNICODE, and ISO10646, with definitions as
specified in Subclause 4.2.4, ‘‘Named character sets’’.

4) The <implementation-defined character set name>s shall include SQL_TEXT and SQL_
IDENTIFIER.

5) Let C be the <character set name> contained in the <character set specification>. If the <char-
acter set specification> is not contained in a <schema definition>, then the schema identified by
the explicit or implicit qualifier of the <character set name> shall include the descriptor of C. If
the <character set specification> is contained in a <schema definition> S, then S shall include a
<schema element> that creates the descriptor of C.

6) If a <character set specification> is not contained in a <schema definition>, then the <character
set name> immediately contained in the <character set definition> shall contain an explicit
<schema name> that is not equivalent to INFORMATION_SCHEMA.

Additional common elements 379

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.6 <character set specification>

Access Rules

1) Case:

a) If <character set specification> is contained in an <SQL schema statement>, then the
applicable privileges of the <authorization identifier> that owns the containing schema shall
include USAGE on C.

b) Otherwise, the current privileges shall include USAGE on C.
NOTE 158 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

General Rules

1) A <character set specification> identifies a character set. Let the identified character set be CS.

2) A <standard character set name> specifies the name of a character set that is defined by a
national or international standard. The character repertoire of CS, implied by the <standard
character set name>, are defined by the standard defining the character set identified by that
<standard character set name>. The default collating sequence of the character set is defined
by the order of the characters in the standard and has the PAD SPACE characteristic.

3) An <implementation-defined character set name> specifies the name of a character set that
is implementation-defined. The character repertoire of CS, implied by the <implementation-
defined character set name>, are implementation-defined. The default collating sequence of the
character set and whether the collating sequence has the NO PAD characteristic or the PAD
SPACE characteristic is implementation-defined.

4) A <user-defined character set name> identifies a character set whose descriptor is included in
some schema whose <schema name> is not equivalent to INFORMATION_SCHEMA.
NOTE 159 – The default collating sequence of the character set is defined as in Subclause 11.30,
‘‘<character set definition>’’.

5) There is a character set descriptor for every character set that can be specified by a <character
set specification>.

Conformance Rules

1) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’,
conforming SQL language shall not contain a <character set specification>.

380 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.7 <specific routine designator>

10.7 <specific routine designator>

Function
Specify an SQL-invoked routine.

Format

<specific routine designator> ::=
SPECIFIC <routine type> <specific name>

| <routine type> <member name> [FOR user-defined type>]

<routine type> ::=
ROUTINE

| FUNCTION
| PROCEDURE
| [INSTANCE | STATIC] METHOD

<member name> ::= <schema qualified routine name> [<data type list>]

<data type list> ::=
<left paren> [<data type> [{ <comma> <data type> }...]] <right paren>

Syntax Rules

1) If a <specific name> SN is specified, then the <specific routine designator> shall identify an
SQL-invoked routine whose <specific name> is SN.

2) If <routine type> specifies METHOD and neither INSTANCE nor STATIC is specified, then
INSTANCE is implicit.

3) If a <member name> MN is specified, then:

a) If <user-defined type> is specified, then <routine type> shall specify METHOD. If METHOD
is specified, then <user-defined type> shall be specified.

b) Let RN be the <schema qualified routine name> of MN and let SCN be the <schema name>
of MN.

c) Case:

i) If MN contains a <data type list>, then:

1) If <routine type> specifies FUNCTION, then there shall be exactly one SQL-invoked
function that is not an SQL-invoked method in the schema identified by SN whose
<schema qualified routine name> is RN such that for all i the declared type of its
i-th SQL parameter is identical to the i-th <data type> in the <data type list> of
MN. The <specific routine designator> identifies that SQL-invoked function.

2) If <routine type> specifies PROCEDURE, then there shall be exactly one SQL-
invoked procedure in the schema identified by SN whose <schema qualified routine
name> is RN such that for all i the declared type of its i-th SQL parameter is
identical to the i-th <data type> in the <data type list> of MN. The <specific routine
designator> identifies that SQL-invoked function.

Additional common elements 381

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.7 <specific routine designator>

3) If <routine type> specifies METHOD, then

Case:

A) If STATIC is specified, then there shall be exactly one static SQL-invoked method
of the type identified by <user-defined type> such that for all i, the declared
data type of its i-th SQL parameter is identical to the i-th <data type> in the
<data type list> of MN. The <specific routine designator> identifies that static
SQL-invoked method.

B) Otherwise, there shall be exactly one instance SQL-invoked method of the type
identified by <user-defined type> such that for all i, the declared data type of
its i-th SQL parameter in the unaugmented <SQL parameter declaration list>
is identical to the i-th <data type> in the <data type list> of MN. The <specific
routine designator> identifies that SQL-invoked method.

4) If <routine type> specifies ROUTINE, then there shall be exactly one SQL-invoked
routine in the schema identified by SN whose <schema qualified routine name> is
RN such that for all i the declared type of its i-th SQL parameter is identical to the
i-th <data type> in the <data type list> of MN. The <specific routine designator>
identifies that SQL-invoked routine.

ii) Otherwise:

1) If <routine type> specifies FUNCTION, then there shall be exactly one SQL-invoked
function in the schema identified by SN whose <schema qualified routine name> is
RN. The <specific routine designator> identifies that SQL-invoked function.

2) If <routine type> specifies PROCEDURE, then there shall be exactly one SQL-
invoked procedure in the schema identified by SN whose <schema qualified routine
name> is RN. The <specific routine designator> identifies that SQL-invoked proce-
dure.

3) If <routine type> specifies METHOD, then

Case:

A) If STATIC is specified, then there shall be exactly one static SQL-invoked method
of the user-defined type identified by <user-defined type>. The <specific routine
designator> identifies that static SQL-invoked method.

B) Otherwise, there shall be exactly one instance SQL-invoked method of the user-
defined type identified by <user-defined type> that is not a static SQL-invoked
method. The <specific routine designator> identifies that SQL-invoked method.

4) If <routine type> specifies ROUTINE, then there shall be exactly one SQL-invoked
routine in the schema identified by SN whose <schema qualified routine name> is
RN. The <specific routine designator> identifies that SQL-invoked routine.

4) If FUNCTION is specified, then the SQL-invoked routine that is identified shall be an SQL-
invoked function that is not an SQL-invoked method. If PROCEDURE is specified, then the
SQL-invoked routine that is identified shall be an SQL-invoked procedure. If STATIC METHOD
is specified, then the SQL-invoked routine that is identified shall be a static SQL-invoked
method. If INSTANCE METHOD is specified or implicit, then the SQL-invoked routine shall be
an instance SQL-invoked method. If ROUTINE is specified, then the SQL-invoked routine that
is identified is either an SQL-invoked function or an SQL-invoked procedure.

382 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.7 <specific routine designator>

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not contain
any <specific routine designator> that specifies METHOD.

Additional common elements 383

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.8 <collate clause>

10.8 <collate clause>

Function
Specify a default collating sequence.

Format

<collate clause> ::= COLLATE <collation name>

Syntax Rules

1) Let C be the <collation name> contained in the <collate clause>. If the <collate clause> is
not contained in a <schema definition>, then the schema identified by the explicit or implicit
qualifier of the <collation name> shall include the descriptor of C. If the <collate clause> is
contained in a <schema definition> S, then the schema identified by the explicit or implicit
qualifier of the <collation name> shall include the descriptor of C or S shall contain a <schema
element> that creates the descriptor of C.

Access Rules

1) Case:

a) If <collate clause> is contained in an <SQL schema statement>, then the applicable priv-
ileges of the <authorization identifier> that owns the containing schema shall include
USAGE on C.

b) Otherwise, the current privileges shall include USAGE on C.
NOTE 160 – ‘‘applicable privileges’’ and ‘‘current privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

General Rules

None.

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collate clause>.

384 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.9 <constraint name definition> and <constraint characteristics>

10.9 <constraint name definition> and <constraint
characteristics>

Function
Specify the name of a constraint and its characteristics.

Format

<constraint name definition> ::=
CONSTRAINT <constraint name>

<constraint characteristics> ::=
<constraint check time> [[NOT] DEFERRABLE]

| [NOT] DEFERRABLE [<constraint check time>]

<constraint check time> ::= INITIALLY DEFERRED | INITIALLY IMMEDIATE

Syntax Rules

1) If a <constraint name definition> is contained in a <schema definition>, and if the <constraint
name> contains a <schema name>, then that <schema name> shall be equivalent to the speci-
fied or implicit <schema name> of the containing <schema definition>.

2) The <qualified identifier> of <constraint name> shall not be equivalent to the <qualified identi-
fier> of the <constraint name> of any other constraint defined in the same schema.

3) If <constraint check time> is not specified, then INITIALLY IMMEDIATE is implicit.

4) Case:

a) If INITIALLY DEFERRED is specified, then:

i) NOT DEFERRABLE shall not be specified.

ii) If DEFERRABLE is not specified, then DEFERRABLE is implicit.

b) If INITIALLY IMMEDIATE is specified or implicit and neither DEFERRABLE nor NOT
DEFERRABLE is specified, then NOT DEFERRABLE is implicit.

Access Rules

None.

General Rules

1) A <constraint name> identifies a constraint. Let the identified constraint be C.

2) If NOT DEFERRABLE is specified, then C is not deferrable; otherwise it is deferrable.

3) If <constraint check time> is INITIALLY DEFERRED, then the initial constraint mode for C is
deferred; otherwise, the initial constraint mode for C is immediate.

Additional common elements 385

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.9 <constraint name definition> and <constraint characteristics>

4) If, on completion of any SQL-statement, the constraint mode of any constraint is immediate,
then that constraint is effectively checked.
NOTE 161 – This includes the cases where SQL-statement is a <set constraints mode statement>,
a <commit statement>, or the statement that causes a constraint with a constraint mode of initially
immediate to be created.

5) When a constraint is effectively checked, if the constraint is not satisfied, then an exception
condition is raised: integrity constraint violation. If this exception condition is raised as a result
of executing a <commit statement>, then SQLSTATE is not set to integrity constraint violation,
but is set to transaction rollback — integrity constraint violation (see the General Rules of
Subclause 16.6, ‘‘<commit statement>’’).

Conformance Rules

1) Without Feature F721, ‘‘Deferrable constraints’’, conforming SQL language shall contain no
explicit <constraint characteristics>.
NOTE 162 – This means that INITIALLY IMMEDIATE NOT DEFERRABLE is implicit.

2) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall contain no
<constraint name definition>.

386 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.10 Execution of BEFORE triggers

10.10 Execution of BEFORE triggers

Function
Defines the execution of BEFORE triggers.

Syntax Rules

1) Let SSC be the SET OF STATE CHANGES specified in an application of this Subclause.

2) Let BT be the set of BEFORE triggers that are activated by some state change in SSC.
NOTE 163 – Activation of triggers is defined in Subclause 4.35, ‘‘Triggers’’.

3) Let NT be the number of triggers in BT and let TRk be the k-th such trigger, ordered according
to their order of execution. Let SCk be the state change in SSC that activated TRk.
NOTE 164 – Ordering of triggers is defined in Subclause 4.35, ‘‘Triggers’’.

Access Rules

1) Let TRN be the trigger name of a trigger TR. Let S be the schema identified by the <schema
name> explicitly or implicitly contained in TRN. The current authorization identifier during the
execution of the <triggered SQL statement> of TR is the <authorization identifier> of the owner
of S.

General Rules

1) For k ranging from 1 (one) to NT, apply the General Rules of Subclause 10.12, ‘‘Execution of
triggers’’, with TRk as TRIGGER and SCk as STATE CHANGE, respectively.

Conformance Rules

None.

Additional common elements 387

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.11 Execution of AFTER triggers

10.11 Execution of AFTER triggers

Function
Defines the execution of AFTER triggers.

Syntax Rules

1) Let SSC be the SET OF STATE CHANGES specified in an application of this Subclause.

2) Let AT be the set of AFTER triggers that are activated by some state change in SSC.
NOTE 165 – Activation of triggers is defined in Subclause 4.35, ‘‘Triggers’’.

3) Let NT be the number of triggers in AT and let TRk be the k-th such trigger, ordered according
to their order of execution. Let SCk be the state change in SSC that activated TRk.
NOTE 166 – Ordering of triggers is defined in Subclause 4.35, ‘‘Triggers’’.

Access Rules

1) Let TRN be the trigger name of a trigger TR. Let S be the schema identified by the <schema
name> explicitly or implicitly contained in TRN. The current authorization identifier during the
execution of the <triggered SQL statement> of TR is the <authorization identifier> of the owner
of S.

General Rules

1) For k ranging from 1 (one) to NT, apply the General Rules of Subclause 10.12, ‘‘Execution of
triggers’’, with TRk as TRIGGER and SCk as STATE CHANGE, respectively.

Conformance Rules

None.

388 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.12 Execution of triggers

10.12 Execution of triggers

Function
Defines the execution of triggers.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let TR and SC be respectively a TRIGGER and a STATE CHANGE in an application of this
Subclause.

2) Trigger TR is executed as follows.

Case:

a) If the triggered action TA included in the trigger descriptor of TR specifies FOR EACH
ROW, then, for each row R in SC for which TR is not considered as executed, TA is invoked
and TR is considered as executed for R.

b) If TR is not considered as executed for SC, then TA is invoked once and TR is considered as
executed for SC.

3) When TA of TR is invoked,

Case:

a) If TA contains a <search condition> and the <search condition> is satisfied, then the <trig-
gered SQL statement> of TA is executed.

b) If TA does not contain a <search condition>, then the <triggered SQL statement> of TA is
executed.

4) When the <triggered SQL statement> TSS of TA is executed:

a) The <SQL procedure statement>s simply contained in TSS are effectively executed in the
order in which they are specified in TSS.

b) If the execution of TSS is not successful, then an exception condition is raised: trigger action
exception. The exception information associated with TSS is entered into the diagnostics
area in a location other than the location corresponding to condition number 1 (one).

Conformance Rules

None.

Additional common elements 389

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.13 Execution of array-returning functions

10.13 Execution of array-returning functions

Function
Defines the execution of an external function that returns an array value.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let AR, ESPL, and P be the ARRAY, EFFECTIVE SQL PARAMETER LIST, and PROGRAM
specified in an application of this Subclause.

2) Let ARC be the cardinality of AR.

3) Let EN be the number of entries in ESPL.

4) Let ESPi, 1 (one) � i � EN, be the i-th parameter in ESPL.

5) Let E be 0 (zero).

6) If the call type data item has a value of �1 (indicating ‘‘open call’’), then P is executed with a
list of EN parameters Pi whose parameter names are PNi and whose values are set as follows:

a) Depending on whether the language of R specifies ADA, C, COBOL, FORTRAN, MUMPS,
PASCAL, or PLI, let the operative data type correspondences table be Table 18, ‘‘Data type
correspondences for Ada’’, Table 19, ‘‘Data type correspondences for C’’, Table 20, ‘‘Data type
correspondences for COBOL’’, Table 21, ‘‘Data type correspondences for Fortran’’, Table 22,
‘‘Data type correspondences for MUMPS’’, Table 23, ‘‘Data type correspondences for Pascal’’,
or Table 24, ‘‘Data type correspondences for PL/I’’, respectively. Refer to the two columns of
the operative data type correspondences table as the ‘‘SQL data type’’ column and the ‘‘host
data type’’ column.

b) For i varying from 1 (one) to EN, the <data type> DTi of PDi is the data type listed in the
host data type column of the row in the data type correspondences table whose value in the
SQL data type column corresponds to the data type of ESPi.

c) The value of PDi is set to the value of ESPi.

7) Case:

a) If the value of the exception data item is ’00000’ (corresponding to the completion condition
successful completion) or the first 2 characters are ’01’ (corresponding to the completion con-
dition warning with any subcondition), then set the call type data item to 0 (zero) (indicating
fetch call).

390 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.13 Execution of array-returning functions

b) If the exception data item is ’02000’ (corresponding to the completion condition no data):

i) If entry (PN+1)+N+1 in ESPL (that is, SQL indicator argument N+1, corresponding to
the result data item) has the value �1, then set AR to the null value.

ii) Set the call type data item to 1 (one) (indicating close call).

c) Otherwise, set the call type data item to 1 (one) (indicating close call).

8) The following steps are applied as long as the call type data item has a value 0 (zero) (corre-
sponding to fetch call):

a) P is executed with a list of EN parameters Pi whose parameter names are PNi and whose
values are set as follows:

i) Depending on whether the language of R specifies ADA, C, COBOL, FORTRAN,
MUMPS, PASCAL, or PLI, let the operative data type correspondences table be Table 18,
‘‘Data type correspondences for Ada’’, Table 19, ‘‘Data type correspondences for C’’,
Table 20, ‘‘Data type correspondences for COBOL’’, Table 21, ‘‘Data type correspondences
for Fortran’’, Table 22, ‘‘Data type correspondences for MUMPS’’, Table 23, ‘‘Data type
correspondences for Pascal’’, or Table 24, ‘‘Data type correspondences for PL/I’’, respec-
tively. Refer to the two columns of the operative data type correspondences table as the
‘‘SQL data type’’ column and the ‘‘host data type’’ column.

ii) For i varying from 1 (one) to EN, the <data type> DTi of PDi is the data type listed in
the host data type column of the row in the data type correspondences table whose value
in the SQL data type column corresponds to the data type of ESPi.

iii) The value of PDi is set to the value of ESPi.

b) Case:

i) If the exception data item is ’00000’ (corresponding to completion condition successful
completion) or the first 2 characters are ’01’ (corresponding to completion condition
warning with any subcondition), then:

1) Increment E by 1 (one).

2) If E > ARC, then an exception condition is raised: data exception — array element
error.

3) If the call type data item is 0 (zero), then

Case:

A) If entry (PN+1)+N+1 in ESPL (that is, SQL indicator argument N+1 correspond-
ing to the result data item) is negative, then let the E-th element of AR be the
null value.

B) Otherwise, let the E-th element of AR be the value of the result data item.

ii) If the exception data item is ’02000’ (corresponding to completion condition no data),
then:

1) If the value of E is 0 (zero), then set AR to an empty array.

2) Set the call type data item to 1 (one) (indicating close call).

Additional common elements 391

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.13 Execution of array-returning functions

3) Otherwise, set the value of the call type data item to 1 (one) (indicating close call).

9) If the call type data item has a value of 1 (one) (indicating close call), then P is executed with a
list of EN parameters Pi whose parameter names are PNi and whose values are set as follows:

a) Depending on whether the language of R specifies ADA, C, COBOL, FORTRAN, MUMPS,
PASCAL, or PLI, let the operative data type correspondences table be Table 18, ‘‘Data type
correspondences for Ada’’, Table 19, ‘‘Data type correspondences for C’’, Table 20, ‘‘Data type
correspondences for COBOL’’, Table 21, ‘‘Data type correspondences for Fortran’’, Table 22,
‘‘Data type correspondences for MUMPS’’, Table 23, ‘‘Data type correspondences for Pascal’’,
or Table 24, ‘‘Data type correspondences for PL/I’’, respectively. Refer to the two columns of
the operative data type correspondences table as the ‘‘SQL data type’’ column and the ‘‘host
data type’’ column.

b) For i varying from 1 (one) to EN, the <data type> DTi of PDi is the data type listed in the
host data type column of the row in the data type correspondences table whose value in the
SQL data type column corresponds to the data type of ESPi.

c) The value of PDi is set to the value of ESPi.

Conformance Rules

None.

392 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.14 Data type identity

10.14 Data type identity

Function
Determine whether two data types are compatible and have the same characteristics.

Syntax Rules

1) Let PM and P be the two data types specified in an application of this Subclause.

2) If PM is a character type, then P shall be a character type and the length of PM shall be the
length of P, and the character set of PM shall be the character set of P.

3) If PM is exact numeric, then P shall be exact numeric and the precision and scale of PM shall
be the precision and scale P.

4) If PM is approximate numeric, then P shall be approximate numeric and the precision of PM
shall be the precision of P.

5) If PM is binary large object, then P shall be binary large object and the maximum length of PM
shall be the maximum length of P.

6) If PM is bit string, then P shall be bit string and the length of PM shall be the length of P.

7) If PM is datetime data type, then P shall be datetime data type, P shall be with or without
timezone according as to whether PM is with or without timezone, and the <time fractional
seconds precision> of PM shall be the <time fractional seconds precision> of P.

8) If PM is INTERVAL, then P shall be INTERVAL and the <interval qualifier> of PM shall be the
<interval qualifier> of P.

9) If PM is a collection type, then P shall be a collection type and the element type and the maxi-
mum cardinality (if any) of PM shall be the element type and the maximum cardinality (if any)
of P.

10) If PM is a row type, then:

a) P shall be a row type.

b) The degree of PM shall be the degree of P.

c) Let N be the degree of PM.

d) The data type DTFPMi, 1 (one) � i � N, of field FPMi in PM and the data type DTFPi of
field FPi in P shall be compatible.

e) For i varying from 1 to N, the Syntax Rules of this Subclause are applied with DTFPMi and
DTFPi the two data types.

11) If PM is a user-defined type, then P shall be a compatible user-defined type.

Access Rules

None.

Additional common elements 393

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.14 Data type identity

General Rules

None.

Conformance Rules

None.

394 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.15 Determination of a from-sql function

10.15 Determination of a from-sql function

Function
Determine the from-sql function of a user-defined type given the name of a user-defined type and
the name of the group.

Syntax Rules

1) Let UDT and GN be a TYPE and a GROUP specified in an application of this Subclause.

2) Let SSUDT be the set of supertypes of UDT.

3) Let SUDT be the data type, if any, in SSUDT such that the transform descriptor included in the
data type descriptor of SUDT includes a group descriptor GD that includes a group name that
is equivalent to GN.

4) The applicable from-sql function is the SQL-invoked function identified by the specific name of
the from-sql function, if any, in GD.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Additional common elements 395

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.16 Determination of a from-sql function for an overriding method

10.16 Determination of a from-sql function for an overriding
method

Function
Determine the from-sql function of a user-defined type given the name of an overriding method and
the ordinal position of an SQL parameter.

Syntax Rules

1) Let R and N be a ROUTINE and a POSITION specified in an application of this Subclause.

2) Let OM be original method of R.

3) The applicable from-sql function is the from-sql function associated with the N-th SQL parame-
ter of OM, if any.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

396 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
10.17 Determination of a to-sql function

10.17 Determination of a to-sql function

Function
Determine the to-sql function of a user-defined type given the name of a user-defined type and the
name of a group.

Syntax Rules

1) Let UDT and GN be a TYPE and a GROUP specified in an application of this Subclause.

2) Let SSUDT be the set of supertypes of UDT.

3) Let SUDT be the data type, if any, in SSUDT such that the transform descriptor included in the
data type descriptor of SUDT includes a group descriptor GD that includes a group name that
is equivalent to GN.

4) The applicable to-sql function is the SQL-invoked function identified by the specific name of the
to-sql function, if any, in GD.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

Additional common elements 397

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
10.18 Determination of a to-sql function for an overriding method

10.18 Determination of a to-sql function for an overriding
method

Function
Determine the to-sql function of a user-defined type given the name of an overriding method.

Syntax Rules

1) Let R be a ROUTINE specified in an application of this Subclause.

2) Let OM be the original method of R

3) The applicable to-sql function is the SQL-invoked function associated with the result of OM, if
any.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

398 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

11 Schema definition and manipulation

11.1 <schema definition>

Function
Define a schema.

Format

<schema definition> ::=
CREATE SCHEMA <schema name clause>
[<schema character set or path>]
[<schema element>...]

<schema character set or path> ::=
<schema character set specification>

| <schema path specification>
| <schema character set specification> <schema path specification>
| <schema path specification> <schema character set specification>

<schema name clause> ::=
<schema name>

| AUTHORIZATION <schema authorization identifier>
| <schema name> AUTHORIZATION <schema authorization identifier>

<schema authorization identifier> ::=
<authorization identifier>

<schema character set specification> ::=
DEFAULT CHARACTER SET <character set specification>

<schema path specification> ::=
<path specification>

<schema element> ::=
<table definition>

| <view definition>
| <domain definition>
| <character set definition>
| <collation definition>
| <translation definition>
| <assertion definition>
| <trigger definition>
| <user-defined type definition>
| <schema routine>
| <grant statement>
| <role definition>
| <grant role statement>

Schema definition and manipulation 399

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.1 <schema definition>

Syntax Rules

1) If <schema name> is not specified, then a <schema name> equal to <schema authorization
identifier> is implicit.

2) If AUTHORIZATION <schema authorization identifier> is not specified, then

Case:

a) If the <schema definition> is contained in an SQL-client module that has a <module au-
thorization identifier> specified, then an <authorization identifier> equal to that <module
authorization identifier> is implicit for the <schema definition>.

b) Otherwise, an <authorization identifier> equal to the SQL-session user identifier is implicit.

3) The <unqualified schema name> of the explicit or implicit <schema name> shall not be equiv-
alent to the <unqualified schema name> of the <schema name> of any other schema in the
catalog identified by the <catalog name> of <schema name>.

4) If a <schema definition> appears in an <externally-invoked procedure> in an SQL-client module,
then the effective <schema authorization identifier> and <schema name> during processing of
the <schema definition> is the <schema authorization identifier> and <schema name> specified
or implicit in the <schema definition>. Other SQL-statements executed in <externally-invoked
procedure>s in the SQL-client module have the <module authorization identifier> and <schema
name> specified or implicit for the SQL-client module.

5) If <schema character set specification> is not specified, then a <schema character set speci-
fication> that specifies an implementation-defined character set that contains at least every
character that is in <SQL language character> is implicit.

6) If <schema path specification> is not specified, then a <schema path specification> containing
an implementation-defined <schema name list> that contains the <schema name> contained in
<schema name clause> is implicit.

7) The explicit or implicit <catalog name> of each <schema name> contained in the <schema
name list> of the <schema path specification> shall be equivalent to the <catalog name> of the
<schema name> contained in the <schema name clause>.

8) The <schema name list> of the explicit or implicit <schema path specification> is used as the
SQL-path of the schema. The SQL-path is used to effectively qualify unqualified <routine
name>s that are immediately contained in <routine invocation>s that are contained in the
<schema definition>.
NOTE 167 – <routine name> is defined in Subclause 5.4, ‘‘Names and identifiers’’.

Access Rules

1) The privileges necessary to execute the <schema definition> are implementation-defined.

400 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.1 <schema definition>

General Rules

1) A <schema definition> defines an SQL-schema S in a catalog.

2) The <schema authorization identifier> is the current authorization identifier for privilege deter-
mination for S.

3) The explicit or implicit <character set specification> is used as the default character set used for
all <column definition>s and <domain definition>s that do not specify an explicit character set.

4) A schema descriptor SDS is created that describes S. SDS includes:

a) A schema name that is equivalent to the explicit or implicit <schema name>.

b) A schema authorization identifier that is equivalent to the explicit or implicit <authorization
identifier>.

c) A schema character set name that is equivalent to the explicit or implicit <schema character
set specification>.

d) A schema SQL-path that is equivalent to the explicit or implicit <schema path specifica-
tion>.

e) The descriptor of every component of S.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any <role
definition>.

2) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any <grant
role statement>.

3) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming SQL
language shall not contain any <schema path specification>.

4) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any <assertion
definition>.

5) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collation definition>.

6) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <translation definition>.

7) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain any
<domain definition>.

8) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’, a
<schema character set specification> shall not be specified.

9) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall not contain
any <character set definition>.

10) Without Feature F171, ‘‘Multiple schemas per user’’, a <schema name clause> shall specify
AUTHORIZATION and shall not specify a <schema name>.

Schema definition and manipulation 401

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.2 <drop schema statement>

11.2 <drop schema statement>

Function
Destroy a schema.

Format

<drop schema statement> ::=
DROP SCHEMA <schema name> <drop behavior>

<drop behavior> ::= CASCADE | RESTRICT

Syntax Rules

1) Let S be the schema identified by <schema name>.

2) S shall identify a schema in the catalog identified by the explicit or implicit <catalog name>.

3) If RESTRICT is specified, then S shall not contain any persistent base tables, global temporary
tables, created local temporary tables, views, domains, assertions, character sets, collations,
translations, triggers, user-defined types, SQL-invoked routines, or roles, and the <schema
name> of S shall not be generally contained in the SQL routine body of any routine descriptor.
NOTE 168 – If CASCADE is specified, then such objects will be dropped by the effective execution of
the SQL schema manipulation statements specified in the General Rules of this Subclause.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the <schema name>.

General Rules

1) Let T be the <table name> included in the descriptor of any base table or temporary table
included in S. The following <drop table statement> is effectively executed:

DROP TABLE T CASCADE

2) Let V be the <table name> included in the descriptor of any view included in S. The following
<drop view statement> is effectively executed:

DROP VIEW V CASCADE

3) Let D be the <domain name> included in the descriptor of any domain included in S. The
following <drop domain statement> is effectively executed:

DROP DOMAIN D CASCADE

4) Let A be the <constraint name> included in the descriptor of any assertion included in S. The
following <drop assertion statement> is effectively executed:

DROP ASSERTION A

402 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.2 <drop schema statement>

5) Let CD be the <collation name> included in the descriptor of any collating sequence included in
S. The following <drop collation statement> is effectively executed:

DROP COLLATION CD CASCADE

6) Let TD be the <translation name> included in the descriptor of any translation included in S.
The following <drop translation statement> is effectively executed:

DROP TRANSLATION TD

7) Let RD be the <character set name> included in the descriptor of any character set included in
S. The following <drop character set statement> is effectively executed:

DROP CHARACTER SET RD

8) Let DT be the <user-defined type name> included in the descriptor of any user-defined type
included in S. The following <drop data type statement> is effectively executed:

DROP TYPE DT CASCADE

9) Let TT be the <trigger name> included in the descriptor of any trigger included in S. The
following <drop trigger statement> is effectively executed:

DROP TRIGGER TT

10) For every SQL-invoked routine R whose descriptor is included in S, let SN be the <specific
name> of R. The following <drop routine statement> is effectively executed for every R:

DROP SPECIFIC ROUTINE SN CASCADE

11) Let R be any SQL-invoked routine whose routine descriptor includes an SQL routine body that
generally contains the <schema name> of S. Let SN be the <specific name> of R. The following
<drop routine statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

12) Let RO be the name included in the descriptor of any role included in S. The following <drop
role statement> is effectively executed:

DROP ROLE RO CASCADE

13) The descriptor of S is destroyed.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain a <drop schema statement>.

Schema definition and manipulation 403

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.3 <table definition>

11.3 <table definition>

Function
Define a persistent base table, a created local temporary table, or a global temporary table.

Format

<table definition> ::=
CREATE [<table scope>] TABLE <table name>
<table contents source>
[ON COMMIT <table commit action> ROWS]

<table contents source> ::=
<table element list>

| OF <user-defined type>
[<subtable clause>]
[<table element list>]

<table scope> ::=
<global or local> TEMPORARY

<global or local> ::=
GLOBAL

| LOCAL

<table commit action> ::=
PRESERVE

| DELETE

<table element list> ::=
<left paren> <table element> [{ <comma> <table element> }...] <right paren>

<table element> ::=
<column definition>

| <table constraint definition>
| <like clause>
| <self-referencing column specification>
| <column options>

<self-referencing column specification> ::=
REF IS <self-referencing column name> <reference generation>

<reference generation> ::=
SYSTEM GENERATED

| USER GENERATED
| DERIVED

<self-referencing column name> ::= <column name>

<column options> ::=
<column name> WITH OPTIONS <column option list>

<column option list> ::=
[<scope clause>]
[<default clause>]
[<column constraint definition>...]
[<collate clause>]

404 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.3 <table definition>

<subtable clause> ::=
UNDER <supertable clause>

<supertable clause> ::= <supertable name>

<supertable name> ::= <table name>

<like clause> ::= LIKE <table name>

Syntax Rules

1) Let T be the table defined by the <table definition> TD.

2) If a <table definition> is contained in a <schema definition> SD and the <table name> contains
a <local or schema qualifier>, then that <local or schema qualifier> shall be equivalent to the
implicit or explicit <schema name> of SD.

3) The schema identified by the explicit or implicit schema name of the <table name> shall not
include a table descriptor whose table name is <table name>.

4) If the <table definition> is contained in a <schema definition>, then let A be the explicit or
implicit <authorization identifier> of the <schema definition>. Otherwise, let A be the <autho-
rization identifier> that owns the schema identified by the implicit or explicit <schema name>
of the <table name>.

5) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <table name>.

6) If LIKE is specified, then:

a) Let T1 be the table identified in the <like clause>.

b) Let nt be the number of columns in T1. Let Ci, 1 (one) � i � nt, be the columns of T1, in
the order in which they appear in T1, let CNi be the column name included in the column
descriptor of Ci, and let DTi be the data type included in the column descriptor of Ci. Let
CD1 be:

CN1 DT1

If nt is greater than 1 (one), then let CDi, 2 � i � nt, be:

, CNi DTi

The <like clause> is effectively replaced by CNi, 1 (one) � i � nt.
NOTE 169 – <column constraint>s are not included in columns; <column constraint>s are effec-
tively transformed to <table constraints>s and are thereby excluded.

7) If <subtable clause> is specified, then:

a) The <table name> contained in the <subtable clause> identifies a direct supertable of T,
which shall be a base table. T is called a direct subtable of the direct supertable of T.

b) ST shall be a direct subtype of the structured type of the direct supertable of T.

Schema definition and manipulation 405

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.3 <table definition>

c) The SQL-schema identified by the explicit or implicit <schema name> of the <table name>
of T shall include the descriptor of the direct supertable of T.

d) The subtable family of T shall have exactly one maximal supertable.

e) The subtable family of T shall not include a member, other than T itself, whose associated
structured type is ST.

f) TD shall not contain a <table constraint definition> that specifies PRIMARY KEY.

g) There shall exist some supertable of T whose table descriptor includes a unique constraint
descriptor UCD such that the nullability characteristic included in the column descriptor
whose column name is included in UCD is known not nullable.

h) Let the term inherited column of T refer to a column of T that corresponds to an inherited
attribute of ST. For every such inherited attribute IA, there is a column CA such that the
<column name> of CA is equivalent to the <attribute name> of IA. CA is called the direct
supercolumn of IA in the direct supertable of T.

i) T is a referenceable table.

8) Let the term originally-defined column of T refer to a column of T that corresponds to an
originally-defined attribute of ST.

9) For every <column options> CO, <column name> shall be equivalent to the <column name>
specified in some <column definition> RCD implicitly or explicitly contained in TD and shall
not refer to an inherited column of T. Distinct <column options>s contained in TD shall specify
distinct <column name>s.

a) If CO specifies a <scope clause> SC, then let CURITIBA be the <column name> contained
in RCD followed in turn by the <data type> or <domain name> contained in RCD, SC,
the <default clause> (if any) contained in RCD, and every <column constraint definition>
contained in RCD. RCD is replaced by CURITIBA.

b) If CO specifies <collate clause> CC, then let CURITIBA be the <column name> contained in
RCD followed in turn by the <data type> or <domain name> contained in RCD, the <default
clause> (if any) contained in RCD, every <column constraint definition> contained in RCD,
and CC. RCD is replaced by CURITIBA.

c) If CO specifies <default clause> DC, then let CURITIBA be the <column name> contained
in RCD followed in turn by the <data type> or <domain name> contained in RCD, DC, every
<column constraint definition> contained in RCD and the <collate clause> (if any) contained
in RCD. RCD is replaced by CURITIBA.

d) If CO specifies a non-empty list CCDL of <column constraint definition>s, then let
CURITIBA be the <column name> contained in RCD followed in turn by the <data type> or
<domain name> contained in RCD, the <default clause> (if any) contained in RCD, CCDL
and the <collate clause> (if any) contained in RCD. RCD is replaced by CURITIBA.

10) If ‘‘OF <user-defined type>’’ is specified, then:

a) The <user-defined type name> simply contained in <user-defined type> shall identify a
structured type ST. Let the <table element list>, if specified, be TEL1.

b) TEL1 shall not contain a <like clause>.

406 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.3 <table definition>

c) If <subtable clause> is not specified, then <self-referencing column specification> shall be
specified.

d) ‘‘OF <user-defined type>’’ is effectively replaced by a <table element list> TEL1 TEL2,
defined as follows.

TEL1 consists of n <table element>s, where n is the number of attribute descriptors included
in the data type descriptor of ST. For each attribute descriptor AD included in the data type
descriptor of ST, the corresponding <table element> in TEL1 is the <column definition> CN
DT DC CC, where:

i) CN is the attribute name included in AD.

ii) If AD includes a domain name DN, then DT is DN; otherwise, DT is some <data type>
that, under the General Rules of Subclause 6.1, ‘‘<data type>’’, would result in the
creation of AD.

iii) Case:

1) If AD describes an inherited attribute IA, then DC is some <default clause> whose
<default option> denotes the default value included in the column descriptor of the
direct supercolumn of IA.

2) Otherwise, DC is some <default clause> whose <default option> denotes the default
value included in AD.

iv) Case:

1) If AD describes an inherited attribute IA, and the descriptor of the direct super-
column of IA includes a <collation name> COLIN, then CC is ‘‘COLLATE COLIN’’.

2) If AD describes an inherited attribute IA, and the descriptor of the direct supercol-
umn of IA does not include a <collation name>, then CC is a zero-length string.

3) If AD includes a <collation name> COLIN, then CC is ‘‘COLLATE COLIN’’.

4) Otherwise CC is a zero-length string.

If <table element list> TEL is specified and contains a <table element> that is not a <column
definition>, then TEL2 is a <comma> followed by those <table elements> of TEL that are
not <column definition>s, the members of each adjacent pair being separated by a <comma>;
otherwise TEL2 is a zero-length string.

11) If ON COMMIT is specified, then TEMPORARY shall be specified.

12) If TEMPORARY is specified and ON COMMIT is not specified, then ON COMMIT DELETE
ROWS is implicit.

13) If ‘‘OF <user-defined type>’’ is not specified, then <table element list> shall contain at least one
<column definition>.

14) If <self-referencing column specification> is specified, then:

a) ‘‘OF <user-defined type>’’ shall be specified.

b) <subtable clause> shall not be specified.

Schema definition and manipulation 407

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.3 <table definition>

c) <table scope> shall not be specified.

d) Let RST be the reference type REF(ST).

Case:

i) If SYSTEM GENERATED is specified, then RST shall have a system-defined represen-
tation.

ii) If USER GENERATED is specified, then RST shall have a user-defined representation.

iii) If DERIVED is specified, then:

1) RST shall have a derived representation.

2) Let A1, A2, . . . , An be the n attributes included in the list of attributes of the
derived representation of RST.

3) TD shall contain a <table constraint definition> that specifies a <unique constraint
definition> whose <unique column list> contains the attribute names of A1, A2, . . . ,
An in that order.

4) For every attribute Ai, 1 (one) � i � n, TD shall contain a <column options> COi
with a <column name> that is equivalent to the <attribute name> of Ai and with a
<column constraint definition> that specifies NOT NULL.

15) Every referenceable table referenced by a <scope clause> contained in a <table element> con-
tained in TD shall be

Case:

a) If TD specifies no <table scope>, then a persistent base table.

b) If TD specifies GLOBAL TEMPORARY, then a global temporary table.

c) If TD specifies LOCAL TEMPORARY, then a created local temporary table.

16) If TEL1 contains a <column options>, then TD shall specify OF <user-defined type name> and
any <column definition> shall be contained before the first <column options>.

17) A <column option list> shall immediately contain either a <scope clause> or a <default clause>
or at least one <column constraint definition> or a <collate clause>.

18) The scope of the <table name> is the <table definition>.

Access Rules

1) If a <table definition> is contained in an SQL-client module, then the enabled authorization
identifiers shall include A.

2) If a <like clause> is contained in a <table definition>, then the applicable privileges of A shall
include SELECT privilege on the table identified in the <like clause>.

3) A shall have in its applicable privileges the UNDER privilege on the <supertable name> speci-
fied in <subtable clause>.
NOTE 170 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

408 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.3 <table definition>

4) If ‘‘OF <user-defined type name>’’ is specified, then the applicable privileges of A shall include
USAGE on ST.
NOTE 171 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <table definition> defines either a persistent base table, a global temporary table or a created
local temporary table. If GLOBAL is specified, then a global temporary table is defined. If
LOCAL is specified, then a created local temporary table is defined. Otherwise, a persistent
base table is defined.

2) The degree of T is initially set to 0 (zero); the General Rules of Subclause 11.4, ‘‘<column
definition>’’, specify the degree of T during the definition of the columns of T.

3) For each <column options CO, if CO contains a <scope clause> SC, then let CD be the column
descriptor identified by the <column name> speicfied in CO. The <table name> specified in SC
is included in the reference type descriptor that is included in CD.

4) If <user-defined type> is specified, then:

a) Let R be the structured type identified by the <user-defined type name> simply contained in
<user-defined type>.

b) R is the structured type associated with T.

5) A table descriptor TDS is created that describes T. TDS includes:

a) The table name TN.

b) The column descriptors of every column of T, included as follows:

i) If <self-referencing column specification> is specified, then a column descriptor in which:

1) The name CN of the column is <self-referencing column name>.

2) The data type descriptor is that generated by the <data type> ‘‘REF(ST) SCOPE(TN)’’.

3) The nullability characteristic is known not nullable.

4) The ordinal position is 1 (one).

5) The column is indicated to be self-referencing.

ii) The column descriptor of each inherited column of T. If one of these is the descriptor of
an inherited self-referencing column, then the <data type> and scope included in that
descriptor are replaced by ST and TN, respectively.

iii) The column descriptor of each originally-defined column of T.

c) If the table descriptor includes the column descriptor of a self-referencing column, then:

i) An indication that the table is a referenceable table.

ii) A table constraint descriptor that describes a unique constraint whose unique column is
CN.

Schema definition and manipulation 409

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.3 <table definition>

iii) If SYSTEM GENERATED is specified, then an indication that the self-referencing
column is a system-generated self-referencing column.

iv) If DERIVED is specified, then an indication that the self-referencing column is a derived
self-referencing column.

v) If USER GENERATED is specified, then an indication that the self-referencing column
is a user-generated self-referencing column.

d) The table constraint descriptors specified by each <table constraint definition>.

e) If a <user-defined type> is specified, then the user-defined type name of R.

f) The list (possibly empty) of the table names of each direct supertable of T, in the order in
which they appear in <subtable clause>.

g) An empty list indicating that T has no direct subtables.

h) A non-empty set of functional dependencies, according to the rules given in Subclause 4.18,
‘‘Functional dependencies’’.

i) A non-empty set of candidate keys.

j) A preferred candidate key, which may or may not be additionally designated the primary
key, according to the Rules in Subclause 4.18, ‘‘Functional dependencies’’.

k) An indication of whether the table is a persistent base table, a global temporary table, a
created local temporary table, or a declared local temporary table.

l) If TEMPORARY is specified, then

Case:

i) If ON COMMIT DELETE ROWS is specified, then the table descriptor includes an
indication that ON COMMIT DELETE ROWS is specified.

ii) Otherwise, the table descriptor includes an indication that ON COMMIT PRESERVE
ROWS is specified or implied.

6) In the descriptor of each direct supertable of T, TN is added to the end of the list of direct
subtables.

7) If <subtable clause> is specified, then a set of privilege descriptors is created that defines the
privileges SELECT, UPDATE, and REFERENCES for every inherited column of this table to the
<authorization identifier> that owns the schema identified by the implicit or explicit <schema
name> of the <table name> of the direct supertable from which that column was inherited.
These privileges are grantable. The grantor for each of these privilege descriptors is set to the
special grantor value ‘‘_SYSTEM’’.

8) A set of privilege descriptors is created that define the privileges INSERT, SELECT, UPDATE,
DELETE, TRIGGER, and REFERENCES on this table and SELECT, INSERT, UPDATE, and
REFERENCES for every <column definition> in the table definition. If OF <user-defined type>
is specified, then a table/method privilege descriptor is created on this table for every method of
the structured type identified by the <user-defined type> and the table SELECT privilege has
the WITH HIERARCHY OPTION. These privileges are grantable.

410 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.3 <table definition>

The grantor for each of these privilege descriptors is set to the special grantor value
‘‘_SYSTEM’’. If TEMPORARY is specified, then the grantee is ‘‘PUBLIC’’; otherwise, the grantee
is <authorization identifier> A.

9) If <subtable clause> is specified, then let ST be the set of supertables of T. Let PDS be the set
of privilege descriptors that defined SELECT WITH HIERARCHY OPTION privilege on a table
in ST. For every privilege descriptor in PDS, with grantee G, grantor A, and if the privilege is
grantable let WGO be ‘‘WITH GRANT OPTION’’; otherwise, let WGO be a zero-length string,
the following <grant statement> is effectively executed without further Access Rule checking:

GRANT SELECT ON T TO G WGO FROM A

10) The row type RT of the table T defined by the <table definition> is the set of pairs (<field
name>, <data type>) where <field name> is the name of a column C of T and <data type> is the
declared type of C. This set of pairs contain one pair for each column of T, in the order of their
ordinal position in T.

Conformance Rules

1) Without Feature T171, ‘‘LIKE clause in table definition’’, a <table element> shall not be a <like
clause>.

2) Without Feature F531, ‘‘Temporary tables’’, conforming SQL language shall not specify
TEMPORARY and shall not reference any global or local temporary table.

3) Without Feature S051, ‘‘Create table of type’’, conforming SQL language shall not specify ‘‘OF
<user-defined type>’’.

4) Without Feature S043, ‘‘Enhanced reference types’’, a <column option list> shall not contain a
<scope clause>.

5) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
<self-referencing column specification>.

6) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not specify <subtable
clause>.

Schema definition and manipulation 411

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.4 <column definition>

11.4 <column definition>

Function
Define a column of a base table.

Format

<column definition> ::=
<column name>
{ <data type> | <domain name> }
[<reference scope check>]
[<default clause>]
[<column constraint definition>...]
[<collate clause>]

<column constraint definition> ::=
[<constraint name definition>]
<column constraint> [<constraint characteristics>]

<column constraint> ::=
NOT NULL

| <unique specification>
| <references specification>
| <check constraint definition>

<reference scope check> ::=
REFERENCES ARE [NOT] CHECKED
[ON DELETE <reference scope check action>]

<reference scope check action> ::=
<referential action>

Syntax Rules

1) Case:

a) If the <column definition> is contained in a <table definition>, then let T be the table
defined by that <table definition>.

b) If the <column definition> is contained in a <temporary table declaration>, then let T be the
table declared by that <temporary table declaration>.

c) If the <column definition> is contained in an <alter table statement>, then let T be the table
identified in the containing <alter table statement>.

The <column name> in the <column definition> shall not be equivalent to the <column name>
of any other column of T.

2) Let A be the <authorization identifier> that owns T.

3) Let C be the <column name> of the <column definition>.

4) If <domain name> is specified, then let D be the domain identified by the <domain name>.

5) The declared type of the column is

412 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.4 <column definition>

Case:

a) If <data type> is specified, then that data type.

b) Otherwise, the declared type of D.

6) If the declared type of the column is character string, then the collation of the column is

Case:

a) If <collate clause> is specified, then the collation specified by that <collate clause>.

b) If <domain name> is specified and D has a collation, then the collation of D.

c) Otherwise, the default collation of the character set of the column.
NOTE 172 – The character set of a column is determined by its declared type.

7) If a <data type> is specified, then:

a) Let DT be the <data type>.

b) If DT specifies CHARACTER, CHARACTER VARYING, or CHARACTER LARGE OBJECT
and does not specify a <character set specification>, then the <character set specification>
specified or implicit in the <schema character set specification> of the <schema definition>
that created the schema identified by the <schema name> immediately contained in the
<table name> of the containing <table definition> or <alter table statement> is implicit.

c) If DT is a <character string type> that identifies a character set that specifies a <collate
clause> and the <column definition> does not contain a <collate clause>, then the <collate
clause> of the <character string type> is implicit in the <column definition>.

8) If <collate clause> is specified, then DT shall specify a character string type.

9) If <data type> is a <reference type> that contains a <scope clause>, then <reference scope
check> shall be specified; otherwise, <reference scope check> shall not be specified.

10) If REFERENCES ARE NOT CHECKED is specified, then <reference scope check action> shall
not be specified.

11) If REFERENCES ARE CHECKED is specified and <reference scope check action> is not speci-
fied, then ON DELETE NO ACTION is implicit.

12) If <reference scope check> specifies REFERENCES ARE CHECKED, then let RSCA be the
explicit or implicit <reference scope action>, let STN be the <table name> specified in the <scope
clause> contained in <data type>, and let SGCN be the column name included in the column
descriptor of the self-referencing column whose descriptor is included in the table descriptor
identified by STN. The following <references specification> is implicit:

REFERENCES STN (SGCN) ON DELETE RSCA

13) If <data type> simply contains an <array specification>, a <row type>, or a <user-defined type
name> that identifies a user-defined type descriptor whose degree is greater than 0 (zero),
then let CDTD be the descriptor associated with that <array specification>, <row type>, or
<user-defined type name>, respectively.

Schema definition and manipulation 413

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.4 <column definition>

14) For every field descriptor FD generally included in CDTD that includes a data type descriptor
FDTD that includes an indication that references are checked:

a) Let CNG be the <column name> and let TNG be the <table name> immediately contained
in the containing <table definition> or <alter table statement>.

b) Let FN be the <field name> included in FD.

c) Let TND be the <table name> included in the scope included in the data type descriptor
included in FDTD.

d) Let CND be the column name included in the column descriptor of the self-referencing
column whose descriptor is included in the table descriptor of the table identified by TND.

e) Let QFN be TNG.CNG . . . FN, where ‘‘ . . . ’’ comprises a sequence of <identifier>s and
<element reference>s separated by <period>s in which each <identifier> specifies a <field
name> or an <attribute name>, such that the field identified by FN is properly referenced.

f) Let FCN be an implementation-dependent <constraint name> not equivalent to any <con-
straint name> in the schema containing the descriptor of the table identified by TNG.

g) The following <column constraint definition> is implicit:

CONSTRAINT FCN
CHECK (QFN IN (SELECT CND FROM TND))

15) For every attribute descriptor AD generally included in CDTD that includes a data type descrip-
tor ADTD that includes an indication that references are checked:

a) Let CNG be the <column name> and let TNG be the <table name> immediately contained
in the containing <table definition> or <alter table statement>.

b) Let AN be the <attribute name> included in AD.

c) Let TNL be the <table name> included in the scope included in the data type descriptor
included in ADTD.

d) Let CND be the column name included in the column descriptor of the self-referencing
column whose descriptor is included in the table descriptor of the table identified by TND.

e) Let QAN be TNG.CNG . . . AN, where ‘‘ . . . ’’ comprises a sequence of <identifier>s and
<element reference>s separated by <period>s in which each <identifier> specifies a <field
name> or an <attribute name>, such that the attribute identified by AN is properly refer-
enced.

f) Let ACN be an implementation-dependent <constraint name> not equivalent to any <con-
straint name> in the schema containing the descriptor of the table identified by TNG.

g) The following <column constraint definition> is implicit:

CONSTRAINT ACN
CHECK (QAN IN (SELECT CND FROM TNF))

414 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.4 <column definition>

16) If a <column constraint definition> is specified, then let CND be the <constraint name defini-
tion> if one is specified and let CND be a zero-length string otherwise; let CA be the <constraint
characteristics> if specified and let CA be a zero-length string otherwise. The <column con-
straint definition> is equivalent to a <table constraint definition> as follows:

Case:

a) If a <column constraint definition> is specified that contains the <column constraint> NOT
NULL, then it is equivalent to the following <table constraint definition>:

CND CHECK (C IS NOT NULL) CA

b) If a <column constraint definition> is specified that contains a <unique specification>US,
then it is equivalent to the following <table constraint definition>:

CND US (C) CA

NOTE 173 – The <unique specification> is defined in Subclause 11.7, ‘‘<unique constraint defini-
tion>’’.

c) If a <column constraint definition> is specified that contains a <references specification> RS,
then it is equivalent to the following <table constraint definition>:

CND FOREIGN KEY (C) RS CA

NOTE 174 – The <references specification> is defined in Subclause 11.8, ‘‘<referential constraint
definition>’’.

d) If a <column constraint definition> is specified that contains a <check constraint definition>
CCD, then it is equivalent to the following <table constraint definition>:

CND CCD CA

Each column reference directly contained in the <search condition> shall reference column
C.

17) If the <column definition> is not contained in a <schema definition>, then the schema identified
by the explicit or implicit qualifier of the <domain name> shall include the descriptor of D. If
the <column definition> is contained in a <schema definition> S, then S shall include a <schema
element> that creates the descriptor of D.

Access Rules

1) If <domain name> is specified, then the applicable privileges of A shall include USAGE on D.
NOTE 175 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

2) If a <data type> is specified that is one of the following:

a) A user-defined type U.

b) A reference type whose referenced type is a user-defined type U.

c) An array type whose element type is a user-defined type U.

d) An array type whose element type is a reference type whose referenced type is a user-defined
type U.

e) A row type with a subfield that has a declared type that is:

i) A user-defined type U.

Schema definition and manipulation 415

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.4 <column definition>

ii) A reference type whose referenced type is a user-defined type U.

iii) An array type whose element type is a user-defined type U.

iv) An array type whose element type is a reference type whose referenced type is a user-
defined type U.

then the applicable privileges of A shall include USAGE on U.
NOTE 176 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <column definition> defines a column in a table.

2) The <collate clause> specifies the default collating sequence for the column. If <collate clause>
is not specified, then the default collating sequence is that used for comparisons of Coercible
coercibility characteristic, as defined in Subclause 8.2, ‘‘<comparison predicate>’’.

3) If the <column definition> specifies <data type>, then a data type descriptor is created that
describes the declared type of the column being defined.

4) The degree of the table T being defined in the containing <table definition> or <temporary table
declaration>, or being altered by the containing <alter table statement> is increased by 1 (one).

5) A column descriptor is created that describes the column being defined. The column descriptor
includes:

a) C, the name of the column.

b) Case:

i) If the <column definition> specifies a <data type>, then the data type descriptor of the
declared type of the column.

ii) Otherwise, the domain of the column.

c) The ordinal position of the column, which is equal to the degree of T, unless the column is
the self-referencing column of T, in which case it is 1 (one) and the ordinal position in every
existing column descriptor in the table descriptor of T is increased by 1 (one).

d) The nullability characteristic of the column, determined according to the rules in
Subclause 4.15, ‘‘Columns, fields, and attributes’’.
NOTE 177 – Both <column constraint definition>s and <table constraint definition>s must be
analyzed to determine the nullability characteristics of all columns.

e) If <default clause> is specified, then the <default option>.

f) If the <column definition> contains a <collate clause>, then the collation name. If <data
type> is a reference type, then whether references are checked and whether <reference
scope check action> is RESTRICT or SET NULL.

416 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.4 <column definition>

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collate clause>.

2) Without Feature F251, ‘‘Domain support’’, a <column definition> shall not contain a <domain
name>.

3) Without Feature F701, ‘‘Referential update actions’’, a <column constraint> shall not contain an
<update rule>.

4) Without Feature F191, ‘‘Referential delete actions’’, a <column constraint> shall not contain a
<delete rule>.

5) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall not contain
any <constraint name definition>.

6) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
REFERENCES ARE CHECKED.

Schema definition and manipulation 417

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.5 <default clause>

11.5 <default clause>

Function
Specify the default for a column, domain, or attribute.

Format

<default clause> ::=
DEFAULT <default option>

<default option> ::=
<literal>

| <datetime value function>
| USER
| CURRENT_USER
| CURRENT_ROLE
| SESSION_USER
| SYSTEM_USER
| CURRENT_PATH
| <implicitly typed value specification>

Syntax Rules

1) The subject data type of a <default clause> is the data type specified in the descriptor identified
by the containing <column definition>, <domain definition>, <attribute definition>, <alter
column definition>, or <alter domain statement>.

2) If USER is specified, then CURRENT_USER is implicit.

3) Case:

a) If the subject data type of the <default clause> is a user-defined type, a reference type, or a
row type, then <default option> shall specify <null specification>.

b) If the subject data type of the <default clause> is a collection type, then <default option>
shall specify <implicitly typed value specification>.

4) Case:

a) If a <literal> is specified, then:

Case:

i) If the subject data type is character string, then the <literal> shall be a <character
string literal>. If the length of the subject data type is fixed, then the length in charac-
ters of the <character string literal> shall not be greater than the length of the subject
data type. If the length of the subject data type is variable, then the length in char-
acters of the <character string literal> shall not be greater than the maximum length
of the subject data type. The <literal> shall have the same character repertoire as the
subject data type.

418 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.5 <default clause>

ii) If the subject data type is bit string, then the <literal> shall be a <bit string literal>
or a <hex string literal>. If the length of the subject data type is fixed, then the length
in bits of the <bit string literal> or <hex string literal> shall not be greater than the
length of the subject data type. If the length of the subject data type is variable, then
the length in bits of the <bit string literal> or <hex string literal> shall not be greater
than the maximum length of the subject data type.

iii) If the subject data type is binary string, then the <literal> shall be a <binary string
literal> that has an even number of <hexit>s. The length in octets of the <binary string
literal> shall not be greater than the maximum length of the subject data type.

iv) If the subject data type is exact numeric, then the <literal> shall be a <signed numeric
literal> that simply contains an <exact numeric literal>. There shall be a representation
of the value of the <literal> in the subject data type that does not lose any significant
digits.

v) If the subject data type is approximate numeric, then the <literal> shall be a <signed
numeric literal>.

vi) If the subject data type is datetime, then the <literal> shall be a <datetime literal> and
shall contain the same <primary datetime field>s as the subject data type.

vii) If the subject data type is interval, then the <literal> shall be an <interval literal> and
shall contain the same <interval qualifier> as the subject data type.

viii) If the subject data type is boolean, then the <literal> shall be a <boolean literal>.

ix) If the subject data type is a collection type, then the declared type of <literal> shall be
that collection type.

b) If CURRENT_USER, CURRENT_ROLE, SESSION_USER, or SYSTEM_USER is specified,
then the subject data type shall be character string with character set SQL_IDENTIFIER.
If the length of the subject data type is fixed, then its length shall not be less than 128
characters. If the length of the subject data type is variable, then its maximum length shall
not be less than 128 characters.

c) If CURRENT_PATH is specified, then the subject data type shall be character string with
character set SQL_IDENTIFIER. If the length of the subject data type is fixed, then its
length shall not be less than 1031 characters. If the length of the subject data type is
variable, then its maximum length shall not be less than 1031 characters.

d) If <datetime value function> is specified, then the subject data type shall be datetime with
the same declared datetime data type of the <datetime value function>.

e) If <empty specification> is specified, then the subject data type shall be a collection type.

Access Rules

None.

Schema definition and manipulation 419

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.5 <default clause>

General Rules

1) The default value inserted in the column descriptor, if the <default clause> is to apply to a
column, or in the domain descriptor, if the <default clause> is to apply to a domain, or to the
attribute descriptor, if the <default clause> is to apply to an attribute, or to the user-defined
type descriptor, if the <default clause> is to apply to a user-defined type, is the <default option>.

2) If the subject data type is bit string with fixed length, the <default clause> specifies a <bit
string literal>, and the length of the <bit string literal> is less than the fixed length of the
column, then a completion condition is raised: warning — implicit zero-bit padding.

3) The value specified by a <default option> is

Case:

a) If the <default option> contains a <literal>, then

Case:

i) If the subject data type is numeric, then the numeric value of the <literal>.

ii) If the subject data type is character string with variable length, then the value of the
<literal>.

iii) If the subject data type is character string with fixed length, then the value of the
<literal>, extended as necessary on the right with <space>s to the length in characters
of the subject data type.

iv) If the subject data type is bit string with variable length, then the value of the <literal>.

v) If the subject data type is bit string with fixed length, then the value of the <literal>
extended as necessary on the right with 0-valued bits to the length of the subject data
type.

vi) If the subject data type is binary string, then the value of the <literal>.

vii) If the subject data type is datetime or interval, then the value of the <literal>.

viii) If the subject data type is boolean, then the value of the <literal>.

ix) If the subject data type is a collection type, then the value of the <literal>.

b) If the <default option> specifies CURRENT_USER, CURRENT_ROLE, SESSION_USER,
SYSTEM_USER, or CURRENT_PATH, then

Case:

i) If the subject data type is character string with variable length, then the value ob-
tained by an evaluation of CURRENT_USER, SESSION_USER, SYSTEM_USER, or
CURRENT_PATH at the time that the default value is required.

ii) If the subject data type is character string with fixed length, then the value obtained by
an evaluation of CURRENT_USER, SESSION_USER, CURRENT_PATH, or SYSTEM_
USER at the time that the default value is required, extended as necessary on the right
with <space>s to the length in characters of the subject data type.

420 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.5 <default clause>

c) If the <default option> contains a <datetime value function>, then the value of an evaluation
of the <datetime value function> at the time that the default value is required.

d) If the <default option> specifies <empty specification>, then an empty collection.

4) The default value of a site is

Case:

a) If the data descriptor for the site includes a <default option>, then the value specified by
that <default option>.

b) If the data descriptor for the site includes a <domain name> that identifies a domain de-
scriptor that includes a <default option>, then the value specified by that <default option>.

c) If the default value is for a column C of a candidate row for insertion into or update of a
derived table DT and C has a single counterpart column CC in a leaf generally underlying
table of DT, then the default value of CC is obtained by applying the General Rules of this
Subclause.

d) Otherwise, the null value.
NOTE 178 – If <default option> specifies CURRENT_USER, SESSION_USER, SYSTEM_USER,
CURRENT_ROLE or CURRENT_PATH, then the ‘‘value in the column descriptor’’ will effectively be
the text of the <default option>, whose evaluation occurs at the time that the default value is required.

5) If the <default clause> is contained in an <SQL schema statement> and character representa-
tion of the <default option> cannot be represented in the Information Schema without trunca-
tion, then a completion condition is raised: warning — default value too long for information
schema.

Conformance Rules

1) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, a <default option>
shall not specify CURRENT_PATH.

2) Without Feature F321, ‘‘User authorization’’, a <general value specification> shall not specify
CURRENT_USER, SYSTEM_USER, or SESSION_USER.
NOTE 179 – Although CURRENT_USER and USER are semantically the same, in Core SQL,
CURRENT_USER must be specified as USER.

3) Without Feature F321, ‘‘User authorization’’, a <default option> shall not be CURRENT_USER,
SESSION_USER, or SYSTEM_USER.

4) Without Feature T332, ‘‘Extended roles’’, a <default option> shall not be CURRENT_ROLE.

Schema definition and manipulation 421

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.6 <table constraint definition>

11.6 <table constraint definition>

Function
Specify an integrity constraint.

Format

<table constraint definition> ::=
[<constraint name definition>]
<table constraint> [<constraint characteristics>]

<table constraint> ::=
<unique constraint definition>

| <referential constraint definition>
| <check constraint definition>

Syntax Rules

1) If <constraint characteristics> is not specified, then INITIALLY IMMEDIATE NOT DEFERRABLE
is implicit.

2) If <constraint name definition> is specified and its <constraint name> contains a <schema
name>, then that <schema name> shall be equivalent to the explicit or implicit <schema name>
of the <table name> of the table identified by the containing <table definition> or <alter table
statement>.

3) If <constraint name definition> is not specified, then a <constraint name definition> that con-
tains an implementation-dependent <constraint name> is implicit. The assigned <constraint
name> shall obey the Syntax Rules of an explicit <constraint name>.

Access Rules

None.

General Rules

1) A <table constraint definition> defines a table constraint.

2) A table constraint descriptor is created that describes the table constraint being defined. The
table constraint descriptor includes the <constraint name> contained in the explicit or implicit
<constraint name definition>.

The table constraint descriptor includes an indication of whether the constraint is deferrable or
not deferrable and whether the initial constraint mode of the constraint is deferred or immedi-
ate.

Case:

a) If <unique constraint definition> is specified, then the table constraint descriptor is a unique
constraint descriptor that includes an indication of whether it was defined with PRIMARY
KEY or UNIQUE, and the names of the unique columns specified in the <unique column
list>.

422 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.6 <table constraint definition>

b) If <referential constraint definition> is specified, then the table constraint descriptor is a
referential constraint descriptor that includes the names of the referencing columns specified
in the <referencing columns> and the names of the referenced columns and referenced table
specified in the <referenced table and columns>, the value of the <match type>, if specified,
and the <referential triggered actions>, if specified.

c) If <check constraint definition> is specified, then the table constraint descriptor is a table
check constraint descriptor that includes the <search condition>.

3) If the <table constraint> is a <check constraint definition>, then let SC be the <search condi-
tion> immediately contained in the <check constraint definition> and let T be the table name
included in the corresponding table constraint descriptor; the table constraint is not satisfied if
and only if

EXISTS (SELECT * FROM T WHERE NOT (SC))

is true.

Conformance Rules

1) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall contain no
<constraint name definition>.

Schema definition and manipulation 423

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.7 <unique constraint definition>

11.7 <unique constraint definition>

Function
Specify a uniqueness constraint for a table.

Format

<unique constraint definition> ::=
<unique specification> <left paren> <unique column list> <right paren>

| UNIQUE (VALUE)

<unique specification> ::=
UNIQUE

| PRIMARY KEY

<unique column list> ::= <column name list>

Syntax Rules

1) The declared type of no column identified by any <column name> in the <unique column list>
shall be based on a large object string type or an array type.

2) Let T be the table identified by the containing <table definition> or <alter table statement>. Let
TN be the <table name> of T.

3) If <unique column list> UCL is specified, then

a) Each <column name> in the <unique column list> shall identify a column of T, and the
same column shall not be identified more than once.

b) The set of columns in the <unique column list> shall be distinct from the unique columns of
any other unique constraint descriptor that is included in the base table descriptor of T.

c) Case:

i) If the <unique specification> specifies PRIMARY KEY, then let SC be the <search
condition>:

UNIQUE (SELECT UCL FROM TN)
AND

(UCL) IS NOT NULL

ii) Otherwise, let SC be the <search condition>:

UNIQUE (SELECT UCL FROM TN)

4) If UNIQUE (VALUE) is specified, then let SC be the <search condition>:

UNIQUE (SELECT TN.* FROM TN)

5) If the <unique specification> specifies PRIMARY KEY, then for each <column name> in the
explicit or implicit <unique column list> for which NOT NULL is not specified, NOT NULL is
implicit in the <column definition>.

424 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.7 <unique constraint definition>

6) A <table definition> shall specify at most one implicit or explicit <unique constraint definition>
that specifies PRIMARY KEY.

7) If a <unique constraint definition> that specifies PRIMARY KEY is contained in an <add table
constraint definition>, then the table identified by the <table name> immediately contained in
the containing <alter table statement> shall not have a unique constraint that was defined by a
<unique constraint definition> that specified PRIMARY KEY.

Access Rules

None.

General Rules

1) A <unique constraint definition> defines a unique constraint.
NOTE 180 – Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’, specifies
when a constraint is effectively checked.

2) The unique constraint is not satisfied if and only if

EXISTS (SELECT * FROM TN WHERE NOT (SC))

is true.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not specify
UNIQUE(VALUE).

2) Without Feature T591, ‘‘UNIQUE constraints of possibly null columns’’, if UNIQUE is specified,
then the <column definition> for each column whose <column name> is contained in the <unique
column list> shall specify NOT NULL.

Schema definition and manipulation 425

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

11.8 <referential constraint definition>

Function
Specify a referential constraint.

Format

<referential constraint definition> ::=
FOREIGN KEY <left paren> <referencing columns> <right paren>
<references specification>

<references specification> ::=
REFERENCES <referenced table and columns>
[MATCH <match type>]
[<referential triggered action>]

<match type> ::=
FULL

| PARTIAL
| SIMPLE

<referencing columns> ::=
<reference column list>

<referenced table and columns> ::=
<table name> [<left paren> <reference column list> <right paren>]

<reference column list> ::= <column name list>

<referential triggered action> ::=
<update rule> [<delete rule>]

| <delete rule> [<update rule>]

<update rule> ::= ON UPDATE <referential action>

<delete rule> ::= ON DELETE <referential action>

<referential action> ::=
CASCADE

| SET NULL
| SET DEFAULT
| RESTRICT
| NO ACTION

Syntax Rules

1) If <match type> is not specified, then SIMPLE is implicit.

2) Let referencing table be the table identified by the containing <table definition> or <alter table
statement>. Let referenced table be the table identified by the <table name> in the <referenced
table and columns>. Let referencing columns be the column or columns identified by the <refer-
ence column list> in the <referencing columns> and let referencing column be one such column.

426 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

3) Case:

a) If the <referenced table and columns> specifies a <reference column list>, then the set of
<column name>s contained in that <reference column list> shall be equal to the set of <col-
umn name>s contained in the <unique column list> of a unique constraint of the referenced
table. Let referenced columns be the column or columns identified by that <reference column
list> and let referenced column be one such column. Each referenced column shall identify a
column of the referenced table and the same column shall not be identified more than once.

b) If the <referenced table and columns> does not specify a <reference column list>, then
the table descriptor of the referenced table shall include a unique constraint that specifies
PRIMARY KEY. Let referenced columns be the column or columns identified by the unique
columns in that unique constraint and let referenced column be one such column. The
<referenced table and columns> shall be considered to implicitly specify a <reference column
list> that is identical to that <unique column list>.

4) The table constraint descriptor describing the <unique constraint definition> whose <unique
column list> identifies the referenced columns shall indicate that the unique constraint is not
deferrable.

5) The referenced table shall be a base table.

Case:

a) If the referencing table is a persistent base table, then the referenced table shall be a
persistent base table.

b) If the referencing table is a global temporary table, then the referenced table shall be a
global temporary table.

c) If the referencing table is a created local temporary table, then the referenced table shall be
either a global temporary table or a created local temporary table.

d) If the referencing table is a declared local temporary table, then the referenced table shall
be either a global temporary table, a created local temporary table or a declared local
temporary table.

6) If the referenced table is a temporary table with ON COMMIT DELETE ROWS specified, then
the referencing table shall specify ON COMMIT DELETE ROWS.

7) Each referencing column shall identify a column of the referencing table, and the same column
shall not be identified more than once.

8) The <referencing columns> shall contain the same number of <column name>s as the <refer-
enced table and columns>. The i-th column identified in the <referencing columns> corresponds
to the i-th column identified in the <referenced table and columns>. The declared type of each
referencing column shall be comparable to the declared type of the corresponding referenced
column.

9) If a <referential constraint definition> does not specify any <update rule>, then an <update
rule> with a <referential action> of NO ACTION is implicit.

10) If a <referential constraint definition> does not specify any <delete rule>, then a <delete rule>
with a <referential action> of NO ACTION is implicit.

Schema definition and manipulation 427

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

11) Let T be the referenced table. If the <referential constraint definition> is not contained in a
<schema definition>, then the schema identified by the explicit or implicit qualifier of the <table
name> shall include the descriptor of T. If the <referential constraint definition> is contained in
a <schema definition> S, then S shall include a <schema element> that creates the descriptor of
T.

Access Rules

1) The applicable privileges of the owner of T shall include REFERENCES for each referenced
column.
NOTE 181 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <referential constraint definition> defines a referential constraint.
NOTE 182 – Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’, specifies
when a constraint is effectively checked.

2) Let Rf be the referencing columns and let Rt be the referenced columns in the referenced table
T. The referencing table and the referenced table satisfy the referential constraint if and only if:

Case:

a) SIMPLE is specified or implicit and for each row of the referencing table, the <match
predicate>

Rf MATCH SIMPLE (SELECT Rt FROM T)

is true.

b) PARTIAL is specified and for each row of the referencing table, the <match predicate>

Rf MATCH PARTIAL (SELECT Rt FROM T)

is true.

c) FULL is specified and for each row of the referencing table, the <match predicate>

Rf MATCH FULL (SELECT Rt FROM T)

is true.

3) Case:

a) If SIMPLE is specified or implicit, or if FULL is specified, then for a given row in the
referenced table, every row that is a subrow or a superrow of a row R in the referencing
table such that the referencing column values equal the corresponding referenced column
values in R for the referential constraint is a matching row.

b) If PARTIAL is specified, then:

i) For a given row in the referenced table, every row that is a subrow or a superrow of
a row R in the referencing table such that R has at least one non-null referencing
column value and the non-null referencing column values of R equal the corresponding
referenced column values for the referential constraint is a matching row.

428 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

ii) For a given row in the referenced table, every matching row for that given row that is a
matching row only to the given row in the referenced table for the referential constraint
is a unique matching row. For a given row in the referenced table, a matching row for
that given row that is not a unique matching row for that given row for the referential
constraint is a unique matching row.

4) For each row of the referenced table, its matching rows, unique matching rows, and non-unique
matching rows are determined immediately prior to the execution of any <SQL procedure
statement>. No new matching rows are added during the execution of that <SQL procedure
statement>.

The association between a referenced row and a non-unique matching row is dropped during the
execution of that SQL-statement if the referenced row is either marked for deletion or updated
to a distinct value on any referenced column that corresponds to a non-null referencing column.
This occurs immediately after such a mark for deletion or update of the referenced row. Unique
matching rows and non-unique matching rows for a referenced row are evaluated immediately
after dropping the association between that referenced row and a non-unique matching row.

5) Let CTEC be the current trigger execution context. Let SSC be the set of state changes in
CTEC. Let SCi be a state change in SSC.

6) Let F be a subtable or supertable of the referencing table.

a) Let FL be the set of all columns of F. Let SRC be the set of referencing columns in F. Let
SS be the set whose elements are the empty set and each subset of FL that contains at least
one column in SRC. Let NSS be the number of sets in SS.

b) Let PMC be the set of referencing columns in F that correspond with the referenced
columns. Let PSS be the set whose elements are the empty set and each subset of FL
that contains at least one column in PMC. Let PNSS be the number of sets in PSS.

c) Let UMC be the set of referencing columns that correspond with updated referenced
columns. Let USS be the set whose elements are the empty set and each subset of FL
that contains at least one column in UMC. Let UNSS be the number of sets in USS.

7) If a row of the referenced table that has not previously been marked for deletion is marked for
deletion, then

Case:

a) If SIMPLE is specified or implicit, or if FULL is specified, then

Case:

i) If the <delete rule> specifies CASCADE, then for every F:

1) Every matching row in F is marked for deletion.

2) If no SCi has subject table F, trigger event DELETE, and an empty column list, then
a new state change SCj is added to SSC as follows:

A) The trigger event of SCj is DELETE.

B) The subject table of SCj is F.

C) The column list of SCj is empty.

Schema definition and manipulation 429

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

ii) If the <delete rule> specifies SET NULL, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

2) For every F, in every matching row in F, each referencing column in F is set to the
null value.

3) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows in F is added to the set of transitions of SCj.

iii) If the <delete rule> specifies SET DEFAULT, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

430 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

2) For every F, in every unique matching row in F, each referencing column in F is
set to the default value specified in the General Rules of Subclause 11.5, ‘‘<default
clause>’’.

3) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, event
UPDATE, and column list that is SSk. A copy of the set of matching rows in F is
added to the set of transitions of SCj.

iv) If the <delete rule> specifies RESTRICT and there exists some matching row, then an
exception condition is raised: integrity constraint violation — restrict violation.

b) If PARTIAL is specified, then

Case:

i) If the <delete rule> specifies CASCADE, then for every F:

1) Every unique matching row in F marked for deletion.

2) If no SCi has subject table F, event DELETE, and an empty column list, then a new
state change SCj is added to SSC as follows:

A) The trigger event of SCj is DELETE.

B) The subject table of SCj is F.

C) The column list of SCj is empty.

ii) If the <delete rule> specifies SET NULL, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

Schema definition and manipulation 431

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

2) For every F, in every unique matching row in F, each referencing column is set to
the null value.

3) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and column list that is SSk. A copy of the set of matching rows
in F is added to the set of transitions of SCj.

iii) If the <delete rule> specifies SET DEFAULT, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

2) For every F, in every unique matching row in F, each referencing column in F is
set to the default value specified in the General Rules of Subclause 11.5, ‘‘<default
clause>’’.

3) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

432 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows in F is added to the set of transitions of SCj.

iv) If the <delete rule> specifies RESTRICT and there exists some unique matching row,
then an exception condition is raised: integrity constraint violation — restrict violation.
NOTE 183 – Otherwise, the <referential action> is not performed.

8) If a non-null value of a referenced column in the referenced table is updated to a value that is
distinct from the current value of that column, then for every member F of the subtable family
of the referencing table:

Case:

a) If SIMPLE is specified or implicit, or if FULL is specified, then

Case:

i) If the <update rule> specifies CASCADE, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to PNSS, let SSk be the k-th set of PSS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is the set of matching rows in F.

2) For every F, in every matching row in F, each referencing column in F that cor-
responds with a referenced column is updated to the new value of that referenced
column.

3) For every F, for k ranging from 1 (one) to PNSS, let SSk be the k-th set of PSS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows in F is added to the set of transitions of SCj.

Schema definition and manipulation 433

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

ii) If the <update rule> specifies SET NULL, then

Case:

1) If SIMPLE is specified or implicit, then:

A) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are
applied with the following new set of state changes BTSS:

I) For every F, for k ranging from 1 (one) to PNSS, let SSk be the k-th set of
PSS.

II) BTSS contains a state change SCk as follows:

1) The trigger event of SCk is UPDATE.

2) The subject table of SCk is F.

3) The column list of SCk is SSk.

4) The set of transitions of SCk is a copy of the set of matching rows in F.

B) For every F, in every matching row in F, each referencing column in F that
corresponds with a referenced column is set to the null value.

C) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

I) If no SCi has subject table F, trigger event UPDATE, and a column list that
is SSk, then a new state change SCj is added to SSC as follows:

1) The trigger event of SCj is UPDATE.

2) The subject table of SCj is F.

3) The column list of SCj is SSk.

4) The set of transitions of SCj is a copy of the set of matching rows in F.

II) Otherwise, let SCj be the state change in SSC that has subject table F,
trigger event UPDATE, and a column list that is SSk. A copy of the set of
matching rows in F is added to the set of transitions of SCj.

2) If <match type> specifies FULL, then:

A) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are
applied with the following new set of state changes BTSS:

I) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

II) BTSS contains a state change SCk as follows:

1) The trigger event of SCk is UPDATE.

2) The subject table of SCk is F.

3) The column list of SCk is SSk.

434 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

4) The set of transitions of SCk is a copy of the set of matching rows.

B) For every F, in every matching row in F, each referencing column in F is set to
the null value.

C) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

I) If no SCi has subject table F, trigger event UPDATE, and a column list that
is SSk, then a new state change SCj is added to SSC as follows:

1) The trigger event of SCj is UPDATE.

2) The subject table of SCj is F.

3) The column list of SCj is SSk.

4) The set of transitions of SCj is a copy of the set of matching rows in F.

II) Otherwise, let SCj be the state change in SSC that has subject table F,
trigger event UPDATE, and a column list that is SSk. A copy of the set of
matching rows in F is added to the set of transitions of SCj.

iii) If the <update rule> specifies SET DEFAULT, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to PNSS, let SSk be the k-th set of PSS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is the set of matching rows in F.

2) For every F, in every matching row in F, the referencing column in F that cor-
responds with the referenced column is set to the default value specified in the
General Rules of Subclause 11.5, ‘‘<default clause>’’.

3) For every F, for k ranging from 1 (one) to PNSS, let SSk be the k-th set of PSS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

Schema definition and manipulation 435

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

B) Otherwise, let SCj be the state change in SSC that has subject table F, event
UPDATE, and a column list that is SSk. A copy of the set of matching rows is
added to the set of transitions of SCj.

iv) If the <update rule> specifies RESTRICT and there exists some matching row, then an
exception condition is raised: integrity constraint violation — restrict violation.

b) If PARTIAL is specified, then

Case:

i) If the <update rule> specifies CASCADE, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to UNSS, let SSk be the k-th set of USS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

2) For every F, for each unique matching row in F that contains a non-null value in the
referencing column C1 in F that corresponds with the updated referenced column
C2, C1 is updated to the new value V of C2, provided that, in all updated rows in
the referenced table that formerly had, in the same SQL-statement, that unique
matching row as a matching row, the values in C2 have all been updated to a value
that is not distinct from V. Otherwise, an exception condition is raised: triggered
data change violation.
NOTE 184 – Because of the Rules of Subclause 8.2, ‘‘<comparison predicate>’’, on which
the definition of ‘‘distinct’’ relies, the values in C2 may have been updated to values that are
not distinct, yet are not identical. Which of these non-distinct values is used for the cascade
operation is implementation-dependent.

3) For every F, for k ranging from 1 (one) to UNSS, let SSk be the k-th set of USS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows is added to the set of affected rows of SCj.

436 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

ii) If the <update rule> specifies SET NULL, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to UNSS, let SSk be the k-th set of USS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

2) For every F, in every unique matching row in F that contains a non-null value in a
referencing column in F that corresponds with the updated column, that referencing
column is set to the null value.

3) For every F, for k ranging from 1 (one) to NSS, let SSk be the k-th set of SS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows is added to the set of transitions of SCj.

iii) If the <update rule> specifies SET DEFAULT, then:

1) The General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied
with the following new set of state changes BTSS:

A) For every F, for k ranging from 1 (one) to UNSS, let SSk be the k-th set of USS.

B) BTSS contains a state change SCk as follows:

I) The trigger event of SCk is UPDATE.

II) The subject table of SCk is F.

III) The column list of SCk is SSk.

IV) The set of transitions of SCk is a copy of the set of matching rows in F.

Schema definition and manipulation 437

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.8 <referential constraint definition>

2) For every F, in every unique matching row in F that contains a non-null value in the
referencing column in F that corresponds with the updated column, that referencing
column is set to the default value specified in the General Rules of Subclause 11.5,
‘‘<default clause>’’.

3) For every F, for k ranging from 1 (one) to UNSS, let SSk be the k-th set of USS.

Case:

A) If no SCi has subject table F, trigger event UPDATE, and a column list that is
SSk, then a new state change SCj is added to SSC as follows:

I) The trigger event of SCj is UPDATE.

II) The subject table of SCj is F.

III) The column list of SCj is SSk.

IV) The set of transitions of SCj is a copy of the set of matching rows in F.

B) Otherwise, let SCj be the state change in SSC that has subject table F, trigger
event UPDATE, and a column list that is SSk. A copy of the set of matching
rows is added to the set of transitions of SCj.

iv) If the <update rule> specifies RESTRICT and there exists some unique matching row,
then an exception condition is raised: integrity constraint violation — restrict violation.

NOTE 185 – Otherwise, the <referential action> is not performed.

9) If any attempt is made within an SQL-statement to update some site to a value that is distinct
from the value to which that site was previously updated within the same SQL-statement, then
an exception condition is raised: triggered data change violation.

10) If a site in an object row is an <object column> of an <update statement: positioned> or <update
statement: searched>, and there is any attempt within the same SQL-statement to delete the
row containing that site, then an exception condition is raised: triggered data change violation.

11) If an <update rule> attempts to update a row that has been deleted by any <delete state-
ment: positioned> that identifies some cursor CR that is still open or updated by any <update
statement: positioned> that identifies some cursor CR that is still open or if a <delete rule>
attempts to mark for deletion such a row, then a completion condition is raised: warning —
cursor operation conflict.

12) For every row RMD that is marked for deletion, every subrow of RMD and every superrow of
RMD is marked for deletion.

13) The general Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are applied with the
following new set of state changes BTSS.

For each table Fi that contains a row that is marked for deletion, BTSS contains a state change
SCi as follows:

a) The trigger event of SCi is DELETE.

b) The subject table of SCi is Fi.

c) The column list of SCi is empty.

438 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.8 <referential constraint definition>

d) The set of transitions of SCi is a copy of the set of rows in Fi that are marked for deletion.

14) For each table Fi that contains a row that is marked for deletion, let SCj be the state change in
SSC that has subject table Fi, trigger event DELETE, and an empty column list. A copy of the
rows in Fi that are marked for deletion is added to the set of affected rows of SCj.

15) All rows that are marked for deletion are effectively deleted at the end of the SQL-statement,
prior to the checking of any integrity constraints.

Conformance Rules

1) Without Feature T191, ‘‘Referential action RESTRICT’’, a <referential action> shall not be
RESTRICT.

2) Without Feature F741, ‘‘Referential MATCH types’’, a <references specification> shall not specify
MATCH.

3) Without Feature F191, ‘‘Referential delete actions’’, a <referential triggered action> shall not
contain a <delete rule>.

4) Without Feature F701, ‘‘Referential update actions’’, a <referential triggered action> shall not
contain an <update rule>.

5) Without Feature T201, ‘‘Comparable data types for referential constraints’’, the data type of
each referencing column shall be the same as the data type of the corresponding referenced
column.

Schema definition and manipulation 439

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.9 <check constraint definition>

11.9 <check constraint definition>

Function
Specify a condition for the SQL-data.

Format

<check constraint definition> ::=
CHECK <left paren> <search condition> <right paren>

Syntax Rules

1) The <search condition> shall not contain a <target specification>.

2) The <search condition> shall not contain a <set function specification> that is not contained in
a <subquery>.

3) If <check constraint definition> is contained in a <table definition> or <alter table statement>,
then let T be the table identified by the containing <table definition> or <alter table statement>.

Case:

a) If T is a persistent base table, or if the <check constraint definition> is contained in a
<domain definition> or <alter domain statement>, then no <table reference> generally
contained in the <search condition> shall reference a temporary table.

b) If T is a global temporary table, then no <table reference> generally contained in the
<search condition> shall reference a table other than a global temporary table.

c) If T is a created local temporary table, then no <table reference> generally contained in the
<search condition> shall reference a table other than either a global temporary table or a
created local temporary table.

d) If T is a declared local temporary table, then no <table reference> generally contained in the
<search condition> shall reference a persistent base table.

4) If the <check constraint definition> is contained in a <table definition> that defines a temporary
table and specifies ON COMMIT PRESERVE ROWS or a <temporary table declaration> that
specifies ON COMMIT PRESERVE ROWS, then no <subquery> in the <search condition> shall
reference a temporary table defined by a <table definition> or a <temporary table declaration>
that specifies ON COMMIT DELETE ROWS.

5) The <search condition> shall not generally contain a <datetime value function> or a <value
specification> that is CURRENT_USER, CURRENT_ROLE, SESSION_USER, SYSTEM_USER,
or CURRENT_PATH.

6) The <search condition> shall not generally contain a <query specification> or a <query expres-
sion> that is possibly non-deterministic.

7) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that is possibly non-deterministic.

440 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.9 <check constraint definition>

8) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that possibly modifies SQL-data.

9) Let A be the <authorization identifier> that owns T.

Access Rules

1) Let TN be any <table name> referenced in the <search condition>.

Case:

a) If a <column name> is contained in the <search condition>, then the applicable privileges of
the <authorization identifier> that owns the containing schema shall include REFERENCES
for each <column name> of the table identified by TN contained in the <search condition>.

b) Otherwise, the applicable privileges of the <authorization identifier> that owns the contain-
ing schema shall include REFERENCES for at least one column of the table identified by
TN.

NOTE 186 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <check constraint definition> defines a check constraint.
NOTE 187 – Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’, specifies
when a constraint is effectively checked. The General Rules that control the evaluation of a check
constraint can be found in either Subclause 11.6, ‘‘<table constraint definition>’’, or Subclause 11.23,
‘‘<domain definition>’’, depending on whether it forms part of a table constraint or a domain constraint.

2) If the character representation of the <search condition> cannot be represented in the
Information Schema without truncation, then a completion condition is raised: warning —
search condition too long for information schema.

Conformance Rules

1) Without Feature F671, ‘‘Subqueries in CHECK constraints’’, the <search condition> contained in
a <check constraint definition> shall not contain a <subquery>.

Schema definition and manipulation 441

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.10 <alter table statement>

11.10 <alter table statement>

Function
Change the definition of a table.

Format

<alter table statement> ::=
ALTER TABLE <table name> <alter table action>

<alter table action> ::=
<add column definition>

| <alter column definition>
| <drop column definition>
| <add table constraint definition>
| <drop table constraint definition>

Syntax Rules

1) Let T be the table identified by the <table name>.

2) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <table name>.

3) The schema identified by the explicit or implicit schema name of the <table name> shall include
the descriptor of T.

4) The scope of the <table name> is the entire <alter table statement>.

5) T shall be a base table.

6) T shall not be a declared local temporary table.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the <schema name> of the table identified by <table name>.

General Rules

1) The base table descriptor of T is modified as specified by <alter table action>.

2) If <add column definition> or <drop column definition> is specified, then the row type RT of T is
the set of pairs (<field name>, <data type>) where <field name> is the name of a column C of T
and <data type> is the declared type of C. This set of pairs contains one pair for each column of
T in the order of their ordinal position in T.

442 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.10 <alter table statement>

Conformance Rules

1) Without Feature F033, ‘‘ALTER TABLE statement: DROP COLUMN clause’’, conforming SQL
language shall not specify <drop column definition>.

2) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
specify <alter column definition>.

3) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
specify <add table constraint definition>.

4) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
specify <drop table constraint definition>.

Schema definition and manipulation 443

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.11 <add column definition>

11.11 <add column definition>

Function
Add a column to a table.

Format

<add column definition> ::=
ADD [COLUMN] <column definition>

Syntax Rules

1) Let T be the table identified by the <table name> immediately contained in the containing
<alter table statement>.

2) T shall not be a referenceable table.

Access Rules

None.

General Rules

1) The column defined by the <column definition> is added to T.

2) Let C be the column added to T. Every value in C is the default value for C.
NOTE 188 – The default value of a column is defined in Subclause 11.5, ‘‘<default clause>’’.

NOTE 189 – The addition of a column to a table has no effect on any existing <query expression>
included in a view descriptor, <triggered action> included in a trigger descriptor, or <search condition>
included in a constraint descriptor because any implicit column references in these descriptor elements
are syntactically substituted by explicit column references under the Syntax Rules of Subclause 7.11,
‘‘<query specification>’’. Furthermore, by implication (from the lack of any General Rules to the contrary),
the meaning of a column reference is never retroactively changed by the addition of a column subsequent
to the invocation of the <SQL schema statement> containing that column reference.

3) For every table privilege descriptor that specifies T and a privilege of SELECT, UPDATE,
INSERT or REFERENCES, a new column privilege descriptor is created that specifies T, the
same action, grantor, and grantee, and the same grantability, and specifies the <column name>
of the <column definition>.

4) In all other respects, the specification of a <column definition> in an <alter table statement>
has the same effect as specification of the <column definition> in the <table definition> for T
would have had. In particular, the degree of T is increased by 1 (one) and the ordinal position of
that column is equal to the new degree of T as specified in the General Rules of Subclause 11.4,
‘‘<column definition>’’.

Conformance Rules

None.

444 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.12 <alter column definition>

11.12 <alter column definition>

Function
Change a column and its definition.

Format

<alter column definition> ::=
ALTER [COLUMN] <column name> <alter column action>

<alter column action> ::=
<set column default clause>

| <drop column default clause>
| <add column scope clause>
| <drop column scope clause>

Syntax Rules

1) Let T be the table identified in the containing <alter table statement>.

2) Let C be the column identified by the <column name>.

3) C shall be an originally-defined column of T.

4) If <add column scope clause> or <drop column scope clause> is specified, then C shall not be the
self-referencing column of T.

Access Rules

None.

General Rules

1) The column descriptor of C is modified as specified by <alter column action>.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain an <alter column definition>.

Schema definition and manipulation 445

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.13 <set column default clause>

11.13 <set column default clause>

Function
Set the default clause for a column.

Format

<set column default clause> ::=
SET <default clause>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let C be the column identified by the <column name> in the containing <alter column defini-
tion>.

2) The default value specified by the <default clause> is placed in the column descriptor of C.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain a <set column default clause>.

446 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.14 <drop column default clause>

11.14 <drop column default clause>

Function
Drop the default clause from a column.

Format

<drop column default clause> ::=
DROP DEFAULT

Syntax Rules

1) Let C be the column identified by the <column name> in the containing <alter column defini-
tion>.

2) The descriptor of C shall include a default value.

Access Rules

None.

General Rules

1) The default value is removed from the column descriptor of C.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain a <drop column default clause>.

Schema definition and manipulation 447

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.15 <add column scope clause>

11.15 <add column scope clause>

Function
Add a non-empty scope for an existing column of data type REF in a base table.

Format

<add column scope clause> ::=
ADD <scope clause>

Syntax Rules

1) Let CO be the column identified by the <column name> in the containing <alter column def-
inition>. The declared type of C shall be some reference type. Let RTD be the reference type
descriptor included in the descriptor of C.

2) RTD shall not include a scope.

3) Let UDTN be the name of the referenced type included in RTD.

4) The <table name> STN contained in the <scope clause> shall identify a referenceable table
whose structured type is UDTN.

Access Rules

None.

General Rules

1) STN is included as the scope in the reference type descriptor included in the column descriptor
of C.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced ref-
erence types’’, conforming SQL language shall not contain any <add column scope clause>.

448 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.16 <drop column scope clause>

11.16 <drop column scope clause>

Function
Drop the scope from an existing column of data type REF in a base table.

Format

<drop column scope clause> ::=
DROP SCOPE <drop behavior>

Syntax Rules

1) Let CO be the column identified by the <column name> in the containing <alter column defini-
tion>. The declared type of C shall be some reference type.

2) An impacted dereference operation is a <dereference operation> whose <value expression pri-
mary> is a column reference that identifies C, a <method reference> whose <value expression
primary> is a column reference that identifies C, or a <reference resolution> whose <reference
value expression> is a column reference that identifies C.

3) If RESTRICT is specified, then no impacted dereference operation shall be contained in any of
the following:

a) The <SQL routine body> of any routine descriptor.

b) The <query expression> of any view descriptor.

c) The <search condition> of any constraint descriptor or assertion descriptor.

d) The triggered action of any trigger descriptor.
NOTE 190 – If CASCADE is specified, then such referencing objects will be dropped by the execution of
the <SQL procedure statement>s specified in the General Rules of this Subclause.

Access Rules

None.

General Rules

1) For every SQL-invoked routine R whose routine descriptor includes a <SQL routine body>
that contains an impacted dereference operation, let SN be the <specific name> of R. The
following <drop routine statement> is effectively executed for every R without further Access
Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

2) For every view V whose view descriptor includes a <query expression> that contains an im-
pacted dereference operation, let VN be the <table name> of V. The following <drop view
statement> is effectively executed for every V without further Access Rule checking:

DROP VIEW VN CASCADE

Schema definition and manipulation 449

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.16 <drop column scope clause>

3) For every assertion A whose assertion descriptor includes a <search condition> that contains
an impacted dereference operation, let AN be the <constraint name> of A. The following <drop
assertion statement> is effectively executed for every A without further Access Rule checking:

DROP ASSERTION AN

4) For every table check constraint C whose table check constraint descriptor includes a <search
condition> that contains an impacted dereference operation, let CN be the <constraint name>
of C and let TN be the <table name> of the table whose descriptor includes descriptor of C. The
following <alter table statement> is effectively executed for every C without further Access Rule
checking:

ALTER TABLE TN DROP CONSTRAINT CN CASCADE

5) The scope included in the reference type descriptor included in the column descriptor of C is
made empty.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced ref-
erence types’’, conforming SQL language shall not contain any <drop column scope clause>.

450 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.17 <drop column definition>

11.17 <drop column definition>

Function
Destroy a column of a base table.

Format

<drop column definition> ::=
DROP [COLUMN] <column name> <drop behavior>

Syntax Rules

1) Let T be the table identified by the <table name> in the containing <alter table statement> and
let TN be the name of T.

2) Let C be the column identified by the <column name> CN.

3) T shall not be a referenceable table.

4) C shall be a column of T and C shall not be the only column of T.

5) If RESTRICT is specified, then C shall not be referenced in any of the following:

a) The <query expression> of any view descriptor.

b) The <search condition> of any constraint descriptor other than a table constraint descriptor
that contains references to no other column and that is included in the table descriptor of T.

c) The <SQL routine body> of any routine descriptor.

d) Either an explicit trigger column list or a triggered action column set of any trigger descrip-
tor.

NOTE 191 – A <drop column definition> that does not specify CASCADE will fail if there are any
references to that column resulting from the use of CORRESPONDING, NATURAL, SELECT * (except
where contained in an exists predicate>), or REFERENCES without a <reference column list> in its
<referenced table and columns>.

NOTE 192 – If CASCADE is specified, then any such dependent object will be dropped by the execution
of the <revoke statement> specified in the General Rules of this Subclause.

NOTE 193 – CN may be contained in an implicit trigger column list of a trigger descriptor.

Access Rules

None.

General Rules

1) Let TR be the trigger name of any trigger descriptor having an explicit trigger column list
or a triggered action column set that contains CN. The following <drop trigger statement> is
effectively executed without further Access Rule checking:

DROP TRIGGER TR

Schema definition and manipulation 451

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.17 <drop column definition>

2) If T is the subject table of a trigger descriptor TD that contains an UPDATE trigger event with
an implicit trigger column list, then C is removed from the trigger column list of TD.

3) Let A be the <authorization identifier> that owns T. The following <revoke statement> is
effectively executed with a current authorization identifier of ‘‘_SYSTEM’’ and without further
Access Rule checking:

REVOKE INSERT(CN), UPDATE(CN), SELECT(CN), REFERENCES(CN) ON TABLE TN FROM A CASCADE

4) Let R be any SQL-invoked routine whose routine descriptor contains the <column name> of C
in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed for every R without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

5) If the column is not based on a domain, then its data type descriptor is destroyed.

6) The data associated with C is destroyed.

7) The descriptor of C is removed from the descriptor of T.

8) The descriptor of C is destroyed.

9) The degree of T is reduced by 1 (one). The ordinal position of all columns having an ordinal
position greater than the ordinal position of C is reduced by 1 (one).

Conformance Rules

1) Without Feature F033, ‘‘ALTER TABLE statement: DROP COLUMN clause’’, conforming SQL
language shall not specify <drop column definition>.

452 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.18 <add table constraint definition>

11.18 <add table constraint definition>

Function
Add a constraint to a table.

Format

<add table constraint definition> ::=
ADD <table constraint definition>

Syntax Rules

1) If PRIMARY KEY is specified, then T shall not have any proper supertable.

Access Rules

None.

General Rules

1) Let T be the table identified by the <table name> in the containing <alter table statement>.

2) The table constraint descriptor for the <table constraint definition> is included in the table
descriptor for T.

3) Let TC be the table constraint added to T. If TC causes some column CN to be known not
nullable and no other constraint causes CN to be known not nullable, then the nullability
characteristic of the column descriptor of CN is changed to known not nullable.
NOTE 194 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain an <add table constraint definition>.

Schema definition and manipulation 453

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.19 <drop table constraint definition>

11.19 <drop table constraint definition>

Function
Destroy a constraint on a table.

Format

<drop table constraint definition> ::=
DROP CONSTRAINT <constraint name> <drop behavior>

Syntax Rules

1) Let T be the table identified by the <table name> in the containing <alter table statement>.

2) The <constraint name> shall identify a table constraint TC of T.

3) If TC is a unique constraint and RC is a referential constraint whose referenced table is T and
whose referenced columns are the unique columns of TC, then RC is said to be dependent on
TC.

4) If V is a view that contains a <query specification> QS that contains a column reference to a
column C in its <select list> that is not contained in a <set function specification>, and if G
is the set of columns defined by the <grouping column reference list> of QS, and if the table
constraint TC is needed to conclude that G 7! C is a known functional dependency in QS, then
V is said to be dependent on TC.

5) If T is a referenceable table with a derived self-referencing column, then:

a) TC shall not be a unique constraint whose unique columns correspond to the attributes in
the list of attributes of the derived representation of the reference type whose referenced
type is the structured type of T.

b) TC shall not be a unique constraint whose unique column is the self-referencing column of
T.

6) If RESTRICT is specified, then:

a) No table constraint shall be dependent on TC.

b) The <constraint name> of TC shall not be generally contained in the <SQL routine body> of
any routine descriptor.

c) No view shall be dependent on TC.
NOTE 195 – If CASCADE is specified, then any such dependent object will be dropped by the effective
execution of the <alter table statement> specified in the General Rules of this Subclause.

Access Rules

None.

454 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.19 <drop table constraint definition>

General Rules

1) Let TCN2 be the <constraint name> of any table constraint that is dependent on TC and let
T2 be the <table name> of the table descriptor that includes TCN2. The following <alter table
statement> is effectively executed without further Access Rule checking:

ALTER TABLE T2 DROP CONSTRAINT TCN2 CASCADE

2) Let R be any SQL-invoked routine whose routine descriptor contains the <constraint name> of
TC in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

3) Let VN be the table name of any view V that is dependent on TC. The following <drop view
statement> is effectively executed for every V:

DROP VIEW VN CASCADE

4) The descriptor of TC is removed from the descriptor of T.

5) If TC causes some column CN to be known not nullable and no other constraint causes CN to be
known not nullable, then the nullability characteristic of the column descriptor of CN is changed
to possibly nullable.
NOTE 196 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

6) The descriptor of TC is destroyed.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
contain a <drop table constraint definition>.

Schema definition and manipulation 455

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.20 <drop table statement>

11.20 <drop table statement>

Function
Destroy a table.

Format

<drop table statement> ::=
DROP TABLE <table name> <drop behavior>

Syntax Rules

1) Let T be the table identified by the <table name> and let TN be that <table name>.

2) The schema identified by the explicit or implicit schema name of the <table name> shall include
the descriptor of T.

3) T shall be a base table.

4) T shall not be a declared local temporary table.

5) If RESTRICT is specified, then T shall not have any subtables.

6) If RESTRICT is specified, then T shall not be referenced in any of the following:

a) The <query expression> of any view descriptor.

b) The <search condition> of any table check constraint descriptor of any table other than T or
the <search condition> of a constraint descriptor of an assertion descriptor.

c) The table descriptor of the referenced table of any referential constraint descriptor of any
table other than T.

d) The scope of the declared type of a column of a table other than T and of the declared type
of an SQL parameter of any SQL-invoked routine.

e) The <SQL routine body> of any SQL-invoked routine descriptor.

f) The scope of the declared type of an SQL parameter of any SQL-invoked routine.

g) The trigger action of any trigger descriptor.
NOTE 197 – If CASCADE is specified, then such referenced objects will be dropped by the execution of
the <revoke statement> specified in the General Rules of this Subclause.

7) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the table identified by TN.

8) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <table name>.

Access Rules

1) The enabled authorization identifiers shall include A.

456 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.20 <drop table statement>

General Rules

1) Let ST be the <table name> of any subtable of T. The following <drop table statement> is
effectively executed without further Access Rule checking:

DROP TABLE ST CASCADE

2) If T is a referenceable table, then:

a) Let ST be structured type associated with T.

b) Let RST be the reference type whose referenced type is ST.

c) Let DT be any table whose table descriptor includes a column descriptor that generally
includes a field descriptor, an attribute descriptor, or an array descriptor that includes a
reference type descriptor RST whose scope includes TN.
NOTE 198 – A descriptor that ‘‘generally includes’’ another descriptor is defined in Subclause 6.2.4,
"Descriptors", in ISO/IEC 9075-1.

d) Let DTN be the name of the table DT.

e) Case:

i) If DT is a base table, then the following <drop table statement> is effectively executed
without further Access Rule checking:

DROP TABLE DTN CASCADE

ii) Otherwise, the following <drop view statement> is effectively executed without further
Access Rule checking:

DROP VIEW DTN CASCADE

3) For every supertable of T, every superrow and every subrow of every row of T is effectively
deleted at the end of the SQL-statement, prior to the checking of any integrity constraints.
NOTE 199 – This deletion creates neither a new trigger execution context nor the definition of a new
state change in the current trigger execution context.

4) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE ALL PRIVILEGES ON TN FROM A CASCADE

5) Let R be any SQL-invoked routine whose routine descriptor contains the <table name> of T
in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

6) For each direct supertable DST of T, the table name of T is removed from the list of table names
of direct subtables of DST that is included in the table descriptor of DST.

7) The descriptor of T is destroyed.

Schema definition and manipulation 457

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.20 <drop table statement>

Conformance Rules

1) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE shall not be
specified in <drop table statement>.

458 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.21 <view definition>

11.21 <view definition>

Function
Define a viewed table.

Format

<view definition> ::=
CREATE [RECURSIVE] VIEW <table name>
<view specification>
AS <query expression>
[WITH [<levels clause>] CHECK OPTION]

<view specification> ::=
<regular view specification>

| <referenceable view specification>

<regular view specification> ::=
[<left paren> <view column list> <right paren>]

<referenceable view specification> ::=
OF <user-defined type>
[<subview clause>]
[<view element list>]

<subview clause> ::= UNDER <table name>

<view element list> ::=
<left paren>

[<self-referencing column specification> <comma>]
<view element> [{ <comma> <view element> }...]

<right paren>

<view element> ::= <view column option>

<view column option> ::= <column name> WITH OPTIONS <scope clause>

<levels clause> ::=
CASCADED

| LOCAL

<view column list> ::= <column name list>

Syntax Rules

1) The <query expression> shall have an element type that is a row type.

2) The <query expression> shall not contain a <target specification>.

3) If a <view definition> is contained in a <schema definition> and the <table name> contains
a <schema name>, then that <schema name> shall be equivalent to the specified or implicit
<schema name> of the containing <schema definition>.

4) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <table name>.

Schema definition and manipulation 459

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.21 <view definition>

5) The schema identified by the explicit or implicit schema name of the <table name> shall not
include a table descriptor whose table name is <table name>.

6) No <table reference> generally contained in the <query expression> shall identify any declared
local temporary table.

7) If a <table reference> generally contained in the <query expression> identifies the viewed table
VT defined by <view definition> VD, then VD and VT are said to be recursive.

8) If VD is recursive, then

a) <view column list> shall be specified.

b) RECURSIVE shall be specified.

c) CHECK OPTION shall not be specified.

d) <referenceable view specification> shall not be specified.

e) VD is equivalent to

CREATE VIEW <table name> AS
WITH RECURSIVE <table name> (<view column list>)
AS (<query expression>)

9) The viewed table is updatable if and only if the <query expression> is updatable.

10) The viewed table is insertable-into if and only if the <query expression> is insertable-into.

11) If the <query expression> is a <query specification> that contains a <group by clause> or a
<having clause> that is not contained in a <subquery>, then the viewed table defined by the
<view definition> is a grouped view.

12) If any two columns in the table specified by the <query expression> have equivalent <column
name>s, or if any column of that table has an implementation-dependent name, then a <view
column list> shall be specified.

13) Equivalent <column name>s shall not be specified more than once in the <view column list>.

14) The number of <column name>s in the <view column list> shall be the same as the degree of
the table specified by the <query expression>.

15) No column in the table specified by <query expression> shall have a coercibility characteristic of
No collating sequence.
NOTE 200 – The coercibility characteristic is described in Subclause 4.2.3, ‘‘Rules determining collating
sequence usage’’.

16) If WITH CHECK OPTION is specified, then the viewed table shall be updatable.

17) If WITH CHECK OPTION is specified and <levels clause> is not specified, then a <levels
clause> of CASCADED is implicit.

18) If WITH LOCAL CHECK OPTION is specified, then the <query expression> shall not gen-
erally contain a <query expression> QE or a <query specification> QS that is possibly non-
deterministic unless QE or QS is generally contained in a viewed table that is a leaf underlying
table of the <query expression>.

460 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.21 <view definition>

If WITH CASCADED CHECK OPTION is specified, then the <query expression> shall not gen-
erally contain a <query expression> or <query specification> that is possibly non-deterministic.

19) Let V be the view defined by the <view definition>. The underlying columns of every i-th column
of V are the underlying columns of the i-th column of the <query expression> and the underlying
columns of V are the underlying columns of the <query expression>.

20) <subview clause>, if present, identifies the direct superview SV of V and V is said to be a direct
subview of SV. View V1 is a superview of view V2 if and only if one of the following is true:

a) V1 and V2 are the same view.

b) V1 is a direct superview of V2.

c) There exists a view V3 such that V1 is a direct superview of V3 and V3 is a superview of V2.
If V1 is a superview of V2, then V2 is a subview of V1.

If V1 is a superview of V2 and V1 and V2 are not the same view, then V2 is a proper subview of
V1 and V1 is a proper superview of V2.

If V2 is a direct subview of V1, then V2 is a direct subtable of V1.
NOTE 201 – It follows that the subviews of the superviews of V together constitute the subtable family
of V, every implication of which applies.

21) If <referenceable view specification> is specified, then:

a) V is a referenceable view.

b) RECURSIVE shall not be specified.

c) The <user-defined type name> simply contained in <user-defined type> shall identify a
structured type ST.

d) The subtable family of V shall not include a member, other than V itself, whose associated
structured type is ST.

e) If <subview clause> is not specified, then <referenceable column specification> shall be
specified.

f) Let QE be the <query expression>.

g) Let n be the number of attributes of ST. Let Ai, 1 (one) � i � n be the attributes of ST.

h) Let RT be the row type of QE.

i) If <referenceable column specification> is specified, then:

i) <subview clause> shall not be specified.

ii) SYSTEM GENERATED shall not be specified.

iii) Let RST be the reference type REF(ST).

Case:

1) If USER GENERATED is specified, then:

A) RST shall have a user-defined representation.

Schema definition and manipulation 461

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.21 <view definition>

B) Let m be 1 (one).

2) If DERIVED is specified, then:

A) RST shall have a derived representation.

B) Let m be 0 (zero).

j) If <subview clause> is specified, then:

i) The <table name> contained in the <subview clause> shall identify a referenceable table
SV that is a view.

ii) ST shall be a direct subtype of the structured type of the direct supertable of V.

iii) The SQL-schema identified by the explicit or implicit <schema name> of the <table
name> of V shall include the descriptor of SV.

iv) Let MSV be the maximum superview of the subtable family of V. Let RMSV be the
reference type REF(RMSV).

Case:

1) If RMSV has a user-defined representation, then let m be 1 (one).

2) Otherwise, RMSV has a derived representation. Let m be 0 (zero).

k) The degree of RT shall be n+m.

l) Let Fi, 1 (one) � i � n, be the fields of RT.

m) For i varying from 1 (one) to n:

i) The declared data type DDTFi+m of Fi+m shall be compatible with the declared data type
DDTAi of Ai.

ii) The Syntax Rules of Subclause 10.14, ‘‘Data type identity’’, are applied with DDTFi+m
and DDTAi.

n) QE shall consist of a single <query specification> QS.

o) The <from clause> of QS shall simply contain a single <table reference> TR.

p) TR shall immediately contain a <table or query name>. Let TQN be the table identified by
the <table or query name>. TQN is the basis table of V.

q) If TQN is a referenceable base table or a referenceable view, then TR shall simply contain
ONLY.

r) QS shall not simply contain a <group by clause> or a <having clause>.

s) If <referenceable column specification> is specified, then

Case:

i) If RST has a user-defined representation, then:

1) TQN shall have a candidate key consisting of a single column RC.

462 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.21 <view definition>

2) Let SS be the first <select sublist> in the <select list> of QS.

3) SS shall consist of a single <cast specification> CS whose leaf column is RC.
NOTE 202 – ‘‘Leaf column of a <cast specification>’’ is defined in Subclause 6.22, ‘‘<cast
specification>’’.

4) The declared type of F1 shall be REF(ST).

ii) Otherwise, RST has a derived representation.

1) Let Ci, 1 (one) � i � n, be the columns of V that correspond to the attributes of the
derived representation of RST.

2) TQN shall have a candidate key consisting of some subset of the underlying columns
of Ci, 1 (one) � i � n.

t) If <subview clause> is specified, then TQN shall be a proper subtable or proper subview of
the basis table of SV.

u) Let <view element list>, if specified, be TEL1.

v) Let r be the number of <view column option>s. For every <view column option> VCOj, 1
(one) � j � r, <column name> shall be equivalent to the <attribute name> of some attribute
of ST.

w) Distinct <view column option>s contained in TEL1 shall specify distinct <column name>s.

x) Let CNj, 1 (one) � j � r, be the <column name> contained in VCOj and let SCLj be the
<scope clause> contained in VCOj.

22) Let the originally-defined columns of V be the columns of the table defined by QE.

23) A column of V is called an updatable column of V if its underlying column is updatable.

24) If the <view definition> is contained in a <schema definition>, then let A be the explicit or
implicit <authorization identifier> of the <schema definition>; otherwise, let A be the <autho-
rization identifier> that owns the schema identified by the explicit or implicit <schema name>
of the <table name>.

Access Rules

1) If a <view definition> is contained in an SQL-client module, then the enabled authorization
identifiers shall include the <authorization identifier> that owns the schema identified by the
implicit or explicit <schema name> of the <table name>.

2) If ‘‘OF <user-defined type>’’ is specified, then the applicable privileges of A shall include USAGE
on ST.
NOTE 203 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

3) If <subview clause> is specified, then

Case:

a) If <view definition> is contained in an <SQL schema statement>, then the applicable privi-
leges of the <authorization identifier> that owns the schema shall include UNDER for SV.

Schema definition and manipulation 463

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.21 <view definition>

b) Otherwise, the current privileges shall include UNDER for SV.
NOTE 204 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

General Rules

1) A view descriptor VD is created that describes V. VD includes:

a) The <table name> TN.

b) QE, as both the <query expression> of the descriptor and the original <query expression> of
the descriptor.

c) Case:

i) If <regular view specification> is specified, then the column descriptors taken from the
table specified by the <query expression>.

Case:

1) If a <view column list> is specified, then the <column name> of the i-th column of
the view is the i-th <column name> in that <view column list>.

2) Otherwise, the <column name>s of the view are the <column name>s of the table
specified by the <query expression>.

ii) Otherwise:

1) A column descriptor in which:

A) The name of the column is <self-referencing column name>.

B) The data type descriptor is that generated by the <data type> ‘‘REF(ST)
SCOPE(TN)’’.

C) The nullability characteristic is known not nullable.

D) The ordinal position is 1 (one).

E) The column is indicated to be self-referencing.

2) The column descriptor of each originally-defined column of V in which:

A) The <column name> of each columns is replaced by the <attribute name> of its
corresponding attribute of ST.

B) If the declared type of the column is a reference type, then the scope of the
column is SCLi contained in the VCOi that contains the <attribute name> of ST
that corresponds to the column.

3) If DERIVED is specified, then an indication that the self-referencing column is a
derived self-referencing column.

4) If USER GENERATED is specified, then an indication that the self-referencing
column is a user-generated self-referencing column.

d) An indication as to whether WITH CHECK OPTION was omitted, specified with LOCAL, or
specified with CASCADED.

464 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.21 <view definition>

2) Let VN be the <table name>. Let QE be the <query expression> included in the view descriptor
VD of the view identified by VN. Let OQE be the original <query expression> included in VD.
If a <view column list> is specified, then let VCL be the <view column list> preceded by a <left
paren> and followed by a <right paren>; otherwise, let VCL be the zero-length string.

Case:

a) When VN is immediately contained in some SQL-schema statement, it identifies the view
descriptor VD.

b) When VN is immediately contained in a <table reference> that specifies ONLY, VN refer-
ences the same table as the <table reference>:

(OQE) AS VN VCL

c) Otherwise, VN references the same table as the <table reference>:

(QE) AS VN VCL

3) For i ranging from 1 (one) to the number of distinct leaf underlying tables of the <query ex-
pression> QE of V, let RTi be the <table name>s of those tables. For every column CV of
V:

a) Let CRTij, for j ranging from 1 (one) to the number of columns of RTi that are underlying
columns of CV, be the <column name>s of those columns.

b) A set of privilege descriptors with the grantor for each set to the special grantor value ‘‘_
SYSTEM’’ is created as follows:

i) For every column CV of V, a privilege descriptor is created that defines the privilege
SELECT(CV) on V to A. That privilege is grantable if and only if all the following are
true:

1) The applicable privileges of A include grantable SELECT privileges on all of the
columns CRTij.

2) The applicable privileges of A include grantable EXECUTE privileges on all SQL-
invoked routines that are subject routines of <routine invocation>s contained in QE.

3) The applicable privileges of A include grantable SELECT privilege on every table T1
and every method M such that there is a <method reference> MR contained in QE
such that T1 is in the scope of the <value expression primary> of MR and M is the
method identified by the <method name> of MR.

4) The applicable privileges of A include grantable SELECT privilege WITH
HIERARCHY OPTION on at least one supertable of the scoped table of every
<reference resolution> that is contained in QE.

ii) For every column CV of V, if the applicable privileges of A include REFERENCES(CRTij)
for all i and for all j, and the applicable privileges of A include REFERENCES on some
column of RTi for all i, then a privilege descriptor is created that defines the privilege
REFERENCES(CV) on V to A. That privilege is grantable if and only if all the following
are true:

1) The applicable privileges of A include grantable REFERENCES privileges on all of
the columns CRTij.

Schema definition and manipulation 465

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.21 <view definition>

2) The applicable privileges of A include grantable EXECUTE privileges on all SQL-
invoked routines that are subject routines of <routine invocation>s contained in QE.

3) The applicable privileges of A include grantable SELECT privilege on every table T1
and every method M such that there is a <method reference> MR contained in QE
such that T1 is in the scope of the <value expression primary> of MR and M is the
method identified by the <method name> of MR.

4) The applicable privileges of A include grantable SELECT privilege WITH
HIERARCHY OPTION on at least one supertable of the scoped table of every
<reference resolution> that is contained in QE.

4) A privilege descriptor is created that defines the privilege SELECT on V to A. That privilege is
grantable if and only if the applicable privileges of A include grantable SELECT privilege on
every column of V. The grantor of that privilege descriptor is set to the special grantor value
‘‘_SYSTEM’’.

5) If the applicable privileges of A include REFERENCES privilege on every column of V, then a
privilege descriptor is created that defines the privilege REFERENCES on V to A. That privilege
is grantable if and only if the applicable privileges of A include grantable REFERENCES
privilege on every column of V. The grantor of that privilege descriptor is set to the special
grantor value ‘‘_SYSTEM’’.

6) If V is updatable, then a set of privilege descriptors with the grantor for each set to the special
grantor value ‘‘_SYSTEM’’ is created as follows:

a) For each leaf underlying table LUT of QE, if QE is one-to-one with respect to LUT, and the
applicable privileges of A include INSERT privilege on LUT, then a privilege descriptor is
created that defines the INSERT privilege on V. That privilege is grantable if and only if the
applicable privileges of A include grantable INSERT privilege on LUT.

b) For each leaf underlying table LUT of QE, if QE is one-to-one with respect to LUT, and the
applicable privileges of A include UPDATE privilege on LUT, then a privilege descriptor is
created that defines the UPDATE privilege on V. That privilege is grantable if and only if
the applicable privileges of A include grantable UPDATE privilege on LUT.

c) For each leaf underlying table LUT of QE, if QE is one-to-one with respect to LUT, and the
applicable privileges of A include DELETE privilege on LUT, then a privilege descriptor is
created that defines the DELETE privilege on V. That privilege is grantable if and only if
the applicable privileges of A include grantable DELETE privilege on LUT.

d) For each column CV of V that has a counterpart CLUT in LUT, if QE is one-to-one with
respect to LUT, and the applicable privileges of A include INSERT(CLUT) privilege on
LUT, then a privilege descriptor is created that defines the INSERT(CV) privilege on V.
That privilege is grantable if and only if the applicable privileges of A include grantable
INSERT(CLUT) privilege on LUT.

e) For each column CV of V that has a counterpart CLUT in LUT, if QE is one-to-one with
respect to LUT, and the applicable privileges of A include UPDATE(CLUT) privilege on
LUT, then a privilege descriptor is created that defines the UPDATE(CV) privilege on V.
That privilege is grantable if and only if the applicable privileges of A include grantable
UPDATE(CLUT) privilege on LUT.

466 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.21 <view definition>

7) If V is a referenceable view, then a set of privilege descriptors with the grantor for each set to
the special grantor value ‘‘_SYSTEM’’ are created as follows:

a) A privilege descriptor is created that defines the SELECT privilege WITH HIERARCHY
OPTION on V to A. That privilege is grantable.

b) For every method M of the structured type identified by <user-defined type>, a privilege
descriptor is created that defines the privilege SELECT(M) on V to A. That privilege is
grantable.

c) Case:

i) If <subview clause> is not specified, then a privilege descriptor is created that defines
the UNDER privilege on V to A. That privilege is grantable.

ii) Otherwise, a privilege descriptor is created that defines the UNDER privilege on V to A.
That privilege is grantable if and only if the applicable privileges of A include grantable
UNDER privilege on the direct supertable of V.

8) If <subview clause> is specified, then let ST be the set of supertables of V. Let PDS be the set of
privilege descriptors that define SELECT WITH HIERARCHY OPTION privilege on a table in
ST.

9) For every privilege descriptor in PDS, with grantee G and grantor A:

a) If the privilege is grantable, then let WG be ‘‘WITH GRANT OPTION’’.

b) Otherwise, let WGO be a zero-length string.

The following <grant statement> is effectively executed without further Access Rule checking:

GRANT SELECT ON V
TO G WGO FROM A

NOTE 205 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

10) If <subview clause> is specified, then let SVQE be the <query expression> included in the view
descriptor of SV.

a) The <query expression> included in the descriptor of SV is replaced by the following <query
expression>:

(SVQE) UNION ALL CORRESPONDING SELECT * FROM TN

b) The General Rules of this subclause are reevaluated for SV in the light of the new <query
expression> in its descriptor.

11) If the character representation of the <query expression> cannot be represented in the
Information Schema without truncation, then a completion condition is raised: warning —
query expression too long for information schema.

Schema definition and manipulation 467

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.21 <view definition>

Conformance Rules

1) Without Feature T131, ‘‘Recursive query’’, conforming SQL language shall not specify
RECURSIVE.

2) Without Feature F751, ‘‘View CHECK enhancements’’, conforming SQL language shall not
contain any <levels clause>.

3) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
<referenceable view specification>.

4) Without Feature F751, ‘‘View CHECK enhancements’’, if CHECK OPTION is specified, then the
<view definition> shall not contain a <subquery>.

468 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.22 <drop view statement>

11.22 <drop view statement>

Function
Destroy a view.

Format

<drop view statement> ::=
DROP VIEW <table name> <drop behavior>

Syntax Rules

1) Let V be the table identified by the <table name> and let VN be that <table name>. The schema
identified by the explicit or implicit schema name of VN shall include the descriptor of V.

2) V shall be a viewed table.

3) If RESTRICT is specified, then V shall not have any subtables.

4) If RESTRICT is specified, then V shall not be referenced in any of the following:

a) The <query expression> of any view descriptor of any view other than V.

b) The <search condition> of any assertion descriptor or constraint descriptor.

c) The trigger descriptor of any trigger.

d) The <SQL routine body> of any routine descriptor.

e) The scope of the declared type of a column of a table other than V and of the declared type
of an SQL parameter of any SQL-invoked routine.

NOTE 206 – If CASCADE is specified, then any such dependent object will be dropped by the execution
of the <revoke statement> specified in the General Rules of this Subclause.

5) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the table identified by VN.

6) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <table name>.

Access Rules

1) The enabled authorization identifier shall include A.

General Rules

1) If V is a referenceable table, then:

a) Let ST be structured type associated with V.

b) Let RST be the reference type whose referenced type is ST.

Schema definition and manipulation 469

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.22 <drop view statement>

c) Let DT be any table whose table descriptor includes a column descriptor that generally
includes a field descriptor, an attribute descriptor, or an array descriptor that includes a
reference type descriptor RST whose scope includes TN.
NOTE 207 – A descriptor that ‘‘generally includes’’ another descriptor is defined in Subclause 6.2.4,
"Descriptors", in ISO/IEC 9075-1.

d) Let DTN be the name of the table DT.

e) Case:

i) If DT is a base table, then the following <drop table statement> is effectively executed
without further Access Rule checking:

DROP TABLE DTN CASCADE

ii) Otherwise, the following <drop view statement> is effectively executed without further
Access Rule checking:

DROP VIEW DTN CASCADE

2) For every subtable of V:

a) Let ST be the <table name> of that subtable of V.

b) The following <revoke statement> is effectively executed with a current authorization
identifier of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE ALL PRIVILEGES ON ST FROM A CASCADE

3) For each direct supertable DST of V, the table name of V is removed from the list of table names
of direct subtables of DST that is included in the table descriptor of DST.

4) Let R be any SQL-invoked routine whose routine descriptor contains the <table name> of V
in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

5) The descriptor of V is destroyed.

Conformance Rules

1) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE shall not be
specified in <drop view statement>.

470 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.23 <domain definition>

11.23 <domain definition>

Function
Define a domain.

Format

<domain definition> ::=
CREATE DOMAIN <domain name> [AS] <data type>
[<default clause>]
[<domain constraint>...]
[<collate clause>]

<domain constraint> ::=
[<constraint name definition>]
<check constraint definition> [<constraint characteristics>]

Syntax Rules

1) If a <domain definition> is contained in a <schema definition>, and if the <domain name>
contains a <schema name>, then that <schema name> shall be equivalent to the specified or
implicit <schema name> of the containing <schema definition>.

2) If <constraint name definition> is specified and its <constraint name> contains a <schema
name>, then that <schema name> shall be equivalent to the explicit or implicit <schema name>
of the <domain name> of the domain identified by the containing <domain definition> or <alter
domain statement>.

3) The schema identified by the explicit or implicit schema name of the <domain name> shall
not include a domain descriptor whose domain name is equivalent to <domain name> nor a
user-defined type descriptor whose user-defined type name is equivalent to <domain name>.

4) If <data type> specifies a <character string type> and does not specify <character set specifica-
tion>, then the character set name of the default character set of the schema identified by the
implicit or explicit <schema name> of <domain name> is implicit.

5) If <data type> simply contains <character string type> and the <domain definition> does not
immediately contain a <collate clause>, then:

a) If <data type> simply contains a <character set specification> CSS, then let CS be the
character set that is identified by CSS; otherwise, let CS be the implementation-defined
character set for <character string type>.

b) Let COL be the default collation of CS.

c) A <collate clause> that specifies COL is implicit.

6) <data type> shall not specify a reference type, user-defined type, or an array type.

7) Let D1 be some domain. D1 is in usage by a domain constraint DC if and only if the <search
condition> of DC generally contains the <domain name> either of D1 or of some domain D2 such
that D1 is in usage by some domain constraint of D2. No domain shall be in usage by any of its
own constraints.

Schema definition and manipulation 471

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.23 <domain definition>

8) If <collate clause> is specified, then <data type> shall be a character string type.

9) For every <domain constraint> specified:

a) If <constraint characteristics> is not specified, then INITIALLY IMMEDIATE NOT
DEFERRABLE is implicit.

b) If <constraint name definition> is not specified, then a <constraint name definition> that
contains an implementation-dependent <constraint name> is implicit. The assigned <con-
straint name> shall obey the Syntax Rules of an explicit <constraint name>.

10) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <domain name>.

Access Rules

1) If a <domain definition> is contained in an SQL-client module, then the enabled authorization
identifiers shall include the <authorization identifier> that owns the schema identified by the
implicit or explicit <schema name> of the <domain name>.

General Rules

1) A <domain definition> defines a domain.

2) A data type descriptor is created that describes the declared type of the domain being created.

3) A domain descriptor is created that describes the domain being created. The domain descriptor
contains the name of the domain, the data type descriptor of the declared type, the <collation
name> of the <collate clause> if the <domain definition> contains a <collate clause>, the value
of the <default clause> if the <domain definition> immediately contains <default clause>, and a
domain constraint descriptor for every immediately contained <domain constraint>.

4) A privilege descriptor is created that defines the USAGE privilege on this domain to the <autho-
rization identifier> A of the schema or SQL-client module in which the <domain definition>
appears. This privilege is grantable if and only if the applicable privileges of A include a
grantable REFERENCES privilege for each column reference included in the domain descriptor
and a grantable USAGE privilege for each <domain name>, <collation name>, <character set
name>, and <translation name> contained in the <search condition> of any domain constraint
descriptor included in the domain descriptor. The grantor of the privilege descriptor is set to the
special grantor value ‘‘_SYSTEM’’.
NOTE 208 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

5) Let DSC be the <search condition> included in some domain constraint descriptor DCD. Let D
be the name of the domain whose descriptor includes DCD. Let T be the name of some table
whose descriptor includes some column descriptor with column name C whose domain name
is D. Let CSC be a copy of DSC in which every instance of the <general value specification>
VALUE is replaced by C.

6) The domain constraint specified by DCD for C is not satisfied if and only if

EXISTS (SELECT * FROM T WHERE NOT (CSC))

is true.
NOTE 209 – Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’, specifies
when a constraint is effectively checked.

472 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.23 <domain definition>

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain any
<domain definition>.

Schema definition and manipulation 473

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.24 <alter domain statement>

11.24 <alter domain statement>

Function
Change a domain and its definition.

Format

<alter domain statement> ::=
ALTER DOMAIN <domain name> <alter domain action>

<alter domain action> ::=
<set domain default clause>

| <drop domain default clause>
| <add domain constraint definition>
| <drop domain constraint definition>

Syntax Rules

1) Let D be the domain identified by <domain name>. The schema identified by the explicit or
implicit schema name of the <domain name> shall include the descriptor of D.

2) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <domain name>.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of <domain name>.

General Rules

1) The domain descriptor of D is modified as specified by <alter domain action>.
NOTE 210 – The changed domain descriptor of D is applicable to every column that is dependent on D.

Conformance Rules

1) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no <alter
domain statement>.

474 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.25 <set domain default clause>

11.25 <set domain default clause>

Function
Set the default value in a domain.

Format

<set domain default clause> ::= SET <default clause>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let D be the domain identified by the <domain name> in the containing <alter domain state-
ment>.

2) The default value specified by the <default clause> is placed in the domain descriptor of D.

Conformance Rules

1) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no <set do-
main default clause>.

Schema definition and manipulation 475

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.26 <drop domain default clause>

11.26 <drop domain default clause>

Function
Remove the default clause of a domain.

Format

<drop domain default clause> ::= DROP DEFAULT

Syntax Rules

1) Let D be the domain identified by the <domain name> in the containing <alter domain state-
ment>.

2) The descriptor of D shall contain a default value.

Access Rules

None.

General Rules

1) Let C be the set of columns whose column descriptors contain the domain descriptor of D.

2) For every column belonging to C, if the column descriptor does not already contain a default
value, then the default value from the domain descriptor of D is placed in that column descrip-
tor.

3) The default value is removed from the domain descriptor of D.

Conformance Rules

1) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no <drop
domain default clause>.

476 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.27 <add domain constraint definition>

11.27 <add domain constraint definition>

Function
Add a constraint to a domain.

Format

<add domain constraint definition> ::=
ADD <domain constraint>

Syntax Rules

1) Let D be the domain identified by the <domain name> in the <alter domain statement>.

2) Let D1 be some domain. D1 is in usage by a domain constraint DC if and only if the <search
condition> of DC generally contains the <domain name> either of D1 or of some domain D2 such
that D1 is in usage by some domain constraint of D2. No domain shall be in usage by any of its
own constraints.

Access Rules

None.

General Rules

1) The constraint descriptor of the <domain constraint> is added to the domain descriptor of D.

2) If DC causes some column CN to be known not nullable and no other constraint causes CN to be
known not nullable, then the nullability characteristic of the column descriptor of CN is changed
to known not nullable.
NOTE 211 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

Conformance Rules

1) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no <add
domain constraint definition>.

Schema definition and manipulation 477

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.28 <drop domain constraint definition>

11.28 <drop domain constraint definition>

Function
Destroy a constraint on a domain.

Format

<drop domain constraint definition> ::=
DROP CONSTRAINT <constraint name>

Syntax Rules

1) Let D be the domain identified by the <domain name> DN in the containing <alter domain
statement>.

2) Let CD be any column descriptor that includes DN, let T be the table described by the table
descriptor that includes CD, and let TN be the <table name> of T.

3) Let DC be the descriptor of the constraint identified by <constraint name>.

4) DC shall be included in the domain descriptor of D.

Access Rules

None.

General Rules

1) The constraint descriptor DC is removed from the domain descriptor of D.

2) If DC causes some column CN to be known not nullable and no other constraint causes CN to be
known not nullable, then the nullability characteristic of the column descriptor of CN is changed
to possibly nullable.
NOTE 212 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

3) The descriptor of DC is destroyed.

Conformance Rules

1) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no <drop
domain constraint definition>.

478 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.29 <drop domain statement>

11.29 <drop domain statement>

Function
Destroy a domain.

Format

<drop domain statement> ::=
DROP DOMAIN <domain name> <drop behavior>

Syntax Rules

1) Let D be the domain identified by <domain name> and let DN be that <domain name>. The
schema identified by the explicit or implicit schema name of DN shall include the descriptor of
D.

2) If RESTRICT is specified, then D shall not be referenced in any of the following:

a) A column descriptor.

b) The <query expression> of any view descriptor.

c) The <search condition> of any constraint descriptor.

d) The <SQL routine body> of any routine descriptor.

3) Let UA be the <authorization identifier> that owns the schema identified by the <schema name>
of the domain identified by DN.

4) Let the containing schema be the schema identified by the <schema name> implicitly or explic-
itly contained in <domain name>.

Access Rules

1) The enabled authorization identifiers shall include UA.

General Rules

1) Let C be any column descriptor that includes DN, let T be the table described by the table
descriptor that includes C, and let TN be the table name of T. C is modified as follows:

a) DN is removed from C. A copy of the data type descriptor of D is included in C.

b) If C does not include a <default clause> and the domain descriptor of D includes a <default
clause>, then a copy of the <default clause> of D is included in C.

c) Let the excluded constraint list be the <constraint name> of each domain constraint de-
scriptor included in the domain descriptor of D that does not occur in the implicit or explicit
<constraint name list>.

Schema definition and manipulation 479

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.29 <drop domain statement>

d) For every domain constraint descriptor included in the domain descriptor of D whose <con-
straint name> is not contained in the excluded constraint list:

i) Let TCD be a <table constraint definition> consisting of a <constraint name definition>
whose <constraint name> is implementation-dependent, whose <table constraint> is
derived from the <check constraint definition> of the domain constraint descriptor by
replacing every instance of VALUE by the <column name> of C, and whose <constraint
characteristics> are the <constraint characteristics> of the domain constraint descriptor.

ii) If the applicable privileges of UA include all of the privileges necessary for UA to suc-
cessfully execute the <add table constraint definition>

ALTER TABLE TN ADD TCD

then the following <table constraint definition> is effectively executed with a current
authorization identifier of UA:

ALTER TABLE TN ADD TCD

e) If C does not include a collation and the domain descriptor of D includes a collation, then

i) Let CCN be the <collation name> of the collation.

ii) If the applicable privileges for UA contain USAGE on CCN, then CCN is added to C as
the <collation name>.

NOTE 213 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

2) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE USAGE ON DOMAIN DN FROM UA CASCADE

3) The descriptor of D is destroyed.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain a <drop
domain statement>.

480 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.30 <character set definition>

11.30 <character set definition>

Function
Define a character set.

Format

<character set definition> ::=
CREATE CHARACTER SET <character set name> [AS]
<character set source>
[<collate clause>]

<character set source> ::=
GET <character set specification>

Syntax Rules

1) If a <character set definition> is contained in a <schema definition> and if the <character set
name> immediately contained in the <character set definition> contains a <schema name>,
then that <schema name> shall be equivalent to the specified or implicit <schema name> of the
<schema definition>.

2) The schema identified by the explicit or implicit schema name of the <character set name> shall
not include a character set descriptor whose character set name is <character set name>.

3) The character set identified by the <character set specification> contained in <character set
source> shall have associated with it a privilege descriptor that was effectively defined by the
<grant statement>

GRANT USAGE ON CHARACTER SET CS TO PUBLIC

where CS is the <standard character repertoire name> or <implementation-defined character
repertoire name>.

4) If <collate clause> is specified, then it shall contain a <collation name> that identifies a <col-
lation descriptor included in the schema identified by the explicitor implicit <schema name>
contained in the <collation name>.

5) Let A be the <authorization identifier> that owns the schema identified by the implicit or
explicit <schema name> of <character set name>.

6) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <character set name>.

Access Rules

1) If a <character set definition> is contained in an SQL-client module, then the enabled autho-
rization identifiers shall include A.

2) The applicable privileges for A shall include USAGE on the character set identified by the
<character set specification>.
NOTE 214 – ‘‘applicable privileges’’ and are defined in Subclause 10.5, ‘‘<privileges>’’.

Schema definition and manipulation 481

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.30 <character set definition>

General Rules

1) A <character set definition> defines a character set.

2) A character set descriptor is created for the defined character set.

3) The descriptor created for the character set being defined is identical to the descriptor for the
character set identified by <character set specification>, except that the included character set
name is <character set name> and, if <collate clause> is specified, then the included name of
the default collation is the <collation name> contained in <collate clause>.

4) The character set that is created contains every character in each of the character sets identified
by <existing character set name>s, if specified, and in the <character set list>, if specified. Any
redundant duplicate characters are deleted from the created character set.

5) A privilege descriptor is created that defines the USAGE privilege on this character set to the
<authorization identifier> of the schema or SQL-client module in which the <character set
definition> appears. The grantor of the privilege descriptor is set to the special grantor value
‘‘_SYSTEM’’. This privilege is grantable.

Conformance Rules

1) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall not specify
any <character set definition>.

2) Without Feature F451, ‘‘Character set definition’’, and Feature F691, ‘‘Collation and translation’’,
<collation source> shall specify DEFAULT.

482 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.31 <drop character set statement>

11.31 <drop character set statement>

Function
Destroy a character set.

Format

<drop character set statement> ::=
DROP CHARACTER SET <character set name>

Syntax Rules

1) Let C be the character set identified by the <character set name> and let CN be the name of C.

2) The schema identified by the explicit or implicit schema name of CN shall include the descriptor
of C.

3) The explicit or implicit <schema name> contained in CN shall not be equivalent to INFORMATION_
SCHEMA.

4) C shall not be referenced in any of the following:

a) The data type descriptor included in any column descriptor.

b) The data type descriptor included in any domain descriptor.

c) The data type descriptor generally included in any user-defined type descriptor.

d) The data type descriptor included in any field descriptor.

e) The <query expression> of any view descriptor.

f) The <search condition> of any constraint descriptor.

g) The collation descriptor of any collation.

h) The translation descriptor of any translation.

i) The <SQL routine body>, the <SQL parameter declaration>s, or the <returns data type> of
any routine descriptor.

j) The <SQL parameter declaration>s or <returns data type> of any method specification
descriptor.

5) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the character set identified by C.

6) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <character set name>.

Access Rules

1) The enabled authorization identifiers shall include A.

Schema definition and manipulation 483

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.31 <drop character set statement>

General Rules

1) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE USAGE ON CHARACTER SET CN FROM A CASCADE

2) Let R be any SQL-invoked routine whose routine descriptor contains the <character set name>
of C in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop
routine statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

3) The descriptor of C is destroyed.

Conformance Rules

1) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall contain no
<drop character set statement>.

484 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.32 <collation definition>

11.32 <collation definition>

Function
Define a collating sequence.

Format

<collation definition> ::=
CREATE COLLATION <collation name> FOR <character set specification>
FROM <existing collation name>
[<pad characteristic>]

<existing collation name> ::= <collation name>

<pad characteristic> ::=
NO PAD

| PAD SPACE

Syntax Rules

1) Let A be the <authorization identifier> that owns the schema identified by the implicit or
explicit <schema name> of the <collation name>.

2) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <collation name>.

3) If a <collation definition> is contained in a <schema definition> and if the <collation name>
immediately contained in the <collation definition> contains a <schema name>, then that
<schema name> shall be equivalent to the specified or implicit <schema name> of the <schema
definition>.

4) The schema identified by the explicit or implicit schema name of the <collation name> CN
immediately contained in <collation definition> shall not include a collation descriptor whose
collation name is CN.

5) The schema identified by the explicit or implicit schema name of the <collation name> ECN
immediately contained in <existing collation name> shall include a collation descriptor whose
collation name is ECN.

6) The collation identified by ECN shall be a collation that is defined for the character set identified
by <character set specification>.

7) If <pad characteristic> is not specified, then the <pad characteristic> of the collation identified
by ECN is implicit.

8) If NO PAD is specified, then the collation is said to have the NO PAD characteristic. If PAD
SPACE is specified, then the collation is said to have the PAD SPACE characteristic.

Schema definition and manipulation 485

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.32 <collation definition>

Access Rules

1) If a <collation definition> is contained in an SQL-client module, then the enabled authorization
identifiers shall include A.

2) The applicable privileges for A shall include USAGE on ECN.
NOTE 215 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <collation definition> defines a collating sequence.

2) A privilege descriptor is created that defines the USAGE privilege on this collation for A. The
grantor of the privilege descriptor is set to the special grantor value ‘‘_SYSTEM’’.

3) This privilege descriptor is grantable if and only if the USAGE privilege for A on the collation
identified by ECN is grantable.

4) A collation descriptor is created for the defined collation.

5) The collation descriptor CD created is identical to the collation descriptor for ECN, except that
the collation name included in CD is CN and, if <pad characteristic> is specified, then the pad
characteristic included in CD is <pad characteristic>.

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <collation definition>.

486 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.33 <drop collation statement>

11.33 <drop collation statement>

Function
Destroy a collating sequence.

Format

<drop collation statement> ::=
DROP COLLATION <collation name>
<drop behavior>

Syntax Rules

1) Let C be the collating sequence identified by the <collation name> and let CN be the name of C.

2) The schema identified by the explicit or implicit schema name of CN shall include the descriptor
of C.

3) The explicit or implicit <schema name> contained in CN shall not be equivalent to INFORMATION_
SCHEMA.

4) If RESTRICT is specified, then C shall not be referenced in any of the following:

a) Any character set descriptor.

b) The triggered action of any trigger descriptor.

c) The <query expression> of any view descriptor.

d) The <search condition> of any constraint descriptor.

e) The <SQL routine body>, the <SQL parameter declaration>s, or the <returns data type> of
any routine descriptor.

f) The <SQL parameter declaration>s or the <returns data type> of any method specification
descriptor.

5) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the collating sequence identified by C.

6) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <collation name>.

Access Rules

1) The enabled authorization identifiers shall include A.

Schema definition and manipulation 487

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.33 <drop collation statement>

General Rules

1) For every collation descriptor CD that includes CN, CD is modified such that it does not include
CN. If CD does not include any translation name, then CD is modified to indicate that it utilizes
the DEFAULT collation for its character repertoire.

2) For every character set descriptor CSD that includes CN, CSD is modified such that it does not
include CN. If CSD does not include any translation name, then CSD is modified to indicate
that it utilizes the DEFAULT collation for its character repertoire.

3) For every column descriptor, domain descriptor, attribute descriptor, or field descriptor DD that
includes CN, DD is modified such that it does not include CN.
NOTE 216 – This causes the column, domain, attribute, or field described by DD to revert to the default
collation for its character set.

4) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE USAGE ON COLLATION CN FROM A CASCADE

5) Let R be any SQL-invoked routine whose routine descriptor contains the <collation name> of
C in the <SQL routine body> or the <SQL parameter declaration>s. Let SN be the <specific
name> of R. The following <drop routine statement> is effectively executed without further
Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

6) The descriptor of C is destroyed.

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not contain
any <drop collation statement>.

488 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.34 <translation definition>

11.34 <translation definition>

Function
Define a character translation.

Format

<translation definition> ::=
CREATE TRANSLATION <translation name>
FOR <source character set specification>
TO <target character set specification>

FROM <translation source>

<source character set specification> ::= <character set specification>

<target character set specification> ::= <character set specification>

<translation source> ::=
<existing translation name>

| <translation routine>

<existing translation name> ::= <translation name>

<translation routine> ::= <specific routine designator>

Syntax Rules

1) If a <translation definition> is contained in a <schema definition> and if the <translation name>
immediately contained in the <translation definition> contains a <schema name>, then that
<schema name> shall be equivalent to the specified or implicit <schema name> of the <schema
definition>.

2) The schema identified by the explicit or implicit schema name of the <translation name> TN
immediately contained in <translation definition> shall not include a translation descriptor
whose collation name is TN.

3) The schema identified by the explicit or implicit schema name of the <character set name>
SCSN contained in the <character set specification> contained in <source character set specifi-
cation> shall include a character set descriptor whose character set name is SCSN.

4) The schema identified by the explicit or implicit schema name of the <character set name>
TCSN contained in the <character set specification> contained in <source character set specifi-
cation> shall include a character set descriptor whose character set name is TCSN.

5) If <existing translation name> is specified, then:

a) The schema identified by the explicit or implicit schema name of the <translation name> TN
contained in <translation source> shall include a translation descriptor whose translation
name is TN.

b) The character set identified by SCSN shall be the source character set of the translation
identified by TN.

Schema definition and manipulation 489

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.34 <translation definition>

c) The character set identified by TCSN shall be the target character set of the translation
identified by TN.

6) If <translation routine> is specified, then:

a) The schema identified by the explicit or implicit schema name of the <specific routine
designator> SRD contained in <translation routine> shall include a routine descriptor that
identifies a routine having a <specific routine designator> SRD.

b) The routine identified by SRD shall be an SQL-invoked function that has one parameter
whose data type is character string and whose character set is the character set specified by
SCSN; the returns type of the routine shall be character string whose character set is the
character set specified by TCSN.

7) Let A be the <authorization identifier> that owns the schema identified by the implicit or
explicit <schema name> of <translation name>.

8) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <translation name>.

Access Rules

1) If a <translation definition> is contained in an SQL-client module, then the enabled authoriza-
tion identifiers shall include A.

2) If <translation source> is specified, then the applicable privileges for A shall include USAGE on
the translation identified by TN.
NOTE 217 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

3) If <translation routine> is specified, then the applicable privileges for A shall include EXECUTE
on the routine identified by RN.
NOTE 218 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <translation definition> defines a translation.

2) A translation descriptor is created for the defined translation.

3) A privilege descriptor PD is created that defines the USAGE privilege on this translation to
the <authorization identifier> of the schema or SQL-client module in which the <translation
definition> appears. The grantor of the privilege descriptor is set to the special grantor value
‘‘_SYSTEM’’.

4) PD is grantable if and only if the USAGE privilege for the <authorization identifier> of the
schema or SQL-client module in which the <translation definition> appears is also grantable on
every <character set name> contained in the <translation definition>.

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall contain no
<translation definition>.

490 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.35 <drop translation statement>

11.35 <drop translation statement>

Function
Destroy a character translation.

Format

<drop translation statement> ::=
DROP TRANSLATION <translation name>

Syntax Rules

1) Let T be the translation identified by the <translation name> and let TN be the name of T.

2) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the translation identified by T.

3) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <translation name>.

4) The schema identified by the explicit or implicit schema name of TN shall include the descriptor
of T.

5) T shall not be referenced in any of the following:

a) The triggered action of any trigger descriptor.

b) The <query expression> of any view descriptor.

c) The <search condition> of any constraint descriptor.

d) The collation descriptor of any collation.

e) The translation descriptor of any translation.

f) The <SQL routine body> of any routine descriptor.

Access Rules

1) The enabled authorization identifiers shall include A.

General Rules

1) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE USAGE ON TRANSLATION TN FROM A CASCADE

2) Let R be any SQL-invoked routine whose routine descriptor contains the <translation name> of
T in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

Schema definition and manipulation 491

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.35 <drop translation statement>

3) The descriptor of T is destroyed.

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall contain no
<drop translation statement>.

492 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.36 <assertion definition>

11.36 <assertion definition>

Function
Specify an integrity constraint.

Format

<assertion definition> ::=
CREATE ASSERTION <constraint name>
CHECK <left paren> <search condition> <right paren>
[<constraint characteristics>]

Syntax Rules

1) If an <assertion definition> is contained in a <schema definition> and if the <constraint name>
contains a <schema name>, then that <schema name> shall be equivalent to the explicit or
implicit <schema name> of the containing <schema definition>.

2) The schema identified by the explicit or implicit schema name of the <constraint name> shall
not include a constraint descriptor whose constraint name is <constraint name>.

3) If <constraint characteristics> is not specified, then INITIALLY IMMEDIATE NOT DEFERRABLE
is implicit.

4) The <search condition> shall not contain a <host parameter name> or an <SQL parameter
name>.
NOTE 219 – <SQL parameter name> is excluded because of the scoping rules for <SQL parameter
name>.

5) No <query expression> in the <search condition> shall reference a temporary table.

6) The <search condition> shall not generally contain a <datetime value function> or a <value
specification> that is CURRENT_USER, CURRENT_ROLE, SESSION_USER, SYSTEM_USER,
or CURRENT_PATH.

7) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that is possibly non-deterministic.

8) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that possibly modifies SQL-data.

9) The <qualified identifier> of <constraint name> shall not be equivalent to the <qualified identi-
fier> of the <constraint name> of any other constraint defined in the same schema.

10) The <search condition> shall not generally contain a <query specification> or a <query expres-
sion> that is possibly non-deterministic.

11) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of the <assertion definition>.

12) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <assertion name>.

Schema definition and manipulation 493

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.36 <assertion definition>

Access Rules

1) If an <assertion definition> is contained in an SQL-client module, then the enabled authoriza-
tion identifier shall include A.

General Rules

1) An <assertion definition> defines an assertion. An assertion is a constraint.
NOTE 220 – Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’, specifies
when a constraint is effectively checked.

2) Let SC be the <search condition> simply contained in the <assertion definition>.

3) The assertion is not satisfied if and only if the result of evaluating SC is false.

4) An assertion descriptor is created that describes the assertion being defined. The name included
in the assertion descriptor is <constraint name>.

The assertion descriptor includes an indication of whether the constraint is deferrable or not
deferrable and whether the initial constraint mode is deferred or immediate.

The assertion descriptor includes SC.

5) If the character representation of SC cannot be represented in the Information Schema without
truncation, then a completion condition is raised: warning — search condition too long for
information schema.

6) If SC causes some column CN be to known not nullable and no other constraint causes CN to be
known not nullable, then the nullability characteristic of CN is changed to known not nullable.
NOTE 221 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

Conformance Rules

1) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any <assertion
definition>.

494 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.37 <drop assertion statement>

11.37 <drop assertion statement>

Function
Destroy an assertion.

Format

<drop assertion statement> ::=
DROP ASSERTION <constraint name>

Syntax Rules

1) Let A be the assertion identified by <constraint name> and let AN be the name of A.

2) The schema identified by the explicit or implicit schema name of AN shall include the descriptor
of A.

3) AN shall not be referenced in the <SQL routine body> of any routine descriptor or in the trigger
descriptor of any trigger.

4) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <assertion name>.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the <schema name> of the assertion identified by AN.

General Rules

1) Let R be any SQL-invoked routine whose routine descriptor contains the <constraint name> of
A in the <SQL routine body>. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

2) Let T be any trigger whose trigger descriptor contains the <constraint name> of A in the <trig-
gered action>. Let TN be the <trigger name> of T. The following <drop trigger statement> is
effectively executed without further Access Rule checking:

DROP TRIGGER TN

3) Let SC be the <search condition> included in the descriptor of A. If SC causes some column CN
be to known not nullable and no other constraint causes CN to be known not nullable, then the
nullability characteristic of CN is changed to possibly nullable.
NOTE 222 – The nullability characteristic of a column is defined in Subclause 4.15, ‘‘Columns, fields,
and attributes’’.

4) The descriptor of A is destroyed.

Schema definition and manipulation 495

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.37 <drop assertion statement>

Conformance Rules

1) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any <drop
assertion statement>.

496 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.38 <trigger definition>

11.38 <trigger definition>

Function
Define triggered SQL-statements.

Format

<trigger definition> ::=
CREATE TRIGGER <trigger name>
<trigger action time> <trigger event>
ON <table name>
[REFERENCING <old or new values alias list>]

<triggered action>

<trigger action time> ::=
BEFORE

| AFTER

<trigger event> ::=
INSERT

| DELETE
| UPDATE [OF <trigger column list>]

<trigger column list> ::= <column name list>

<triggered action> ::=
[FOR EACH { ROW | STATEMENT }]
[WHEN <left paren> <search condition> <right paren>]
<triggered SQL statement>

<triggered SQL statement> ::=
<SQL procedure statement>

| BEGIN ATOMIC
{ <SQL procedure statement> <semicolon> }...

END

<old or new values alias list> ::=
<old or new values alias>...

<old or new values alias> ::=
OLD [ROW] [AS] <old values correlation name>

| NEW [ROW] [AS] <new values correlation name>
| OLD TABLE [AS] <old values table alias>
| NEW TABLE [AS] <new values table alias>

<old values table alias> ::= <identifier>

<new values table alias> ::= <identifier>

<old values correlation name> ::= <correlation name>

<new values correlation name> ::= <correlation name>

Schema definition and manipulation 497

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.38 <trigger definition>

Syntax Rules

1) Case:

a) If a <trigger definition> is contained in a <schema definition> and if the <trigger name>
contains a <schema name>, then that <schema name> shall be equivalent to the specified or
implicit <schema name> of the containing <schema definition>.

b) If a <trigger definition> is contained in an SQL-client module and if the <trigger name>
contains a <schema name>, then that <schema name> shall be equivalent to the specified or
implicit <schema name> of the SQL-client module.

2) Let TN be the <table name> of a <trigger definition>. The table T identified by TN is the subject
table of the <trigger definition>.

3) The schema identified by the explicit or implicit <schema name> of TN shall include the de-
scriptor of T.

4) The schema identified by the explicit or implicit <schema name> of a <trigger name> TRN shall
not include a trigger descriptor whose trigger name is TRN.

5) T shall be a base table.

6) If a <trigger column list> is specified, then:

i) No <column name> shall appear more than once in the <trigger column list>.

ii) The <column name>s of the <trigger column list> shall identify columns of T.

7) If REFERENCING is specified, then: Let OR, OT, NR, and NT be the <old values correlation
name>, <old values table alias>, <new values correlation name>, and <new values table alias>,
respectively.

a) OLD or OLD ROW, NEW or NEW ROW, OLD TABLE, and NEW TABLE shall be specified
at most once each within the <old or new values alias list>.

b) Case:

i) If <trigger event> specifies INSERT, then neither OLD ROW nor OLD TABLE shall be
specified.

ii) If <trigger event> specifies DELETE, then neither NEW ROW nor NEW TABLE shall
be specified.

c) No two of OR, OT, NR, and NT shall be equivalent.

d) The scope of OR, OT, NR, and NT is the entire <trigger definition>.

8) If neither FOR EACH ROW nor FOR EACH STATEMENT is specified, then FOR EACH
STATEMENT is implicit.

9) If OR or NR is specified, then FOR EACH ROW shall be specified.

10) The <triggered action> shall not contain an <SQL parameter reference> or a <host parameter
name>.

498 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.38 <trigger definition>

11) It is implementation-defined whether the <triggered SQL statement> shall not generally con-
tain an <SQL transaction statement>, an <SQL connection statement>, an <SQL schema
statement>, or an <SQL session statement>.

12) If BEFORE is specified, then:

a) <triggered action> shall not generally contain an <SQL data change statement> or a <rou-
tine invocation> whose subject routine is an SQL-invoked routine that possibly modifies
SQL-data.

b) Neither OLD TABLE nor NEW TABLE shall be specified.

13) Let A be the <authorization identifier> that owns the schema identified by the implicit or
explicit <schema name> of the <trigger name> of the <trigger definition>.

14) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <trigger name>.

Access Rules

1) If a <trigger definition> is contained in an SQL-client module, then the enabled authorization
identifiers shall include A.

2) The applicable privileges for A for T shall include TRIGGER.
NOTE 223 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) A <trigger definition> defines a trigger.

2) OT identifies the old transition table. NT identifies the new transition table. OR identifies the
old transition variable. NR identifies the new transition variable.
NOTE 224 – ‘‘old transition table’’, ‘‘new transition table’’, ‘‘old transition variable’’, and ‘‘new transition
variable’’ are defined in Subclause 4.35.2, ‘‘Execution of triggers’’.

3) If the character representation of the <triggered SQL statement> cannot be represented in
the Information Schema without truncation, then a completion condition is raised: warning —
statement too long for information schema.

4) A trigger descriptor is created for <trigger definition>s as follows:

a) The trigger name included in the trigger descriptor is <trigger name>.

b) The subject table included in the trigger descriptor is <table name>.

c) The trigger action time included in the trigger descriptor is <trigger action time>.

d) If FOR EACH STATEMENT is specified or implicit, then an indication that the trigger is a
statement-level trigger; otherwise, an indication that the trigger is a row-level trigger.

e) The trigger event included in the trigger descriptor is <trigger event>.

f) Any <old values correlation name>, <new values correlation name>, <old values table alias>,
or <new values table alias> specified in the <trigger definition> is included in the trigger
descriptor as the old values correlation name, new values correlation name, old values table
alias, or new values table alias, respectively.

Schema definition and manipulation 499

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.38 <trigger definition>

g) The trigger action included in the trigger descriptor is the specified <triggered action>.

h) If a <trigger column list> TCL is specified, then TCL is the trigger column list included in
the trigger descriptor; otherwise, that trigger column list is empty.

i) The triggered action column set included in the trigger descriptor is the set of all distinct,
fully qualified names of columns contained in the <triggered action>.

j) The timestamp of creation included in the trigger descriptor is the timestamp of creation of
the trigger.

Conformance Rules

1) Without Feature T211, ‘‘Basic trigger capability’’, conforming Core SQL language shall not
contain a <trigger definition>.

2) Without Feature T212, ‘‘Enhanced trigger capability’’, a <trigger definition> shall not specify or
imply FOR EACH STATEMENT.

500 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.39 <drop trigger statement>

11.39 <drop trigger statement>

Function
Destroy a trigger.

Format

<drop trigger statement> ::= DROP TRIGGER <trigger name>

Syntax Rules

1) Let TR be the trigger identified by the <trigger name>.

2) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in <trigger name>.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the <schema name> of TR.

General Rules

1) The descriptor of TR is destroyed.

Conformance Rules

1) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not contain
<drop trigger statement>.

Schema definition and manipulation 501

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

11.40 <user-defined type definition>

Function
Define a user-defined type.

Format

<user-defined type definition> ::= CREATE TYPE <user-defined type body>

<user-defined type body> ::=
<user-defined type name>
[<subtype clause>]
[AS <representation>]
[<instantiable clause>]
<finality>
[<reference type specification>]
[<cast option>]
[<method specification list>]

<subtype clause> ::=
UNDER <supertype name>

<supertype name> ::=
<user-defined type>

<representation> ::=
<predefined type>

| <member list>

<member list> ::=
<left paren> <member> [{ <comma> <member> }...] <right paren>

<member> ::=
<attribute definition>

<instantiable clause> ::=
INSTANTIABLE

| NOT INSTANTIABLE

<finality> ::=
FINAL

| NOT FINAL

<reference type specification> ::=
<user-defined representation>

| <derived representation>
| <system-generated representation>

<user-defined representation> ::= REF USING <predefined type> [<ref cast option>]

<derived representation> ::= REF FROM <list of attributes>

<system-generated representation> ::= REF IS SYSTEM GENERATED

<ref cast option> ::=
[<cast to ref>]
[<cast to type>]

502 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

<cast to ref> ::=
CAST <left paren> SOURCE AS REF <right paren>
WITH <cast to ref identifier>

<cast to ref identifier> ::= <identifier>

<cast to type> ::=
CAST <left paren> REF AS SOURCE <right paren>
WITH <cast to type identifier>

<cast to type identifier> ::= <identifier>

<list of attributes> ::=
<left paren> <attribute name> [{ <comma> <attribute name> }...] <right paren>

<cast option> ::=
[<cast to distinct>]
[<cast to source>]

<cast to distinct> ::=
CAST <left paren> SOURCE AS DISTINCT <right paren>
WITH <cast to distinct identifier>

<cast to distinct identifier> ::= <identifier>

<cast to source> ::=
CAST <left paren> DISTINCT AS SOURCE <right paren>
WITH <cast to source identifier>

<cast to source identifier> ::= <identifier>

<method specification list> ::=
<method specification> [{ <comma> <method specification> }...]

<method specification> ::=
<original method specification>

| <overriding method specification>

<original method specification> ::=
<partial method specification>
[SELF AS RESULT]
[SELF AS LOCATOR]
[<method characteristics>]

<overriding method specification> ::=
OVERRIDING <partial method specification>

<partial method specification> ::=
[INSTANCE | STATIC] METHOD <method name> <SQL parameter declaration list>
<returns clause>
[SPECIFIC <specific name>]

<method characteristics> ::=
<method characteristic>...

<method characteristic> ::=
<language clause>

| <parameter style clause>
| <deterministic characteristic>
| <SQL-data access indication>

Schema definition and manipulation 503

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

| <null-call clause>
| <transform group specification>

Syntax Rules

1) Let UDTD be the <user-defined type definition>, let UDTB be the <user-defined type body>
immediately contained in UDTD, let UDTN be the <user-defined type name> immediately
contained in UDTB, let SN be the specified or implicit <schema name> of UDTN, let SS be the
SQL-schema identified by SN, and let UDT be the data type defined by UDTD.

2) If UDTD is contained in a <schema definition> and UDTN contains a <schema name>, then
that <schema name> shall be equivalent to the specified or implicit <schema name> of the
containing <schema definition>.

3) SS shall not include a user-defined type descriptor or a domain descriptor whose name is
equivalent to UDTN.

4) Case:

a) If <representation> specifies <predefined type>, then UDTD defines a distinct type.

b) Otherwise, UDTD defines a structured type.

5) If UDTD defines a distinct type, then:

a) Let PSDT be the data type identified by <predefined type>.

Case:

i) If PSDT is an exact numeric type, then let SDT be an implementation-defined exact
numeric type whose precision is equal to the precision of PSDT and whose scale is equal
to the scale of PSDT.

ii) If PSDT is an approximate numeric type, then let SDT be an implementation-defined
approximate numeric type whose precision is equal to the precision of PSDT.

iii) Otherwise, let SDT be PSDT.

b) <instantiable clause> shall not be specified.

c) FINAL shall be specified.

d) <subtype clause> shall not be specified.

e) <reference type specification> shall not be specified.

f) If <cast to distinct> is specified, then let FNUDT be <cast to distinct identifier>; otherwise,
let FNUDT be the <qualified identifier> of UDTN.

g) If <cast to source> is specified, then let FNSDT be <cast to source identifier>; otherwise, the
Syntax Rules of Subclause 9.7, ‘‘Type name determination’’, are applied to SDT, yielding an
<identifier> FNSDT. The following <original method specification> is implicit:

504 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

METHOD FNSDT ()
RETURNS SDT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL

6) If UDTD specifies a structured type, then:

a) <cast option> shall not be specified.

b) NOT FINAL shall be specified.

c) If <subtype clause> is specified, then <reference type specification> shall not be specified.

d) If <subtype clause> and <reference type specification> are not specified, then <system-
generated representation> is implicit.

e) If <instantiable clause> is not specified, then INSTANTIABLE is implicit.

f) The originally-defined attributes of UDT are those defined by <attribute definition>s con-
tained in <member list>. No two originally-defined attributes of UDT shall have equivalent
<attribute name>s.

g) UDT shall not be based on itself.
NOTE 225 – The notion of one data type type being based on another data type is defined in
Subclause 4.1, ‘‘Data types’’.

h) For each <attribute definition> ATD contained in <member list>, let AN be the <attribute
name> contained in ATD and let DT be the <data type> contained in ATD. The following
<original method specification>s are implicit:

METHOD AN ()
RETURNS DT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL

RETURNS NULL ON NULL INPUT

This is the original method specification of the observer function of attribute AN.

METHOD AN (ATTR DT)
RETURNS UDTN
SELF AS RESULT
LANGUAGE SQL
DETERMINISTIC
CONTAINS SQL

RETURNS NULL ON NULL INPUT

This is the original method specification of the mutator function of attribute AN.

i) If <user-defined representation> is specified, then:

i) Let BT be <predefined type>.

ii) BT shall be exact numeric or a character type that is not a large object string type.

iii) If <cast to ref> is specified, then let FNREF be <cast to ref identifier>; otherwise, let
FNREF be the <qualified identifier> of UDTN.

Schema definition and manipulation 505

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

iv) Case:

1) If <cast to type> is specified, then let FNTYP be <cast to type identifier>.

2) Otherwise, the Syntax Rules of Subclause 9.7, ‘‘Type name determination’’, are
applied to BT, yielding an <identifier> FNTYP.

j) If <derived representation> is specified, then no two <attribute name>s in <list of at-
tributes> shall be equivalent.

k) If <subtype clause> is specified, then:

i) The <supertype name> immediately contained in the <subtype clause> shall identify the
descriptor of some structured type SST. UDT is a direct subtype of SST, and SST is a
direct supertype of UDT.

ii) The inherited attributes of UDT are the attributes described by the attribute descriptors
included in the descriptor of SST.

iii) If <member list> is specified, then no <attribute name> contained in <member list>
shall have an attribute name that is equivalent to the attribute name of an inherited
attribute.

7) If <method specification list> is specified, then:

a) Let M be the number of <method specification>s MSi, 1 (one)� i � M, contained in <method
specification list>.

b) For i ranging from 1 (one) to M:

i) The <method name> MNi of MSi shall not be equivalent to the <qualified identifier> of
the user-defined type name of a proper supertype of UDT.

ii) If MNi is equivalent to the <qualified identifier> of UDTN, then SELF AS RESULT shall
be specified.

iii) If MSi does not specify INSTANCE or STATIC, then INSTANCE is implicit.

iv) If MSi specifies STATIC, then:

1) None of SELF AS RESULT, SELF AS LOCATOR, and OVERRIDING shall be
specified.

2) MSi specifies a static method.

v) Let RNi be SN.MNi.

vi) If <specific name> is not specified, then an implementation-dependent <specific name>
whose <schema name> is equivalent to SN is implicit.

vii) If <specific name> contains a <schema name>, then that <schema name> shall be
equivalent to SN. If <specific name> does not contain a <schema name>, then the
<schema name> of SN is implicit.

506 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

viii) The schema identified by the explicit or implicit <schema name> of the <specific name>
shall not include a routine descriptor whose specific name is equivalent to <specific
name> or a user-defined type descriptor that includes a method specification descriptor
whose specific name is equivalent to <specific name>.

ix) If any <SQL parameter declaration> contained in MSi immediately contains <SQL
parameter name>, then:

1) Every <SQL parameter declaration> contained in MSi shall immediately contain
<SQL parameter name>.

2) No two <SQL parameter name>s contained in MSi shall be equivalent.

3) No <SQL parameter name> shall be equivalent to SELF.

x) Let Ni be the number of <SQL parameter declaration>s contained in MSi. For every
<SQL parameter declaration> PDi;j, 1 (one) � j � Ni:

1) PDi;j shall not contain <parameter mode>. A <parameter mode> of IN is implicit.

2) PDi;j shall not specify RESULT.

3) <parameter type> PTi;j immediately contained in PDi;j shall not specify ROW.

4) If PTi;j simply contains <locator indication>, then:

A) MSi shall not specify or imply LANGUAGE SQL.

B) PTi;j shall specify either binary large object type, character large object type,
array type, or user-defined type.

xi) If <returns data type> RT simply contains <locator indication>, then:

1) LANGUAGE SQL shall not be specified or implied.

2) RT shall be either binary large object type, character large object type, array type,
or user-defined type.

3) <result cast> shall not be specified.

xii) If SELF AS RESULT is specified, then the <returns data type> shall specify UDTN.

xiii) For k ranging from (i+1) to M, at least one of the following conditions shall be false:

1) MNi and the <method name> of MSk are equivalent.

2) MSk has Ni <SQL parameter declaration>s.

3) The data type of PTi;j, 1 (one) � j � Ni, is compatible with PTk;j.

xiv) The unaugmented SQL parameter declaration list of MSi is the <SQL parameter decla-
ration list> contained in MSi.

xv) If MSi specifies <original method specification>, then:

1) The <method characteristics> of MSi shall contain at most one <language clause>,
at most one <parameter style clause>, at most one <deterministic characteristic>, at

Schema definition and manipulation 507

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

most one <SQL-data access indication>, at most one <null-call clause>, and at most
one <transform group specification>.

2) If <language clause> is not specified, then LANGUAGE SQL is implicit.

3) If <deterministic characteristic> is not specified, then NOT DETERMINISTIC is
implicit.

4) If <SQL-data access indication> is not specified, then CONTAINS SQL is implicit.

5) If <null-call clause> is not specified, then CALLED ON NULL INPUT is implicit.

6) Case:

A) If LANGUAGE SQL is specified or implied, then:

I) The <returns clause> shall not specify a <result cast>.

II) <SQL-data access indication> shall not specify NO SQL.

III) <parameter style clause> or <transform group specification> shall not be
specified.

IV) Every <SQL parameter declaration> contained in <SQL parameter declara-
tion list> shall contain a <SQL parameter name>.

B) Otherwise:

I) If <parameter style> is not specified, then PARAMETER STYLE SQL is
implicit.

II) Case:

1) If <transform group specification> is not specified, then a <multiple
group specification> with a <group specification> GS for each <SQL
parameter declaration> contained in <SQL parameter declaration list>
whose <parameter type> is a user-defined type DT with no <locator
indication> is implicit. The <group name> of GS is implementation-
defined and its <user-defined type> is DT.

2) If <single group specification> with a <group name> GN is specified,
then <transform group specification> is equivalent to a <transform group
specification> that contains a <multiple group specification> that con-
tains a <group specification> GS for each <SQL parameter declaration>
contained in <SQL parameter declaration list> whose <parameter type>
is a user-defined type DT with no <locator indication>. The <group
name> of GS is GN and its <user-defined type> is DT.

3) Otherwise, <multiple group specification> is extended with a <group
specification> GS for each <SQL parameter declaration> contained in
<SQL parameter declaration list> whose <parameter type> is a user-
defined type DT with no <locator indication> and the <user-defined
type name> of DT is not contained in any <group specification> con-
tained in <multiple group specification>. The <group name> of GS is
implementation-defined and its <user-defined type> is DT.

508 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

III) If a <result cast> is specified, then let V be some value of the <data type>
specified in the <result cast> and let RT be the <returns data type>. The
following shall be valid according to the Syntax Rules of Subclause 6.22,
‘‘<cast specification>’’:

(CAST (V AS RT)

IV) If <result cast from type> RCT simply contains <locator indication>, then
RCT shall be either binary large object type, character large object type,
array type, or user-defined type.

7) Let a conflicting method specification CMS be a method specification that is included
in the descriptor of a proper supertype of UDT, such that the following are all true:

A) The method name of CMS and MNi are equivalent.

B) CMS and MSi have the same number of SQL-parameters Ni.

C) Let PCMSj, 1 (one) � j � Ni, be the j-th SQL parameter in the unaugmented
SQL parameter declaration list of CMS. Let PMSi;j, 1 (one) � j � Ni, be the j-th
SQL parameter in the unaugmented SQL parameter declaration list of MSi.

D) For j varying from 1 (one) to Ni, the Syntax Rules of Subclause 10.14, ‘‘Data type
identity’’, are applied with the declared type of PCMSj and the declared type of
PMSi;j.

E) CMS and MSi either both are not static methods or one of CMS and MSi is a
static method and the other is not a static method.

8) There shall be no conflicting method specification.

9) The augmented SQL parameter declaration list NPLi of MSi is defined as follows:

Case:

A) If MSi specifies STATIC, then let NPLi be:

(PDi,1 , ..., PDi,Ni)

B) If MSi specifies SELF AS RESULT and SELF AS LOCATOR, then let NPLi be:

(SELF UDTN RESULT AS LOCATOR, PDi,1 , ..., PDi,Ni)

C) If MSi specifies SELF AS LOCATOR, then let NPLi be:

(SELF UDTN AS LOCATOR, PDi,1 , ..., PDi,Ni)

D) If MSi specifies SELF AS RESULT, then let NPLi be:

(SELF UDTN RESULT, PDi,1 , ..., PDi,Ni)

Schema definition and manipulation 509

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

E) Otherwise, let NPLi be:

(SELF UDTN, PDi,1 , ..., PDi,Ni)

F) Let ANi be the number of <SQL parameter declaration>s in NPLi.

10) If MSi does not specify STATIC, then there shall be no SQL-invoked function F that
satisfies all the following conditions:

A) The routine name of F and RNi have equivalent <qualified identifier>s.

B) If F is not a static method, then F has ANi SQL parameters; otherwise, F has
(ANi-1) SQL parameters.

C) The data type being defined is a proper subtype of

Case:

I) If F is not a static method, then the declared type of the first SQL parameter
of F.

II) Otherwise, the user-defined type whose user-defined type descriptor includes
the routine descriptor of F.

D) The declared type of the i-th SQL parameter in NPLi, 2 � i � ANi is compatible
with

Case:

I) If F is not a static method, then the declared type of i-th SQL parameter of
F.

II) Otherwise, the declared type of the (i-1)-th SQL parameter of F.

11) If MSi specifies STATIC, then there shall be no SQL-invoked function F that is not a
static method that satisfies all the following conditions:

A) The routine name of F and RNi have equivalent <qualified identifier>s.

B) F has (ANi+1) SQL parameters.

C) The data type being defined is a subtype of the declared type of the first SQL
parameter of F.

D) The declared type of the i-th SQL parameter in F, 2 � i � (ANi+1), is compatible
with the declared type of the (i-1)-th SQL parameter of NPLi.

xvi) If MSi specifies <overriding method specification>, then:

1) MSi shall not specify STATIC.

2) A <returns clause> contained in MSi shall not specify a <result cast> or <locator
indication>.

510 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

3) Let the candidate original method specification COMS be an original method spec-
ification whose descriptor is included in the descriptor of a proper supertype of the
user-defined type being defined, such that the following are all true:

A) The <method name> of COMS and MNi are equivalent.

B) COMS and MSi have the same number of SQL-parameters Ni.

C) Let PCOMSi, 1 (one) � i � Ni, be the i-th SQL parameter in the unaugmented
SQL parameter declaration list of COMS. Let POVMSi, 1 (one) � i � Ni, be the
i-th SQL parameter in the unaugmented SQL parameter declaration list of MSi.

D) For i varying from 1 (one) to Ni, the Syntax Rules of Subclause 10.14, ‘‘Data type
identity’’, are applied with the declared type of PCOMSi and the declared type of
POVMSi.

4) There shall exist exactly one COMS.

5) COMS shall not be a static method and shall not be the corresponding method
specification of a mutator or observer function.
NOTE 226 – ‘‘Corresponding method specification’’ is defined in Subclause 11.49, ‘‘<SQL-
invoked routine>’’.

6) If any <SQL parameter declaration> POVMSi immediately contains <SQL parame-
ter name>, then for i varying from 1 (one) to Ni, <SQL parameter name>s contained
in POVMSi and COMS shall be equivalent.

7) Let ROVMS be the <returns data type> of MSi. Let RCOMS be the <returns data
type> of COMS.

Case:

A) If RCOMS is a user-defined type, then ROVMS shall be a subtype of RCOMS.

B) Otherwise, the Syntax Rules of Subclause 10.14, ‘‘Data type identity’’, are ap-
plied with RCOMS and ROVMS.

8) The augmented SQL parameter declaration list ASPDL of MSi is formed from the
augmented SQL parameter declaration list of COMS by replacing the <data type> of
the first parameter (named SELF) with UDTN.

9) There shall be no SQL-invoked function F that satisfies all the following conditions:

A) The routine name of F and the RNi have equivalent <qualified identifier>s.

B) F and ASPDL have the same number N of SQL-parameters.

C) The data type being defined is a proper subtype of the declared type of the first
SQL parameter of F.

D) The declared type of POVMSi, 1 (one) � i � N, is compatible with the declared
type of SQL-parameter Pi+1 of F.

E) F is not a SQL-invoked method.

8) Let A be the <authorization identifier> that owns SS.

Schema definition and manipulation 511

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

9) Let the containing schema of UDT be SS.

Access Rules

1) If a <user-defined type definition> is contained in an <SQL-client module definition>, then the
enabled authorization identifiers shall include A.

2) The applicable privileges of A shall include UNDER on the <user-defined type name> specified
in <subtype clause>.
NOTE 227 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) If UDTD specifies a distinct type, then:

a) The degree of UDT is 0 (zero).

b) The following SQL-statements are executed without further Access Rule checking:

CREATE FUNCTION SN.FNUDT (SDTP SDT)
RETURNS UDTN
LANGUAGE SQL
DETERMINISTIC
STATIC DISPATCH

RETURN RV1

CREATE METHOD SN.FNSDT ()
RETURNS SDT
FOR UDTN
LANGUAGE SQL
DETERMINISTIC

RETURN RV2

CREATE CAST (UDTN AS SDT)
WITH FUNCTION SN.FNSDT (UDTN)
AS ASSIGNMENT

CREATE CAST (SDT AS UDTN)
WITH FUNCTION SN.FNUDT (SDT)
AS ASSIGNMENT

CREATE TRANSFORM FOR UDTN
FNUDT (FROM SQL WITH SN.FNSDT(UDTN),

TO SQL WITH SN.FNUDT(SDT));

CREATE ORDERING FOR UDTN
ORDER FULL BY MAP
WITH FUNCTION SN.FNSDT(UDTN)

where: SN is the explicit or implicit <schema name> of UDTN; RV1 is an implementation-
dependent <value expression> such that for every invocation of SN.FNUDT with argument
value AV1, RV1 evaluates to the representation of AV1 in the data type identified by UDTN;
RV2 is an implementation-dependent <value expression> such that for every invocation of
SN.FNSDT with argument value AV2, RV2 evaluates to the representation of AV2 in the
data type SDT, and SDTP is an <SQL parameter name> arbitrarily chosen.
NOTE 228 – If the source type of the distinct type is a large object type (for which no comparisons
other than equality and inequality are defined), the ORDER FULL specification does not permit any
comparisons other than those allowed for large object types.

512 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

2) If UDTD specifies a structured type, then:

a) The degree of UDT is the number of attributes of UDT, including inherited attributes. The
ordinal position of an inherited attribute is its ordinal position in the direct supertype of
UDT. The ordinal position of an attribute that is an originally-defined attribute is the ordi-
nal position of its corresponding <attribute definition> in <member list> plus the number of
inherited attributes.

b) If INSTANTIABLE is specified, then let V be a value of the most specific type UDT such
that, for every attribute A of UDT, invocation of the corresponding observer function on V
yields the default value for A. The following <SQL-invoked routine> is effectively executed:

CREATE FUNCTION UDTN () RETURNS UDTN
RETURN V

This SQL-invoked function is the constructor function for UDT.

c) If <user-defined representation> is specified, then the following SQL-statements are exe-
cuted without further Access Rule checking:

CREATE FUNCTION SN.FNREF (BTP BT)
RETURNS REF(UDTN)
LANGUAGE SQL
DETERMINISTIC
STATIC DISPATCH

RETURN RV1

CREATE FUNCTION SN.FNTYP (UDTNP REF(UDTN))
RETURNS BT
FOR UDTN
LANGUAGE SQL
DETERMINISTIC
STATIC DISPATCH

RETURN RV2

CREATE CAST (BT AS REF(UDTN))
WITH FUNCTION SN.FNREF(BT)

CREATE CAST (REF(UDTN) AS BT)
WITH FUNCTION SN.FNTYP(UDTN)

where: SN is the explicit or implicit <schema name> of UDTN; RV1 is an implementation-
dependent <value expression> such that for every invocation of SN.FNREF with argu-
ment value AV1, RV1 evaluates to the representation of AV1 in the data type identified by
REF(UDTN); RV2 is an implementation-dependent <value expression> such that for every
invocation of SN.FNTYP with argument value AV2, RV2 evaluates to the representation of
AV2 in the data type BTP; and UDTNP is an <SQL parameter name> arbitrarily chosen.

3) A privilege descriptor is created that defines the USAGE privilege on UDT to A. This privilege
is grantable. The grantor for this privilege descriptor is set to the special grantor value ‘‘_
SYSTEM’’.

4) If UDTD specifies a structured type, then a privilege descriptor is created that defines the
UNDER privilege on UDT to A. The grantor for the privilege descriptor is set to the spe-
cial grantor value ‘‘_SYSTEM’’. This privilege is grantable if and only if A holds the UNDER
privilege on the direct supertype of UDT WITH GRANT OPTION.

Schema definition and manipulation 513

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

5) A user-defined type descriptor UDTDS is created that describes the user-defined type being
defined. UDTDS includes:

a) The user-defined type name UDTN.

b) An indication of whether the user-defined type is instantiable or not instantiable.

c) An indication of whether the user-defined type is final or not final.

d) An indication of whether UDT is a distinct type or a structured type.

e) If UDT is a distinct type, then:

i) The data type descriptor of SDT.

ii) The ordering form FULL.

f) If UDT is a structured type, then:

i) The attribute descriptor of and an indication that it is an inherited attribute for each
inherited attribute of UDT.

ii) The attribute descriptor of and an indication that it is an originally-defined attribute for
each originally-defined attribute of UDT.

iii) The names of the direct supertype of UDT.

iv) A transform descriptor with an empty list of groups.

v) Case:

1) If <user-defined representation> is specified, then an indication that the refer-
ence type for which the structured type is the referenced type has a user-defined
representation.

2) If <derived representation> is specified, then an indication that the reference type
for which the structured type is the referenced type has a derived representation,
and the attributes specified by <list of attributes>.

3) Otherwise, an indication that the reference type for which the structured type is the
referenced type has a system-defined representation.

g) If <method specification list> is specified, then for every <original method specification>
ORMS contained in <method specification list>, a method specification descriptor that
includes:

i) An indication that the method specification is original.

ii) An indication of whether STATIC is specified.

iii) The <method name> of ORMS.

iv) The <specific name> of ORMS.

v) The <SQL parameter declaration list> contained in ORMS (augmented, if STATIC is not
specified in ORMS, to include the implicit first parameter with parameter name SELF).

vi) The <language name> contained in the explicit or implicit <language clause>.

514 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.40 <user-defined type definition>

vii) The explicit or implicit <parameter style> if the <language name> is SQL.

viii) The <returns data type>.

ix) The <result cast from type>, if any.

x) The <transform group specification>, if any.

xi) An indication of whether the method is deterministic.

xii) An indication of whether the method possibly writes SQL data, possibly reads SQL-data,
possibly contains SQL, or does not possibly contain SQL.

xiii) An indication of whether the method should not be invoked if any argument is the null
value.

h) If <method specification list> is specified, then for every <overriding method specification>
OVMS contained in <method specification list>, let DCMS be the descriptor of the cor-
responding original method specification. The method specification descriptor of OVMS
includes:

i) An indication that the method specification is overriding.

ii) The <method name> of OVMS.

iii) The <specific name> of OVMS.

iv) The <SQL parameter declaration list> contained in MS (augmented to include the
implicit first parameter with parameter name SELF).

v) The <language name> included in DCMS.

vi) The <parameter style> included in DCMS (if any).

vii) The <returns data type> included in DCMS.

viii) The <result cast from type> included in DCMS (if any).

ix) The <transform group specification> (if any).

x) The determinism indication included in DCMS.

xi) The SQL-data access indication included in DCMS.

xii) The indication included in DCMS, whether the method should not be invoked if any
argument is the null value.

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall contain no
<user-defined type definition> that specifies a <member list>.

2) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not specify
NOT INSTANTIABLE.

3) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not specify
SELF AS RESULT.

Schema definition and manipulation 515

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.40 <user-defined type definition>

4) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not specify
PARAMETER STYLE GENERAL in the <method characteristics> of an <original method
specification>.

5) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not specify
NO SQL in the <routine characteristics> of an <original method specification>.

6) Without Feature T571, ‘‘Array-returning external SQL-invoked functions’’, a <method specifi-
cation> shall not contain a <returns clause> that satisfies either of the following conditions:

a) A <result cast from type> is specified that simply contains a <collection type> and does not
contain a <locator indication>.

b) A <result cast from type> is not specified and <returns data type> simply contains a <collec-
tion type> and does not contain a <locator indication>.

7) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
<reference type specification>.

8) Without Feature S024, ‘‘Enhanced structured types’’, a <partial method specification> shall not
specify INSTANCE or STATIC.

516 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.41 <attribute definition>

11.41 <attribute definition>

Function
Define an attribute of a structured type.

Format

<attribute definition> ::=
<attribute name>
<data type>
[<reference scope check>]
[<attribute default>]
[<collate clause>]

<attribute default> ::=
<default clause>

Syntax Rules

1) An <attribute definition> defines a certain component of some structured type. Let UDT be
that structured type, let UDTN be its name, and let SS be the SQL-schema whose descriptor
includes the descriptor of UDT.

2) Let A be the <authorization identifier> that owns SS.

3) Let AN be the <attribute name> contained in the <attribute definition>.

4) The declared type of the attribute is <data type>.

5) If the declared type of the attribute is character string, then the collation of the attribute is

Case:

a) If <collate clause> is specified, then the collation specified by that <collate clause>.

b) Otherwise, the default collation of the character set of the attribute.
NOTE 229 – The character set of an attribute is determined by its declared type.

6) Let DT be the <data type>.

7) If DT is a <character string type> and does not contain a <character set specification>, then the
default character set for SS is implicit.

8) If DT is a <character string type> that identifies a character set that specifies a <collate clause>
and the <attribute definition> does not contain a <collate clause>, then the <collate clause> of
the <character string type> is implicit in the <attribute definition>.

9) If <collate clause> is specified, then <data type> shall be a character string type.

10) If <data type> is a <reference type> that contains a <scope clause>, then a <reference scope
check> that specifies either REFERENCES ARE NOT CHECKED or REFERENCES ARE
CHECKED ON DELETE NO ACTION shall be specified; otherwise, <reference scope check>
shall not be specified.

Schema definition and manipulation 517

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.41 <attribute definition>

Access Rules

1) If a <data type> is specified that is one of the following:

a) A user-defined type U.

b) A reference type whose referenced type is a user-defined type U.

c) An array type whose element type is a user-defined type U.

d) An array type whose element type is a reference type whose referenced type is a user-defined
type U.

e) A row type with a subfield that has a declared type that is:

i) A user-defined type U.

ii) A reference type whose referenced type is a user-defined type U.

iii) An array type whose element type is a user-defined type U.

iv) An array type whose element type is a reference type whose referenced type is a user-
defined type U.

then the applicable privileges of A shall include USAGE on U.
NOTE 230 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) The <collate clause> specifies the default collating sequence for the attribute. If <collate clause>
is not specified, then the default collating sequence is that used for comparisons of Coercible
coercibility characteristic, as defined in Subclause 8.2, ‘‘<comparison predicate>’’.

2) A data type descriptor is created that describes the declared type of the attribute being defined.

3) An attribute descriptor is created that describes the attribute being defined. The attribute
descriptor includes:

a) AN, the name of the attribute.

b) The data type descriptor of the declared type of the attribute.

c) If the <attribute definition> contains a <collate clause>, then the <collation name> specified
therein.

d) The ordinal position of the attribute in UDT.

e) The implicit or explicit <attribute default>.

f) If <data type> is a reference type, then whether references are checked.

g) The name UDTN of the user-defined type UDT.

4) Let A be the attribute defined by <attribute definition>.

5) Let DT be the declared type of A.

518 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.41 <attribute definition>

6) An SQL-invoked method OF is created whose signature and result data type are as given in the
descriptor of the original method specification of the observer function of A. Let V be a value in
UDT. If V is the null value, then the invocation V.AN() of OF returns the result of:

CAST (NULL AS DT)

Otherwise, V.AN() returns the value of A in V.

7) An SQL-invoked method MF is created whose signature and result data type are as given in
the descriptor of the original method specification of the mutator function of A. Let V be a value
in UDT and let AV be a value in DT. If V is the null value, then the invocation V.AN(AV) of
MF raises an exception condition: data exception — null instance used in mutator function;
otherwise, the invocation V.AN(AV) returns V2 such that V2.AN() = AV and for every other
observer function ANX of UDT, V2.ANX() = V.ANX().

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not contain any
<attribute definition>.

2) Without Feature F691, ‘‘Collation and translation’’, and Feature S023, ‘‘Basic structured types’’,
an <attribute definition> shall not contain a <collate clause>.

3) Without Feature S024, ‘‘Enhanced structured types’’, an <attribute definition> shall not specify
an <attribute default>.

4) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL parameter declaration> shall not
specify RESULT.

5) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL-invoked function> that specifies
a <method specification> shall not specify <hold or release>.

6) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
REFERENCES ARE CHECKED.

Schema definition and manipulation 519

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.42 <alter type statement>

11.42 <alter type statement>

Function
Change the definition of a user-defined type.

Format

<alter type statement> ::=
ALTER TYPE <user-defined type name> <alter type action>

<alter type action> ::=
<add attribute definition>

| <drop attribute definition>
| <add original method specification>
| <add overriding method specification>
| <drop method specification>

Syntax Rules

1) Let DN be the <user-defined type name> and let D be the data type identified by DN.

2) The schema identified by the explicit or implicit schema name of the <user-defined type name>
shall include the descriptor of D. Let S be that schema.

3) The scope of the <user-defined type name> is the entire <alter type statement>.

4) D shall be a structured type.

5) Let A be the <authorization identifier> that owns the schema S.

Access Rules

1) If an <alter type definition> is contained in an <SQL-client module>, then the enabled autho-
rization identifiers shall include A.

2) The applicable privileges of A shall include UNDER on each proper supertype of D.
NOTE 231 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) The user-defined type descriptor of D is modified as specified by <alter type action>.

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall contain no
<alter type statement>.

520 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.43 <add attribute definition>

11.43 <add attribute definition>

Function
Add an attribute to a user-defined type.

Format

<add attribute definition> ::=
ADD ATTRIBUTE <attribute definition>

Syntax Rules

1) Let D be the user-defined type identified by the <user-defined type name> immediately con-
tained in the containing <alter type statement>. Let SPD be any supertype of D. Let SBD be
any subtype of D.

2) Let RD be the reference type whose referenced type is D. Let SPRD be any supertype of RD.
Let SBRD be any subtype of RD. Let AD be the array type whose element type is D. Let SPAD
be any array type whose element type is SPD or SPRD. Let SBAD be any array type whose
element type is SBD or SBRD.

3) The declared type of a column of a base table shall not be SPD, SBD, SPRD, SBRD, SPAD, or
SBAD.

4) The declared type of a column of a base table shall not be based on SPD, SBD, SPRD, SBRD,
SPAD, or SBAD.
NOTE 232 – The notion of one data type type being based on another data type is defined in
Subclause 4.1, ‘‘Data types’’.

5) SBD shall not be the structured type of a referenceable table.

6) Let M be the mutator function resulting from the <attribute definition>, had that <attribute
definition> been simply contained in the <user-defined type definition> for D. There shall be no
SQL-invoked routine F that satisfies all of the following conditions:

a) The routine name included in the descriptor of F and the <schema qualified routine name>
of M have equivalent <qualified identifier>s.

b) F has 2 SQL parameters.

c) The declared type of the first SQL parameter of F is a subtype or supertype of D.

d) The declared type of the second SQL parameter of F is a compatible with the second SQL
parameter of M.

7) Let O be the observer function resulting from the <attribute definition>, had that <attribute
definition> been simply contained in the <user-defined type definition> for D. There shall be no
SQL-invoked routine F that satisfies all of the following conditions:

a) The <schema qualified routine name> of O and the routine name included in the descriptor
of F have equivalent <qualified identifier>s.

b) F has 1 (one) SQL parameter.

Schema definition and manipulation 521

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.43 <add attribute definition>

c) The declared type of the first SQL parameter of F is a subtype or supertype of D.

Access Rules

None.

General Rules

1) The attribute defined by the <attribute definition> is added to D.

2) In all other respects, the specification of an <attribute definition> in an <alter type statement>
has the same effect as specification of the <attribute definition> simply contained in the <user-
defined type definition> for D would have had. In particular, the degree of D is increased by 1
(one) and the ordinal position of that attribute is equal to the new degree of D as specified in
the General Rules of Subclause 11.41, ‘‘<attribute definition>’’.

3) Let A be the attribute defined by <attribute definition>. Let CPA be a copy of the descriptor of
A, modified to include an indication that the attribute is an inherited attribute.

4) For each proper subtype PSBD of D:

a) Let DPSBD be the descriptor of PSBD, let N be the number of attribute descriptors included
in DPSBD, and let DAi, 1 (one) � i � N, be the attribute descriptors included in DPSBD.

b) For every i between 1 (one) and N, if DAi is the descriptor of an originally-defined attribute,
then increase the ordinal position included in DAi by 1 (one).

c) Include CPA in DPSBD.

Conformance Rules

None.

522 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.44 <drop attribute definition>

11.44 <drop attribute definition>

Function
Destroy an attribute of a user-defined type.

Format

<drop attribute definition> ::=
DROP ATTRIBUTE <attribute name> RESTRICT

Syntax Rules

1) Let D be the user-defined type identified by the <user-defined type name> immediately con-
tained in the containing <alter type statement>.

2) Let A be the attribute identified by the <attribute name> AN.

3) A shall be an attribute of D that is not an inherited attribute, and A shall not be the only
attribute of D.

4) Let SPD be any supertype of D. Let SBD be any supertype of D. Let RD be the reference type
whose referenced type is D. Let SPRD be any supertype of RD. Let SBRD be any subtype of RD.
Let AD be the array type whose element type is D. Let SPAD be any array type whose element
type is SPD or SPRD. Let SBAD be any array type whose element type is SBD or SBRD.

5) The declared type of any column of any base table shall not be SPD, SBD, SPRD, SBRD, SPAD,
or SBAD.

6) The declared type of any column of any base table shall not be based on SPD, SBD, SPRD,
SBRD, SPAD, or SBAD.
NOTE 233 – The notion of one data type type being based on another data type is defined in
Subclause 4.1, ‘‘Data types’’.

7) SBD shall not be the structured type of a referenceable table.

8) Let R1 be the mutator function and let R2 be the observer function of A.

a) R1 and R2 shall not be the subject routine of any <routine invocation>, <method invoca-
tion>, <static method invocation>, or <method reference> that is contained in any of the
following:

i) The <SQL routine body> of any routine descriptor.

ii) The <query expression> of any view descriptor.

iii) The <search condition> of any constraint descriptor or assertion descriptor.

iv) The trigger action of any trigger descriptor.

b) The specific names of R1 and R2 shall not be included in any user-defined cast descriptor.

Schema definition and manipulation 523

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.44 <drop attribute definition>

c) If R1 or R2 is the ordering function included in the user-defined descriptor of any user-
defined type, then let P be a <predicate> that is dependent on R1 or R2, let SFS be a <set
function specification> that is dependent on R1 or R2, and let GBC be a <group by clause>
that is dependent on R1 or R2.
NOTE 234 – The notion of a <predicate>, <set function specification>, or <group by clause> that is
dependent on a SQL-invoked routine is defined in Subclause 11.49, ‘‘<SQL-invoked routine>’’.

NOTE 235 – ‘‘Comparison type ordering function’’ is defined in Subclause 4.8.4, ‘‘User-defined type
comparison and assignment’’.

d) P, SFS, and GBC shall not be contained in any of the following:

i) The <SQL routine body> of any routine descriptor.

ii) The <query expression> of any view descriptor.

iii) The <search condition> of any constraint descriptor or assertion descriptor.

iv) The triggered action of any trigger descriptor.

Access Rules

None.

General Rules

1) The descriptor of A is removed from the descriptor of every SBD.

2) The descriptor of A is destroyed.

3) The descriptors of the mutator and observer functions of A are destroyed.

4) The degree of every SBD is reduced by 1 (one). The ordinal position of all attributes having an
ordinal position greater than the ordinal position of A in SBD is reduced by 1 (one).

Conformance Rules

None.

524 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.45 <add original method specification>

11.45 <add original method specification>

Function
Add an original method specification to a user-defined type.

Format

<add original method specification> ::=
ADD <original method specification>

Syntax Rules

1) Let D be the user-defined type identified by the <user-defined type name> DN immediately
contained in the containing <alter type statement>. Let SN be the specified or implied <schema
name> of DN. Let SPD be any supertype of D, if any. Let SBD be any subtype of D, if any.

2) Let ORMS and PORMS be the <original method specification> and its immediately contained
<partial method specification>, respectively.

3) Let MN, MPDL and MCH be the <method name>, the <SQL parameter declaration list> and
the <method characteristics>, respectively, that are simply contained in ORMS. MPDL is called
the unaugmented SQL parameter declaration list of ORMS.

4) MN shall not be equivalent to the <qualified identifier> of the user-defined type name of any
SPD or SBD other than D.

5) If MN is equivalent to the <qualified identifier> of DN, then SELF AS RESULT shall be speci-
fied.

6) If PORMS does not specify INSTANCE or STATIC, then INSTANCE is implicit.

7) If PORMS specifies STATIC, then:

a) Neither SELF AS RESULT nor SELF AS LOCATOR shall be specified.

b) PORMS specifies a static method.

8) Let RN be SN.MN.

9) Case:

a) If PORMS does not specify <specific name>, then an implementation-dependent <specific
name> is implicit whose <schema name> is equivalent to SN.

b) Otherwise:

Case:

i) If <specific name> contains a <schema name>, then that <schema name> shall be
equivalent to SN.

ii) Otherwise, the <schema name> SN is implicit.

Schema definition and manipulation 525

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.45 <add original method specification>

The schema identified by the explicit or implicit <schema name> of the <specific name> shall
not include a routine descriptor whose specific name is equivalent to <specific name> or a user-
defined type descriptor that includes a method specification descriptor whose specific name is
equivalent to <specific name>.

10) MCH shall contain at most one <language clause>, at most one <parameter style clause>, at
most one <deterministic characteristic>, at most one <SQL-data access indication>, at most one
<null call clause>, and at most one <transform group specification>.

a) If <language clause> is not specified in MCH, then LANGUAGE SQL is implicit.

b) Case:

i) If LANGUAGE SQL is specified or implied, then:

1) <parameter style clause> or <transform group specification> shall not be specified.

2) <SQL-data access indication> shall not specify NO SQL.

3) Every <SQL parameter declaration> contained in <SQL parameter declaration list>
shall contain an <SQL parameter name>.

4) The <returns clause> shall not specify a <result cast>.

ii) Otherwise:

1) If <parameter style clause> is not specified, then PARAMETER STYLE SQL is
implicit.

2) Case:

A) If <transform group specification> is not specified, then a <multiple group speci-
fication> with a <group specification> GS for each <SQL parameter declaration>
contained in <SQL parameter declaration list> whose <parameter type> is a
user-defined type DT with no <locator indication> is implicit. The <group name>
of GS is implementation-defined and its <user-defined type> is DT.

B) If <single group specification> with a <group name> GN is specified, then
<transform group specification> is equivalent to a <transform group specifi-
cation> that contains a <multiple group specification> that contains a <group
specification> GS for each <SQL parameter declaration> contained in <SQL pa-
rameter declaration list> whose <parameter type> is a user-defined type DT with
no <locator indication>. The <group name> of GS is GN and its <user-defined
type> is DT.

C) Otherwise, <multiple group specification> is extended with a <group specifica-
tion> GS for each <SQL parameter declaration> contained in <SQL parameter
declaration list> whose <parameter type> is a user-defined type DT with no
<locator indication> and the <user-defined type name> of DT is not contained
in any <group specification> contained in <multiple group specification>. The
<group name> of GS is implementation-defined and its <user-defined type> is
DT.

526 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.45 <add original method specification>

3) If a <result cast> is specified, then let V be some value of the <data type> specified
in the <result cast> and let RT be the <returns data type>. The following shall be
valid according to the Syntax Rules of Subclause 6.22, ‘‘<cast specification>’’:

CAST (V AS RT)

4) If <result cast from type> RCT simply contains <locator indication>, then RCT
shall be either binary large object type, character large object type, array type, or
user-defined type.

c) If <deterministic characteristic> is not specified in MCH, then NOT DETERMINISTIC is
implicit.

d) If <SQL-data access indication> is not specified, then CONTAINS SQL is implicit.

e) If <null call clause> is not specified in MCH, then CALLED ON NULL INPUT is implicit.

11) If MPDL contains an <SQL parameter declaration> that immediately contains <SQL parameter
name>, then:

a) Every <SQL parameter declaration> of MPDL shall immediately contain an <SQL parame-
ter name>.

b) No two <SQL parameter name>s simply contained in MPDL shall be equivalent.

c) No <SQL parameter name> shall be equivalent to SELF.

12) Let N be the number of <SQL parameter declaration>s contained in MPDL. For every <SQL
parameter declaration> PDj, 1 (one) � j � N:

a) PDj shall not contain <parameter mode>. A <parameter mode> of IN is implicit.

b) PDj shall not specify RESULT.

c) <parameter type> PTj immediately contained in PDj shall not specify ROW.

d) If PTj simply contains <locator indication>, then:

i) MCH shall not specify LANGUAGE SQL, nor shall LANGUAGE SQL be implied.

ii) PTj shall specify either binary large object type, character large object type, array type,
or user-defined type.

13) If <returns data type> RT simply contains <locator indication>, then:

a) MCH shall not be specify LANGUAGE SQL, nor shall LANGUAGE SQL be implied.

b) RT shall be either binary large object type, character large object type, array type, or
user-defined type.

c) <result cast> shall not be specified.

14) If SELF AS RESULT is specified, then the <returns data type> shall specify DN.

15) Let a conflicting method specification CMS be a method specification whose descriptor is in-
cluded in the descriptor of some SPD or SBD, such that the following are all true:

a) MN and the method name included in the descriptor of CMS are equivalent.

Schema definition and manipulation 527

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.45 <add original method specification>

b) MPDL and the unaugmented SQL parameter list of CMS have the same number N of SQL
parameters.

c) Let PCMSj, 1 (one) � j � N, be the j-th SQL parameter in the unaugmented SQL parameter
declaration list of CMS. Let PMSj, 1 (one) � j � N, be the j-th SQL parameter in the
unaugmented SQL parameter declaration list MPDL.

d) For j varying from 1 (one) to N, the Syntax Rules of Subclause 10.14, ‘‘Data type identity’’,
are applied with the declared type of PCMSj and the declared type of PMSj.

e) CMS and ORMS either both are not static methods or one of CMS and ORMS is a static
method and the other is not a static method.

16) There shall be no conflicting method specification.

17) Let MPi, 1 (one) � i � N, be the i-th <SQL parameter declaration> contained in MPDL. The
augmented SQL parameter declaration list NPL of ORMS is defined as follows:

Case:

a) If PORMS specifies STATIC, then let NPL be:

(MP1, ..., MPN)

b) If ORMS specifies SELF AS RESULT and SELF AS LOCATOR, then let NPL be:

(SELF DN RESULT AS LOCATOR, MP1, ..., MPN)

c) If ORMS specifies SELF AS LOCATOR , then let NPL be:

(SELF DN AS LOCATOR, MP1, ..., MPN)

d) If ORMS specifies SELF AS RESULT, then let NPL be:

(SELF DN RESULT, MP1 , ..., MPN)

e) Otherwise, let NPL be:

(SELF DN, MP1, ..., MPN)

Let AN be the number of <SQL parameter declaration>s in NPL.

18) If PORMS does not specify STATIC, then there shall be no SQL-invoked function F that satisfies
all the following conditions:

a) F is not an SQL-invoked method.

b) The <routine name> of F and RN have equivalent <qualified identifier>s.

c) F has AN SQL parameters.

d) D is a subtype or supertype of the declared type of the first SQL parameter of F.

e) The declared type of the i-th SQL parameter in NPL, 2 � i � AN is compatible with the
declared type of i-th SQL parameter of F.

19) If PORMS specifies STATIC, then there shall be no SQL-invoked function F that is not a static
method that satisfies all the following conditions:

a) The <routine name> of F and RN have equivalent <qualified identifier>s.

528 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.45 <add original method specification>

b) F has (AN+1) SQL parameters.

c) D is a subtype or supertype of the declared type of the first SQL parameter of F.

d) The declared type of the i-th SQL parameter of F, 2 � i � (AN+1), is compatible with the
declared type of the (i-1)-th SQL parameter of NPL.

Access Rules

None.

General Rules

1) Let STDS be the descriptor of D. A method specification descriptor DOMS is created for ORMS.
DOMS includes:

a) An indication that the method specification is original.

b) An indication of whether STATIC is specified.

c) The <method name> MN.

d) The <specific name> contained in PORMS.

e) The augmented SQL parameter declaration list NPL.

f) For every parameter descriptor of a parameter of NPL, a locator indication (if specified).

g) The <returns data type> contained in PORMS.

h) The <result cast from type> contained in PORMS (if any).

i) The locator indication, if a <locator indication> is contained in the <returns clause> of
PORMS (if any).

j) The <transform group specification> contained in MCH (if any).

k) The <language name> explicitly or implicitly contained in MCH.

l) The explicit or implicit <parameter style> contained in MCH, if the <language name> is not
SQL.

m) The determinism indication contained in MCH.

n) An indication of whether the method possibly writes SQL data, possibly reads SQL-data,
possibly contains SQL, or does not possibly contain SQL.

o) An indication of whether the method should not be invoked if any argument is the null
value.

2) DOMS is added to STDS.

Schema definition and manipulation 529

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.45 <add original method specification>

Conformance Rules
The following restrictions apply for Core SQL:

None.

530 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.46 <add overriding method specification>

11.46 <add overriding method specification>

Function
Add an overriding method specification to a user-defined type.

Format

<add overriding method specification> ::=
ADD <overriding method specification>

Syntax Rules

1) Let OVMS be the <overriding method specification> immediately contained in <add overriding
method specification>. Let D be the user-defined type identified by the <user-defined type
name> DN immediately contained in the <alter type statement> containing OVMS. Let SN be
the specified or implied <schema name> of DN. Let SPD be any supertype of D, if any. Let SBD
be any subtype of D, if any.

2) Let POVMS be the <partial method specification> immediately contained in OVMS. POVMS
shall not specify STATIC.

3) Let MN, RTC and MPDL be <routine name>, the <returns clause> and the <SQL parameter
declaration list> immediately contained in POVMS.

4) MN shall not be equivalent to the <qualified identifier> of the user-defined type name of any
SPD or SBD other than D.

5) If MN is equivalent to the <qualified identifier> of DN, then SELF AS RESULT shall be speci-
fied.

6) Let RN be SN.MN.

7) Case:

a) If POVMS does not specify <specific name>, then an implementation-dependent <specific
name> is implicit whose <schema name> is equivalent to SN.

b) Otherwise,

Case:

i) If <specific name> contains a <schema name>, then that <schema name> shall be
equivalent to SN.

ii) Otherwise, the <schema name> SN is implicit.

The schema identified by the explicit or implicit <schema name> of the <specific name> shall
not include a routine descriptor whose specific name is equivalent to <specific name> or a user-
defined type descriptor that includes a method specification descriptor whose specific name is
equivalent to <specific name>.

8) RTC shall not specify a <result cast> or <locator indication>.

Schema definition and manipulation 531

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.46 <add overriding method specification>

9) Let the candidate original method specification COMS be an original method specification that
is included in the descriptor of a proper supertype of the user-defined type of D, such that the
following are all true:

a) MN and the <routine name> of COMS have equivalent <qualified identifier>s.

b) Let N be the number of elements of the augmented SQL parameter declaration list
UPCOMS generally included in the descriptor of COMS. MPDL shall contain (N-1) SQL
parameter declarations.

c) For i varying from 2 to N, the Syntax Rules of Subclause 10.14, ‘‘Data type identity’’, are
applied with the data types of the SQL parameters PCOMSi of UPCOMS and the data types
of the SQL parameters POVMSi�1 of MPDL, respectively.

d) For i varying from 2 to N:

i) If POVMSi�1 contains an <SQL parameter name> PNM, then PNM shall be equivalent
to the parameter name included in the descriptor of the i-th parameter of UPCOMS.

ii) POVMSi�1 shall not contain <parameter mode>. A <parameter mode> IN is implicit.

iii) POVMSi�1 shall not specify RESULT.

iv) The <parameter type> PTi�1 immediately contained in POVMSi�1 shall not contain a
<locator indication>.

10) There shall exist exactly one such COMS.

11) The descriptor of COMS shall not include a STATIC indication.

12) COMS shall not be the corresponding method specification of a mutator or observer function.
NOTE 236 – ‘‘Corresponding method specification’’ is defined in Subclause 11.49, ‘‘<SQL-invoked rou-
tine>’’.

13) Let ROVMS be the <returns data type> of RTC. Let RCOMS be the <returns data type> of
COMS.

Case:

a) If RCOMS is a user-defined type, then ROVMS shall be a subtype of RCOMS.

b) Otherwise, the Syntax Rules of Subclause 10.14, ‘‘Data type identity’’, are applied with
RCOMS and ROVMS as the data types.

14) The augmented SQL parameter declaration list ASPDL of OVMS is formed from the augmented
SQL parameter declaration list of COMS by replacing the <data type> of the first parameter
(named SELF) with the <user-defined type name> DN.

15) There shall be no SQL-invoked function F that satisfies all the following conditions:

a) F is not an SQL-invoked method.

b) The <routine name> of F and the <routine name> MS have equivalent <qualified identi-
fier>s.

c) Let NPF be the number of SQL parameters in ASPDL. F has NPF SQL-parameters.

d) D is a subtype or supertype of the declared type of the first SQL parameter of F.

532 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.46 <add overriding method specification>

e) The declared type of the i-th SQL parameter in ASPDL, 2 � i � NPF is compatible with the
declared type of i-th SQL parameter of F.

16) If the descriptor of D includes any method specification descriptor, then:

a) Let M be the number of method specification descriptors MSDi, 1 (one) � i � M, included in
the descriptor of D.

b) For i ranging from 1 (one) to M:

i) Let Ni be the number of <SQL parameter declaration>s contained in the augmented
SQL parameter declaration list included in MSDi. Let PTi;j, 1 (one) � j � Ni , be the
j-th <parameter type> contained in MSDi.

ii) At least one of the following conditions shall be false:

1) The <routine name> included in MSDi is equivalent to MN.

2) ASPDL has Ni <SQL parameter declaration>s.

3) The data type of PTi;j, 1 (one) � j � Ni, is compatible with the data type of the j-th
<SQL parameter declaration> of MPDL.

Access Rules

None.

General Rules

1) Let STDS be the descriptor of D, and DCMS the descriptor of the corresponding original method
specification COMS. A method specification descriptor DOMS is created for OVMS. DOMS
includes:

a) An indication that the method specification is overriding.

b) The <method name> MN.

c) The <specific name> contained in POVMS.

d) The augmented SQL parameter declaration list APDL.

e) For every parameter descriptor of a parameter of APDL, the locator indication of the de-
scriptor of the corresponding parameter included in DCMS (if any).

f) The <language name> included in DCMS.

g) The <parameter style> included in DCMS (if any).

h) The <returns data type> included in DCMS.

i) The <result cast from type> included in DCMS (if any).

j) The <transform group specification> included in DCMS (if any).

k) The locator indication contained in the <returns clause> included in the DCMS.

l) The determinism indication included in DCMS.

Schema definition and manipulation 533

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.46 <add overriding method specification>

m) The SQL-data access indication included in DCMS (if any).

n) The indication included in DCMS (if at all), whether the method should be invoked if any
argument is the null value.

2) DOMS is added to STDS.

Conformance Rules
The following restrictions apply for Core SQL:

None.

534 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.47 <drop method specification>

11.47 <drop method specification>

Function
Remove a method specification from a user-defined type.

Format

<drop method specification> ::=
DROP <specific routine designator> RESTRICT

Syntax Rules

1) Let D be the user-defined type identified by the <user-defined type name> immediately con-
tained in the <alter type statement> containing the <drop method specification> DORMS. Let
ME be the SQL-invoked method identified by <specific routine designator>, and MN and MSN
the method name and the specific name of ME. The schema identified by the explicit or implicit
<schema name> of MN shall include the descriptor of ME.

2) The descriptor of D shall include a method specification descriptor whose specific name is
equivalent to MSN. Let PDL be the augmented parameter list included in the descriptor of ME.

3) Let OOOI be the indication included in the descriptor of ME that indicates whether ME is an
original method specification or an overriding method specification.

Case:

a) If OOOI is the indication for an original method then:

i) There shall be no proper subtype PSBD of D whose descriptor includes the descriptor
DOVMS of an overriding method specification such that all of the following is true:

1) MN and the < method name> included in DOVMS have equivalent <qualified identi-
fier>s.

2) If N is the number of elements in PDL, then the augmented SQL parameter declara-
tion list APDL included in DOVMS has N SQL parameters.

3) PSBD is the declared type the first SQL parameter of APDL.

4) The declared type of the i-th element of PDL, 2 � i � N, is compatible with the
declared type of SQL-parameter Pi of APDL.

ii) There shall be no SQL-invoked function F that satisfies all of the following conditions:

1) The <routine name> of F and MN have equivalent <qualified identifier>s.

2) If N is the number of elements in PDL, then F has N SQL parameters.

3) The declared type of the first SQL parameter of F is D.

4) The declared type of the i-th element of PDL, 2 � i � N, is compatible with the
declared type of SQL parameter Pi of F.

5) F is an SQL-invoked method.

Schema definition and manipulation 535

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.47 <drop method specification>

b) Otherwise, there shall be no SQL-invoked function F that satisfies all of the following
conditions:

i) The <routine name> of F and MN have equivalent <qualified identifier>s.

ii) If N is the number of elements in PDL, then F has N SQL parameters.

iii) The declared type of the first SQL parameter of F is D.

iv) The declared type of the i-th element of PDL, 2 � i � N, is compatible with the declared
type of SQL parameter Pi of F.

v) F is an SQL-invoked method.

Access Rules

None.

General Rules

1) Let STDS be the descriptor of D and let DOMS be the descriptor generally included in STDS
that corresponds to MN and PDL.

2) DOMS is removed from STDS.

3) DOMS is destroyed.

Conformance Rules
The following restrictions apply for Core SQL:

None.

536 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.48 <drop data type statement>

11.48 <drop data type statement>

Function
Destroy a user-defined type.

Format

<drop data type statement> ::=
DROP TYPE <user-defined type name> <drop behavior>

Syntax Rules

1) Let DN be the <user-defined type name> and let D be the data type identified by DN. Let SD be
any supertype of D.

2) Let RD be the reference type whose referenced type is D. Let SRD be any supertype of RD. Let
AD be the array type whose element type is D. Let SAD be any array type whose element type
is a supertype of D or RD.

3) The schema identified by the explicit or implicit schema name of DN shall include the descriptor
of D.

4) If RESTRICT is specified, then:

a) The declared type of no column, attribute, or field shall be SD, SRD, or SAD.

b) The declared type of no column, attribute, or field shall be based on SD, SRD, or SAD.

c) D shall have no proper subtypes.

d) D shall not be the structured type of a referenceable table.

e) The transform descriptor included in the user-defined type descriptor of D shall include an
empty list of transform groups.

f) D, RD, and AD shall not be referenced in any of the following:

i) The <query expression> of any view descriptor.

ii) The <search condition> of any constraint descriptor or assertion descriptor.

iii) A trigger action of any trigger descriptor.

iv) A user-defined cast descriptor.

v) A user-defined type descriptor other than that of D itself.

g) There shall be no SQL-invoked routine that is not dependent on D and whose routine
descriptor includes the descriptor of D, RD, or AD, or whose <SQL routine body> references
D, RD, or AD.

Schema definition and manipulation 537

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.48 <drop data type statement>

h) Let R be any SQL-invoked routine that is dependent on D and whose routine descriptor
includes the descriptor of D or RD.

i) R shall not be the subject routine of any <routine invocation>, <method invocation>,
<static method invocation>, or <method reference> that is contained in any of the
following:

1) The <SQL routine body> of any routine descriptor.

2) The <query expression> of any view descriptor.

3) The <search condition> of any constraint descriptor or assertion descriptor.

4) The trigger action of any trigger descriptor.

ii) The specific name of R shall not be included in any user-defined cast descriptor.

iii) If R is the ordering function included in the user-defined descriptor of any user-defined
type, then let P be a <predicate> that is dependent on R, let SFS be a <set function
specification> that is dependent on R, and let GBC be a <group by clause> that is
dependent on R.
NOTE 237 – A <predicate>, <set function specification>, or <group by clause> that is dependent
on an SQL-invoked routine is defined in Subclause 4.23, ‘‘SQL-invoked routines’’.

NOTE 238 – ‘‘Comparison type’’ is defined in Subclause 4.8.4, ‘‘User-defined type comparison
and assignment’’.

iv) P, SFS, and GBC shall not be contained in any of the following:

1) The <SQL routine body> of any routine descriptor.

2) The <query expression> of any view descriptor.

3) The <search condition> of any constraint descriptor or assertion descriptor.

4) The triggered action of any trigger descriptor.
NOTE 239 – If CASCADE is specified, then such referenced objects will be dropped by the execution of
the <revoke statement> specified in the General Rules of this Subclause.

NOTE 240 – The notion of an SQL-invoked routine being dependent on a user-defined type is defined in
Subclause 4.23, ‘‘SQL-invoked routines’’.

NOTE 241 – The notion of one data type type being based on another data type is defined in
Subclause 4.1, ‘‘Data types’’.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of D.

General Rules

1) Let SN be the <specific name> of any <SQL-invoked routine> that references D, RD, or AD or
whose routine descriptor includes the descriptor of D, RD, or AD and that is not dependent on
D. The following <drop routine statement> is effectively executed for each such <SQL-invoked
routine> without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

538 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.48 <drop data type statement>

NOTE 242 – The notion of an SQL-invoked routine being dependent on a user-defined type is defined in
Subclause 4.23, ‘‘SQL-invoked routines’’.

2) The following <drop transform statement> is effectively executed without further Access Rule
checking:

DROP TRANSFORM ALL FOR DN CASCADE

NOTE 243 – This Rule should have no effect, since any external routine that depends on the transform
being dropped also depends on the data type for which the transform is defined and hence should have
already been dropped because of General Rule 1.

3) Let UDCD be the user-defined cast descriptor that references DN as the source data type. Let
TD be the target data type included in UDCD. The following <drop user-defined cast statement>
is effectively executed without further Access Rule checking:

DROP CAST (DN AS TD) CASCADE

4) Let UDCD be the user-defined cast descriptor that references DN as the target data type. Let
SD be the source data type included in UDCD. The following <drop user-defined cast statement>
is effectively executed without further Access Rule checking:

DROP CAST (SD AS DN) CASCADE

5) Let UDCD be the user-defined cast descriptor that references the reference type whose refer-
enced type is DN as the source data type. Let TD be the target data type included in UDCD.
The following <drop user-defined cast statement> is effectively executed without further Access
Rule checking:

DROP CAST (REF (DN) AS TD) CASCADE

6) Let UDCD be the user-defined cast descriptor that references the reference type whose refer-
enced type is DN as the target data type. Let SD be the source data type included in UDCD.
The following <drop user-defined cast statement> is effectively executed without further Access
Rule checking:

DROP CAST (SD AS REF (DN)) CASCADE

7) For every privilege descriptor that references D, the following <revoke statement> is effectively
executed:

REVOKE PRIV ON D FROM GRANTEE CASCADE

where PRIV and GRANTEE are respectively the action and grantee in the privilege descriptor.

8) The descriptor of every SQL-invoked routine that is said to be dependent on D is destroyed.
NOTE 244 – The notion of an SQL-invoked routine being dependent on a user-defined type is defined in
Subclause 4.23, ‘‘SQL-invoked routines’’.

9) The descriptor of D is destroyed.

Schema definition and manipulation 539

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.48 <drop data type statement>

Conformance Rules

1) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE shall not be
specified in <drop data type statement>.

540 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

11.49 <SQL-invoked routine>

Function
Define an SQL-invoked routine.

Format

<SQL-invoked routine> ::=
<schema routine>

<schema routine> ::=
<schema procedure>

| <schema function>

<schema procedure> ::=
CREATE <SQL-invoked procedure>

<schema function> ::=
CREATE <SQL-invoked function>

<SQL-invoked procedure> ::=
PROCEDURE <schema qualified routine name>
<SQL parameter declaration list>

<routine characteristics>
<routine body>

<SQL-invoked function> ::=
{ <function specification> | <method specification designator> }
<routine body>

<SQL parameter declaration list> ::=
<left paren>
[<SQL parameter declaration> [{ <comma> <SQL parameter declaration> }...]]

<right paren>

<SQL parameter declaration> ::=
[<parameter mode>] [<SQL parameter name>]
<parameter type>
[RESULT]

<parameter mode> ::=
IN

| OUT
| INOUT

<parameter type> ::=
<data type> [<locator indication>]

<locator indication> ::=
AS LOCATOR

<function specification> ::=
FUNCTION <schema qualified routine name>
<SQL parameter declaration list>
<returns clause>
<routine characteristics>
[<dispatch clause>]

Schema definition and manipulation 541

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

<method specification designator> ::=
[INSTANCE | STATIC] METHOD <method name> <SQL parameter declaration list>
[<returns clause>]
FOR <user-defined type>

<routine characteristics> ::=
[<routine characteristic>...]

<routine characteristic> ::=
<language clause>

| <parameter style clause>
| SPECIFIC <specific name>
| <deterministic characteristic>
| <SQL-data access indication>
| <null-call clause>
| <transform group specification>
| <dynamic result sets characteristic>

<dynamic result sets characteristic> ::=
DYNAMIC RESULT SETS <maximum dynamic result sets>

<parameter style clause> ::=
PARAMETER STYLE <parameter style>

<dispatch clause> ::= STATIC DISPATCH

<returns clause> ::= RETURNS <returns data type> [<result cast>]

<result cast> ::= CAST FROM <result cast from type>

<result cast from type> ::=
<data type> [<locator indication>]

<returns data type> ::= <data type> [<locator indication>]

<routine body> ::=
<SQL routine body>

| <external body reference>

<SQL routine body> ::= <SQL procedure statement>

<external body reference> ::=
EXTERNAL [NAME <external routine name>]
[<parameter style clause>]
[<external security clause>]

<external security clause> ::=
EXTERNAL SECURITY DEFINER

| EXTERNAL SECURITY INVOKER
| EXTERNAL SECURITY IMPLEMENTATION DEFINED

<parameter style> ::=
SQL

| GENERAL

<deterministic characteristic> ::=
DETERMINISTIC

| NOT DETERMINISTIC

<SQL-data access indication> ::=

542 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

NO SQL
| CONTAINS SQL
| READS SQL DATA
| MODIFIES SQL DATA

<null-call clause> ::=
RETURNS NULL ON NULL INPUT

| CALLED ON NULL INPUT

<maximum dynamic result sets> ::= <unsigned integer>

<transform group specification> ::=
TRANSFORM GROUP

{ <single group specification> | <multiple group specification> }

<single group specification> ::=
<group name>

<multiple group specification> ::=
<group specification> [{ <comma> <group specification> }...]

<group specification> ::=
<group name> FOR TYPE <user-defined type>

Syntax Rules

1) An <SQL-invoked routine> specifies an SQL-invoked routine. Let R be the SQL-invoked routine
specified by <SQL-invoked routine>.

2) If <SQL-invoked routine> immediately contains <schema routine>, then the SQL-invoked
routine identified by <schema qualified routine name> is a schema-level routine.

3) An <SQL-invoked routine> specified as an <SQL-invoked procedure> is called an SQL-invoked
procedure; an <SQL-invoked routine> specified as an <SQL-invoked function> is called an SQL-
invoked function. An <SQL-invoked function> that specifies a <method specification designator>
is further called an SQL-invoked method. An SQL-invoked method that specifies STATIC is
called a static SQL-invoked method.

4) If <SQL-invoked routine> specifies a SQL-invoked method, then:

a) Let UDTN be the <user-defined type> immediately contained in <method specification
designator>. Let UDT be the user-defined type identified by UDTN.

b) There shall exist a method specification descriptor DMS in the descriptor of UDT such
that the <method name> of DMS is equivalent to the <method name>, DMS indicates
STATIC if and only if the <method specification designator> specifies STATIC, and the
declared type of every SQL parameter in the unaugmented SQL parameter declaration list
in DMS is compatible with the declared type of the corresponding SQL parameter in the
<SQL parameter declaration list> contained in the <method specification designator>. DMS
identifies the corresponding method specification of the <method specification designator>.

c) Let MN be the number of SQL parameters in the unaugmented SQL parameter declaration
list in DMS.

Schema definition and manipulation 543

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

d) Let PCOMSi, 1 (one) � i � MN, be the i-th SQL parameter in the unaugmented SQL pa-
rameter declaration list of DMS. Let POVMSi, 1 (one) � i � MN, be the i-th SQL parameter
contained in <method specification designator>.

e) If any <SQL parameter declaration> POVMSi immediately contains <SQL parameter
name>, then for i varying from 1 (one) to MN, the <SQL parameter name>s contained
in PCOMSi and POVMSi shall be equivalent.

f) Let PDMSi, 1 (one) � i � MN, be the declared type of the i-th SQL parameter in the
unaugmented SQL parameter declaration list in DMS. Let PSMi be the declared type of the
i-th SQL parameter contained in <method specification designator>.

g) With i ranging from 1 (one) to MN, the Syntax Rules of Subclause 10.14, ‘‘Data type iden-
tity’’, are applied with PDMSi and PSMi.

h) Case:

i) If <returns clause> is specified, then let RT be the <returns data type> of R. Let RDMS
be the <returns data type> in DMS. The Syntax Rules of Subclause 10.14, ‘‘Data type
identity’’, are applied with RT and RDMS.

ii) Otherwise, let RDMS be the <returns data type> of R.

i) If DMS includes <result cast> RC, then

Case:

i) If <returns clause> is specified, then <returns clause> shall contain <result cast>. Let
RDCT be the <data type> specified in RC. Let RCT be the <data type> specified in
the <result cast> contained in <returns clause>. The Syntax Rules of Subclause 10.14,
‘‘Data type identity’’, are applied with RDCT and RCT.

ii) Otherwise, RC is the <result cast> of R.

j) Let TGS be the <transform group specification>, if any, in DMS. TGS is the <transform
group specification> of R.

k) Let SPN be the <specific name> in DMS. SPN is the <specific name> of R.

l) Let NPL be the augmented SQL parameter declaration list of DMS.

m) Let RN be SN.<method name>, where SN is the <schema name> of the schema that in-
cludes the descriptor of UDT.

5) If <SQL-invoked routine> specifies an SQL-invoked procedure or an SQL-invoked function that
is not an SQL-invoked method, then:

a) <routine characteristics> shall contain at most one <language clause>, at most one <param-
eter style clause>, at most one <specific name>, at most one <deterministic characteristic>,
at most one <SQL-data access indication>, at most one <null-call clause>, at most one
<transform group specification>, and at most one <dynamic result sets characteristic>.

b) <parameter style clause> shall not be specified both in <routine characteristics> and in
<external body reference>.

c) The <routine characteristics> of a <function specification> shall not contain a <dynamic
result sets characteristic>.

544 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

d) If <dynamic result sets characteristic> is not specified, then DYNAMIC RESULT SETS 0
(zero) is implicit.

e) If <deterministic characteristic> is not specified, then NOT DETERMINISTIC is implicit.

f) If PROCEDURE is specified, then <null-call clause> shall not be specified; otherwise, if
<null-call clause> is not specified, then CALLED ON NULL INPUT is implicit.

g) If <SQL-data access indication> is not specified, then CONTAINS SQL is implicit.

h) If <language clause> is not specified, then LANGUAGE SQL is implicit.

i) An <SQL-invoked routine> that specifies or implies LANGUAGE SQL is called an SQL
routine; an <SQL-invoked routine> that does not specify LANGUAGE SQL is called an
external routine.

j) If R is an SQL routine, then:

i) The <returns clause> shall not specify a <result cast>.

ii) <SQL-data access indication> shall not specify NO SQL.

iii) <parameter style clause> or <transform group specification> shall not be specified.

k) An array-returning external function is an SQL-invoked function that is an external routine
and that satisfies one of the following conditions:

i) A <result cast from type> is specified that simply contains a <collection type> and does
not contain a <locator indication>.

ii) A <result cast from type> is not specified and <returns data type> simply contains a
<collection type> and does not contain a <locator indication>.

l) Let RN be the <schema qualified routine name> of R.

m) If <SQL-invoked routine> is contained in a <schema definition> and RN contains a <schema
name> SN, then SN shall be equivalent to the specified or implicit <schema name> of the
containing <schema definition>. Let S be the SQL-schema identified by SN.

n) Case:

i) If R is an SQL-invoked function that is not a SQL-invoked method and the <SQL
parameter declaration list> contains an <SQL parameter declaration> that specifies
a <data type> that is one of:

1) A user-defined type.

2) An array type whose element type is a user-defined type.

3) An array type whose element type is a reference type.

4) A reference type.

then <dispatch clause> shall be specified. Otherwise, <dispatch clause> shall not be
specified.

ii) Otherwise, <dispatch clause> shall not be specified.

Schema definition and manipulation 545

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

o) If <specific name> is not specified, then an implementation-dependent <specific name>
whose <schema name> is the equivalent to the <schema name> of S is implicit.

p) If <specific name> contains a <schema name>, then that <schema name> shall be equivalent
to the <schema name> of S. If <specific name> does not contain a <schema name>, then the
<schema name> of S is implicit.

q) The schema identified by the explicit or implicit <schema name> of the <specific name> shall
not include a routine descriptor whose specific name is equivalent to <specific name> or a
user-defined type descriptor that includes a method specification descriptor whose specific
name is equivalent to <specific name>.

r) If <returns data type> RT simply contains <locator indication>, then:

i) R shall be an external routine.

ii) RT shall be either binary large object type, character large object type, array type, or
user-defined type.

iii) <result cast> shall not be specified.

s) If <result cast from type> RCT simply contains <locator indication>, then:

i) R shall be an external routine.

ii) RCT shall be either binary large object type, character large object type, array type, or
user-defined type.

t) If R is an external routine, then:

i) If <parameter style> is not specified, then PARAMETER STYLE SQL is implicit.

ii) If R is an array-returning external function, then PARAMETER STYLE SQL shall be
either specified or implied.

iii) Case:

1) If <transform group specification> is not specified, then a <multiple group speci-
fication> with a <group specification> GS for each <SQL parameter declaration>
contained in <SQL parameter declaration list> whose <parameter type> is a user-
defined type UDT with no <locator indication> is implicit. The <group name> of GS
is implementation-defined and its <user-defined type> is UDT.

2) If <single group specification> with a <group name> GN is specified, then <trans-
form group specification> is equivalent to a <transform group specification> that
contains a <multiple group specification> that contains a <group specification>
GS for each <SQL parameter declaration> contained in <SQL parameter declara-
tion list> whose <parameter type> is a user-defined type UDT with no <locator
indication>. The <group name> of GS is GN and its <user-defined type> is UDT.

3) Otherwise, <multiple group specification> is extended with a <group specification>
GS for each <SQL parameter declaration> contained in <SQL parameter declaration
list> whose <parameter type> is a user-defined type UDT with no <locator indi-
cation> and the <user-defined type name> of UDT is not contained in any <group
specification> contained in <multiple group specification>. The <group name> of GS
is implementation-defined and its <user-defined type> is UDT.

546 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

iv) If a <result cast> is specified, then let V be some value of the <data type> specified in
the <result cast> and let RT be the <returns data type>. The following shall be valid
according to the Syntax Rules of Subclause 6.22, ‘‘<cast specification>’’:

CAST (V AS RT)

u) Let NPL be the <SQL parameter declaration list> contained in the <SQL-invoked routine>.

6) NPL specifies the list of SQL parameters of R. Each SQL parameter of R is specified by an
<SQL parameter declaration>. If <SQL parameter name> is specified, then that SQL parameter
of R is identified by an SQL parameter name.

7) NPL shall specify at most one <SQL parameter declaration> that specifies RESULT.

8) If R is an SQL-invoked function, then no <SQL parameter declaration> in NPL shall contain a
<parameter mode>.

9) If R is an SQL routine, then every <SQL parameter declaration> in NPL shall contain an <SQL
parameter name>.

10) If any <SQL parameter declaration> contained in NPL immediately contains <SQL parameter
name>, then:

a) Every <SQL parameter declaration> contained in NPL shall immediately contain <SQL
parameter name>.

b) No two <SQL parameter name>s shall be equivalent.

11) Let N and PN be the number of <SQL parameter declaration>s contained in NPL. For every
<SQL parameter declaration> PDi, 1 (one) � i � N:

a) <parameter type> PTi immediately contained in PDi shall not specify ROW.

b) If PTi simply contains <locator indication>, then:

i) R shall be an external routine.

ii) PTi shall specify either binary large object type, character large object type, array type,
or user-defined type.

c) If PDi immediately contains RESULT, then:

i) R shall be a SQL-invoked function.

ii) PTi shall specify a structured type ST. Let STN be the <user-defined type name> that
identifies ST.

iii) The <returns data type> shall specify STN.

iv) R is a type-preserving function and PDi specifies the result SQL parameter of R.

d) If PDi does not contain a <parameter mode>, then a <parameter mode> that specifies IN is
implicit.

e) Let Pi be the i-th SQL parameter.

Schema definition and manipulation 547

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

Case:

i) If the <parameter mode> specifies IN, then Pi is an input SQL parameter.

ii) If the <parameter mode> specifies OUT, then Pi is an output SQL parameter.

iii) If the <parameter mode> specifies INOUT, then Pi is both an input SQL parameter and
an output SQL parameter.

12) The scope of RN is the <routine body> of R.

13) The scope of an <SQL parameter name> contained in NPL is the <routine body> RB of the
<SQL-invoked procedure> or <SQL-invoked function> that contains NPL.

14) An <SQL-invoked routine> shall not contain a <host parameter name>.

15) Case:

a) If R is an SQL-invoked procedure, then S shall not include another SQL-invoked procedure
whose <schema qualified routine name> is equivalent to RN and whose number of SQL
parameters is PN.

b) Otherwise:

i) Case:

1) If R is a static SQL-invoked method, then let SCR be the set containing every static
SQL-invoked method of type UDT, including R, whose <schema qualified routine
name> is equivalent to RN and whose number of SQL parameters is PN.

2) Otherwise, let SCR be the set containing every SQL-invoked function in S that is not
a static SQL-invoked method, including R, whose <schema qualified routine name>
is equivalent to RN and whose number of SQL parameters is PN.

ii) Let AL be an <SQL argument list> constructed from a list of arbitrarily-selected values
in which the declared type of every value Ai in AL is compatible with the declared type
of the corresponding SQL parameter Pi of R.

iii) For every Ai, eliminate from SCR every SQL-invoked routine SIR for which the type
designator of the declared type of the SQL parameter Pi of SIR is not in the type
precedence list of the declared type of Ai.

iv) Let SR be the set of subject routines defined by applying the Syntax Rules of
Subclause 9.4, ‘‘Subject routine determination’’, with the set of SQL-invoked routines
as SCR and <SQL argument list> as AL. There shall be exactly one subject routine in
SR.

16) If R is an SQL-invoked method but not a static SQL-invoked method, then the first SQL param-
eter of NPL is called the subject parameter of R.

17) If R is an SQL-invoked function F that is not a SQL-invoked method, but whose first SQL
parameter has a declared type that is a user-defined type, then:

a) Let UDT be the declared type of the first SQL parameter of F.

548 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

b) Let DMS be a method specification descriptor of an instance method in the descriptor of
UDT such that:

i) The <schema qualified routine name> of F and the <routine name> of DMS have equiv-
alent <qualified identifier>s.

ii) F and the augmented SQL parameter declaration list of DMS have the same number of
SQL parameters.

c) Let PDMSi, 1 (one) � i � PN, be the declared type of the i-th SQL parameter in the unaug-
mented SQL parameter declaration list in DMS and let PMSi be the declared type of the
i-th SQL parameter contained in <function specification>.

d) One of the following conditions shall be false:

i) The declared type of PDMSi, 1 (one) � i � N is compatible with the declared type of
SQL parameter PMSi+1.

ii) UDT is a subtype or a supertype of the declared type of PMS1.

18) If R is an SQL routine, then:

a) <SQL routine body> shall be specified.

b) For each SQL parameter P of R,

Case:

i) If P is an input SQL parameter, then <SQL parameter name> shall not be contained
in a <target specification> or a <simple target specification> that is contained in <SQL
routine body>.

ii) If P is an output SQL parameter, then the <SQL parameter name> shall not be con-
tained in a <value specification>, a <simple value specification>, or a <value expression>
that is contained in <SQL routine body>.

c) If READS SQL DATA is specified, then it is implementation-defined whether the <SQL
routine body> shall not contain an <SQL procedure statement> that possibly modifies
SQL-data.

d) If CONTAINS SQL is specified, then it is implementation-defined whether the <SQL routine
body> shall not contain an <SQL procedure statement> that either possibly modifies SQL-
data or possibly reads SQL-data.

e) If DETERMINISTIC is specified, then it is implementation-defined whether the <SQL
routine body> shall not contain an <SQL procedure statement> that is possibly non-
deterministic.

f) It is implementation-defined whether the <SQL routine body> shall not contain an <SQL
connection statement>, an <SQL schema statement>, or an <SQL transaction statement>.

19) If R is an external routine, then:

a) <SQL routine body> shall not be specified.

b) If <external security clause> is not specified, then EXTERNAL SECURITY IMPLEMENTATION
DEFINED is implicit.

Schema definition and manipulation 549

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

c) If an <external routine name> is not specified, then an <external routine name> that is
equivalent to the <qualified identifier> of R is implicit.

d) If PARAMETER STYLE SQL is specified, then

Case:

i) If R is an SQL-invoked function, then let FRN be 1 (one).

ii) If R is an array-returning external function, then let AREF be 7. Otherwise, let AREF
be 5.

iii) Let the effective SQL parameter list be a list of PN+FRN+N+AREF SQL parameters, as
follows:

1) For i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry is
defined as follows.

Case:

A) If the <parameter type> Ti simply contained in the i-th <SQL parameter dec-
laration> contains <locator indication>, then the i-th effective SQL parameter
list entry is the i-th <SQL parameter declaration> with the <parameter type>
replaced by INTEGER.

B) If the <parameter type> Ti immediately contained in the i-th <SQL parameter
declaration> is a <user-defined type> without a <locator indication>, then:

I) Case:

1) If R is an SQL-invoked method that is an overriding method, then the
Syntax Rules of Subclause 10.16, ‘‘Determination of a from-sql function
for an overriding method’’, are applied with R and i as ROUTINE and
POSITION, respectively. There shall be an applicable from-sql function
FSFi.

2) Otherwise, the Syntax Rules of Subclause 10.15, ‘‘Determination of a
from-sql function’’, are applied with the data type identified by Ti, and
the <group name> contained in the <group specification> that contains
Ti as TYPE and GROUP, respectively. There shall be an applicable
from-sql function FSFi.

II) FSFi is called the from-sql function associated with the i-th SQL parameter.

III) The i-th effective SQL parameter list entry is the i-th <SQL parameter
declaration> with the <parameter type> replaced by the <returns data type>
of FSFi.

C) Otherwise, the i-th effective SQL parameter list entry is the i-th <SQL parame-
ter declaration>.

2) Effective SQL parameter list entry PN+FRN has <parameter mode> OUT; its <pa-
rameter type> PT is defined as follows:

A) If <result cast> is specified, then let RT be <result cast from type>; otherwise,
let RT be <returns data type>.

550 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

B) Case:

I) If RT simply contains <locator indication>, then PT is INTEGER.

II) If RT specifies a <user-defined type name> without a <locator indication>,
then:

1) Case:

a) If R is an SQL-invoked method that is an overriding method, then
the Syntax Rules of Subclause 10.18, ‘‘Determination of a to-sql
function for an overriding method’’, are applied with R as ROUTINE.
There shall be an applicable to-sql function TSF.

b) Otherwise, the Syntax Rules of Subclause 10.17, ‘‘Determination of
a to-sql function’’, are applied with the data type identified by RT
and the <group name> contained in the <group specification> that
contains RT as TYPE and GROUP, respectively. There shall be an
applicable to-sql function TSF.

2) TSF is called the to-sql function associated with the result.

3) Case:

a) If TSF is an SQL-invoked method, then PT is the <parameter type>
of the second SQL parameter of TSF.

b) Otherwise, PT is the <parameter type> of the first SQL parameter of
TSF.

III) If R is an array-returning external function, then let PT be the element type
of RT.

IV) Otherwise, PT is RT.

3) Effective SQL parameter list entries (PN+FRN)+1 to (PN+FRN)+N+1 are N+1 occur-
rences of SQL parameters of an implementation-defined <data type> that is an exact
numeric type with scale 0. For i ranging from (PN+FRN)+1 to (PN+FRN)+N+1, the
<parameter mode> for the i-th such effective SQL parameter is the same as that of
the i�FRN�PN-th effective SQL parameter.

4) Effective SQL parameter list entry (PN+FRN)+(N+1)+1 is an SQL parameter of a
<data type> that is character string of length 5 and the character set specified for
SQLSTATE values, with <parameter mode> INOUT.
NOTE 245 – The character set specified for SQLSTATE values is defined in Subclause 22.1,
‘‘SQLSTATE’’.

5) Effective SQL parameter list entry (PN+FRN)+(N+1)+2 is an SQL parameter of a
<data type> that is character string of implementation-defined length and character
set SQL_TEXT with <parameter mode> IN.

6) Effective SQL parameter list entry (PN+FRN)+(N+1)+3 is an SQL parameter of a
<data type> that is character string of implementation-defined length and character
set SQL_TEXT with <parameter mode> IN.

Schema definition and manipulation 551

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

7) Effective SQL parameter list entry (PN+FRN)+(N+1)+4 is an SQL parameter of a
<data type> that is character string of implementation-defined length and character
set SQL_TEXT with <parameter mode> INOUT.

8) If R is an array-returning external function, then:

A) Effective SQL parameter type list entry (PN+FRN)+(N+1)+5 is an SQL parame-
ter whose <data type> is character string of implementation-defined length and
character set SQL_TEXT with <parameter mode> INOUT.

B) Effective SQL parameter type list entry (PN+FRN)+(N+1)+5 is an SQL param-
eter whose <data type> is an exact numeric type with scale 0 (zero) and with
<parameter mode> IN.

iv) Otherwise, let the effective SQL parameter list be a list of PN+N+4 SQL parameters, as
follows:

1) For i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry is
defined as follows.

Case:

A) If the <parameter type> Ti simply contained in the i-th <SQL parameter declara-
tion> simply contains <locator indication>, then the i-th effective SQL parameter
list entry is the i-th <SQL parameter declaration> with the <parameter type>
replaced by INTEGER.

B) If the <parameter type> Ti simply contained in the i-th <SQL parameter dec-
laration> is a <user-defined type name> without a <locator indication>, then:

I) Case:

1) If the <parameter mode> immediately contained in the i-th <SQL param-
eter declaration> is IN, then:

a) The Syntax Rules of Subclause 10.15, ‘‘Determination of a from-sql
function’’, are applied with the data type identified by Ti and the
<group name> contained in the <group specification> that contains
Ti as TYPE and GROUP, respectively. There shall be an applica-
ble from-sql function FSFi. FSFi is called the from-sql function
associated with the i-th SQL parameter.

b) The i-th effective SQL parameter list entry is the i-th <SQL parame-
ter declaration> with the <parameter type> replaced by the <returns
data type> of FSFi.

2) If the <parameter mode> immediately contained in the i-th <SQL param-
eter declaration> is OUT, then:

a) The Syntax Rules of Subclause 10.17, ‘‘Determination of a to-sql
function’’, are applied with the data type identified by Ti and the
<group name> contained in the <group specification> that contains
Ti as TYPE and GROUP, respectively. There shall be an applicable
to-sql function TSFi. TSFi is called the to-sql function associated
with i-th SQL parameter.

552 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

b) The i-th effective SQL parameter list entry is the i-th <SQL parame-
ter declaration> with the <parameter type> replaced by

Case:

i) If TSFi is an SQL-invoked method, then the <parameter type> of
the second SQL parameter of TSFi.

ii) Otherwise, the <parameter type> of the first SQL parameter of
TSFi.

3) Otherwise:

a) The Syntax Rules of Subclause 10.15, ‘‘Determination of a from-sql
function’’, are applied with the data type identified by Ti and the
<group name> contained in the <group specification> that contains
Ti as TYPE and GROUP, respectively. There shall be an applica-
ble from-sql function FSFi. FSFi is called the from-sql function
associated with the i-th SQL parameter.

b) The Syntax Rules of Subclause 10.17, ‘‘Determination of a to-sql
function’’, are applied with the data type identified by Ti and the
<group name> contained in the <group specification> that contains
Ti as TYPE and GROUP, respectively. There shall be an applicable
to-sql function TSFi. TSFi is called the to-sql function associated
with the i-th SQL parameter.

c) The i-th effective SQL parameter list entry is the i-th <SQL parame-
ter declaration> with the <parameter type> replaced by the <returns
data type> of FSFi.

C) Otherwise, the i-th effective SQL parameter list entry is the i-th <SQL parame-
ter declaration>.

2) Effective SQL parameter list entries PN+1 to PN+N are N occurrences of an SQL
parameter of an implementation-defined <data type> that is an exact numeric type
with scale 0. The <parameter mode> for the i-th such effective SQL parameter is
the same as that of the i�PN-th effective SQL parameter.

3) Effective SQL parameter list entry (PN+N)+1 is an SQL parameter of a <data type>
that is character string of length 5 and character set SQL_TEXT with <parameter
mode> INOUT.

4) Effective SQL parameter list entry (PN+N)+2 is an SQL parameter of a <data type>
that is character string of implementation-defined length and character set SQL_
TEXT with <parameter mode> IN.

5) Effective SQL parameter list entry (PN+N)+3 is an SQL parameter of a <data type>
that is character string of implementation-defined length and character set SQL_
TEXT with <parameter mode> IN.

6) Effective SQL parameter list entry (PN+N)+4 is an SQL parameter of a <data type>
that is character string of implementation-defined length and character set SQL_
TEXT with <parameter mode> INOUT.

Schema definition and manipulation 553

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

e) If PARAMETER STYLE GENERAL is specified, then let the effective SQL parameter list be
a list of PN parameters such that, for i ranging from 1 (one) to PN, the i-th effective SQL
parameter list entry is defined as follows.

Case:

i) If the <parameter type> Ti simply contained in the i-th <SQL parameter declaration>
simply contains <locator indication>, then the i-th effective SQL parameter list en-
try is the i-th <SQL parameter declaration> with the <parameter type> replaced by
INTEGER.

ii) If the <parameter type> Ti simply contained in the i-th <SQL parameter declaration> is
a <user-defined type> without a <locator indication>, then:

1) Case:

A) If the <parameter mode> immediately contained in the i-th <SQL parameter
declaration> is IN, then:

I) The Syntax Rules of Subclause 10.15, ‘‘Determination of a from-sql function’’,
are applied with the data type identified by Ti and the <group name> con-
tained in the <group specification> that contains Ti as TYPE and GROUP,
respectively. There shall be an applicable from-sql function FSFi. FSFi is
called the from-sql function associated with the i-th SQL parameter.

II) The i-th effective SQL parameter list entry is the i-th <SQL parameter
declaration> with the <parameter type> replaced by the <returns data type>
of FSFi.

B) If the <parameter mode> immediately contained in the i-th <SQL parameter
declaration> is OUT, then:

I) The Syntax Rules of Subclause 10.17, ‘‘Determination of a to-sql function’’,
are applied with the data type identified by Ti and the <group name> con-
tained in the <group specification> that contains Ti as TYPE and GROUP,
respectively. There shall be an applicable to-sql function TSFi. TSFi is
called the to-sql function associated with the i-th SQL parameter.

II) The i-th effective SQL parameter list entry is the i-th <SQL parameter
declaration> with the <parameter type> replaced by

Case:

i) If TSFi is an SQL-invoked method, then the <parameter type> of the
second SQL parameter of TSFi.

ii) Otherwise, the <parameter type> of the first SQL parameter of TSFi.

C) Otherwise:

I) The Syntax Rules of Subclause 10.15, ‘‘Determination of a from-sql function’’,
are applied with the data type identified by Ti and the <group name> con-
tained in the <group specification> that contains Ti as TYPE and GROUP,
respectively. There shall be an applicable from-sql function FSFi. FSFi is
called the from-sql function associated with the i-th SQL parameter.

554 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

II) The Syntax Rules of Subclause 10.17, ‘‘Determination of a to-sql function’’,
are applied with the data type identified by Ti and the <group name> con-
tained in the <group specification> that contains Ti as TYPE and GROUP,
respectively. There shall be an applicable to-sql function TSFi. TSFi is
called the to-sql function associated with the i-th SQL parameter.

III) The i-th effective SQL parameter list entry is the i-th <SQL parameter
declaration> with the <parameter type> replaced by the <returns data type>
of FSFi.

iii) Otherwise, the i-th effective SQL parameter list entry is the i-th <SQL parameter
declaration>.

NOTE 246 – If the SQL-invoked routine is an SQL-invoked function, then the value returned from
the external routine is passed to the SQL-implementation in an implementation-dependent manner.
An SQL parameter is not used for this purpose.

f) Depending on whether the <language clause> specifies ADA, C, COBOL, FORTRAN,
MUMPS, PASCAL, or PLI, let the operative data type correspondences table be Table 18,
‘‘Data type correspondences for Ada’’, Table 19, ‘‘Data type correspondences for C’’, Table 20,
‘‘Data type correspondences for COBOL’’, Table 21, ‘‘Data type correspondences for Fortran’’,
Table 22, ‘‘Data type correspondences for MUMPS’’, Table 23, ‘‘Data type correspondences
for Pascal’’, or Table 24, ‘‘Data type correspondences for PL/I’’, respectively. Refer to the two
columns of the operative data type correspondences table as the ‘‘SQL data type’’ column
and the ‘‘host data type column’’.

g) Any <data type> in an effective SQL parameter list entry shall specify a data type listed in
the SQL data type column for which the corresponding row in the host data type column is
not ‘‘none’’.

20) Case:

a) If <method specification designator> is specified, then:

i) R is deterministic if DMS indicates that the method is deterministic; otherwise, R is
possibly non-deterministic.

ii) R possibly modifies SQL-data if DMS indicates that the method possibly modifies SQL-
data. R possibly reads SQL-data if DMS indicates that the method possibly reads
SQL-data. R possibly contains SQL if DMS indicates that the method possibly contains
SQL. Otherwise, R does not possibly contain SQL.

b) Otherwise:

i) If DETERMINISTIC is specified, then R is deterministic; otherwise, it is possibly non-
deterministic.

ii) An <SQL-invoked routine> possibly modifies SQL-data if and only if <SQL-data access
indication> specifies MODIFIES SQL DATA.

iii) An <SQL-invoked routine> possibly reads SQL-data if and only if <SQL-data access
indication> specifies either MODIFIES SQL DATA, or READS SQL DATA.

iv) An <SQL-invoked routine> possibly contains SQL if and only if <SQL-data access in-
dication> specifies MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL.

Schema definition and manipulation 555

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

v) An <SQL-invoked routine> does not possibly contain SQL if and only if <SQL-data
access indication> specifies NO SQL.

21) If R is a schema-level routine, then let the containing schema be the schema identified by the
<schema name> explicitly or implicitly contained in <schema qualified routine name>.

22) If the <SQL-invoked routine> is contained in a <schema definition>, then let A be the explicit
or implicit <authorization identifier> of the <schema definition>; otherwise, let A be the <autho-
rization identifier> that owns the schema identified by the explicit or implicit <schema name>
of the <schema qualified routine name>.

Access Rules

1) If an <SQL-invoked routine> is contained in an <SQL-client module definition> M with no
intervening <schema definition>, then the enabled authorization identifiers shall include the
<authorization identifier> that owns S.

2) If the declared type of an SQL parameter is one of the following:

a) A user-defined type U.

b) A reference type whose referenced type is a user-defined type U.

c) An array type whose element type is a user-defined type U.

d) An array type whose element type is a reference type whose referenced type is a user-defined
type U.

e) A row type with a subfield that has a declared type that is:

i) A user-defined type U.

ii) A reference type whose referenced type is a user-defined type U.

iii) An array type whose element type is a user-defined type U.

iv) An array type whose element type is a reference type whose referenced type is a user-
defined type U.

then the applicable privileges of A shall include USAGE on U.
NOTE 247 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

3) If the declared type of <returns data type> or <result cast from type> is one of the following:

a) A user-defined type U.

b) A reference type whose referenced type is a user-defined type U.

c) An array type whose element type is a user-defined type U.

d) An array type whose element type is a reference type whose referenced type is a user-defined
type U.

e) A row type with a subfield that has a declared type that is:

i) A user-defined type U.

ii) A reference type whose referenced type is a user-defined type U.

556 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

iii) An array type whose element type is a user-defined type U.

iv) An array type whose element type is a reference type whose referenced type is a user-
defined type U.

then the applicable privileges of A shall include USAGE on U.
NOTE 248 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

4) If R is an external routine and if any of its SQL parameters have an associated from-sql function
or a to-sql function, or if R has a to-sql function associated with the result, then

Case:

a) If <SQL-invoked routine> is contained in an <SQL schema statement>, then the applicable
privileges of the <authorization identifier> that owns the containing schema shall include
EXECUTE on all from-sql functions (if any) and on all to-sql functions (if any) associated
with the SQL parameters and on the to-sql function associated with the result (if any).

b) Otherwise, the current privileges shall include EXECUTE on all from-sql functions (if any)
and on all to-sql functions (if any) associated with the SQL parameters and on the to-sql
function associated with the result (if any).

General Rules

1) If R is a schema-level routine, then a privilege descriptor is created that defines the EXECUTE
privilege on R to the <authorization identifier> that owns the schema that includes R. The
grantor for the privilege descriptor is set to the special grantor value ‘‘_SYSTEM’’. This privilege
is grantable if and only if one of the following is satisfied:

a) R is an SQL routine and all of the privileges necessary for the <authorization identifier>
to successfully execute the <SQL procedure statement> contained in the <routine body>
are grantable. The necessary privileges include the EXECUTE privilege on every subject
routine of every <routine invocation> contained in the <SQL procedure statement>.

b) R is an external routine.

2) Case:

a) If <SQL-invoked routine> is contained in a <schema definition>, then let DP be the SQL-
path of that <schema definition>.

b) If <SQL-invoked routine> is contained in a <preparable statement> or in a <direct SQL
statement>, then let DP be the SQL-path of the current SQL-session.

c) Otherwise, let DP be the SQL-path of the <SQL-client module definition> that contains
<SQL-invoked routine>.

3) If <method specification designator> is not specified, then a routine descriptor is created that
describes the SQL-invoked routine being defined:

a) The routine name included in the routine descriptor is <schema qualified routine name>.

b) The specific name included in the routine descriptor is <specific name>.

c) The routine descriptor includes, for each SQL parameter in NPL, the name, declared type,
ordinal position, an indication of whether the SQL parameter is input, output, or both, and
an indication of whether the SQL parameter is a RESULT SQL parameter.

Schema definition and manipulation 557

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

d) If the SQL-invoked routine is an SQL-invoked procedure, then the explicit or implicit value
of <maximum dynamic result sets>.

e) The routine descriptor includes an indication of whether the SQL-invoked routine is an
SQL-invoked function or an SQL-invoked procedure.

f) If the SQL-invoked routine is an SQL-invoked function, then the routine descriptor includes
an indication that the SQL-invoked function is not an SQL-invoked method.

g) If the SQL-invoked routine is a type-preserving function, then the routine descriptor in-
cludes an indication that the SQL-invoked routine is a type-preserving function.

h) If the SQL-invoked routine is a mutator function, then the routine descriptor includes an
indication that the SQL-invoked routine is a mutator function.

i) If the SQL-invoked routine is an SQL-invoked function, then the routine descriptor includes
the data type in the <returns data type>. If the <returns data type> simply contains <loca-
tor indication>, then the routine descriptor includes an indication that the return value is a
locator.

j) The name of the language in which the body of the SQL-invoked routine was written is the
<language name> contained in the <language clause>.

k) If the SQL-invoked routine is an SQL routine, then the SQL routine body of the routine
descriptor is the <SQL routine body>.

l) If the SQL-invoked routine is an external routine, then the external name of the routine
descriptor is <external routine name>.

m) If the SQL-invoked routine is an external routine, then the routine descriptor includes
an indication of whether the parameter passing style is PARAMETER STYLE SQL or
PARAMETER STYLE GENERAL.

n) The SQL-invoked routine descriptor includes an indication of whether the SQL-invoked
routine is DETERMINISTIC or NOT DETERMINISTIC.

o) The SQL-invoked routine descriptor includes an indication of whether the SQL-invoked
routine’s <SQL data access indication> is READS SQL DATA, MODIFIES SQL DATA,
CONTAINS SQL, or NO SQL.

p) If the SQL-invoked routine is an SQL-invoked function, then the SQL-invoked routine
descriptor includes an indication of whether the SQL-invoked routine is a null-call function.

q) If the SQL-invoked routine specifies a <result cast>, then the routine descriptor includes
an indication that the SQL-invoked routine specifies a <result cast> and the <data type>
specified in the <result cast>. If <result cast> contains <locator indication>, then the routine
descriptor includes an indication that the <data type> specified in the <result cast> has a
locator indication.

r) For every SQL parameter that has an associated from-sql function FSF, the routine descrip-
tor includes the specific name of FSF.

s) For every SQL parameter that has an associated to-sql function TSF, the routine descriptor
includes the specific name of TSF.

558 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

t) If R is an external function and if R has a to-sql function associated with its result TRF,
then the routine descriptor includes the specific name of TRF.

u) For every SQL parameter whose <SQL parameter declaration> contains <locator indica-
tion>, the routine descriptor includes an indication that the SQL parameter is a locator
parameter.

v) The routine authorization identifier is the <authorization identifier> that owns S.

w) The routine SQL-path is DP.
NOTE 249 – The routine SQL-path is used to set the routine SQL-path of the current SQL-session
when R is invoked. The routine SQL-path of the current SQL-session is used by the Syntax Rules
of Subclause 10.4, ‘‘<routine invocation>’’, to define the subject routines of <routine invocation>s
contained in R. The same routine SQL-path is used whenever R is invoked.

x) An indication that the routine is a schema-level routine.

y) An indication of whether the SQL-invoked routine is dependent on a user-defined type.
NOTE 250 – The notion of an SQL-invoked routine being dependent on a user-defined type is
defined in Subclause 4.23, ‘‘SQL-invoked routines’’.

4) If <method specification designator> is specified, then let DMS be the descriptor of the corre-
sponding method specification. A routine descriptor is created that describes the SQL-invoked
routine being defined.

a) The routine name included in the routine descriptor is RN.

b) The specific name included in the routine descriptor is <specific name>.

c) The routine descriptor includes, for each SQL parameter in NPL, the name, data type,
ordinal position, an indication of whether the SQL parameter is input, output, or both, and
an indication of whether the SQL parameter is a RESULT SQL parameter.

d) The routine descriptor includes an indication that the SQL-invoked routine is an SQL-
invoked function that is an SQL-invoked method, and indication of the user-defined type
UDT, and an indication of whether STATIC was specified.

e) If the SQL-invoked routine is a type-preserving function, then the routine descriptor in-
cludes an indication that the SQL-invoked routine is a type-preserving function.

f) If the SQL-invoked routine is a mutator function, then the routine descriptor includes an
indication that the SQL-invoked routine is a mutator function.

g) The routine descriptor includes the data type in the <returns data type>.

h) The name of the language in which the body of the SQL-invoked routine was written is the
<language name> contained in the <language clause> in DMS.

i) If the SQL-invoked routine is an SQL routine, then the SQL routine body of the routine
descriptor is the <SQL routine body>.

j) If the SQL-invoked routine is an external routine, then the external name of the routine
descriptor is <external routine name>. If the SQL-invoked routine is an external routine,
then the routine descriptor includes an indication of whether the parameter passing style is
PARAMETER STYLE SQL or PARAMETER STYLE GENERAL, which is the same as the
indication of <parameter style> in DMS.

Schema definition and manipulation 559

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.49 <SQL-invoked routine>

k) The SQL-invoked routine descriptor includes an indication of whether the SQL-invoked
routine is deterministic.

l) The SQL-invoked routine descriptor includes an indication of whether the SQL-invoked
routine possibly modifies SQL-data, possibly read SQL-data, possibly contains SQL, or does
not possibly contain SQL.

m) The SQL-invoked routine descriptor includes an indication of whether the SQL-invoked
routine is a null-call function, which is the same as the indication in DMS.

n) If DMS specifies a <result cast>, then the routine descriptor includes an indication that the
SQL-invoked routine specifies a <result cast> and the <data type> specified in the <result
cast> of DMS.

o) The routine authorization identifier is the <authorization identifier> that owns S.

p) The routine SQL-path is DP.
NOTE 251 – The routine SQL-path is used to set the routine SQL-path of the current SQL-session
when R is invoked. The routine SQL-path of the current SQL-session is used by the Syntax Rules
of Subclause 10.4, ‘‘<routine invocation>’’, to define the subject routine of <routine invocation>s
contained in R. The same routine SQL-path is used whenever R is invoked.

q) An indication of whether the routine is a schema-level routine.

r) An indication of whether the SQL-invoked routine is dependent on a user-defined type.
NOTE 252 – The notion of an SQL-invoked routine being dependent on a user-defined type is
defined in Subclause 4.23, ‘‘SQL-invoked routines’’.

5) The creation timestamp and the last-altered timestamp included in the routine descriptor are
the values of CURRENT_TIMESTAMP.

6) If R is an external routine, then the routine descriptor of R includes further elements deter-
mined as follows:

a) Case:

i) If <SQL data access indication> in the descriptor of R is MODIFIES SQL DATA, READS
SQL DATA, or CONTAINS SQL, then:

1) Let P be the program identified by the <external routine name>.

2) The external routine authorization identifier of R is the <module authorization
identifier> of the <SQL-client module definition> of P.

3) The external routine SQL-path is the <schema name list> immediately contained
in the <path specification> that is immediately contained in the <module path
specification> of the <SQL-client module definition> of P.

ii) Otherwise:

1) The external routine authorization identifier is implementation-defined.

2) The external routine SQL-path is implementation-defined.
NOTE 253 – The external routine SQL-path is used to set the routine SQL-path of the current
SQL-session when R is invoked. The routine SQL-path of the current SQL-session is used by the
Syntax Rules of Subclause 10.4, ‘‘<routine invocation>’’, to define the subject routines of <routine

560 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.49 <SQL-invoked routine>

invocation>s contained in the <SQL-client module definition> of P. The same external routine SQL-
path is used whenever R is invoked.

b) The external security characteristic in the routine descriptor is

Case:

i) If <external security clause> specifies EXTERNAL SECURITY DEFINER, then
DEFINER.

ii) If <external security clause> specifies EXTERNAL SECURITY INVOKER, then
INVOKER.

iii) Otherwise, EXTERNAL SECURITY IMPLEMENTATION DEFINED.

c) The effective SQL parameter list is the effective SQL parameter list.

Conformance Rules

1) Without Feature T471, ‘‘Result sets return value’’, conforming Core SQL language shall not
specify <dynamic result sets characteristic>.

2) Without Feature T322, ‘‘Overloading of SQL-invoked functions and procedures’’, the schema
identified by the explicit or implicit schema name of the <schema qualified routine name> shall
not include a routine descriptor whose routine name is <schema qualified routine name>.

3) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not specify
<method specification designator>.

4) Without Feature S241, ‘‘Transform functions’’, conforming Core SQL language shall not specify
<transform group specification>.

5) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL parameter declaration> shall not
specify RESULT.

6) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL-invoked function> that specifies
a <method specification designator> shall not specify <hold or release>.

7) Without Feature T571, ‘‘Array-returning external SQL-invoked functions’’, conforming SQL
language shall not specify an <SQL-invoked routine> that defines an array-returning external
function.

8) Without Feature S201, ‘‘SQL routines on arrays’’, a <parameter type> shall not be an array
type.

9) Without Feature S201, ‘‘SQL routines on arrays’’, a <returns data type> shall not be an array
type.

10) Without Feature T323, ‘‘Explicit security for external routines’’, conforming SQL language shall
not specify <external security clause>.

Schema definition and manipulation 561

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.50 <alter routine statement>

11.50 <alter routine statement>

Function
Alter a characteristic of an SQL-invoked routine.

Format

<alter routine statement> ::=
ALTER <specific routine designator>
<alter routine characteristics> <alter routine behaviour>

<alter routine characteristics> ::=
<alter routine characteristic>...

<alter routine characteristic> ::=
<language clause>

| <parameter style clause>
| <SQL-data access indication>
| <null-call clause>
| <dynamic result sets characteristic>
| NAME <external routine name>

<alter routine behaviour> ::=
RESTRICT

Syntax Rules

1) Let SR be the SQL-invoked routine identified by the <specific routine designator> and let SN be
the <specific name> of SR. The schema identified by the explicit or implicit <schema name> of
SN shall include the descriptor of SR.

2) SR shall be a schema-level routine.

3) SR shall not be a SQL-invoked routine that is dependent on a user-defined type.
NOTE 254 – ‘‘SQL-invoked routine dependent on a user-defined type’’ is defined in Subclause 4.23,
‘‘SQL-invoked routines’’.

4) If RESTRICT is specified, then:

a) If SR is the ordering function included in the user-defined descriptor of any user-defined
type UDT, then:

i) Let P be a <predicate> that is dependent on SR, let SFS be a <set function specification>
that is dependent on SR, and let GBC be a <group by clause> that is dependent on SR.
NOTE 255 – The concept of a <predicate>, <set function specification>, and <group by clause>
being dependent on an SQL-invoked routine is defined in Subclause 4.23, ‘‘SQL-invoked routines’’.

ii) P, SFS, and GBC shall not be contained in any of the following:

1) The <SQL routine body> of any routine descriptor.

2) The <query expression> of any view descriptor.

3) The <search condition> of any constraint descriptor or assertion descriptor.

562 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.50 <alter routine statement>

4) The triggered action of any trigger descriptor.

b) SR shall not be the subject routine of any <routine invocation>, <method invocation>,
<static method invocation>, or <method reference> that is contained in any of the following:

i) The <SQL routine body> of any routine descriptor.

ii) The <query expression> of any view descriptor.

iii) The <search condition> of any constraint descriptor or assertion descriptor.

iv) The triggered action of any trigger descriptor.

c) SN shall not be included in any of the following:

i) A group descriptor of any transform descriptor.

ii) A user-defined cast descriptor.

5) SR shall be an external routine.

6) SR shall not be a SQL-invoked method that is an overriding method and the set of overriding
methods of SR shall be empty.

7) <alter routine characteristics> shall contain at most one <language clause>, at most one <pa-
rameter style clause>, at most one <SQL-data access indication>, at most one <null-call clause>,
at most one <maximum dynamic result sets>, and at most one <external routine name>.

8) If <maximum dynamic result sets> is specified, then SR shall be an SQL-invoked procedure.

9) If <language clause> is specified, then:

a) Depending on whether the <language clause> specifies ADA, C, COBOL, FORTRAN,
MUMPS, PASCAL, or PLI, let the operative data type correspondences table be Table 18,
‘‘Data type correspondences for Ada’’, Table 19, ‘‘Data type correspondences for C’’, Table 20,
‘‘Data type correspondences for COBOL’’, Table 21, ‘‘Data type correspondences for Fortran’’,
Table 22, ‘‘Data type correspondences for MUMPS’’, Table 23, ‘‘Data type correspondences
for Pascal’’, or Table 24, ‘‘Data type correspondences for PL/I’’, respectively. Refer to the two
columns of the operative data type correspondences table as the ‘‘SQL data type’’ column
and the ‘‘host data type column’’.

b) Any <data type> in the effective SQL parameter list entry of SR shall specify a data type
listed in the SQL data type column for which the corresponding row in the host data type
column is not ‘‘None’’.
NOTE 256 – ‘‘Effective SQL parameter list’’ is defined in Subclause 11.49, ‘‘<SQL-invoked routine>’’.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of SN.

Schema definition and manipulation 563

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.50 <alter routine statement>

General Rules

1) If SR is not a method, then the routine descriptor of SR is modified:

a) If <dynamic result sets characteristic> is specified, then the value of <maximum dynamic
result sets>.

b) If <language clause> is specified, then the <language name> contained in the <language
clause>.

c) If <external routine name> is specified, then the external name of the routine descriptor is
<external routine name>.

d) If <parameter style clause> is specified, then the routine descriptor includes an indication of
whether the parameter passing style is PARAMETER STYLE SQL or PARAMETER STYLE
GENERAL.

e) If the <SQL-data access indication> is specified, then an indication of whether the SQL-
invoked routine’s <SQL data access indication> is READS SQL DATA, MODIFIES SQL
DATA, CONTAINS SQL, or NO SQL.

f) If <null-call clause> is specified, then an indication of whether the SQL-invoked routine is a
null-call function.

2) If SR is a method, then let DMS be the descriptor of the corresponding method specification.
DMS is modified:

a) If <language clause> is specified, then the <language name> contained in the <language
clause>.

b) If <parameter style clause> is specified, then the method specification descriptor includes
an indication of whether the parameter passing style is PARAMETER STYLE SQL or
PARAMETER STYLE GENERAL.

c) If the <SQL-data access indication> is specified, then an indication of whether the SQL-
invoked routine’s <SQL data access indication> is READS SQL DATA, MODIFIES SQL
DATA, CONTAINS SQL, or NO SQL.

d) If <null-call clause> is specified, then an indication of whether the method should not be
invoked if any argument is the null value.

3) If SR is a method, then the routine descriptor of SR is modified:

a) If <external routine name> is specified, then the external name of the routine descriptor
is <external routine name>. If <parameter style clause> is specified, then the method
specification descriptor includes an indication of whether the parameter passing style is
PARAMETER STYLE SQL or PARAMETER STYLE GENERAL.

Conformance Rules

1) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language shall not
specify <alter routine statement>.

564 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.51 <drop routine statement>

11.51 <drop routine statement>

Function
Destroy an SQL-invoked routine.

Format

<drop routine statement> ::=
DROP <specific routine designator> <drop behavior>

Syntax Rules

1) Let SR be the SQL-invoked routine identified by the <specific routine designator> and let SN be
the <specific name> of SR. The schema identified by the explicit or implicit <schema name> of
SN shall include the descriptor of SR.

2) SR shall be a schema-level routine.

3) SR shall not be dependent on any user-defined type.
NOTE 257 – The notion of an SQL-invoked routine being dependent on a user-defined type is defined in
Subclause 4.23, ‘‘SQL-invoked routines’’.

4) If SR is the ordering function included in the user-defined descriptor of any user-defined type
UDT, then:

a) Let P be a <predicate that is dependent on SR, let SFS be a <set function specification> that
is dependent on SR, and let GBC be a <group by clause> that is dependent on SR.
NOTE 258 – The notion of a <predicate>, <set function specification>, or <group by clause> that is
dependent on an SQL-invoked routine is defined in Subclause 4.23, ‘‘SQL-invoked routines’’.

b) If RESTRICT is specified, then neither P, SFS, nor GBC shall be contained in any of the
following:

i) The <SQL routine body> of any routine descriptor.

ii) The <query expression> of any view descriptor.

iii) The <search condition> of any constraint descriptor or assertion descriptor.

iv) The triggered action of any trigger descriptor.
NOTE 259 – If CASCADE is specified, then such referencing objects will be dropped by the execu-
tion of the <revoke statement> specified in the General Rules of this Subclause.

5) If RESTRICT is specified, then:

a) SR shall not be the subject routine of any <routine invocation>, <method invocation>,
<static method invocation>, or <method reference> that is contained in any of the following:

i) The <SQL routine body> of any routine descriptor.

ii) The <query expression> of any view descriptor.

iii) The <search condition> of any constraint descriptor or assertion descriptor.

Schema definition and manipulation 565

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.51 <drop routine statement>

iv) The triggered action of any trigger descriptor.

b) SN shall not be a included in any of the following:

i) A group descriptor of any transform descriptor.

ii) A user-defined cast descriptor.
NOTE 260 – If CASCADE is specified, then such referencing objects will be dropped by the execution of
the <revoke statement> specified in the General Rules of this Subclause.

6) Let A be the <authorization identifier> that owns the schema identified by the <schema name>
of SN.

7) Let the containing schema be the schema identified by the <schema name> explicitly or implic-
itly contained in SN.

Access Rules

1) The enabled authorization identifiers shall include A.

General Rules

1) The following <revoke statement> is effectively executed with a current authorization identifier
of ‘‘_SYSTEM’’ and without further Access Rule checking:

REVOKE EXECUTE ON SPECIFIC ROUTINE SN FROM A CASCADE

2) Let DN be the <user-defined type name> of a user-defined type whose descriptor includes SN
in the group descriptor of any transform descriptor. Let GN be the <group name> of that group
descriptor. The following <drop transform statement> is effectively executed without further
Access Rule checking:

DROP TRANSFORM GN FOR DN CASCADE

3) Let UDCD be a user-defined cast descriptor that includes SN as its cast function. Let SDT be
the source data type included in UDCD. Let TDT be the target data type included in UDCD.
The following <drop user-defined cast statement> is effectively executed without further Access
Rule checking:

DROP CAST (DN AS TD) CASCADE

4) The descriptor of SR is destroyed.

Conformance Rules

1) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE shall not be
specified in <drop routine statement>.

2) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator> in a <drop
routine statement> shall not identify a method.

566 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.52 <user-defined cast definition>

11.52 <user-defined cast definition>

Function
Define a user-defined cast.

Format

<user-defined cast definition> ::=
CREATE CAST <left paren> <source data type> AS <target data type> <right paren>
WITH <cast function>
[AS ASSIGNMENT]

<cast function> ::= <specific routine designator>

<source data type> ::= <data type>

<target data type> ::= <data type>

Syntax Rules

1) Let SDT be the <source data type>. The data type identified by SDT is called the source data
type.

2) Let TDT be the <target data type>. The data type identified by TDT is called the target data
type.

3) There shall be no user-defined cast for SDT and TDT.

4) At least one of SDT or TDT shall contain a <user-defined type> or a <reference type>.

5) If SDT contains a <user-defined type>, then let SSDT be the schema that includes the descriptor
of the user-defined type identified by SDT.

6) If SDT contains a <reference type>, then let SSDT be the schema that includes the descriptor
of the referenced type of the reference type identified by SDT.

7) If TDT contains a <user-defined type>, then let STDT be the schema that includes the descrip-
tor of the user-defined type identified by TDT.

8) If TDT contains a <reference type>, then let STDT be the schema that includes the descriptor
of the referenced type of the reference type identified by TDT.

9) If both SDT and TDT contain a <user-defined type> or a <reference type>, then the <authoriza-
tion identifier> that owns SSDT and the <authorization identifier> that owns STDT shall be
equivalent.

10) Let F be the SQL-invoked routine identified by <cast function>. F is called the cast function for
source data type SDT and target data type TDT.

a) F shall have exactly one SQL parameter, and its declared type shall be SDT.

b) The result data type of F shall be TDT.

Schema definition and manipulation 567

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.52 <user-defined cast definition>

c) The <authorization identifier> that owns SSDT or STDT (both, if both SDT and TDT
are <user-defined type>s) shall own the schema that includes the SQL-invoked routine
descriptor of F.

d) F shall be deterministic.

e) F shall not possibly modify SQL-data.

f) F shall not possibly read SQL-data.
NOTE 261 – In order to provide behavior for casts that is intuitive, the user-defined casts ought
to be consistent with equality. If CastT1T2 casts from type T1 to type T2, and the types are in the
same type family, and if CastT1T2(x1) yields x2, then it should also be the case that CastT1T2(x1) =
x2. Secondly, a cycle of CASTs (a series of cast functions that start and end of the same type), should
similarly be consistent with equality, except under conditions such as truncation. Finally, the cast
functions defined on a type and its supertype should preserve that hierarchy by casting to another
type and its supertype, respectively, rather than casting to a type and its subtype, respectively.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns
STDT and the schema that includes the routine descriptor of F.

General Rules

1) A user-defined cast descriptor CFD is created that describes the user-defined cast. CFD includes
the name of the source data type, the name of the target data type, the specific name of the cast
function, and, if and only if AS ASSIGNMENT is specified, an indication that the cast function
is implicitly invocable.

Conformance Rules

1) Without Feature S211, ‘‘User-defined cast functions’’, conforming SQL language shall contain no
<user-defined cast definition>.

568 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.53 <drop user-defined cast statement>

11.53 <drop user-defined cast statement>

Function
Destroy a user-defined cast.

Format

<drop user-defined cast statement> ::=
DROP CAST <left paren> <source data type> AS <target data type> <right paren>

<drop behavior>

Syntax Rules

1) Let SDT be the <source data type> and let TDT be the <target data type>.

2) Let CF be the user-defined cast whose user-defined cast descriptor includes SDT as the source
data type and TDT as the target data type.

3) Let SN be the specific name of the cast function F included in the user-defined cast descriptor of
CF.

4) The schema identified by the <schema name> of SN shall include the descriptor of F.

5) Let CS be any <cast specification> such that:

a) The <value expression> of CS has declared type P.

b) The <cast target> of CS is either TDT or a domain with declared type TDT.

c) The type designator of SDT is in the type precedence of P.

d) No other data type Q whose type designator precedes SDT in the type precedence list of P
such that there is a user-defined cast CFq whose user-defined cast descriptor includes Q as
the source data type and TDT as the target data type.

6) Let PS be any SQL procedure statement that is dependent on F.
NOTE 262 – ‘‘Dependent SQL procedure statement’’ is defined in Subclause 4.13, ‘‘Data conversions’’.

7) If RESTRICT is specified, then neither CS nor PS shall be generally contained in any of the
following:

a) The <SQL routine body> of any routine descriptor.

b) The <query expression> of any view descriptor.

c) The <search condition> of any constraint descriptor or assertion descriptor.

d) The trigger action of any trigger descriptor.
NOTE 263 – If CASCADE is specified, then such referencing objects will be dropped as specified in the
General Rules of this Subclause.

Schema definition and manipulation 569

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.53 <drop user-defined cast statement>

Access Rules

1) The enabled authorization identifier shall include the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of SN.

General Rules

1) Let R be any SQL-invoked routine that contains CS or PS in its <SQL routine body>. Let SN be
the specific name of R. The following <drop routine statement> is effectively executed without
further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

2) Let V be any view that contains CS or PS in its <query expression>. Let VN be the <table
name> of V. The following <drop view statement> is effectively executed without further Access
Rule checking:

DROP VIEW VN CASCADE

3) Let T be any table that contains CS or PS in the <search condition> of any constraint descriptor
included in the table descriptor of T. Let TN be the <table name> of T. The following <drop
table statement> is effectively executed without further Access Rule checking:

DROP TABLE TN CASCADE

4) Let A be any assertion that contains CS or PS in its <search condition>. Let AN be the <con-
straint name> of A. The following <drop assertion statement> is effectively executed without
further Access Rule checking:

DROP ASSERTION AN CASCADE

5) Let D be any domain that contains CS or PS in the <search condition> of any constraint descrip-
tor. Let DN be the <domain name> of D. The following <drop domain statement> is effectively
executed without further Access Rule checking:

DROP DOMAIN DN CASCADE

6) Let T be any trigger whose trigger descriptor includes a trigger action that contains CS or
PS. Let TN be the <trigger name> of T. The following <drop trigger statement> is effectively
executed without further Access Rule checking:

DROP TRIGGER TN CASCADE

7) The descriptor of CF is destroyed.

Conformance Rules

1) Without Feature S211, ‘‘User-defined cast functions’’, conforming SQL language shall not contain
any <drop user-defined cast statement>.

570 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.54 <user-defined ordering definition>

11.54 <user-defined ordering definition>

Function
Define a user-defined ordering for a user-defined type.

Format

<user-defined ordering definition> ::=
CREATE ORDERING FOR <user-defined type> <ordering form>

<ordering form> ::=
<equals ordering form>

| <full ordering form>

<equals ordering form> ::=
EQUALS ONLY BY <ordering category>

<full ordering form> ::=
ORDER FULL BY <ordering category>

<ordering category> ::=
<relative category>

| <map category>
| <state category>

<relative category> ::=
RELATIVE WITH <relative function specification>

<map category> ::=
MAP WITH <map function specification>

<state category> ::=
STATE [<specific name>]

<relative function specification> ::= <specific routine designator>

<map function specification> ::= <specific routine designator>

Syntax Rules

1) Let UDTN be the <user-defined type>. Let UDT be the user-defined type identified by UDTN.

2) The user-defined descriptor of UDT shall include an ordering form that specifies NONE.

3) If UDT is not a maximal supertype, then

Case:

a) If <equals ordering form> is specified, then the comparison form of every direct supertype of
UDT shall be EQUALS.

b) Otherwise, the comparison form of every direct supertype of UDT shall be FULL.
NOTE 264 – The comparison categories of two user-defined types in the same type family must be the
same.

Schema definition and manipulation 571

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.54 <user-defined ordering definition>

4) If <relative category> or <state category> is specified, then UDT shall be a maximal supertype.

5) If <map category> is specified and UDT is not a maximal supertype, then the comparison
category of every direct supertype of UDT shall be MAP.
NOTE 265 – The comparison categories of two user-defined types in the same type family must be the
same.

6) Case:

a) If <state category> is specified, then

i) UDT shall not be a distinct type.

ii) Case:

1) If <specific name> is specified, then let SN be <specific name>. If SN contains a
<schema name>, then that <schema name> shall be equivalent to the <schema
name> of UDTN.

2) Otherwise, let SN be an implementation-dependent <specific name> whose <schema
name> is equivalent to the <schema name> S of UDTN. This implementation-
dependent <specific name> shall not be equivalent to the <specific name> of any
other routine descriptor in the schema identified by S.

b) Otherwise:

i) Let F be the SQL-invoked routine identified by the <specific routine designator> SRD.

ii) F shall be deterministic.

iii) F shall not possibly modify SQL-data.

7) If <relative function specification> is specified, then:

a) F shall have exactly two SQL parameters whose declared type is UDT.

b) F shall be an SQL-invoked function that is not a SQL-invoked method.

c) The result data type of F shall be INTEGER.

8) If <map function specification> is specified, then:

a) F shall have exactly one SQL parameter whose declared type is UDT.

b) The result data type of F shall be a predefined data type.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns
the schema that includes the user-defined descriptor of UDT and the schema that includes the
routine descriptor of F.

572 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.54 <user-defined ordering definition>

General Rules

1) If <state category> is specified, then:

a) Let C1, . . . , Cn be the components of the representation of the user-defined type.

b) Let SNUDT be the <schema name> of the schema that includes the descriptor of UDT.

c) The following <SQL-invoked routine> is effectively executed:

CREATE FUNCTION SNUDT.EQUALS (UDT1 UDTN, UDT2 UDTN)
RETURNS BOOLEAN
SPECIFIC SN
DETERMINISTIC
CONTAINS SQL
STATIC DISPATCH
RETURN
(TRUE AND
SPECIFICTYPE (UDT1) = SPECIFICTYPE (UDT2) AND
UDT1.C1 = UDT2.C1 AND
.
.
.
UDT1.Cn = UDT2.Cn)

2) Case:

a) If EQUALS is specified, then the ordering form in the user-defined type descriptor of UDT
is set to EQUALS.

b) Otherwise, the ordering form in the user-defined type descriptor of UDT is set to FULL.

3) Case:

a) If RELATIVE is specified, then the ordering category in the user-defined type descriptor of
UDT is set to RELATIVE.

b) If MAP is specified, then the ordering category in the user-defined type descriptor of UDT is
set to map.

c) Otherwise, the ordering category in the user-defined type descriptor of UDT is set to STATE.

4) The <specific routine designator> identifying the ordering function, depending on the ordering
category, in the user-defined descriptor of UDT is set to SRD.

Conformance Rules

1) Without Feature S251, ‘‘User-defined orderings’’, conforming Core SQL shall contain no <user-
defined ordering definition>.

Schema definition and manipulation 573

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.55 <drop user-defined ordering statement>

11.55 <drop user-defined ordering statement>

Function
Destroy a user-defined ordering method.

Format

<drop user-defined ordering statement> ::=
DROP ORDERING FOR <user-defined type> <drop behavior>

Syntax Rules

1) Let UDTN be the <user-defined type>. Let UDT be the user-defined type identified by UDTN.

2) The user-defined descriptor of UDT shall include an ordering form that specifies EQUALS or
FULL.

3) Let OF be the ordering function of UDT.

4) Let P be any of the following <predicate>s:

a) A <comparison predicate> with some corresponding value whose declared type is some
user-defined type T1 whose comparison type is UDT.

b) A <quantified comparison predicate> that immediately contains a <row value expression>
that has some field whose declared type is some user-defined type T1 whose comparison type
is UDT.

c) A <unique predicate> that immediately contains a <table subquery> that has a column
whose declared type is some user-defined type T1 whose comparison type is UDT.

d) A <match predicate> that immediately contains a <row value expression> that has some
field whose declared type is some user-defined type T1 whose comparison type is UDT.

NOTE 266 – ‘‘Comparison type’’ is defined in Subclause 4.8.4, ‘‘User-defined type comparison and
assignment’’.

5) If RESTRICT is specified, then P shall not be contained in any of the following:

a) The <SQL routine body> of any routine descriptor.

b) The <query expression> of any view descriptor.

c) The <search condition> of any constraint descriptor or assertion descriptor.

d) The triggered action of any trigger descriptor.
NOTE 267 – If CASCADE is specified, then such referencing objects will be dropped by the execution of
the <revoke statement> specified in the General Rules of this Subclause.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of UDTN.

574 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.55 <drop user-defined ordering statement>

General Rules

1) Let R be any SQL-invoked routine that contains P in its <SQL routine body>. Let SN be the
specific name of R. The following <drop routine statement> is effectively executed without
further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

2) Let V be any view that contains P in its <query expression>. Let VN be the <table name> of
V. The following <drop view statement> is effectively executed without further Access Rule
checking:

DROP VIEW VN CASCADE

3) Let T be any table that contains P in the <search condition> of any constraint C whose con-
straint descriptor included in the table descriptor of T. Let TN be the <table name> of T.
Let TCN be the <constraint name> of C. The following <alter table statement> is effectively
executed without further Access Rule checking:

ALTER TABLE TN DROP CONSTRAINT TCN CASCADE

4) Let A be any assertion that contains P in its <search condition>. Let AN be the <constraint
name> of A. The following <drop assertion statement> is effectively executed without further
Access Rule checking:

DROP ASSERTION AN CASCADE

5) Let D be any domain that contains P in the <search condition> of any constraint descriptor or
in the <default option> included in the domain descriptor of D. Let DN be the <domain name>
of D. The following <drop domain statement> is effectively executed without further Access Rule
checking:

DROP DOMAIN DN CASCADE

6) Let T be any trigger that contains P in its triggered action. Let TN be the <trigger name> of
T. The following <drop trigger statement> is effectively executed without further Access Rule
checking:

DROP TRIGGER TN CASCADE

7) The ordering form, ordering category, and ordering function in the user-defined descriptor of
UDT is set to empty.

Conformance Rules

1) Without Feature S251, ‘‘User-defined orderings’’, conforming SQL language shall not contain
any <drop user-defined ordering statement>.

Schema definition and manipulation 575

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.56 <transform definition>

11.56 <transform definition>

Function
Define one or more transform functions for a user-defined type.

Format

<transform definition> ::=
CREATE { TRANSFORM | TRANSFORMS } FOR <user-defined type> <transform group>...

<transform group> ::=
<group name> <left paren> <transform element list> <right paren>

<group name> ::=
<identifier>

<transform element list> ::=
<transform element> [<comma> <transform element>]

<transform element> ::=
<to sql>

| <from sql>

<to sql> ::=
TO SQL WITH <to sql function>

<from sql> ::=
FROM SQL WITH <from sql function>

<to sql function> ::=
<specific routine designator>

<from sql function> ::=
<specific routine designator>

Syntax Rules

1) Let TD be the <transform definition>. Let DTN be the <user-defined type name> immediately
contained in TD. Let DT be the data type identified by DTN. Let SDT be the schema that
includes the descriptor of DT. Let TRD be the transform descriptor included in the data type
descriptor of DT.

2) No two <transform group>s immediately contained in TD shall have the same <group name>.

3) The SQL-invoked function identified by <to sql function> is called the to-sql function. The
SQL-invoked function identified by <from sql function> is called the from-sql function.

4) Let n be the number of <transform group>s immediately contained in TD. For i ranging from 1
to n:

a) Let TGi be the i-th <transform group> immediately contained in TD. Let GNi be the <group
name> contained in TGi.

b) Each of <to sql> and <from sql> immediately contained in TGi shall be contained at most
once in a <transform element list>.

576 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.56 <transform definition>

c) The SQL-invoked routines identified by <to sql function> and <from sql function> shall be
SQL-invoked functions that are deterministic and do not possibly modify SQL-data.

d) TRD shall not include a transform group descriptor GD that includes a group name that is
equivalent to GNi.

e) Let SDTT be the set that includes every data type DTTj that is either a proper supertype
or a proper subtype of DT such that the transform descriptor included in the data type
descriptor of DTTj includes a group descriptor GDTjk that includes a group name that is
equivalent to GNi. SDTT shall be empty.

f) If <to sql> is specified, then let TSFi be the SQL-invoked function identified by <to sql
function>.

i) Case:

1) If TSFi is an SQL-invoked method, then TSFi shall have exactly two SQL parame-
ters such that the declared type of the first SQL parameter is DT and the declared
type of the second SQL parameter is a predefined data type. The result data type of
TSFi shall be DT.

2) Otherwise, TSFi shall have exactly one SQL parameter whose declared type is a
predefined data type. The result data type of TSFi shall be DT.

ii) If DT is a structured type, then TSFi shall be a type-preserving function.

g) If <from sql> is specified, then let FSFi be the SQL-invoked function identified by <from
sql function>. FSFi shall have exactly one SQL parameter whose declared type is DT. The
result data type of FSFi shall be a predefined data type.

h) If <to sql> and <from sql> are both specified, then

Case:

i) If TSFi is an SQL-invoked method, then the result data type of FSFi and the data type
of the second SQL parameter of TSF<i shall be compatible.

ii) Otherwise, the result data type of FSFi and the data type of the first SQL parameter of
TSFi shall be compatible.

Access Rules

1) For i ranging from 1 to n, the enabled authorization identifiers shall include the <authorization
identifier> that owns SDT and the schema that includes the routine descriptors of TSFi, if any,
and FSFi, if any.

General Rules

1) A <group name> specifies the group name that identifies a transform group.

2) For every TGi, 1 (one) � i � n:

a) A new group descriptor GDi is created that includes the <group name> immediately con-
tained in TGi. GDi is included in the list of transform group descriptors included in TRD.

b) If <to sql> is specified, then the specific name of the to-sql function in GDi is set to TSFi.

Schema definition and manipulation 577

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.56 <transform definition>

c) If <from sql> is specified, then the specific name of the from-sql function in GDi is set to
FSFi.

Conformance Rules

1) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not contain any
<transform definition>.

578 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.57 <drop transform statement>

11.57 <drop transform statement>

Function
Remove one or more transform functions associated with a transform.

Format

<drop transform statement> ::=
DROP { TRANSFORM | TRANSFORMS } <transforms to be dropped>
FOR <user-defined type> <drop behavior>

<transforms to be dropped> ::=
ALL

| <transform group element>

<transform group element> ::=
<group name>

Syntax Rules

1) Let DT be the data type identified by <user-defined type name>. Let SDT be the schema that
includes the descriptor of DT. Let TRD be the transform descriptor included in the data type
descriptor of DT. Let n be the number of transform group descriptors in TRD.

2) If <transform group element> is specified, then TRD shall include a transform group descriptor
GD that includes a group name that is equal to the <group name> immediately contained in
<transform group element>.

3) If RESTRICT is specified, then:

Case:

a) If ALL is specified, then for i ranging from 1 (one) to n:

i) Let GDi be the i-th transform group descriptor included in TRD.

ii) If GDi includes the specific name of a from-sql function FSFi then there shall be no
external routine that has an SQL parameter whose associated from-sql function is FSFi.

iii) If GDi includes the specific name of a to-sql function TSFi then there shall be no ex-
ternal routine that has an SQL parameter whose associated to-sql function is TSFi nor
shall there be an external function that has TSFi as the to-sql function associated with
the result.

b) Otherwise:

i) If GD includes the specific name of a from-sql function FSF then there shall be no
external routine that has an SQL parameter whose associated from-sql function is FSF.

ii) If GD includes the specific name of a to-sql function TSF then there shall be no external
routine that has an SQL parameter whose associated to-sql function is TSF nor shall
there be an external function that has TSF as the to-sql function associated with the
result.

Schema definition and manipulation 579

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
11.57 <drop transform statement>

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns
SDT.

General Rules

1) Case:

a) If ALL is specified, then, for i ranging from 1 (one) to n:

i) Let GDi be the i-th transform group descriptor included in TRD.

ii) If GDi includes the specific name of a from-sql function FSFi, then let FSN be the
<specific name> of any external routine that has an SQL parameter whose associated
from-sql function is FSFi. The following <drop routine statement> is effectively executed
without further Access Rule checking:

DROP SPECIFIC ROUTINE FSN CASCADE

iii) If GDi includes the specific name of a to-sql function TSFi, then:

1) Let TSN be the <specific name> of any external routine that has an SQL parameter
whose associated to-sql function is TSFi. The following <drop routine statement> is
effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE TSN CASCADE

2) Let RSN be the <specific name> of any external function that has TSFi as the to-
sql function associated with the result. The following <drop routine statement> is
effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE RSN CASCADE

iv) GDi is removed from TRD.

b) Otherwise:

i) If GD includes the specific name of a from-sql function FSF, then let FSN be the <spe-
cific name> of any external routine that has an SQL parameter whose associated from-
sql function is FSF. The following <drop routine statement> is effectively executed
without further Access Rule checking:

DROP SPECIFIC ROUTINE FSN CASCADE

ii) If GD includes the specific name of a to-sql function TSF, then:

1) Let TSN be the <specific name> of any external routine that has an SQL parameter
whose associated to-sql function is TSF. The following <drop routine statement> is
effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE TSN CASCADE

2) Let RSN be the <specific name> of any external function that has TSF as the to-
sql function associated with the result. The following <drop routine statement> is
effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE RSN CASCADE

580 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
11.57 <drop transform statement>

iii) GD is removed from TRD.

Conformance Rules

1) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not contain any
<drop transform statement>.

Schema definition and manipulation 581

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

582 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

12 Access control

12.1 <grant statement>

Function
Define privileges and role authorizations.

Format

<grant statement> ::=
<grant privilege statement>

| <grant role statement>

Syntax Rules

None.

Access Rules

None.

General Rules

1) For every involved grantee G and for every domain D1 owned by G, if all of the following are
true:

a) The applicable privileges of G include the grantable REFERENCES privilege on every
column referenced in the <search condition> SC included in a domain constraint descriptor
included in the domain descriptor of D1.

b) The applicable privileges of G include the grantable EXECUTE privileges on all SQL-
invoked routines that are subject routines of <routine invocation>s contained in SC.

c) The applicable privileges of G include the grantable SELECT privilege on every table T1
and every method M such that there is a <method reference> MR contained in SC such that
T1 is in the scope of the <value expression primary> of MR and M is the method identified
by the <method name> of MR included in a domain constraint descriptor included in the
domain descriptor of D1.

d) The applicable privileges of G include the grantable SELECT privilege WITH HIERARCHY
OPTION on at least one supertable of the scoped table of every <reference resolution>
contained in SC.

e) The applicable privileges of G include the grantable USAGE privilege on all domains,
character sets, collations, and translations whose <domain name>s, <character set name>s,
<collation name>s, and <translation name>s, respectively, are included in the domain
descriptor of D1.

Access control 583

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.1 <grant statement>

then for every privilege descriptor with <action> USAGE, a grantor of ‘‘_SYSTEM’’, object D1,
and grantee G that is not grantable, the following <grant statement> is effectively executed
with a current user identifier of ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT USAGE ON DOMAIN D1 TO G WITH GRANT OPTION

2) For every involved grantee G and for every collation C1 owned by G, if the applicable privileges
of G include a grantable USAGE privilege for the character set name included in the collation
descriptor of C1 and a grantable USAGE privilege for the translation name, if any, included
in the collation descriptor of C1, then for every privilege descriptor with <action> USAGE, a
grantor of ‘‘_SYSTEM’’, object of C1, and grantee G that is not grantable, the following <grant
statement> is effectively executed with a current user identifier of ‘‘_SYSTEM’’ and without
further Access Rule checking:

GRANT USAGE ON COLLATION C1 TO G WITH GRANT OPTION

3) For every involved grantee G and for every translation T1 owned by G, if the applicable priv-
ileges of G contain a grantable USAGE privilege for every character set identified by a <char-
acter set specification> contained in the <translation definition> of T1, then for every privilege
descriptor with <action> P, a grantor of ‘‘_SYSTEM’’, object of T1, and grantee G that is not
grantable, the following <grant statement> is effectively executed as though the current user
identifier were ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT P ON TRANSLATION T1 TO G WITH GRANT OPTION

4) For every table T specified by some involved privilege descriptor and for each view V owned
by some involved grantee G such that T or some column CT of T is referenced in the <query
expression> QE of V, or T is a supertable of the scoped table of a <reference resolution> con-
tained in QE, let RTi, for i ranging from 1 (one) to the number of tables identified by the <table
reference>s contained in QE, be the <table name>s of those tables. For every column CV of V:

a) Let CRTij, for j ranging from 1 (one) to the number of columns of RTi that are underlying
columns of CV, be the <column name>s of those columns.

b) If, following successful execution of the <grant statement>, all of the following are true:

i) The applicable privileges of G include grantable SELECT privileges on all of the columns
CRTij.

ii) The applicable privileges of G include grantable EXECUTE privileges on all SQL-
invoked routines that are subject routines of <routine invocation>s contained in QE.

iii) The applicable privileges of G include grantable SELECT privilege on every table T1
and every method M such that there is a <method reference. MR contained in QE such
that T1 is in the scope of the <value expression primary> of MR and M is the method
identified by the <method name> of MR.

iv) The applicable privileges of G include grantable SELECT privilege WITH HIERARCHY
OPTION on at least one supertable of the scoped table of every <reference resolution>
that is contained in QE.

then the following <grant statement> is effectively executed as though the current user
identifier were ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT SELECT (CV) ON V TO G WITH GRANT OPTION

584 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.1 <grant statement>

c) If, following successful execution of the <grant statement>, the applicable privileges of G
will include REFERENCES(CRTij) for all i and for all j, and will include a REFERENCES
privilege on some column of RTi for all i, then:

i) Case:

1) If all of the following are true:

A) The applicable privileges of G will include grantable REFERENCES(CRTij) for
all i and for all j, and will include a grantable REFERENCES privilege on some
column of RTi for all i.

B) The applicable privileges of G include grantable EXECUTE privileges on all
SQL-invoked routines that are subject routines of <routine invocation>s con-
tained in QE.

C) The applicable privileges of G include grantable SELECT privilege on every table
T1 and every method M such that there is a <method reference. MR contained
in QE such that T1 is in the scope of the <value expression primary> of MR and
M is the method identified by the <method name> of MR.

D) The applicable privileges of G include grantable SELECT privilege WITH
HIERARCHY OPTION on at least one supertable of the scoped table of every
<reference resolution> that is contained in QE.

then let WGO be ‘‘WITH GRANT OPTION’’.

2) Otherwise, let WGO be a zero-length string.

ii) The following <grant statement> is effectively executed as though the current user
identifier were ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT REFERENCES (CV) ON V TO G WGO

d) If, following successful execution of the <grant statement>, the applicable privileges of
G include grantable SELECT privilege on every column of V, then the following <grant
statement> is effectively executed as though the current user identifier were ‘‘_SYSTEM’’
and without further Access Rule checking:

GRANT SELECT ON V TO G WITH GRANT OPTION

e) Following successful execution of the <grant statement>,

Case:

i) If the applicable privileges of G include REFERENCES privilege on every column of V,
then let WGO be a zero-length string.

ii) If the applicable privileges of G include grantable REFERENCES privilege on every
column of V, then let WGO be ‘‘WITH GRANT OPTION’’.

iii) The following <grant statement> is effectively executed as though the current user
identifier were ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT REFERENCES ON V TO G WITH GRANT OPTION

Access control 585

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.1 <grant statement>

5) Following the successful execution of the <grant statement>, for every table T specified by some
involved privilege descriptor and for every updatable view V owned by some grantee G such that
T is some leaf underlying table of the <query expression> of V:

a) Let VN be the <table name> of V.

b) If QE is fully updatable with respect to T, and the applicable privileges of G include PA,
where PA is either INSERT, UPDATE, or DELETE, then the following <grant statement>
is effectively executed as though the current user identifier were ‘‘_SYSTEM’’ and without
further Access Rule checking:

GRANT PA ON VN TO G

c) If QE is fully updatable with respect to T, and the applicable privileges of G include
grantable PA privilege on T, where PA is either INSERT, UPDATE, or DELETE, then
the following <grant statement> is effectively executed as though the current user identifier
were ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT PA ON VN TO G WITH GRANT OPTION

d) For each column CV of V, named CVN, that has a counterpart CT in T, named CTN, if
QE is fully or partially updatable with respect to T, and the applicable privileges of G
include PA(CTN) privilege on T, where PA is INSERT or UPDATE, then the following <grant
statement> is effectively executed as though the current user identifier were ‘‘_SYSTEM’’
and without further Access Rule checking:

GRANT PA(CVN) ON VN TO G

e) For each column CV of V, named CVN, that has a counterpart CT in T, named CTN, if QE
is fully or partially updatable with respect to T, and the applicable privileges of G include
grantable PA(CTN) privilege on T, where PA is INSERT or UPDATE, then the following
<grant statement> is effectively executed as though the current user identifier were ‘‘_
SYSTEM’’ and without further Access Rule checking:

GRANT PA(CVN) ON VN TO G WITH GRANT OPTION

6) For every involved grantee G and for every referenceable view V, named VN, owned by G,
if following the successful execution of the <grant statement>, the applicable privileges of G
include grantable UNDER privilege on the direct supertable of V, then the following <grant
statement> is effectively executed with a current authorization identifier of ‘‘_SYSTEM’’ and
without further Access Rule checking:

GRANT UNDER ON VN TO G WITH GRANT OPTION

7) For every involved grantee G and for every schema-level SQL-invoked routine R1 owned by G,
if the applicable privileges of G contain all of the privileges necessary to successfully execute
every <SQL procedure statement> contained in the <routine body> of R1 are grantable, then for
every privilege descriptor with <action> EXECUTE, a grantor of ‘‘_SYSTEM’’, object of R1, and
grantee G that is not grantable, the following <grant statement> is effectively executed with a
current authorization identifier of ‘‘_SYSTEM’’ and without further Access Rule checking:

GRANT EXECUTE ON R1 TO G WITH GRANT OPTION

NOTE 268 – The privileges necessary include the EXECUTE privilege on every subject routine of every
<routine invocation> contained in the <SQL procedure statement>.

8) If two privilege descriptors are identical except that one indicates that the privilege is grantable
and the other indicates that the privilege is not grantable, then both privilege descriptors are
set to indicate that the privilege is grantable.

586 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.1 <grant statement>

9) If two privilege descriptors are identical except that one indicates WITH HIERARCHY OPTION
and the other does not, then both privilege descriptors are set to indicate that the privilege has
the WITH HIERARCHY OPTION.

10) Redundant duplicate privilege descriptors are removed from the multiset of all privilege descrip-
tors.

Conformance Rules

None.

Access control 587

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.2 <grant privilege statement>

12.2 <grant privilege statement>

Function
Define privileges.

Format

<grant privilege statement> ::=
GRANT <privileges>
TO <grantee> [{ <comma> <grantee> }...]
[WITH HIERARCHY OPTION]
[WITH GRANT OPTION]
[GRANTED BY <grantor>]

Syntax Rules

1) Let O be the object identified by the <object name> contained in <privileges>.

2) Let U be the current user identifier and let R be the current role name.

3) Case:

a) If GRANTED BY <grantor> is not specified, then

Case:

i) If U is not the null value, then let A be U.

ii) Otherwise, let A be R.

b) If GRANTED BY CURRENT_USER is specified, then let A be U.

c) If GRANTED BY CURRENT_ROLE is specified, then let A be R.

4) A set of privilege descriptors is identified. The privilege descriptors identified are those defining,
for each <action> explicitly or implicitly in <privileges>, that <action> on O held by A with
grant option.

5) If the <grant statement> is not contained in a <schema definition>, then the schema identified
by the explicit or implicit qualifier of the <object name> shall include the descriptor of O. If the
<grant statement> is contained in a <schema definition> S, then the schema identified by the
explicit or implicit qualifier of the <object name> shall include the descriptor of O or S shall
include a <schema element> that creates the descriptor of O.

6) If WITH HIERARCHY OPTION is specified, then:

a) <privileges> shall specify an <action> of SELECT without a <privilege column list> and
without a <privilege method list>.

b) O shall be a table of a structured type.

588 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.2 <grant privilege statement>

Access Rules

1) The applicable privileges shall include a privilege identifying O.
NOTE 269 – ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) The <object privileges> specify one or more privileges on the object identified by the <object
name>.

2) For every identified privilege descriptor IPD, a privilege descriptor is created for each <grantee>,
that specifies grantee <grantee>, action <action>, object O, and grantor A. Let CPD be the set of
privilege descriptors created.

3) For every privilege descriptor in CPD whose action is INSERT, UPDATE, or REFERENCES
without a column name, privilege descriptors are also created and added to CPD for each
column C in O for which A holds the corresponding privilege with grant option. For each such
column, a privilege descriptor is created that specifies the identical <grantee>, the identical
<action>, object C, and grantor A.

4) For every privilege descriptor in CPD whose action is SELECT without a column name or
method name, privilege descriptors are also created and added to CPD for each column C in
O for which A holds the corresponding privilege with grant option. For each such column, a
privilege descriptor is created that specifies the identical <grantee>, the identical <action>,
object C, and grantor A.

5) For every privilege descriptor in CPD whose action is SELECT without a column name or
method name, if the table T identified by the object of the privilege descriptor is a table of a
structured type TY, then table/method privilege descriptors are also created and added to CPD
for each method M of TY for which A holds the corresponding privilege with grant option. For
each such method, a table/method privilege descriptor is created that specifies the identical
<grantee>, the identical <action>, object consisting of the pair of table T and method M, and
grantor A.

6) If WITH GRANT OPTION was specified, then each privilege descriptor also indicates that the
privilege is grantable.

7) Let SWH be the set of privilege descriptors in CPD whose action is SELECT WITH HIERARCHY
OPTION, and let ST be the set of subtables of O, then for every grantee G in SWH and for ev-
ery table T in ST, the following <grant statement> is effectively executed without further Access
Rule checking:

GRANT SELECT ON T TO G GRANTED BY A

8) For every combination of <grantee> and <action> on O specified in <privileges>, if there is no
corresponding privilege descriptor in CPD, then a completion condition is raised: warning —
privilege not granted.

9) If ALL PRIVILEGES was specified, then for each grantee G, if there is no privilege descriptor
in CPD specifying grantee G, then a completion condition is raised: warning — privilege not
granted.

10) The set of involved privilege descriptors is defined to be CPD.

Access control 589

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.2 <grant privilege statement>

11) The set of involved grantees is defined as the set of specified <grantee>s.

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator> contained
in a <grant statement> shall not identify a method.

2) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not specify WITH
HIERARCHY OPTION.

590 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.3 <role definition>

12.3 <role definition>

Function
Define a role.

Format

<role definition> ::=
CREATE ROLE <role name>
[WITH ADMIN <grantor>]

Syntax Rules

1) The specified <role name> shall not be equivalent to any other <authorization identifier> in the
SQL-environment.

Access Rules

1) The privileges necessary to execute the <role definition> are implementation-defined.

General Rules

1) A <role definition> defines a role.

2) Let U be the current user identifier and R be the current role name.

3) Case:

a) If WITH ADMIN <grantor> is not specified, then

Case:

i) If U is not the null value, then let A be U.

ii) Otherwise, let A be R.

b) If WITH ADMIN CURRENT_USER is specified, then let A be U.

c) If WITH ADMIN CURRENT_ROLE is specified, then let A be R.

4) A role authorization descriptor is created that identifies that the role identified by <role name>
has been granted to A WITH ADMIN OPTION, with a grantor of ‘‘_SYSTEM’’.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <role defini-
tion>.

2) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify WITH
ADMIN.

Access control 591

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.4 <grant role statement>

12.4 <grant role statement>

Function
Define role authorizations.

Format

<grant role statement> ::=
GRANT <role granted> [{ <comma> <role granted> }...]
TO <grantee> [{ <comma> <grantee> }...]
[WITH ADMIN OPTION]
[GRANTED BY <grantor>]

<role granted> ::= <role name>

Syntax Rules

1) No role identified by a specified <grantee> shall be contained in any role identified by a specified
<role granted>; that is, no cycles of role grants are allowed.

2) Let U be the current user identifier and R be the current role name.

3) Case:

a) If GRANTED BY <grantor> is not specified, then

Case:

i) If U is not the null value, then let A be U.

ii) Otherwise, let A be R.

b) If GRANTED BY CURRENT_USER is specified, then let A be U.

c) If GRANTED BY CURRENT_ROLE is specified, then let A be R.

Access Rules

1) Every role identified by <role granted> shall be contained in the applicable roles for A and the
corresponding role authorization descriptors shall specify WITH ADMIN OPTION.

General Rules

1) For every <grantee> specified, a set of role authorization descriptors is created that defines the
grant of each role identified by a <role granted> to the <grantee> with a grantor of A.

2) If WITH ADMIN OPTION is specified, then each role authorization descriptor also indicates
that the role is grantable with the WITH ADMIN OPTION.

3) If two role authorization descriptors are identical except that one indicates that the role is
grantable WITH ADMIN OPTION and the other indicates that the role is not, then both role
authorization descriptors are set to indicate that the role is grantable with the WITH ADMIN
OPTION.

592 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.4 <grant role statement>

4) Redundant duplicate role authorization descriptors are removed from the multiset of all role
authorization descriptors.

5) The set of involved privilege descriptors is the union of the sets of privilege descriptors corre-
sponding to the applicable privileges of every <role granted> specified.

6) The set of involved grantees is the union of the set of <grantee>s and the set of <role name>s
that contain at least one of the <role name>s that is possibly specified as a <grantee>.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <grant role
statement>.

2) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify <grantor>.

Access control 593

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.5 <drop role statement>

12.5 <drop role statement>

Function
Destroy a role.

Format

<drop role statement> ::= DROP ROLE <role name>

Syntax Rules

1) Let R be the role identified by the specified <role name>.

Access Rules

1) At least one of the enabled authorization identifiers shall have a role authorization identifier
that authorizes R with the WITH ADMIN OPTION.

General Rules

1) Let A be any <authorization identifier> identified by a role authorization descriptor as having
been granted to R.

2) The following <revoke role statement> is effectively executed without further Access Rule
checking:

REVOKE R FROM A

3) The descriptor of R is destroyed.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <drop role
statement>.

594 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

12.6 <revoke statement>

Function
Destroy privileges and role authorizations.

Format

<revoke statement> ::=
<revoke privilege statement>

| <revoke role statement>

<revoke privilege statement> ::=
REVOKE [<revoke option extension>] <privileges>
FROM <grantee> [{ <comma> <grantee> }...]
[GRANTED BY <grantor>]
<drop behavior>

<revoke option extension> ::=
GRANT OPTION FOR

| HIERARCHY OPTION FOR

<revoke role statement> ::=
REVOKE [ADMIN OPTION FOR]
<role revoked> [{ <comma> <role revoked> }...]
FROM <grantee> [{ <comma> <grantee> }...]
[GRANTED BY <grantor>]
<drop behavior>

<role revoked> ::= <role name>

Syntax Rules

1) Let O be the object identified by the <object name> contained in <privileges>. If O is a table T,
then let S be the set of subtables of O. If T is a table of a structured type, then let TY be that
type.

2) If WITH HIERARCHY OPTION is specified, the <privileges> shall specify an <action> of
SELECT without a <privilege column list> and without a <privilege method list> and O shall be
a table of a structured type.

3) Let U be the current user identifier and R be the current role name.

4) Case:

a) If GRANTED BY <grantor> is not specified, then

Case:

i) If U is not the null value, then let A be U.

ii) Otherwise, let A be R.

b) If GRANTED BY CURRENT_USER is specified, then let A be U.

c) If GRANTED BY CURRENT_ROLE is specified, then let A be R.

Access control 595

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

5) SELECT is equivalent to specifying both the SELECT table privilege and SELECT (<privilege
column list>) for all columns of <table name>. If T is a table of a structured type TY, then
SELECT also specifies SELECT (<privilege column list>) for all columns inherited from T in
each of the subtables of T, and SELECT (<privilege method list>) for all methods of TY in each
of the subtables of T.

6) INSERT is equivalent to specifying both the INSERT table privilege and INSERT (<privilege
column list>) for all columns of <table name>.

7) UPDATE is equivalent to specifying both the UPDATE table privilege and UPDATE (<privilege
column list>) for all columns of <table name>, as well as UPDATE (<privilege column list>) for
all columns inherited from T in each of the subtables of T.

8) REFERENCES is equivalent to specifying both the REFERENCES table privilege and
REFERENCES (<privilege column list>) for all columns of <table name>, as well as REFERENCES
(<privilege column list>) for all columns inherited from T in each of the subtables of T.

9) Case:

a) If the <revoke statement> is a <revoke privileges statement>, then for every <grantee>
specified, a set of privilege descriptors is identified. A privilege descriptor P is said to be
identified if it belongs to the set of privilege descriptors that defined, for any <action>
explicitly or implicitly in <privileges>, that <action> on O, or any of the objects in S, granted
by A to <grantee>.
NOTE 270 – Column privilege descriptors become identified when <action> explicitly or implic-
itly contains a <privilege column list>. Table/method descriptors become identified when <action>
explicitly or implicitly contains a <privilege method list>.

b) If the <revoke statement> is a <revoke role statement>, then for every <grantee> specified,
a set of role authorization descriptors is identified. A role authorization descriptor is said to
be identified if it defines the grant of any of the specified <role revoked>s to <grantee> with
grantor A.

10) A privilege descriptor D is said to be directly dependent on another privilege descriptor P if
either:

a) All of the following conditions hold:

i) P indicates that the privilege that it represents is grantable.

ii) The grantee of P is the same as the grantor of D or the grantee of P is PUBLIC, or, if
the grantor of D is a <role name>, the grantee of P belongs to the set of applicable roles
of the grantor of D.

iii) Case:

1) P and D are both column privilege descriptors. The action and the identified column
of P are the same as the action and identified column of D, respectively.

2) P and D are both table privilege descriptors. The action and the identified table of P
are the same as the action and the identified table of D, respectively.

3) P and D are both execute privilege descriptors. The action and the identified SQL-
invoked routine of P are the same as the action and the identified SQL-invoked
routine of D, respectively.

596 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

4) P and D are both usage privilege descriptors. The action and the identified domain,
character set, collation, translation, or user-defined type of P are the same as the
action and the identified domain, character set, collation, translation, or user-defined
type of D, respectively.

5) P and D are both under privilege descriptors. The action and the identified user-
defined type or table of P are the same as the action and the identified user-defined
type or table of D, respectively.

6) P and D are both table/method privilege descriptors. The action and the identified
method and table of P are the same as the action and the identified method and
table of D, respectively.

b) All of the following conditions hold:

i) The privilege descriptor for D indicates that its grantor is the special grantor value
‘‘_SYSTEM’’.

ii) The action of P is the same as the action of D.

iii) The grantee of P is the owner of the table, collation, or translation identified by D or the
grantee of P is PUBLIC.

iv) One of the following conditions hold:

1) P and D are both table privilege descriptors, the privilege descriptor for D identi-
fies the <table name> of an updatable view V, and the identified table of P is the
underlying table of the <query expression> of V.

2) P and D are both column privilege descriptors, the privilege descriptor D identifies a
<column name> CVN explicitly or implicitly contained in the <view column list> of a
<view definition> V, and one of the following is true:

A) V is an updatable view. For every column CV identified by a <column name>
CVN, there is a corresponding column in the underlying table of the <query
expression> TN. Let CTN be the <column name> of the column of the <query
expression> from which CV is derived. The action for P is UPDATE or INSERT
and the identified column of P is TN.CTN.

B) For every table T identified by a <table reference> contained in the <query ex-
pression> of V and for every column CT that is a column of T and an underlying
column of CV, the action for P is REFERENCES and either the identified column
of P is CT or the identified table of P is T.

C) For every table T identified by a <table reference> contained in the <query ex-
pression> of V and for every column CT that is a column of T and an underlying
column of CV, the action for P is SELECT and either the identified column of P
is CT or the identified table of P is T.

3) The privilege descriptor D identifies the <collation name> of a <collation definition>
CO and the identified character set name of P is included in the collation descriptor
for CO, or the identified translation name of P is included in the collation descriptor
for CO.

Access control 597

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

4) The privilege descriptor D identifies the <translation name> of a <translation def-
inition> TD and the identified character set name of P is contained in the <source
character set specification> or the <target character set specification> immediately
contained in TD.

c) All of the following conditions hold:

i) The privilege descriptor for D indicates that its grantor is the special grantor value
‘‘_SYSTEM’’.

ii) The grantee of P is the owner of the domain identified by D or the grantee of P is
PUBLIC.

iii) The privilege descriptor D identifies the <domain name> of a <domain definition> DO
and either the column privilege descriptor P has an action of REFERENCES and identi-
fies a column referenced in the <search condition> included in the domain descriptor for
DO, or the privilege descriptor P has an action of USAGE and identifies a domain, colla-
tion, character set, or translation whose <domain name>, <collation name>, <character
set name> or <translation name>, respectively, is contained in the <search condition> of
the domain descriptor for DO.

11) The privilege dependency graph is a directed graph such that all of the following are true:

a) Each node represents a privilege descriptor.

b) Each arc from node P1 to node P2 represents the fact that P2 directly depends on P1.

An independent node is a node that has no incoming arcs.

12) A privilege descriptor P is said to be modified if all of the following are true:

a) P indicates that the privilege that it represents is grantable.

b) P directly depends on an identified privilege descriptor or a modified privilege descriptor.

c) Case:

i) If P is neither a SELECT nor a REFERENCES column privilege descriptor that identi-
fies a <column name> CVN explicitly or implicitly contained in the <view column list>
of a <view definition> V, then let XO and XA respectively be the identifier of the object
identified by a privilege descriptor X and the action of X. Within the set of privilege
descriptors upon which P directly depends, there exist some XO and XA for which the
set of identified privilege descriptors unioned with the set of modified privilege descrip-
tors include all privilege descriptors specifying the grant of XA on XO WITH GRANT
OPTION.

ii) If P is a column privilege descriptor that identifies a column CV named by a <column
name> CVN explicitly or implicitly contained in the <view column list> of a <view
definition> V with an action PA of REFERENCES or SELECT, then let SP be the set
of privileges upon which P directly depends. For every table T identified by a <table
reference> contained in the <query expression> of V, let RT be the <table name> of T.
There exists a column CT whose <column name> is CRT, such that all of the following
are true:

1) CT is a column of T and an underlying column of CV.

598 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

2) Every privilege descriptor PD that is the descriptor of some member of SP that
specifies the action PA on CRT WITH GRANT OPTION is either an identified
privilege descriptor for CRT or a modified privilege descriptor for CRT.

d) At least one of the following is true:

i) GRANT OPTION FOR is specified and the grantor of P is the special grantor value
‘‘_SYSTEM’’.

ii) There exists a path to P from an independent node that includes no identified or modi-
fied privilege descriptors. P is said to be a marked modified privilege descriptor.

iii) P directly depends on a marked modified privilege descriptor, and the grantor of P is the
special grantor value ‘‘_SYSTEM’’. P is said to be a marked modified privilege descriptor.

13) A role authorization descriptor D is said to be directly dependent on another role authorization
descriptor RD if all of the following conditions hold:

a) RD indicates that the role that it represents is grantable.

b) The role name of D is the same as the role name of RD.

c) The grantee of RD is the same as the grantor of D or the grantee of RD is PUBLIC, or, if
the grantor of D is a <role name>, the grantee of RD belongs to the set of applicable roles of
the grantor of D.

14) The role dependency graph is a directed graph such that all of the following are true:

a) Each node represents a role authorization descriptor.

b) Each arc from node R1 to node R2 represents the fact that R2 directly depends on R1.

An independent node is one that has no incoming arcs.

15) A role authorization descriptor RD is said to be abandoned if it is not an independent node, and
it is not itself an identified role authorization descriptor, and there exists no path to RD from
any independent node other than paths that include an identified role authorization descriptor.

16) An arc from a node P to a node D of the privilege dependency graph is said to be unsupported if
all of the following are true:

a) The grantor of D and the grantee of P are both <role name>s.

b) The destruction of all abandoned role authorization descriptors and, if ADMIN OPTION
FOR is not specified, all identified role authorization descriptors would result in the grantor
of D no longer having in its applicable roles the grantee of P.

17) A privilege descriptor P is abandoned if:

Case:

a) It is not an independent node, and P is not itself an identified or a modified privilege de-
scriptor, and there exists no path to P from any independent node other than paths that
include an identified privilege descriptor or a modified privilege descriptor or an unsup-
ported arc and, if <revoke statement> specifies WITH HIERARCHY OPTION, then P has
the WITH HIERARCHY OPTION.

Access control 599

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

b) All of the following conditions hold:

i) P is a column privilege descriptor that identifies a <column name> CVN explicitly or
implicitly contained in the <view column list> of a <view definition> V, with an action
PA of REFERENCES or SELECT.

ii) Letting SP be the set of privileges upon which P directly depends, at least one of the
following is true:

1) There exists some table name RT such that all of the following are true:

A) RT is the name of the table identified by some <table reference> contained in the
<query expression> of V.

B) For every column privilege descriptor CPD that is the descriptor of some member
of SP that specifies the action PA on RT, CPD is either an identified privilege
descriptor for RT or an abandoned privilege descriptor for RT.

2) There exists some column name CRT such that all of the following are true:

A) CRT is the name of some column of the table of some <table reference> contained
in the <query expression> of V.

B) For every column privilege descriptor CPD that is the descriptor of some member
of SP that specifies the action PA on CRT, CPD is either an identified privilege
descriptor for CRT or an abandoned privilege descriptor for CRT.

18) The revoke destruction action is defined as

Case:

a) If the <revoke statement> is a <revoke privileges statement>, then

Case:

i) If the <revoke statement> specifies the WITH HIERARCHY OPTION, then the re-
moval of the WITH HIERARCHY OPTION from all identified and abandoned privilege
descriptors.

ii) Otherwise, the destruction of all abandoned privilege descriptors and, if GRANT
OPTION FOR is not specified, all identified privilege descriptors.

b) If the <revoke statement> is a <revoke roles statement>, then the destruction of all aban-
doned role authorization descriptors, all abandoned privilege descriptors and, if GRANT
OPTION FOR is not specified, all identified role authorization descriptors.

19) Let S1 be the name of any schema and A1 be the <authorization identifier> that owns the
schema identified by S1.

20) Let V be any view descriptor included in S1. Let QE be the <query expression> of V. V is said
to be abandoned if the revoke destruction action would result in A1 no longer having in its
applicable privileges all of the following:

a) SELECT privileges on every table whose name is contained in QE.

b) SELECT privileges on every column whose name is contained in QE.

600 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

c) USAGE privilege on every domain, every collation, every character set, and every transla-
tion whose names are contained in QE.

d) EXECUTE privilege on every SQL-invoked routine that is the subject routine of any <rou-
tine invocation>, <method invocation>, <static method invocation>, or <method reference>
that is contained in QE.

e) The table/method privileges on every table T1 and every method M such that there is
a <method reference> MR contained in QE such that T1 is in the scope of the <value
expression primary> of MR and M is subject routine of MR.

f) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in QE.

g) If V is the descriptor of a referenceable table, then USAGE privilege on the structured type
associated with the view described by V.

h) UNDER privilege on every direct supertable of the view described by V.

21) Let T be any table descriptor included in S1. T is said to be abandoned if the revoke destruction
action would result in A1 no longer having all of the following:

a) If T is the descriptor of a referenceable table, then USAGE privilege on the structured type
associated with the table described by T.

b) UNDER privilege on every direct supertable of the table described by T.

22) Let TC be any table constraint descriptor included in S1. TC is said to be abandoned if the
revoke destruction action would result in A1 no longer having in its applicable privileges all of
the following:

a) REFERENCES privilege on every column identified by a <column reference> contained in
the <search condition> of TC.

b) USAGE privilege on every domain, every collation, every character set, and every transla-
tion whose names are contained in any <search condition> of TC.

c) EXECUTE privilege on every SQL-invoked routine that is the subject routine of any <rou-
tine invocation>, <method invocation>, <static method invocation>, or <method reference>
that is contained in any <search condition> of TC.

d) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in any <search condition> of TC such that T1 is in the
scope of the <value expression primary> of MR and M is the subject routine of MR.

e) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> of TC.

23) Let AX be any assertion descriptor included in S1. AX is said to be abandoned if the revoke
destruction action would result in A1 no longer having all in its applicable privileges of the
following:

a) REFERENCES privilege on every column identified by a <column reference> contained in
the <search condition> of AX.

b) USAGE privilege on every domain, every collation, every character set, and every transla-
tion whose names are contained in any <search condition> of AX.

Access control 601

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

c) EXECUTE privilege on every SQL-invoked routine that is the subject routine of any <rou-
tine invocation>, <method invocation>, <static method invocation>, or <method reference>
that is contained in any <search condition> of AX.

d) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in AX such that T1 is in the scope of the <value expres-
sion primary> of MR and M is the subject routine of MR.

e) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> of AX.

24) Let TR be any trigger descriptor included in S1. TR is said to be abandoned if the revoke
destruction action would result in A1 no longer having in its applicable privileges all of the
following:

a) TRIGGER privilege on the subject table of TR.

b) SELECT privilege on every column identified by a <column reference> contained in any
<search condition> of TR.

c) USAGE privilege on every domain, collation, character set, and translation whose name is
contained in any <search condition> of TR.

d) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in any <search condition> of TR such that T1 is in the
scope of the <value expression primary> of MR and M is the subject routine of MR.

e) EXECUTE privilege on the SQL-invoked routine that is the subject routine of any <routine
invocation>, <method invocation>, <static method invocation>, or <method reference> that
is contained in any <search condition> of TR.

f) EXECUTE privilege on the SQL-invoked routine that is the subject routine of any <routine
invocation>, <method invocation>, <static method invocation>, or <method reference> that
is contained in the <triggered SQL statement> of TR.

g) SELECT privilege on every <table reference> contained in a <query expression> simply
contained in a <cursor specification> or an <insert statement> contained in the <triggered
SQL statement> of TR.

h) SELECT privilege on every <table reference> contained in a <table expression> or <select
list> immediately contained in a <select statement: single row> contained in the <triggered
SQL statement> of TR.

i) SELECT privilege on every <table reference> and <column reference> contained in a
<search condition> contained in a <delete statement: searched> or an <update statement:
searched> contained in the <triggered SQL statement> of TR.

j) SELECT privilege on every <table reference> and <column reference> contained in a <value
expression> simply contained in a <row value constructor> immediately contained in a <set
clause> contained in the <triggered SQL statement> of TR.

k) INSERT privileges on every column

Case:

i) Named in the <insert column list> of an <insert statement> contained in the <triggered
SQL statement> of TR.

602 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

ii) Of the table identified by the <table name> immediately contained in an <insert state-
ment> that does not contain an <insert column list> and that is contained in the
<triggered SQL statement> of TR.

l) UPDATE privileges on every column whose name is contained in an <object column> con-
tained in either an <update statement: positioned> or an <update statement: searched>
contained in the <triggered SQL statement> of TR.

m) DELETE privileges on every table whose name is contained in a <table name> contained in
either a <delete statement: positioned> or a <delete statement: searched> contained in the
<triggered SQL statement> of TR.

n) USAGE privilege on every domain, collation, character set, and translation whose name is
contained in the <triggered SQL statement> of TR.

o) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in any <triggered SQL statement> of TR such that T1 is
in the scope of the <value expression primary> of MR and M is the subject routine of MR.

p) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> of TR.

q) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <query expression> simply
contained in a <cursor specification> or an <insert statement> contained in the <triggered
SQL statement> of TR.

r) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <table expression> or <select
list> immediately contained in a <select statement: single row> contained in the <triggered
SQL statement> of TR.

s) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> contained
in a <delete statement: searched> or an <update statement: searched > contained in the
<triggered SQL statement> of TR.

t) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <value expression> contained
in a <row value constructor> immediately contained in a <set clause> contained in the
<triggered SQL statement> of TR.

25) Let DC be any domain constraint descriptor included in S1. DC is said to be abandoned if the
revoke destruction action would result in A1 no longer having in its applicable privileges all of
the following:

a) REFERENCES privilege on every column identified by a <column reference> contained in
the <search condition> of DC.

b) USAGE privilege on every domain, every user-defined type, every collation, every character
set, and ever translation whose names are contained in any <search condition> of DC.

c) EXECUTE privilege on every SQL-invoked routine that is the subject routine of any <rou-
tine invocation>, <method invocation>, <static method invocation>, or <method reference>
that is contained in any <search condition> of DC.

Access control 603

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

d) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in any <search condition> of DC such that T1 is in the
scope of the <value expression primary> of MR and M is the subject routine of MR.

e) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> of DC.

26) For every domain descriptor DO included in S1, DO is said to be lost if the revoke destruction
action would result in A1 no longer having in its applicable privileges USAGE privilege on every
character set included in the data type descriptor included in DO.

27) For every table descriptor TD contained in S1, for every column descriptor CD included in TD,
CD is said to be lost if any of the following are true:

a) The revoke destruction action would result in A1 no longer having in its applicable privileges
USAGE privilege on any character set included in the data type descriptor included in CD.

b) The revoke destruction action would result in A1 no longer having in its applicable privi-
leges USAGE privilege on any user-defined type whose descriptor is included in any of the
following:

i) CD.

ii) A collection type descriptor that is included in CD.

iii) A reference type descriptor that is included in CD.

iv) A reference type descriptor that is included in a collection type descriptor that is in-
cluded in CD.

c) The name of the domain DN included in CD, if any, identifies a lost domain descriptor and
the revoke destruction action would result in A1 no longer having in its applicable privileges
USAGE privilege on any character set included in the data type descriptor of the domain
descriptor of DN.

28) For every SQL-client module MO, let G be the <module authorization identifier> that owns MO.
MO is said to be lost if the revoke destruction action would result in G no longer having in its
applicable privileges USAGE privilege on the character set referenced in the <module character
set specification> of MO.

29) For every user-defined type descriptor DT included in S1, DT is said to be abandoned if any of
the following are true:

a) The revoke destruction action would result in A1 no longer having in its applicable privileges
USAGE on any user-defined type whose descriptor is included in one of the following:

i) The attribute descriptor of any attribute of DT.

ii) A collection type descriptor that is included in the attribute descriptor of any attribute
of DT.

iii) A reference type descriptor that is included in the attribute descriptor of any attribute
of DT.

iv) A reference type descriptor that is included in a collection type descriptor that is in-
cluded in the attribute descriptor of any attribute of DT.

604 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

b) The revoke destruction action would result in A1 no longer having in its applicable privileges
the UNDER privilege on any user-defined type that is a direct supertype of DT.

30) Let SD be the descriptor of the schema S1. SD is said to be lost if the revoke destruction action
would result in A1 no longer having in its applicable privileges USAGE privilege on the default
character set included in the schema descriptor SD.

31) For every domain descriptor DO contained in S1, DO is said to be impacted if DO is not lost, and
the revoke destruction action would result in A1 no longer having in its applicable privileges
USAGE privilege on the collation whose name is contained in the <collate clause> of DO.

32) For every column descriptor CD contained in a table descriptor contained in S1, CD is said to
be impacted if CD is not lost, and the revoke destruction action would result in A1 no longer
having in its applicable privileges USAGE privilege on the collation whose name is contained in
the <collate clause> of CD.

33) For every collation descriptor CN contained in S1, CN is said to be impacted if the revoke
destruction action would result in A1 no longer having in its applicable privileges USAGE
privilege on the collation whose name is contained in the <collation source> of CN.

34) For every character set descriptor CSD contained in S1, CSD is said to be impacted if the revoke
destruction action would result in A1 no longer having in its applicable privileges USAGE
privilege on the collation whose name is contained in CSD.

35) Let RD be any routine descriptor included in S1. RD is said to be abandoned if the revoke
destruction action would result in A1 no longer having in its applicable privileges all of the
following:

a) EXECUTE privilege on the SQL-invoked routine that is the subject routine of any <routine
invocation>, <method invocation>, <static method invocation>, or <method reference> that
is contained in the <routine body> of RD.

b) SELECT privilege on each <table reference> contained in a <query expression> simply
contained in a <cursor specification> or an <insert statement> contained in the <SQL
routine body> of RD.

c) SELECT privilege on each <table reference> contained in a <table expression> or <select
list> immediately contained in a <select statement: single row> contained in the <SQL
routine body> of RD.

d) SELECT privilege on each <table reference> and <column reference> contained in a <search
condition> contained in a <delete statement: searched> or an <update statement: searched>
contained in the <SQL routine body> of RD.

e) SELECT privilege on each <table reference> and <column reference> contained in a <value
expression> simply contained in a <row value expression> immediately contained in a <set
clause> contained in the <SQL routine body> of RD.

f) INSERT privileges on each column

Case:

i) Named in the <insert column list> of an <insert statement> contained in the <SQL
routine body> of RD.

Access control 605

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

ii) Of the table identified by the <table name> immediately contained in an <insert state-
ment> that does not contain an <insert column list> and that is contained in the <SQL
routine body> of RD.

g) UPDATE privileges on each column whose name is contained in an <object column> con-
tained in either an <update statement: positioned> or an <update statement: searched>
contained in the <SQL routine body> of RD.

h) DELETE privileges on each table whose name is contained in a <table name> contained in
either a <delete statement: positioned> or a <delete statement: searched> contained in the
<SQL routine body> of RD.

i) USAGE privilege on each domain, collation, character set, and translation whose name is
contained in the <SQL routine body> of RD.

j) USAGE privilege on each user-defined type that is one of the following:

i) The declared type of any SQL parameter, returns data type, or result cast included in
RD.

ii) The element type of a collection type that is the declared type of any SQL parameter,
returns data type, or result cast included in RD.

iii) The referenced type of a reference type that is the declared type of any SQL parameter,
returns data type, or result cast included in RD.

iv) The referenced type of a reference type that is the element type of a collection type that
is the declared type of any SQL parameter, returns data type, or result cast included in
RD.

k) The table/method privilege on every table T1 and every method M such that there is a
<method reference> MR contained in the <SQL routine body> of RI such that T1 is in the
scope of the <value expression primary> of MR and M is the subject routine of MR.

l) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <query expression> simply
contained in a <cursor specification> or an <insert statement> contained in the <SQL
routine body> of RD.

m) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <table expression> or <select
list> immediately contained in a <select statement: single row> contained in the <SQL
routine body> of RD.

n) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <search condition> contained in
a <delete statement: searched> or an <update statement: searched> contained in the <SQL
routine body> of RD.

o) SELECT privilege WITH HIERARCHY OPTION on at least one supertable of the scoped
table of any <reference resolution> that is contained in any <value expression> simply
contained in a <row value expression> immediately contained in a <set clause> contained in
the <SQL routine body> of RD.

606 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

36) For every table descriptor TD included in S1, for every column descriptor CD included in TD,
CD is said to be contaminated if CD includes one of the following:

a) A user-defined type descriptor that describes a supertype of a user-defined type described by
an abandoned user-defined type descriptor.

b) A reference type descriptor that includes a user-defined type descriptor that describes a
supertype of a user-defined type described by an abandoned user-defined type descriptor.

c) A collection type descriptor that includes a user-defined type descriptor that describes a
supertype of a user-defined type described by an abandoned user-defined type descriptor.

d) A collection type descriptor that includes a reference type descriptor that includes a user-
defined type descriptor that describes a supertype of a user-defined type described by an
abandoned user-defined type descriptor.

37) If RESTRICT is specified, then there shall be no abandoned privilege descriptors, abandoned
views, abandoned table constraints, abandoned assertions, abandoned domain constraints, lost
domains, lost columns, lost schemas, impacted domains, impacted columns, impacted collations,
impacted character sets, abandoned user-defined types, forsaken column descriptors, forsaken
domain descriptors, or abandoned routine descriptors.

38) If CASCADE is specified, then the impact on an SQL-client module that is determined to be a
lost module is implementation-defined.

Access Rules

1) Case:

a) If the <revoke statement> is a <revoke privilege statement>, then the applicable privileges
for A shall include a privilege identifying O.

b) If the <revoke statement> is a <revoke role statement>, then at least one of the applicable
roles of A shall have a role authorization identifier that authorizes a role with the WITH
ADMIN OPTION for every role identified by a <role revoked>.

General Rules

1) Case:

a) If the <revoke statement> is a <revoke privilege statement>, then

Case:

i) If neither WITH HIERARCHY OPTION nor GRANT OPTION FOR is specified, then:

1) All abandoned privilege descriptors are destroyed.

2) The identified privilege descriptors are destroyed.

3) The modified privilege descriptors are set to indicate that they are not grantable.

ii) If WITH HIERARCHY OPTION is specified, then the WITH HIERARCHY OPTION is
removed from all identified and abandoned privilege descriptors, if present.

iii) If GRANT OPTION FOR is specified, then

Access control 607

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

Case:

1) If CASCADE is specified, then all abandoned privilege descriptors are destroyed.

2) Otherwise, if there are any privilege descriptors directly dependent on an identified
privilege descriptor that are not modified privilege descriptors, then an exception
condition is raised: dependent privilege descriptors still exist.

The identified privilege descriptors and the modified privilege descriptors are set to
indicate that they are not grantable.

b) If the <revoke statement> is a <revoke role statement>, then:

i) If CASCADE is specified, then all abandoned role authorization descriptors are de-
stroyed.

ii) All abandoned privilege descriptors are destroyed.

iii) Case:

1) If ADMIN OPTION FOR is not specified, then the identified role authorization
descriptors are destroyed.

2) If ADMIN OPTION FOR is specified, then the identified role authorization descrip-
tors are set to indicate that they are not grantable.

2) For every abandoned view descriptor V, let S1.VN be the <table name> of V. The following
<drop view statement> is effectively executed without further Access Rule checking:

DROP VIEW S1.VN CASCADE

3) For every abandoned table descriptor T, let S1.TN be the <table name> of T. The following
<drop table statement> is effectively executed without further Access Rule checking:

DROP TABLE S1.TN CASCADE

4) For every abandoned table constraint descriptor TC, let S1.TCN be the <constraint name>
of TC and let S2.T2 be the <table name> of the table that contains TC (S1 and S2 possibly
equivalent). The following <alter table statement> is effectively executed without further Access
Rule checking:

ALTER TABLE S2.T2 DROP CONSTRAINT S1.TCN CASCADE

5) For every abandoned assertion descriptor AX, let S1.AXN be the <constraint name> of AX.
The following <drop assertion statement> is effectively executed without further Access Rule
checking:

DROP ASSERTION S1.AXN

6) For every abandoned trigger descriptor TR, let S1.TRN be the <trigger name> of TR. The fol-
lowing <drop trigger statement> is effectively executed without further Access Rule checking:

DROP TRIGGER S1.TRN

608 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
12.6 <revoke statement>

7) For every abandoned domain constraint descriptor DC, let S1.DCN be the <constraint name> of
DC and let S2.DN be the <domain name> of the domain that contains DC. The following <alter
domain statement> is effectively executed without further Access Rule checking:

ALTER DOMAIN S2.DN DROP CONSTRAINT S1.DCN

8) For every lost column descriptor CD, let S1.TN be the <table name> of the table whose descrip-
tor includes the descriptor CD and let CN be the <column name> of CD. The following <alter
table statement> is effectively executed without further Access Rule checking:

ALTER TABLE S1.TN DROP COLUMN CN CASCADE

9) For every lost domain descriptor DO, let S1.DN be the <domain name> of DO. The following
<drop domain statement> is effectively executed without further Access Rule checking:

DROP DOMAIN S1.DN CASCADE

10) For every lost schema descriptor SD, the default character set of that schema is modified to
include the name of the implementation-defined <character set specification> that would have
been this schema’s default character set had the <schema definition> not specified a <schema
character set specification>.

11) If the object identified by O is a collation, let OCN be the name of that collation.

12) For every impacted domain descriptor DO, DO is modified such that it does not include OCN.

13) For every impacted column descriptor CD, CD is modified such that it does not include OCN.

14) For every impacted collation descriptor CD with included collation name CN, the following
<drop collation statement> is effectively executed without further Access Rule checking:

DROP COLLATION CN CASCADE

15) For every impacted character set descriptor CSD with included character set name CSN, CSD
is modified so that the included collation name is the name of the default collation for the
character set on which CSD is based.

16) For every abandoned user-defined type descriptor DT with <user-defined type name> S1.DTN,
the following <drop data type statement> is effectively executed without further Access Rule
checking:

DROP TYPE S1.DTN CASCADE

17) For every abandoned SQL-invoked routine descriptor RD, let R be the SQL-invoked routine
whose descriptor is RD. Let SN be the <specific name> of R. The following <drop routine
statement> is effectively executed without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

18) If the <revoke statement> is a <revoke privileges statement>, then:

a) For every combination of <grantee> and <action> on O specified in <privileges>, if there
is no corresponding privilege descriptor in the set of identified privilege descriptors, then a
completion condition is raised: warning — privilege not revoked.

b) If ALL PRIVILEGES was specified, then for each <grantee>, if no privilege descriptors were
identified, then a completion condition is raised: warning — privilege not revoked.

Access control 609

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
12.6 <revoke statement>

19) For every contaminated column descriptor CD, let S1.TN be the <table name> of the table
whose descriptor includes the descriptor CD and let CN be the <column name> of CD. The
following <alter table statement> is effectively executed without further Access Rule checking:

ALTER TABLE S1.TN DROP COLUMN CN CASCADE

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain <revoke role
statement>.

2) Without Feature F034, ‘‘Extended REVOKE statement’’, a <drop behavior> of CASCADE shall
not be specified in <revoke statement>.

3) Without Feature F034, ‘‘Extended REVOKE statement’’, conforming SQL Core language shall
not specify GRANT OPTION FOR.

4) Without Feature F034, ‘‘Extended REVOKE statement’’, the current authorization identifier
shall identify the owner of the SQL-schema that is specified explicitly or implicitly in the <object
name>.

5) Without Feature F034, ‘‘Extended REVOKE statement’’, there shall not be a privilege descriptor
PD that satisfies all the following conditions:

a) PD identifies the table, domain, collation, character set, translation or data type identified
by <object name> simply contained in <privileges>.

b) PD identifies the <grantee> identified by any <grantee> simply contained in <revoke state-
ment> and that <grantee> does not identify the owner of the SQL-schema that is specified
explicitly or implicitly in the <object name>.

c) PD identifies the action identified by the <action> simply contained in <privileges>.

d) PD indicates that the privilege is grantable.

6) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not contain WITH
HIERARCHY OPTION.

7) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify <grantor>.

8) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator> contained
in a <revoke statement> shall not identify a method.

610 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

13 SQL-client modules

13.1 <SQL-client module definition>

Function
Define an SQL-client module.

Format

<SQL-client module definition> ::=
<module name clause>
<language clause>
<module authorization clause>
[<module path specification>]
[<module transform group specification>]
[<temporary table declaration>]
<module contents>...

<module authorization clause> ::=
SCHEMA <schema name>

| AUTHORIZATION <module authorization identifier>
| SCHEMA <schema name> AUTHORIZATION <module authorization identifier>

<module authorization identifier> ::=
<authorization identifier>

<module path specification> ::=
<path specification>

<module transform group specification> ::=
<transform group specification>

<module contents> ::=
<declare cursor>

| <externally-invoked procedure>

Syntax Rules

1) The <language clause> shall not specify SQL.

2) If SCHEMA <schema name> is not specified, then a <schema name> equal to <module autho-
rization identifier> is implicit.

3) If the explicit or implicit <schema name> does not specify a <catalog name>, then an
implementation-defined <catalog name> is implicit.

4) The implicit or explicit <catalog name> is the implicit <catalog name> for all unqualified
<schema name>s in the <SQL-client module definition>.

SQL-client modules 611

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.1 <SQL-client module definition>

5) If <module path specification> is not specified, then a <module path specification> containing
an implementation-defined <schema name list> that contains the <schema name> contained in
<module authorization clause> is implicit.

6) The explicit or implicit <catalog name> of each <schema name> contained in the <schema name
list> of the <module path specification> shall be equivalent to the <catalog name> of the explicit
or implicit <schema name> contained in <module authorization clause>.

7) The <schema name list> of the explicit or implicit <module path specification> is used as the
SQL-path of the <SQL-client module definition>. The SQL-path is used to effectively qualify
unqualified <routine name>s that are immediately contained in <routine invocation>s that are
contained in the <SQL-client module definition>.

8) Case:

i) If <module transform group specification> is not specified, then a <module transform group
specification> containing a <multiple group specification> with a <group specification> GS
for each <host parameter declaration> contained in <host parameter declaration setup> of
each <externally-invoked procedure> contained in <SQL-client module definition> whose
<host parameter data type> is a user-defined type UDT with no <locator indication> is
implicit. The <group name> of GS is implementation-defined and its <user-defined type> is
UDT.

ii) If <module transform group specification> contains a <single group specification> with a
<group name> GN, then a <module transform group specification> containing a <multiple
group specification> that contains a <group specification> GS for each <host parameter
declaration> contained in <host parameter declaration setup> of each <externally-invoked
procedure> contained in <SQL-client module definition> whose <host parameter data type>
is a user-defined type UDT with no <locator indication> is implicit. The <group name> of
GS is GN and its <user-defined type> is UDT.

iii) If <module transform group specification> contains a <multiple group specification> MGS,
then a <module transform group specification> containing <multiple group specification>
that contains MGS extended with a <group specification> GS for each <host parameter
declaration> contained in <host parameter declaration setup> of each <externally-invoked
procedure> contained in <SQL-client module definition> whose <host parameter data type>
is a user-defined type UDT with no <locator indication> and the <user-defined type name>
of UDT is not contained in any <group specification> contained in MGS is implicit. The
<group name> of GS is implementation-defined and its <user-defined type> is UDT.

9) A <declare cursor> shall precede in the text of the <SQL-client module definition> any
<externally-invoked procedure> or <SQL-invoked routine> that references the <cursor name> of
the <declare cursor>.

10) For every <declare cursor> in an <SQL-client module definition>, the <SQL-client module defi-
nition> shall contain exactly one <open statement> that specifies the <cursor name> declared in
the <declare cursor>.
NOTE 271 – See the Syntax Rules of Subclause 14.1, ‘‘<declare cursor>’’.

11) Let EIP1 and EIP2 be two <externally-invoked procedure>s contained in an <SQL-client module
definition> that have the same number of <host parameter declarations> and immediately
contain a <fetch statement> referencing the same <cursor name>. Let n be the number of <host
parameter declarations>. Let P1i, 1 (one) � i � n, be the i-th <host parameter declaration>
of EIP1. Let DT1i be the <data type> contained in P1i. Let P2i be the i-th <host parameter
declaration> of EIP2. Let DT2i be the <data type> contained in P2i. For each i, 1 (one) � i � n,

612 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.1 <SQL-client module definition>

Case:

a) If DT1i and DT2i both identify a binary large object type, then either P1i and P2i shall
both be binary large object locator parameters or neither shall be binary large object locator
parameters.

b) If DT1i and DT2i both identify a character large object type, then either P1i and P2i shall
both be character large object locator parameters or neither shall be character large object
locator parameters.

c) If DT1i and DT2i both identify an array type, then either P1i and P2i shall both be array
locator parameters or neither shall be array locator parameters.

d) If DT1i and DT2i both identify a user-defined type, then either P1i and P2i shall both be
user-defined type locator parameters or neither shall be user-defined type locator parame-
ters.

Access Rules

None.

General Rules

1) If the SQL-agent that performs a call of an <externally-invoked procedure> in an <SQL-client
module definition> is not a program that conforms to the programming language standard
for the programming language specified by the <language clause> of that <SQL-client module
definition>, then the effect is implementation-dependent.

2) If the SQL-agent performs calls of <externally-invoked procedure>s from more than one Ada
task, then the results are implementation-dependent.

3) Upon invocation of an <externally-invoked procedure> EIP contained in an <SQL-client module
definition>, and prior to EIP’s execution, a new pair of authorization identifiers is appended to
the authorization stack.

Case:

a) If a <module authorization identifier> MAI is specified, then during the execution of EIP

Case:

i) if MAI is a <user identifier>, then the current user identifier is set to MAI and the
current role name is set to the null value.

ii) Otherwise, the current role name is set to MAI and the current user identifier is set to
the null value.

b) Otherwise, the current user identifier and the current role name used for privilege de-
termination during the execution of EIP are copied from the (previously) latest pair of
authorization identifiers.

4) Upon completion of an execution of an <externally-invoked procedure> contained in an <SQL-
client module definition>, the latest pair of authorization identifiers in the authorization stack
is removed.

SQL-client modules 613

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.1 <SQL-client module definition>

5) After the last time that an SQL-agent performs a call of an <externally-invoked procedure>:

a) A <rollback statement> or a <commit statement> is effectively executed. If an unrecoverable
error has occurred, or if the SQL-agent terminated unexpectedly, or if any constraint is not
satisfied, then a <rollback statement> is performed. Otherwise, the choice of which of these
SQL-statements to perform is implementation-dependent. If the implementation choice
is <commit statement>, then all holdable cursors are first closed. The determination of
whether an SQL-agent has terminated unexpectedly is implementation-dependent.

b) All SQL-sessions associated with the SQL-agent are terminated.

Conformance Rules

1) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming SQL
language shall not contain any <module path specification>.

2) Without Feature F531, ‘‘Temporary tables’’, an <SQL-client module definition> shall not contain
a <temporary table declaration>.

3) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not contain
<module transform group specification>.

614 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.2 <module name clause>

13.2 <module name clause>

Function
Name an SQL-client module.

Format

<module name clause> ::=
MODULE [<SQL-client module name>]
[<module character set specification>]

<module character set specification> ::=
NAMES ARE <character set specification>

Syntax Rules

1) If a <module name clause> does not specify an <SQL-client module name>, then the <SQL-client
module definition> is unnamed.

2) The <SQL-client module name> shall not be equivalent to the <SQL-client module name> of any
other <SQL-client module definition> in the same SQL-environment.
NOTE 272 – An SQL-environment may have multiple <SQL-client module definition>s that are un-
named.

3) If the <language clause> of the containing <SQL-client module specification> specifies ADA,
then an <SQL-client module name> shall be specified, and that <SQL-client module name>
shall be a valid Ada library unit name.

4) If a <module character set specification> is not specified, then a <module character set spec-
ification> that specifies an implementation-defined character set that contains at least every
character that is in <SQL language character> is implicit.

Access Rules

None.

General Rules

1) If <SQL-client module name> is specified, then, in the SQL-environment, the containing <SQL-
client module definition> has the name given by <SQL-client module name>.

Conformance Rules

1) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character sets’’,
<module character set specification> shall not be specified.

SQL-client modules 615

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.3 <externally-invoked procedure>

13.3 <externally-invoked procedure>

Function
Define an externally-invoked procedure.

Format

<externally-invoked procedure> ::=
PROCEDURE <procedure name> <host parameter declaration setup> <semicolon>
<SQL procedure statement> <semicolon>

<host parameter declaration setup> ::=
<host parameter declaration list>

| <host parameter declaration>...

<host parameter declaration list> ::=
<left paren> <host parameter declaration>

[{ <comma> <host parameter declaration> }...] <right paren>

<host parameter declaration> ::=
<host parameter name> <host parameter data type>

| <status parameter>

<host parameter data type> ::=
<data type> [<locator indication>]

<status parameter> ::=
SQLSTATE

Syntax Rules

1) The <procedure name> shall not be equivalent to the <procedure name> of any other
<externally-invoked procedure> in the containing <SQL-client module definition>.
NOTE 273 – The <procedure name> should be a standard-conforming procedure, function, or routine
name of the language specified by the subject <language clause>. Failure to observe this recommendation
will have implementation-dependent effects.

2) The <host parameter name> of each <host parameter declaration> in an <externally-invoked
procedure> shall not be equivalent to the <host parameter name> of any other <host parameter
declaration> in that <externally-invoked procedure>.

3) Any <host parameter name> contained in the <SQL procedure statement> of an <externally-
invoked procedure> shall be specified in a <host parameter declaration> in that <externally-
invoked procedure>.
NOTE 274 – <host parameter declaration>s in an <externally-invoked procedure> without enclosing
parentheses and without commas separating multiple <host parameter declaration>s is a deprecated fea-
ture that is supported for compatibility with earlier versions of ISO/IEC 9075. See Annex D, ‘‘Deprecated
features’’.

4) If <locator indication> is simply contained in <host parameter declaration>, then:

a) The declared type T identified by the <data type> immediately contained in <host parameter
data type> shall be either binary large object type, character large object type, array type,
or user-defined type.

616 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.3 <externally-invoked procedure>

b) If T is a binary large object type, then the host parameter identified by <host parameter
name> is called a binary large object locator parameter.

c) If T is a character large object type, then the host parameter identified by <host parameter
name> is called a character large object locator parameter.

d) If T is an array type, then the host parameter identified by <host parameter name> is called
an array locator parameter.

e) If T is a user-defined type, then the host parameter identified by <host parameter name> is
called a user-defined type locator parameter.

5) A call of an <externally-invoked procedure> shall supply n arguments, where n is the number of
<host parameter declaration>s in the <externally-invoked procedure>.

6) An <externally-invoked procedure> shall contain one <status parameter> referred to as an
SQLSTATE host parameter. The SQLSTATE host parameter is referred to as a status parame-
ter.

7) The Syntax Rules of Subclause 9.6, ‘‘Host parameter mode determination’’, with <host param-
eter declaration> as PD and <SQL procedure statement> as SPS for each <host parameter
declaration>, are applied to determine whether the corresponding host parameter is an input
host parameter, an output host parameter, or both an input host parameter and an output host
parameter.

8) The Syntax Rules of Subclause 13.4, ‘‘Calls to an <externally-invoked procedure>’’, shall be
satisfied.

Access Rules

None.

General Rules

1) An <externally-invoked procedure> defines an externally-invoked procedure that may be called
by an SQL-agent.

2) If the <SQL-client module definition> that contains the <externally-invoked procedure> is
associated with an SQL-agent that is associated with another <SQL-client module definition>
that contains an <externally-invoked procedure> with equivalent <procedure name>s, then the
effect is implementation-defined.

3) The language identified by the <language name> contained in the <language clause> of the
<SQL-client module definition> that contains an <externally-invoked procedure> is the caller
language of the <externally-invoked procedure>.

4) If the SQL-agent that performs a call of a <externally-invoked procedure> is not a program
that conforms to the programming language standard specified by the caller language of the
<externally-invoked procedure>, then the effect is implementation-dependent.

5) If the caller language of an <externally-invoked procedure> is ADA and the SQL-agent performs
calls of <externally-invoked procedure>s from more than one Ada task, then the results are
implementation-dependent.

SQL-client modules 617

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.3 <externally-invoked procedure>

6) If the <SQL-client module definition> that contains the <externally-invoked procedure> has
an explicit <module authorization identifier> MAI that is not equivalent to the SQL-session
<authorization identifier> SAI, then:

a) Whether or not SAI can invoke <externally-invoked procedure>s in a <SQL-client module
definition> with explicit <module authorization identifier> MAI is implementation-defined,
as are any restrictions pertaining to such invocation.

b) If SAI is restricted from invoking an <externally-invoked procedure> in a <SQL-client
module definition> with explicit <module authorization identifier> MAI, then an exception
condition is raised: invalid authorization specification.

7) If the value of any input host parameter provided by the SQL-agent falls outside the set of
allowed values of the declared type of the host parameter, or if the value of any output host pa-
rameter resulting from the execution of the <externally-invoked procedure> falls outside the set
of values supported by the SQL-agent for that host parameter, then the effect is implementation-
defined. If the implementation-defined effect is the raising of an exception condition, then an
exception condition is raised: data exception — invalid parameter value.

8) Let S be the <SQL procedure statement> of the <externally-invoked procedure>.

9) The General Rules of Subclause 13.5, ‘‘<SQL procedure statement>’’, are evaluated with S as
the executing statement.

Conformance Rules

None.

618 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

13.4 Calls to an <externally-invoked procedure>

Function
Define the call to an <externally-invoked procedure> by an SQL-agent.

Syntax Rules

1) Let n be the number of <host parameter declaration>s in the <externally-invoked procedure>
EP being called. Let PDi, 1 (one) � i � n, be the i-th <host parameter declaration>. Let PDTi
be the <data type> contained in PDi.

2) If the caller language of the <externally-invoked procedure> is ADA, then:

a) The SQL-implementation shall generate the source code of an Ada library unit package
ALUP the name of which shall be

Case:

i) If the <SQL-client module name> SCMN of the <SQL-client module definition> <SQL-
client module name> is a valid Ada identifier, then equivalent to SCMN.

ii) Otherwise, implementation-defined.

b) For each <externally-invoked procedure> of the <SQL-client module definition>, there shall
appear within ALUP a subprogram declaration declaring a procedure.

i) If <procedure name> is a valid Ada identifier, then the name of that procedure PN shall
be equivalent to <procedure name>; otherwise, PN shall be implementation-defined.

ii) The parameters in each Ada procedure declaration APD shall appear in the same order
as the <parameter declaration>s of the corresponding <externally-invoked procedure>
EIP. If the names of the parameters declared in the <parameter declaration>s of EIP are
valid Ada identifiers, then the parameters in APD shall have parameter names that are
equivalent to the names of the corresponding parameters declared in the <parameter
declaration>s contained in EIP; otherwise, the parameters in APD shall parameter
names that are implementation-defined

iii) The parameter modes and subtype marks used in the parameter specifications are
constrained by the remaining paragraphs of this Subclause.

c) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 18, ‘‘Data type correspondences for Ada’’, for which the corresponding row
in the ‘‘Ada data type’’ column is ’None’.

d) The types of parameter specifications within the Ada subprogram declarations shall be
taken from the library unit package Interfaces.SQL and its children Numerics and Varying

and optional children Adacsn and Adacsn.Varying.

e) The declaration of the library unit package Interfaces.SQL shall conform to the following
template:

package Interfaces.SQL is
---The declarations of CHAR and NCHAR may be subtype declarations

type CHAR is (See the Syntax Rules)
type NCHAR is (See the Syntax Rules)
type BIT is array (POSITIVE range <>) of BOOLEAN;

SQL-client modules 619

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

type SMALLINT is range bs .. ts;
type INT is range bi .. ti;
type REAL is digits dr;
type DOUBLE_PRECISION is digits dd;
subtype INDICATOR_TYPE is t;
type SQLSTATE_TYPE is new CHAR (1 .. 5);
package SQLSTATE_CODES is

AMBIGUOUS_CURSOR_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="3C000";

CARDINALITY_VIOLATION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="21000";

CLI_SPECIFIC_CONDITION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="HY000";

CONNECTION_EXCEPTION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="08000";

CONNECTION_EXCEPTION_CONNECTION_DOES_NOT_EXIST:
constant SQLSTATE_TYPE :="08003";

CONNECTION_EXCEPTION_CONNECTION_FAILURE:
constant SQLSTATE_TYPE :="08006";

CONNECTION_EXCEPTION_CONNECTION_NAME_IN_USE:
constant SQLSTATE_TYPE :="08002";

CONNECTION_EXCEPTION_SQLCLIENT_UNABLE_TO_ESTABLISH_SQLCONNECTION:
constant SQLSTATE_TYPE :="08001";

CONNECTION_EXCEPTION_SQLSERVER_REJECTED_ESTABLISHMENT_OF_SQLCONNECTION:

constant SQLSTATE_TYPE :="08004";
CONNECTION_EXCEPTION_TRANSACTION_RESOLUTION_UNKNOWN:

constant SQLSTATE_TYPE :="08007";
DATA_EXCEPTION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="22000";
DATA_EXCEPTION_ARRAY_ELEMENT_ERROR:

constant SQLSTATE_TYPE :="2202E";
DATA_EXCEPTION_CHARACTER_NOT_IN_REPERTOIRE:

constant SQLSTATE_TYPE :="22021";
DATA_EXCEPTION_DATETIME_FIELD_OVERFLOW:

constant SQLSTATE_TYPE :="22008";
DATA_EXCEPTION_DIVISION_BY_ZERO:

constant SQLSTATE_TYPE :="22012";
DATA_EXCEPTION_ERROR_IN_ASSIGNMENT:

constant SQLSTATE_TYPE :="22005";
DATA_EXCEPTION_ESCAPE_CHARACTER_CONFLICT:

constant SQLSTATE_TYPE :="2200B";
DATA_EXCEPTION_INDICATOR_OVERFLOW:

constant SQLSTATE_TYPE :="22022";
DATA_EXCEPTION_INTERVAL_FIELD_OVERFLOW:

constant SQLSTATE_TYPE :="22015";
DATA_EXCEPTION_INVALID_CHARACTER_VALUE_FOR_CAST:

constant SQLSTATE_TYPE :="22018";
DATA_EXCEPTION_INVALID_DATETIME_FORMAT:

constant SQLSTATE_TYPE :="22007";
DATA_EXCEPTION_INVALID_ESCAPE_CHARACTER:

constant SQLSTATE_TYPE :="22019";
DATA_EXCEPTION_INVALID_ESCAPE_OCTET:

constant SQLSTATE_TYPE :="2200D";
DATA_EXCEPTION_INVALID_ESCAPE_SEQUENCE:

constant SQLSTATE_TYPE :="22025";
DATA_EXCEPTION_INVALID_INDICATOR_PARAMETER_VALUE:

constant SQLSTATE_TYPE :="22010";
DATA_EXCEPTION_INVALID_LIMIT_VALUE:

constant SQLSTATE_TYPE :="22020";
DATA_EXCEPTION_INVALID_PARAMETER_VALUE:

constant SQLSTATE_TYPE :="22023";
DATA_EXCEPTION_INVALID_REGULAR_EXPRESSION:

constant SQLSTATE_TYPE :="2201B";

620 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

DATA_EXCEPTION_INVALID_TIME_ZONE_DISPLACEMENT_VALUE:
constant SQLSTATE_TYPE :="22009";

DATA_EXCEPTION_INVALID_USE_OF_ESCAPE_CHARACTER:
constant SQLSTATE_TYPE :="2200C";

DATA_EXCEPTION_NULL_VALUE_NO_INDICATOR_PARAMETER:
constant SQLSTATE_TYPE :="2200G";

DATA_EXCEPTION_MOST_SPECIFIC_TYPE_MISMATCH:
constant SQLSTATE_TYPE :="22002";

DATA_EXCEPTION_NULL_VALUE_NOT_ALLOWED:
constant SQLSTATE_TYPE :="22004";

DATA_EXCEPTION_NUMERIC_VALUE_OUT_OF_RANGE:
constant SQLSTATE_TYPE :="22003";

DATA_EXCEPTION_STRING_DATA_LENGTH_MISMATCH:
constant SQLSTATE_TYPE :="22026";

DATA_EXCEPTION_STRING_DATA_RIGHT_TRUNCATION:
constant SQLSTATE_TYPE :="22001";

DATA_EXCEPTION_SUBSTRING_ERROR:
constant SQLSTATE_TYPE :="22011";

DATA_EXCEPTION_TRIM_ERROR:
constant SQLSTATE_TYPE :="22027";

DATA_EXCEPTION_UNTERMINATED_C_STRING:
constant SQLSTATE_TYPE :="22024";

DATA_EXCEPTION_ZERO_LENGTH_CHARACTER_STRING:
constant SQLSTATE_TYPE :="2200F";

DEPENDENT_PRIVILEGE_DESCRIPTORS_STILL_EXIST_NO_SUBCLASS:
constant SQLSTATE_TYPE :="2B000";

EXTERNAL_ROUTINE_EXCEPTION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="38000";

EXTERNAL_ROUTINE_EXCEPTION_CONTAINING_SQL_NOT_PERMITTED:
constant SQLSTATE_TYPE :="38001";

EXTERNAL_ROUTINE_EXCEPTION_MODIFYING_SQL_DATA_NOT_PERMITTED:
constant SQLSTATE_TYPE :="38002";

EXTERNAL_ROUTINE_EXCEPTION_PROHIBITED_SQL_STATEMENT_ATTEMPTED:
constant SQLSTATE_TYPE :="38003";

EXTERNAL_ROUTINE_EXCEPTION_READING_SQL_DATA_NOT_PERMITTED:
constant SQLSTATE_TYPE :="38004";

EXTERNAL_ROUTINE_INVOCATION_EXCEPTION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="39000";

EXTERNAL_ROUTINE_INVOCATION_EXCEPTION_INVALID_SQLSTATE_RETURNED:
constant SQLSTATE_TYPE :="39001";

EXTERNAL_ROUTINE_INVOCATION_EXCEPTION_NULL_VALUE_NOT_ALLOWED:
constant SQLSTATE_TYPE :="39004";

FEATURE_NOT_SUPPORTED_NO_SUBCLASS:
constant SQLSTATE_TYPE :="0A000";

FEATURE_NOT_SUPPORTED_MULTIPLE_ENVIRONMENT_TRANSACTIONS:
constant SQLSTATE_TYPE :="0A001";

INTEGRITY_CONSTRAINT_VIOLATION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="23000";

INTEGRITY_CONSTRAINT_VIOLATION_RESTRICT_VIOLATION:
constant SQLSTATE_TYPE :="23001";

INVALID_AUTHORIZATION_SPECIFICATION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="28000";

INVALID_CATALOG_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="3D000";

INVALID_CONDITION_NUMBER_NO_SUBCLASS:
constant SQLSTATE_TYPE :="35000";

INVALID_CONNECTION_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="2E000";

INVALID_CURSOR_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="34000";

INVALID_CURSOR_STATE_NO_SUBCLASS:
constant SQLSTATE_TYPE :="24000";

INVALID_GRANTOR_STATE_NO_SUBCLASS:
constant SQLSTATE_TYPE :="0L000";

SQL-client modules 621

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

INVALID_ROLE_SPECIFICATION:
constant SQLSTATE_TYPE :="0P000";

INVALID_SCHEMA_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="3F000";

INVALID_SQL_DESCRIPTOR_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="33000";

INVALID_SQL_STATEMENT:
constant SQLSTATE_TYPE :="30000";

INVALID_SQL_STATEMENT_NAME_NO_SUBCLASS:
constant SQLSTATE_TYPE :="26000";

INVALID_TARGET_SPECIFICATION_VALUE:
constant SQLSTATE_TYPE :="31000";

INVALID_TRANSACTION_STATE_NO_SUBCLASS:
constant SQLSTATE_TYPE :="25000";

INVALID_TRANSACTION_STATE_ACTIVE_SQL_TRANSACTION:
constant SQLSTATE_TYPE :="25001";

INVALID_TRANSACTION_STATE_BRANCH_TRANSACTION_ALREADY_ACTIVE:
constant SQLSTATE_TYPE :="25002";

INVALID_TRANSACTION_STATE_HELD_CURSOR_REQUIRES_SAME_ISOLATION_LEVEL:
constant SQLSTATE_TYPE :="25008";

INVALID_TRANSACTION_STATE_INAPPROPRIATE_ACCESS_MODE_FOR_BRANCH_TRANSACTION:

constant SQLSTATE_TYPE :="25003";
INVALID_TRANSACTION_STATE_INAPPROPRIATE_ISOLATION_LEVEL_FOR_BRANCH_TRANSACTION:

constant SQLSTATE_TYPE :="25004";
INVALID_TRANSACTION_STATE_NO_ACTIVE_SQL_TRANSACTION_FOR_BRANCH_TRANSACTION:

constant SQLSTATE_TYPE :="25005";
INVALID_TRANSACTION_STATE_READ_ONLY_SQL_TRANSACTION:

constant SQLSTATE_TYPE :="25006";
INVALID_TRANSACTION_STATE_SCHEMA_AND_DATA_STATEMENT_MIXING_NOT_SUPPORTED:

constant SQLSTATE_TYPE :="25007";
INVALID_TRANSACTION_INITIATION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="0B000";
INVALID_TRANSACTION_TERMINATION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="2D000";
LOCATOR_EXCEPTION_INVALID_SPECIFICATION:

constant SQLSTATE_TYPE :="0F001";
LOCATOR_EXCEPTION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="0F000";
NO_DATA_NO_SUBCLASS:

constant SQLSTATE_TYPE :="02000";
NO_DATA_NO_ADDITIONAL_DYNAMIC_RESULT_SETS_RETURNED:

constant SQLSTATE_TYPE :="02001";
REMOTE_DATABASE_ACCESS_NO_SUBCLASS:

constant SQLSTATE_TYPE :="HZ000";
SAVEPOINT_EXCEPTION_INVALID_SPECIFICATION:

constant SQLSTATE_TYPE :="3B001";
SAVEPOINT_EXCEPTION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="3B000";
SAVEPOINT_EXCEPTION_TOO_MANY:

constant SQLSTATE_TYPE :="3B002";
SQLMM_PART01_NO_SUBCLASS::

constant SQLSTATE_TYPE :="H1000";
SQLMM_PART02_NO_SUBCLASS::

constant SQLSTATE_TYPE :="H2000";
SQLMM_PART03_NO_SUBCLASS::

constant SQLSTATE_TYPE :="H3000";
SQLMM_PART04_NO_SUBCLASS::

constant SQLSTATE_TYPE :="H4000";
SQLMM_PART05_NO_SUBCLASS::

constant SQLSTATE_TYPE :="H5000";

622 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

SQLMM_PART06_NO_SUBCLASS::
constant SQLSTATE_TYPE :="H6000";

SQLMM_PART07_NO_SUBCLASS::
constant SQLSTATE_TYPE :="H7000";

SQLMM_PART08_NO_SUBCLASS::
constant SQLSTATE_TYPE :="H8000";

SQLMM_PART09_NO_SUBCLASS::
constant SQLSTATE_TYPE :="H9000";

SQLMM_PART10_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HA000";

SQLMM_PART11_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HB000";

SQLMM_PART12_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HC000";

SQLMM_PART13_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HD000";

SQLMM_PART14_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HE000";

SQLMM_PART15_NO_SUBCLASS::
constant SQLSTATE_TYPE :="HF000";

SQL_ROUTINE_EXCEPTION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="2F000";

SQL_ROUTINE_EXCEPTION_FUNCTION_EXECUTED_NO_RETURN_STATEMENT:
constant SQLSTATE_TYPE :="2F005";

SQL_ROUTINE_EXCEPTION_MODIFYING_SQL_DATA_NOT_PERMITTED:
constant SQLSTATE_TYPE :="2F002";

SQL_ROUTINE_EXCEPTION_PROHIBITED_SQL_STATEMENT_ATTEMPTED:
constant SQLSTATE_TYPE :="2F003";

SQL_ROUTINE_EXCEPTION_READING_SQL_DATA_NOT_PERMITTED:
constant SQLSTATE_TYPE :="2F004";

SQL_STATEMENT_NOT_YET_COMPLETE_NO_SUBCLASS:
constant SQLSTATE_TYPE :="03000";

SUCCESSFUL_COMPLETION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="00000";

SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="42000";

SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION_IN_DIRECT_STATEMENT_NO_SUBCLASS:

constant SQLSTATE_TYPE :="2A000";
SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION_IN_DYNAMIC_STATEMENT_NO_SUBCLASS:

constant SQLSTATE_TYPE :="37000";
TRANSACTION_ROLLBACK_NO_SUBCLASS:

constant SQLSTATE_TYPE :="40000";
TRANSACTION_ROLLBACK_INTEGRITY_CONSTRAINT_VIOLATION:

constant SQLSTATE_TYPE :="40002";
TRANSACTION_ROLLBACK_SERIALIZATION_FAILURE:

constant SQLSTATE_TYPE :="40001";
TRANSACTION_ROLLBACK_STATEMENT_COMPLETION_UNKNOWN:

constant SQLSTATE_TYPE :="40003";
TRIGGERED_DATA_CHANGE_VIOLATION_NO_SUBCLASS:

constant SQLSTATE_TYPE :="27000";
WARNING_NO_SUBCLASS:

constant SQLSTATE_TYPE :="01000";
WARNING_CURSOR_OPERATION_CONFLICT:

constant SQLSTATE_TYPE :="01001";
WARNING_DISCONNECT_ERROR:

constant SQLSTATE_TYPE :="01002";
WARNING_DYNAMIC_RESULT_SETS_RETURNED:

constant SQLSTATE_TYPE :="0100C";
WARNING_IMPLICIT_ZERO_BIT_PADDING:

constant SQLSTATE_TYPE :="01008";
WARNING_NULL_VALUE_ELIMINATED_IN_SET_FUNCTION:

constant SQLSTATE_TYPE :="01003";

SQL-client modules 623

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

WARNING_PRIVILEGE_NOT_GRANTED:
constant SQLSTATE_TYPE :="01007";

WARNING_PRIVILEGE_NOT_REVOKED:
constant SQLSTATE_TYPE :="01006";

WARNING_QUERY_EXPRESSION_TOO_LONG_FOR_INFORMATION_SCHEMA:
constant SQLSTATE_TYPE :="0100A";

WARNING_SEARCH_CONDITION_TOO_LONG_FOR_INFORMATION_SCHEMA:
constant SQLSTATE_TYPE :="01009";

WARNING_STATEMENT_TOO_LONG_FOR_INFORMATION_SCHEMA:
constant SQLSTATE_TYPE :="01005";

WARNING_STRING_DATA_RIGHT_TRUNCATION_WARNING:
constant SQLSTATE_TYPE :="01004";

WITH_CHECK_OPTION_VIOLATION_NO_SUBCLASS:
constant SQLSTATE_TYPE :="44000";

end SQLSTATE_CODES;
end Interfaces.SQL;

where bs, ts, bi, ti, dr, dd, bsc, and tsc are implementation-defined integer values. t is INT
or SMALLINT, corresponding with an implementation-defined <exact numeric type> of
indicator parameters.

f) The library unit package Interfaces.SQL.Numerics shall contain a sequence of decimal
fixed point type declarations of the following form.

type Scale_s is delta 10.0 ** - s digits max_p;

where s is an integer ranging from 0 (zero) to an implementation-defined maximum value
and max_p is an implementation-defined integer maximum precision.

g) The library unit package Interfaces.SQL.Varying shall contain type or subtype declara-
tions with the defining identifiers CHAR, NCHAR, and BIT.

h) Let SQLcsn be a <character set name> and let Adacsn be the result of replacing <period>’s
in SQLcsn with <underscore>s. If Adacsn is a valid Ada identifier, then the library unit
packages Interfaces.SQL.Adacsn and
Interfaces.SQL.Adacsn.Varying shall contain a type or subtype declaration with defining
identifier CHAR. If Adacsn is not a valid Ada identifier, then the names of these packages
shall be implementation-defined.

i) Interfaces.SQL and its children may contain context clauses and representation items as
needed. These packages may also contain declarations of Ada character types as needed to
support the declarations of the types CHAR and NCHAR.
NOTE 275 – If the implementation-defined character set specification used by default with a
CHARACTER data type is Latin1, then the declaration

subtype CHAR is String;

within Interfaces.SQL and the declaration

subtype CHAR is Ada.Strings.Unbounded.Unbounded_String;

624 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

within Interfaces.SQL.Varying (assuming the appropriate context clause) conform to the
requirements of this paragraph of this Subclause. If the character set underlying NATIONAL
CHARACTER is supported by an Ada package specification Host_Char_Pkgthat declares a type
String_Type that stores strings over the given character set, and furthermore the package spec-
ification Host_Char_Pkg_Varying (not necessary distinct from Host_Char_Pkg) declares a type
String_Type_Varying that reproduces the functionality of Ada.Strings.Unbounded.Unbounded_String
over the national character type (rather than Latin1), then the declaration

subtype NCHAR is Host_Char_Pkg.String_Type;

within Interfaces.SQL and the declaration

subtype NCHAR is Host_Char_Pkg_Varying.String_Type_Varying;

within Interfaces.SQL.Varying conform to the requirements of this paragraph. Similar
comments apply to other character sets and the packages Interfaces.SQL.Adacsn and
Interfaces.SQL.Adacsn.Varying.

j) The library unit package Interfaces.SQL shall contain declarations of the following form:

package CHARACTER_SET renames Interfaces.SQL.Adacsn;
subtype CHARACTER_TYPE is CHARACTER_SET.cst;

where cst is a data type capable of storing a single character from the default character set.
The package Interfaces.SQL.Adacsn shall contain the necessary declaration for cst.
NOTE 276 – If the default character set is Latin1, then a declaration of the form:

package CHARACTER_SET is
subtype cst is Character;

end CHARACTER_SET;

may be substituted for the renaming declaration of CHARACTER_SET.

k) The base type of the SQLSTATE parameter shall be Interfaces.SQL.SQLSTATE_TYPE.

l) The Ada parameter mode of the SQLSTATE parameter is out.

m) If the i-th <parameter declaration> specifies a <data type> that is:

i) CHARACTER(L) for some L, then the subtype mark in the i-th parameter declaration
shall specify Interfaces.SQL.CHAR.

ii) CHARACTER VARYING(L) for some L, then the subtype mark in the i-th parameter
declaration shall specify Interfaces.SQL.VARYING.CHAR.

iii) NATIONAL CHARACTER(L) for some L, then the subtype mark in the i-th parameter
declaration shall specify Interfaces.SQL.NCHAR.

iv) NATIONAL CHARACTER VARYING(L) for some L, then the subtype mark in the i-th
parameter declaration shall specify Interfaces.SQL.VARYING.NCHAR.

v) CHARACTER(L) CHARACTER SET csn for some L and some character set name csn,
then the subtype mark in the i-th parameter declaration shall specify
Interfaces.SQL.Adacsn.CHAR.

SQL-client modules 625

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

vi) CHARACTER VARYING(L) CHARACTER SET csn for some L and some character
set name csn, then the subtype mark in the i-th parameter declaration shall specify
Interfaces.SQL.Adacsn.VARYING.CHAR.

If P is an actual parameter associated with the i-th parameter in a call to the encompassing
procedure, then P shall be sufficient to hold a character string of length L in the appropriate
character set.
NOTE 277 – If a character set uses fixed length encodings then the definition of the subtype CHAR
for fixed length strings may be an array type whose element type is an Ada character type. If that
character type is defined so as to use the number of bits per character used by the SQL encoding,
then the restriction on P is precisely P’LENGTH = L. For variable length strings using fixed length
encodings, if the definition of CHAR in the appropriate VARYING package is based on the type
Ada.Strings.Unbounded.Unbounded_String, there is no restriction on P. Otherwise, a precise
statement of the restriction on P is implementation-defined.

n) If the i-th <parameter declaration> specifies a <data type> that is:

i) BIT(L) for some length L, then the subtype mark in the i-th parameter declaration
shall specify Interfaces.SQL.BIT. If P is an actual parameter associated with the i-th
parameter in a call to the encompassing procedure, then P’LENGTH shall be equal to L.

ii) BIT VARYING(L) for some length L, then the subtype mark in the i-th parameter
declaration shall specify Interfaces.SQL.Varying.BIT. If P is an actual parameter
associated with the i-th parameter in a call to the encompassing procedure, then P shall
be sufficient to hold a bit string of length L.

o) If the i-th <parameter declaration> specifies a <data type> that is NUMERIC(P,S) for
some <precision> P and <scale> S, then the Ada library unit package generated for the
encompassing module shall contain a declaration equivalent to:

subtype Numeric_p_s is
Interfaces.SQL.Numerics.Scale_s digits p;

The subtype mark in the i-th parameter specification shall specify this subtype.

p) If the i-th <parameter declaration> specifies a <data type> that is SMALLINT, then the
subtype mark in the i-th parameter declaration shall specify Interfaces.SQL.SMALLINT.

q) If the i-th <parameter declaration> specifies a <data type> that is INTEGER, then the
subtype mark in the i-th parameter declaration shall specify Interfaces.SQL.INT.

r) If the i-th <parameter declaration> specifies a <data type> that is REAL, then the subtype
mark in the i-th parameter declaration shall specify Interfaces.SQL.REAL.

s) If the i-th <parameter declaration> specifies a <data type> that is DOUBLE_PRECISION,
then the subtype mark in the i-th parameter declaration shall specify
Interfaces.SQL.DOUBLE_PRECISION.

t) For every parameter,

Case:

i) If the parameter is an input parameter but not an output parameter, then the Ada
parameter mode is in.

626 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

ii) If the parameter is an output parameter but not an input parameter, then the Ada
parameter mode is out.

iii) If the parameter is both an input parameter and an output parameter, then the Ada
parameter mode is in out.

iv) Otherwise, the Ada parameter mode is in, out, or in out.

u) The following Ada library unit renaming declaration exists:

with Interfaces.SQL;
package SQL_Standard renames Interfaces.SQL.

3) If the caller language of the <externally-invoked procedure> is C, then:

a) The declared type of an SQLSTATE host parameter shall be C char with length 6.

b) For each i, 1 (one) < i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 19, ‘‘Data type correspondences for C’’, for which the corresponding row in
the ‘‘C data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘C data type’’ column of Table 19, ‘‘Data type correspondences for C’’, for which the
corresponding row in the ‘‘SQL data type’’ column is PDTi.

4) If the caller language of the <externally-invoked procedure> is COBOL, then:

a) The declared type of an SQLSTATE host parameter shall be COBOL PICTURE X(5).

b) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 20, ‘‘Data type correspondences for COBOL’’, for which the corresponding
row in the ‘‘COBOL data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘COBOL data type’’ column of Table 20, ‘‘Data type correspondences for COBOL’’, for
which the corresponding row in the ‘‘SQL data type’’ column is PDTi.

5) If the caller language of the <externally-invoked procedure> is FORTRAN, then:

a) The declared type of an SQLSTATE host parameter shall be Fortran CHARACTER with
length 5.

b) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 21, ‘‘Data type correspondences for Fortran’’, for which the corresponding
row in the ‘‘Fortran data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘Fortran data type’’ column of Table 21, ‘‘Data type correspondences for Fortran’’, for
which the corresponding row in the ‘‘SQL data type’’ column is PDTi.

6) If the caller language of the <externally-invoked procedure> is MUMPS, then:

a) The declared type of an SQLSTATE host parameter shall be MUMPS character with maxi-
mum length greater than or equal to 5.

SQL-client modules 627

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

b) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 22, ‘‘Data type correspondences for MUMPS’’, for which the corresponding
row in the ‘‘MUMPS data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘MUMPS data type’’ column of Table 22, ‘‘Data type correspondences for MUMPS’’,
for which the corresponding row in the ‘‘SQL data type’’ column is PDTi.

7) If the caller language of the <externally-invoked procedure> is PASCAL, then:

a) The declared type of an SQLSTATE host parameter shall be Pascal PACKED ARRAY[1..5]
OF CHAR.

b) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 23, ‘‘Data type correspondences for Pascal’’, for which the corresponding row
in the ‘‘Pascal data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘Pascal data type’’ column of Table 23, ‘‘Data type correspondences for Pascal’’, for
which the corresponding row in the ‘‘SQL data type’’ column is PDTi.

8) If the caller language of the <externally-invoked procedure> is PLI, then:

a) The declared type of an SQLSTATE host parameter shall be PL/I CHARACTER(5).

b) For each i, 1 (one) � i � n, PDTi shall not identify a data type listed in the ‘‘SQL data type’’
column of Table 24, ‘‘Data type correspondences for PL/I’’, for which the corresponding row
in the ‘‘PL/I data type’’ column is ’None’.

c) For each i, 1 (one) < i � n, the type of the i-th host parameter shall be the data type listed
in the ‘‘PL/I data type’’ column of Table 24, ‘‘Data type correspondences for PL/I’’, for which
the corresponding row in the ‘‘SQL data type’’ column is PDTi.

Access Rules

None.

General Rules

1) Let EP, PD, PN, DT, and PI be a PROC, a DECL, a NAME, a TYPE, and an ARG specified in an
application of the General Rules of this Subclause. Let P be the host parameter corresponding
to PD.

2) If the General Rules of this Subclause are being applied for the evaluation of input parameters,
and P is either an input host parameter or both an input host parameter and an output host
parameter, then

Case:

a) If DT identifies a BIT(L) data type, and the caller language of EP is either C, COBOL,
FORTRAN, or PASCAL, then a reference to PN is implicitly treated as:

SUBSTRING (CAST (PI AS BIT VARYING(ML)) FROM 1 FOR L)

where ML is the implementation-defined maximum length of a BIT VARYING data type.

628 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

b) If DT identifies a CHARACTER(L) or CHARACTER VARYING(L) data type and the caller
language of EP is C, then a reference to PN is implicitly treated as an SQL character type
value in the specified character set in which the octets of PI are the corresponding octets of
that value.

When such a reference is evaluated,

Case:

i) If DT identifies a CHARACTER(L) data type and some C character preceding the least
significant C character of the value PI contains the implementation-defined null charac-
ter that terminates a C character string, then the remaining characters of the value are
set to <space>s.

ii) If DT identifies a CHARACTER VARYING(L), then the length in characters of the value
is set to the number of characters of PIi that precede the implementation-defined null
character that terminates a C character string.

iii) If the least significant C character of the value PI does not contain the implementation-
defined null character that terminates a C character string, then an exception condition
is raised: data exception — unterminated C string; otherwise, that least significant C
character does not correspond to any character in PIi and is ignored.

c) If DT identifies a CHARACTER(L) data type and the caller language of EP is either COBOL,
FORTRAN, or PASCAL, or DT identifies a CHARACTER VARYING(L) data type and
the caller language of EP is MUMPS, or DT identifies a CHARACTER(L) data type or
CHARACTER VARYING(L) data type and the caller language of EP is PLI, then a reference
to PN is implicitly treated as an SQL character type value in the specified character set in
which the octets of PI are the corresponding octets of that value.
NOTE 278 – In the preceding 2 Rules, the phrase ‘‘implementation-defined null character that
terminates a C character string’’ implies one or more octets all of whose bits are zero and whose
number is equal to the number of octets in the largest character of the character set of DT.

d) If DT identifies INT, DEC, or REAL and the caller language of EP is MUMPS, then a
reference to PN is implicitly treated as:

CAST (PI AS DT)

e) If DT identifies a BOOLEAN type, then

Case:

i) If the caller language of EP is C, then if PI is 0 (zero), then a reference to PN has the
value false ; otherwise, a reference to PN has the value true .

ii) If the caller language of EP is COBOL, then if PI is ’F’, then a reference to PN has the
value false ; otherwise, a reference to PN has the value true .

iii) If the caller language of EP is FORTRAN, then if PI is .FALSE., then a reference to PN
has the value false ; otherwise, a reference to PN has the value true .

iv) If the caller language of EP is PLI, then if PI is ’0’B, then a reference to PN has the
value false ; otherwise, a reference to PN has the value true .

NOTE 279 – Pascal has a Boolean-type whose values are true and false .

SQL-client modules 629

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

f) If P is a binary large object locator parameter, a character large object locator parameter, an
array locator parameter, or a user-defined type locator parameter, then a reference to PN in
a <general value specification> has the corresponding large object value, the character large
object value, the array value, or the user-defined type value, respectively, corresponding to
PI.

g) If DT identifies a CHARACTER LARGE OBJECT or BINARY LARGE OBJECT type, then

Case:

i) If the caller language of EP is C, then a reference to PN is implicitly treated as:

SUBSTRING (PN.PN_data FROM 1 FOR PN.PN_length)

ii) If the caller language of EP is COBOL, then a reference to PN is implicitly treated as:

SUBSTRING (PN.PN-DATA FROM 1 FOR PN.PN-LENGTH)

iii) If the caller language of EP is FORTRAN, then a reference to PN is implicitly treated
as:

SUBSTRING (PN_DATA FROM 1 FOR PN_LENGTH)

iv) If the caller language of EP is PLI, then a reference to PN is implicitly treated as:

SUBSTRING (PN.PN_data FROM 1 FOR PN.PN_length)

h) Otherwise, a reference to PN in a <general value specification> has the value PI.

3) If the General Rules of this Subclause are being applied for the evaluation of output parameters,
and P is either an output host parameter or both an input host parameter and an output host
parameter, then

Case:

a) If DT identifies a BIT(L) data type, and the caller language of EP is either C, COBOL,
FORTRAN, or PASCAL, then:

i) Let BLI be the length in bits of PI.

ii) Case:

1) If the caller language of EP is C, then let BL be the implementation-defined number
of bits in a C character.

2) If the caller language of EP is COBOL, then let BL be the implementation-defined
number of bits in a COBOL character.

3) If the caller language of EP is FORTRAN, then let BL be the implementation-defined
number of bits in a Fortran character.

4) If the caller language of EP is PASCAL, then let BL be the implementation-defined
number of bits in a Pascal character.

630 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.4 Calls to an <externally-invoked procedure>

iii) Let OL be the smallest integer not less than the quotient of BLI=BL.

iv) A reference to PN that assigns some value SV to PN implicitly assigns the value

CAST (SV AS CHARACTER(OL))

to PI.

b) If DT identifies a CHARACTER(L) or CHARACTER VARYING(L) data types and the caller
language of EP is C, then let CL be k greater than the maximum possible length in octets
of PN, where k is the size in octets of the largest character in the character set of DT. A
reference to PN that assigns some value SV to PN implicitly assigns a value that is an SQL
CHARACTER(CL) data type in which octets of the value are the corresponding octets of SVi,
padded on the right with <space>s as necessary to reach the length CL, concatenated with a
single implementation-defined null character that terminates a C character string.

c) If DT identifies a CHARACTER(L) data type and the caller language of EP is either COBOL,
FORTRAN, or PASCAL, then let CL be the maximum possible length in octets of PN. A
reference to PN that assigns some value SV to PN implicitly assigns a value that is an SQL
CHARACTER(CL) data type in which octets of the value are the corresponding octets of SV,
padded on the right with <space>s as necessary to reach the length CL.

d) If DT identifies a CHARACTER VARYING(L) data type and the caller language of EP is
MUMPS, then a reference to PN that assigns some value SV to PN implicitly assigns a
value that is an SQL CHARACTER VARYING(ML) data type in which octets of the value
are the corresponding octets of SV, padded on the right with <space>s as necessary to
reach the length CL. ML is the implementation-defined maximum length of variable-length
character strings.

e) If DT identifies a CHARACTER(L) or CHARACTER VARYING(L) data types and the caller
language of EP is PLI, then let CL be the maximum possible length in octets of PN. A
reference to PN that assigns some value SV to PN implicitly assigns a value that is:

i) If DT identifies CHARACTER(L), then an SQL CHARACTER(CL) data type.

ii) Otherwise, an SQL CHARACTER VARYING(CL) data type in which octets of the value
are the corresponding octets of SV, padded on the right with <space>s as necessary to
reach the length CL.

NOTE 280 – In the preceding 4 Rules, the phrase ‘‘implementation-defined null character that
terminates a C character string’’ implies one or more octets all of whose bits are zero and whose
number is equal to the number of octets in the largest character of the character set of DT.

f) If DT identifies INT, DEC, or REAL and the caller language of EP is MUMPS, then a
reference to PN that assigns some value SV to PN implicitly assigns the value

CAST (SV AS CHARACTER VARYING(ML))

to PI, where ML is the implementation-defined maximum length of variable-length of char-
acter strings.

g) If DT identifies a BOOLEAN type, then

SQL-client modules 631

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.4 Calls to an <externally-invoked procedure>

Case:

i) If the caller language of EP is C, then a reference to PN that assigns the value false to
PN implicitly assigns the value 0 (zero) to PI; a reference to PN that assigns the value
true implicitly assigns the value 1 (one) to PI.

ii) If the caller language of EP is COBOL, then a reference to PN that assigns the value
false to PN implicitly assigns the value ’F’ to PI; a reference to PN that assigns the
value true implicitly assigns the value ’T’ to PI.

iii) If the caller language of EP is FORTRAN, then a reference to PN that assigns the value
false to PN implicitly assigns the value .FALSE. to PI; a reference to PN that assigns
the value true implicitly assigns the value .TRUE. to PI.

iv) If the caller language of EP is PLI, then a reference to PN that assigns the value false
to PN implicitly assigns the value ’0’B to PI; a reference to PN that assigns the value
true implicitly assigns the value ’1’B to PI.

NOTE 281 – Pascal has a Boolean-type, whose values are true and false .

h) If P is a binary large object locator parameter, a character large object locator parameter,
an array locator parameter, or a user-defined type locator parameter, then a reference to PN
that assigns some value SV to PN implicitly assigns the corresponding large object locator
value, the character large object locator value, the array locator value, or the user-defined
type locator value, respectively, that uniquely identifies SV to PI.

i) If DT identifies a CHARACTER LARGE OBJECT or BINARY LARGE OBJECT type, then

Case:

i) If the caller language of EP is C, then a reference to PN that assigns some value SV
to PN implicitly assigns the value LENGTH(SV) to PN.PN_length and the value SV to
PN.PN_data.

ii) If the caller language of EP is COBOL, then a reference to PN that assigns some value
SV to PN implicitly assigns the value LENGTH(SV) to PN.PN-LENGTH and the value
SV to PN.PN-DATA.

iii) If the caller language of EP is FORTRAN, then a reference to PN that assigns some
value SV to PN implicitly assigns the value LENGTH(SV) to PN_LENGTH and the
value SV to PN_DATA.

iv) If the caller language of EP is PLI, then a reference to PN that assigns some value SV
to PN implicitly assigns the value LENGTH(SV) to PN.PN_length and the value SV to
PN.PN_data.

j) Otherwise, a reference to PN that assigns some value SV to PN implicitly assigns the value
SV to PI. If the caller language of EP is ADA and no value has been assigned to PI, then an
implementation-dependent value is assigned to PI.

Conformance Rules

None.

632 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.5 <SQL procedure statement>

13.5 <SQL procedure statement>

Function
Define all of the SQL-statements that are <SQL procedure statement>s.

Format

<SQL procedure statement> ::=
<SQL executable statement>

<SQL executable statement> ::=
<SQL schema statement>

| <SQL data statement>
| <SQL control statement>
| <SQL transaction statement>
| <SQL connection statement>
| <SQL session statement>
| <SQL diagnostics statement>

<SQL schema statement> ::=
<SQL schema definition statement>

| <SQL schema manipulation statement>

<SQL schema definition statement> ::=
<schema definition>

| <table definition>
| <view definition>
| <SQL-invoked routine>
| <grant statement>
| <role definition>
| <grant role statement>
| <domain definition>
| <character set definition>
| <collation definition>
| <translation definition>
| <assertion definition>
| <trigger definition>
| <user-defined type definition>
| <user-defined cast definition>
| <user-defined ordering definition>
| <transform definition>

<SQL schema manipulation statement> ::=
<drop schema statement>

| <alter table statement>
| <drop table statement>
| <drop view statement>
| <alter routine statement>
| <drop routine statement>
| <drop user-defined cast statement>
| <revoke statement>
| <drop role statement>
| <alter domain statement>
| <drop domain statement>
| <drop character set statement>
| <drop collation statement>
| <drop translation statement>
| <drop assertion statement>
| <drop trigger statement>
| <alter type statement>

SQL-client modules 633

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.5 <SQL procedure statement>

| <drop data type statement>
| <drop user-defined ordering statement> | <drop transform statement>

<SQL data statement> ::=
<open statement>

| <fetch statement>
| <close statement>
| <select statement: single row>
| <free locator statement>
| <hold locator statement>
| <SQL data change statement>

<SQL data change statement> ::=
<delete statement: positioned>

| <delete statement: searched>
| <insert statement>
| <update statement: positioned>
| <update statement: searched>

<SQL control statement> ::=
<call statement>

| <return statement>

<SQL transaction statement> ::=
<start transaction statement>

| <set transaction statement>
| <set constraints mode statement>
| <savepoint statement>
| <release savepoint statement>
| <commit statement>
| <rollback statement>

<SQL connection statement> ::=
<connect statement>

| <set connection statement>
| <disconnect statement>

<SQL session statement> ::=
<set session user identifier statement>

| <set role statement>
| <set local time zone statement>
| <set session characteristics statement>

<SQL diagnostics statement> ::=
<get diagnostics statement>

Syntax Rules

1) An <SQL connection statement> shall not be generally contained in an <SQL control state-
ment>.

2) The SQL-invoked routine specified by <SQL-invoked routine> shall be a schema-level routine.
NOTE 282 – ‘‘schema-level routine’’ is defined in Subclause 11.49, ‘‘<SQL-invoked routine>’’.

3) An <SQL procedure statement> S is possibly non-deterministic if and only if at least one of the
following is satisfied:

a) S is a <select statement: single row> that is possibly non-deterministic.

634 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.5 <SQL procedure statement>

b) S contains a <routine invocation> whose subject routine is an SQL-invoked routine that
possibly modifies SQL-data.

c) S generally contains a <query specification> or a <query expression> that is possibly non-
deterministic.

d) S generally contains a <datetime value function>, CURRENT_USER, CURRENT_ROLE,
SESSION_USER, or SYSTEM_USER.

4) An <SQL procedure statement> S possibly contains SQL if and only if at least one of the
following is satisfied:

a) S is an SQL-schema statement, an SQL-session statement, an SQL diagnostics statement,
or an SQL-control statement.

b) S contains a <routine invocation> whose subject routine is an SQL-invoked routine that
possibly contains SQL.

5) An <SQL procedure statement> S possibly reads SQL-data if and only if at least one of the
following is satisfied:

a) S is an SQL-data statement.

b) S simply contains a <subquery>.

c) S contains a <routine invocation> whose subject routine is an SQL-invoked routine that
possibly reads SQL-data.

d) S simply contains an <SQL procedure statement> that possibly reads SQL-data.

6) An <SQL procedure statement> S possibly modifies SQL-data if and only if at least one of the
following is satisfied:

a) S contains a <routine invocation> whose subject routine is an SQL-invoked routine that
possibly modifies SQL-data.

b) S is an <SQL data change statement>.

c) S simply contains an <SQL procedure statement> that possibly modifies SQL-data.

Access Rules

None.

General Rules

1) An atomic execution context is active during execution of an <SQL procedure statement> S.
When S completes, all savepoints that have been established during its execution are destroyed.

2) If the execution of an <SQL data statement> occurs within the same SQL-transaction as the
execution of an <SQL schema statement> and this is not allowed by the SQL-implementation,
then an exception condition is raised: invalid transaction state — schema and data statement
mixing not supported.

3) Let S be the executing statement specified in an application of this Subclause.

SQL-client modules 635

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.5 <SQL procedure statement>

4) If a trigger is being executed and S is an <SQL transaction statement> or an <SQL connection
statement>, then an exception condition is raised: prohibited statement encountered during
trigger execution.
NOTE 283 – Execution of triggers is defined in Subclause 4.35.2, ‘‘Execution of triggers’’.

5) Case:

a) If S is immediately contained in an <externally-invoked procedure> EP, then let n be the
number of <host parameter declaration>s specified in EP; let PDi, 1 (one) � i � n, be the
i-th such <host parameter declaration>; and let PNi and DTi be the <parameter name> and
<data type>, respectively, specified in PDi. When EP is called by an SQL-agent, let PIi be
the i-th argument in the procedure call.

Case:

i) If S is an <SQL connection statement>, then:

1) The <SQL-client module definition> that contains S is associated with the SQL-
agent.

2) The diagnostics area is emptied.

3) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for input parameters with EP, PDi,
PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

4) The General Rules of S are evaluated.

5) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for output parameters with EP,
PDi, PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

6) If S successfully initiated or resumed an SQL-session, then subsequent calls to an
<externally-invoked procedure> by the SQL-agent are associated with that SQL-
session until the SQL-agent terminates the SQL-session or makes it dormant.

ii) If S is an <SQL diagnostics statement>, then:

1) The <SQL-client module definition> that contains S is associated with the SQL-
agent.

2) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for input parameters with EP, PDi,
PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

3) The General Rules of S are evaluated.

4) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for output parameters with EP,
PDi, PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

iii) Otherwise:

1) If no SQL-session is current for the SQL-agent, then

636 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.5 <SQL procedure statement>

Case:

A) If the SQL-agent has not executed an <SQL connection statement> and there
is no default SQL-session associated with the SQL-agent, then the following
<connect statement> is effectively executed:

CONNECT TO DEFAULT

B) If the SQL-agent has not executed an <SQL connection statement> and there
is a default SQL-session associated with the SQL-agent, then the following <set
connection statement> is effectively executed:

SET CONNECTION DEFAULT

C) Otherwise, an exception condition is raised: connection exception — connection
does not exist.

D) Subsequent calls to an <externally-invoked procedure> by the SQL-agent are
associated with the SQL-session until the SQL-agent terminates the SQL-session
or makes it dormant.

2) If an SQL-transaction is active for the SQL-agent, then S is associated with that
SQL-transaction.

3) If no SQL-transaction is active for the SQL-agent and S is a transaction-initiating
SQL-statement, then

A) An SQL-transaction is effectively initiated and associated with this call and with
subsequent calls of any <externally-invoked procedure> by that SQL-agent until
the SQL-agent terminates that SQL-transaction.

B) If S is not a <start transaction statement>, then

Case:

I) If a <set transaction statement> has been executed since the termination
of the last SQL-transaction in the SQL-session, then the access mode, con-
straint mode, and isolation level of the SQL-transaction are set as specified
by the <set transaction statement>. If a <set constraints mode statement>
SCM has been executed since the termination of the last SQL-transaction in
the SQL-session, then the constraint modes of constraints specified in SCM
are set as specified in SCM.

II) If a <set session characteristics statement> has been executed in the current
SQL-session, then:

1) If that <set session characteristics statement> set the enduring trans-
action characteristics of access mode, then the access mode of the SQL-
transaction is set to the specified access mode.

2) If that <set session characteristics statement> set the enduring trans-
action characteristics of isolation level, then the isolation level of the
SQL-transaction is set to the specified isolation level.

3) The constraint modes for all constraints in the SQL-transaction are set
to their initial state.

SQL-client modules 637

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.5 <SQL procedure statement>

III) Otherwise, the access mode of that SQL-transaction is read-write, the con-
straint mode for all constraints in that SQL-transaction is immediate, and
the isolation level of that SQL-transaction is SERIALIZABLE.

C) The SQL-transaction is associated with the SQL-session.

D) The <SQL-client module definition> that contains S is associated with the
SQL-transaction.

4) The <SQL-client module definition> that contains S is associated with the SQL-
agent.

5) If S contains an <SQL schema statement> and the access mode of the current SQL-
transaction is read-only, then an exception condition is raised: invalid transaction
state.

6) The diagnostics area is emptied.

7) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for input parameters with EP, PDi,
PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

8) The General Rules of S are evaluated.

9) For each i, 1 (one) � i � n, the General Rules of Subclause 13.4, ‘‘Calls to an
<externally-invoked procedure>’’, are evaluated for output parameters with EP,
PDi, PNi, DTi, and PIi as PROC, DECL, NAME, TYPE, and ARG, respectively.

10) If S is a <select statement: single row> or a <fetch statement> and a completion con-
dition is raised: no data, or an exception condition is raised, then the value of each
PIi for which PNi is referenced in a <target specification> in S is implementation-
dependent.

b) Otherwise:

i) If an SQL-transaction is active for the SQL-agent, then S is associated with that SQL-
transaction.

ii) If no SQL-transaction is active for the SQL-agent and S is a transaction-initiating
SQL-statement, then

1) An SQL-transaction is effectively initiated as follows.

Case:

A) If a <set transaction statement> has been executed since the termination of
the last SQL-transaction in the SQL-session, then the access mode, constraint
mode, and isolation level of the SQL-transaction are set as specified by the <set
transaction statement>.

B) Otherwise, the access mode of that SQL-transaction is read-write, the constraint
mode for all constraints in that SQL-transaction is immediate, and the isolation
level of that SQL-transaction is SERIALIZABLE.

2) The SQL-transaction is associated with the SQL-session.

638 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.5 <SQL procedure statement>

iii) If S is an <SQL schema statement> and the access mode of the current SQL-transaction
is read-only, then an exception condition is raised: invalid transaction state.

iv) If S is not an <SQL diagnostic statement>, then the diagnostics area is emptied.

6) Case:

a) If S is immediately contained in an <externally-invoked procedure>, then

Case:

i) If S executed successfully, then either a completion condition is raised: successful com-
pletion, or a completion condition is raised: warning, or a completion condition is raised:
no data, as determined by the General Rules in this and other Subclauses of ISO/IEC
9075.

ii) If S did not execute successfully, then:

1) The status parameter is set to the value specified for the condition in Clause 22,
‘‘Status codes’’.

2) If S is not an <SQL control statement>, then all changes made to SQL-data or
schemas by the execution of S are canceled.

b) Otherwise, the General Rules for S are evaluated.

Case:

i) If S executed successfully, then either a completion condition is raised: successful com-
pletion, or a completion condition is raised: warning, or a completion condition is raised:
no data, as determined by the General Rules in this and other Subclauses of ISO/IEC
9075.

ii) Otherwise:

1) If S is not an <SQL control statement>, then all changes made to SQL-data or
schemas by the execution of S are canceled.

2) The same exception condition is re-raised as determined by the General Rules in
this and other Subclauses of ISO/IEC 9075.

7) Case:

a) If S is not an <SQL diagnostics statement>, then diagnostics information resulting from
the execution of S is placed into the diagnostics area as specified in Clause 19, ‘‘Diagnostics
management’’.

b) If S is an <SQL diagnostics statement>, then the diagnostics area is not updated.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, an <SQL schema definition statement> shall not be a <role
definition> or a <grant role statement>.

2) Without Feature F251, ‘‘Domain support’’, an <SQL schema definition statement> shall not be a
<domain definition>.

SQL-client modules 639

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.5 <SQL procedure statement>

3) Without Feature F451, ‘‘Character set definition’’, an <SQL schema definition statement> shall
not be a <character set definition>.

4) Without Feature F691, ‘‘Collation and translation’’, an <SQL schema definition statement> shall
not be a <collation definition> or a <translation definition>.

5) Without Feature F521, ‘‘Assertions’’, an <SQL schema definition statement> shall not be an
<assertion definition>.

6) Without Feature S023, ‘‘Basic structured types’’, an <SQL schema definition statement> shall
not be a <user-defined type definition> that specifies a <member list>.

7) Without Feature F381, ‘‘Extended schema manipulation’’, an <SQL schema manipulation state-
ment> shall not be a <drop schema statement>.

8) Without Feature T331, ‘‘Basic roles’’, an <SQL schema definition statement> shall not be a
<drop role statement>.

9) Without Feature F251, ‘‘Domain support’’, an <SQL schema definition statement> shall not be
an <alter domain statement> or a <drop domain statement>.

10) Without Feature F451, ‘‘Character set definition’’, an <SQL schema definition statement> shall
not be a <drop character set statement>.

11) Without Feature F691, ‘‘Collation and translation’’, an <SQL schema definition statement> shall
not be a <drop collation statement> or a <drop translation statement>

12) Without Feature F521, ‘‘Assertions’’, an <SQL schema definition statement> shall not be a <drop
assertion statement>.

13) Without Feature T271, ‘‘Savepoints’’, an <SQL transaction statement> shall not be a <savepoint
statement> or <release savepoint statement>.

14) Without Feature T331, ‘‘Basic roles’’, an <SQL session statement> shall not be a <set role
statement>.

15) Without Feature T241, ‘‘START TRANSACTION statement’’, an <SQL transaction statement>
shall not be a <start transaction statement>.

640 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.6 Data type correspondences

13.6 Data type correspondences

Function
Specify the data type correspondences for SQL data types and host language types.
NOTE 284 – These tables are referenced in Subclause 11.49, ‘‘<SQL-invoked routine>’’, for the definitions of
external routines and in Subclause 10.4, ‘‘<routine invocation>’’, for the invocation of external routines.

In the following tables, let P be <precision>, S be <scale>, L be <length>, T be <time fractional sec-
onds precision>, Q be <interval qualifier>, and N be the implementation-defined size of a structured
type reference.

Tables

Table 18—Data type correspondences for Ada

SQL Data Type Ada Data Type

SQLSTATE SQL_STANDARD.SQLSTATE_TYPE

CHARACTER (L) SQL_STANDARD.CHAR, with P’LENGTH of L

CHARACTER VARYING (L) None

CHARACTER LARGE OBJECT(L) None

BIT (L) SQL_STANDARD.BIT, with P’LENGTH of L

BIT VARYING (L) None

BINARY LARGE OBJECT(L) None

BOOLEAN SQL_STANDARD.BOOLEAN

SMALLINT SQL_STANDARD.SMALLINT

INTEGER SQL_STANDARD.INT

DECIMAL(P,S) None

NUMERIC(P,S) None

REAL SQL_STANDARD.REAL

DOUBLE PRECISION SQL_STANDARD.DOUBLE_PRECISION

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF SQL_STANDARD.CHAR with P’LENGTH of N

ARRAY None

ROW None

SQL-client modules 641

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.6 Data type correspondences

Table 19—Data type correspondences for C

SQL Data Type C Data Type

SQLSTATE char, with length 6

CHARACTER (L)4 char, with length (L+1)*k1

CHARACTER VARYING (L)4 char, with length (L+1)*k1

CHARACTER LARGE OBJECT(L) struct {
long hvn3_reserved
unsigned long hvn3_length
char4 hvn3_data[L];
} hvn3

BIT (L) char, with length X2

BIT VARYING (L) None

BINARY LARGE OBJECT(L) struct {
long hvn3_reserved
unsigned long hvn3_length
char hvn3_data[L];
} hvn3

BOOLEAN pointer to long

SMALLINT pointer to short

INTEGER pointer to long

DECIMAL(P,S) None

NUMERIC(P,S) None

REAL pointer to float

DOUBLE PRECISION pointer to double

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF char, with length N

ARRAY None

1For character sets UCS2 and UTF16, as well as other implementation-defined character sets in which character
elements occupy two octets, k is the length in units of C unsigned short of the character encoded using the greatest
number of such units in the character set; for other character sets, k is the length in units of C char of the character
encoded using the greatest number of such units in the character set.
2The length X of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less than
the quotient of the division L/B, where B is the implementation-defined number of bits contained in a character of the
host language.
3hvn is the name of the host variable defined to correspond to the SQL data type
4For character sets UCS2 and UTF16, as well as other implementation-defined character sets in which character
elements occupy two octets, char or unsigned char should be replaced with unsigned short. Otherwise, char or
unsigned char should be used.

642 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.6 Data type correspondences

Table 19—Data type correspondences for C (Cont.)

SQL Data Type C Data Type

ROW None

SQL-client modules 643

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.6 Data type correspondences

Table 20—Data type correspondences for COBOL

SQL Data Type COBOL Data Type

SQLSTATE PICTURE X(5)

CHARACTER (L) PICTURE X(L)4

CHARACTER VARYING (L) None

CHARACTER LARGE OBJECT(L) 01 hvn3.
49 hvn3-RESERVED PIC S9(9) USAGE IS BINARY.
49 hvn3-LENGTH PIC S9(9) USAGE IS BINARY.
49 hvn3-DATA PIC X(L)4.

BIT (L) PICTURE X(X)1

BIT VARYING (L) None

BINARY LARGE OBJECT (L) 01 hvn3.
49 hvn3-RESERVED PIC S9(9) USAGE IS BINARY.
49 hvn3-LENGTH PIC S9(9) USAGE IS BINARY.
49 hvn3-DATA PIC X(L).

BOOLEAN PICTURE X

SMALLINT PICTURE S9(SPI) USAGE BINARY, where SPI is implementation-
defined

INTEGER PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined

DECIMAL(P,S) None

NUMERIC(P,S) USAGE DISPLAY SIGN LEADING SEPARATE, with PICTURE
as specified2

REAL None

DOUBLE PRECISION None

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

1The length of a character type corresponding with SQL BIT(L) is one more than the smallest integer not less than the
quotient of the division L/B, where B is the implementation-defined number of bits contained in one character of the
host language.
2Case:

a) If S=P, then a PICTURE with an ’S’ followed by a ’V’ followed by P ’9’s.
b) If P>S>0, then a PICTURE with an ’S’ followed by P–S ’9’s followed by a ’V’ followed by S ’9’s.
c) If S=0, then a PICTURE with an ’S’ followed by P ’9’s optionally followed by a ’V’.

3hvn is the name of the host variable defined to correspond to the SQL data type
4For character sets UCS2 and UTF16, as well as other implementation-defined character sets in which character
elements occupy two octets, ‘‘PICTURE X(L)’’ should be replaced with ‘‘PICTURE N(L)’’. Otherwise, ‘‘PICTURE X(L)’’
should be used.
NOTE: The syntax ‘‘N(L)’’ is not part of the current COBOL standard, so its use is merely a recommendation and is not
normative in ISO/IEC 9075.

644 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.6 Data type correspondences

Table 20—Data type correspondences for COBOL (Cont.)

SQL Data Type COBOL Data Type

user-defined type None

REF alphanumeric with length N

ARRAY None

ROW None

SQL-client modules 645

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.6 Data type correspondences

Table 21—Data type correspondences for Fortran

SQL Data Type Fortran Data Type

SQLSTATE CHARACTER, with length 5

CHARACTER (L) CHARACTER3, with length L

CHARACTER VARYING (L) None

CHARACTER LARGE OBJECT(L) CHARACTER3 hvn2(L+8)
INTEGER*4 hvn2_RESERVED
INTEGER*4 hvn2_LENGTH
CHARACTER hvn2_DATA
EQUIVALENCE(hvn2(5), hvn2_LENGTH)
EQUIVALENCE(hvn2(9), hvn2_DATA)

BIT (L) CHARACTER, with length X1

BIT VARYING (L) None

BINARY LARGE OBJECT(L) CHARACTER hvn2(L+8)
INTEGER*4 hvn2_RESERVED
INTEGER*4 hvn2_LENGTH
CHARACTER hvn2_DATA
EQUIVALENCE(hvn2(5), hvn2_LENGTH)
EQUIVALENCE(hvn2(9), hvn2_DATA)

BOOLEAN LOGICAL

SMALLINT None

INTEGER INTEGER

DECIMAL(P,S) None

NUMERIC(P,S) None

REAL REAL

DOUBLE PRECISION DOUBLE PRECISION

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF CHARACTER with length N

ARRAY None

ROW None

1The length X of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less than
the quotient of the division L/B, where B is the implementation-defined number of bits contained in character of the
host language.
2hvn is the name of the host variable defined to correspond to the SQL data type
3For character sets UCS2 and UTF16, as well as other implementation-defined character sets in which character
elements occupy two octets, ‘‘CHARACTER KIND=n’’ should be used; in this case, the value of n that corresponds to a
given character set is implementation-defined. Otherwise, ‘‘CHARACTER’’ (without ‘‘KIND=n’’) should be used.

646 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.6 Data type correspondences

Table 22—Data type correspondences for MUMPS

SQL Data Type MUMPS Data Type

SQLSTATE character, with maximum length at least 5

CHARACTER (L) None

CHARACTER VARYING (L) character with maximum length L

CHARACTER LARGE OBJECT(L) None

BIT (L) None

BIT VARYING (L) None

BINARY LARGE OBJECT(L) None

BOOLEAN None

SMALLINT None

INTEGER character

DECIMAL(P,S) character

NUMERIC(P,S) character

REAL character

DOUBLE PRECISION None

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF character

ARRAY None

ROW None

SQL-client modules 647

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
13.6 Data type correspondences

Table 23—Data type correspondences for Pascal

SQL Data Type Pascal Data Type

SQLSTATE PACKED ARRAY [1..5] OF CHAR

CHARACTER(1) CHAR

CHARACTER (L), L>1 PACKED ARRAY [1..L] OF CHAR

CHARACTER VARYING (L) None

CHARACTER LARGE OBJECT(L) None

BIT (L), 1 � L � B1 CHAR

BIT (L), B1 < L PACKED ARRAY [LB1] OF CHAR

BIT VARYING (L) None

BINARY LARGE OBJECT(L) None

BOOLEAN BOOLEAN

SMALLINT None

INTEGER INTEGER

DECIMAL(P,S) None

NUMERIC(P,S) None

REAL REAL

DOUBLE PRECISION None

FLOAT(P) None

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF PACKED ARRAY[1..N] OF CHAR

ARRAY None

ROW None

1The length LB of the character data type corresponding with SQL data type BIT(L) is the smallest integer not less
than the quotient of the division L/B, where B is the implementation-defined number of bits contained in a character of
the host language.

648 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
13.6 Data type correspondences

Table 24—Data type correspondences for PL/I

SQL Data Type PL/I Data Type

SQLSTATE CHARACTER(5)

CHARACTER (L) CHARACTER(L)

CHARACTER VARYING (L) CHARACTER VARYING(L)

CHARACTER LARGE OBJECT(L) DCL 01 hvn1

49 hvn1_reserved FIXED BINARY (31)
49 hvn1_length FIXED BINARY (31)
49 hvn1_data CHAR (n);

BIT (L) BIT(L)

BIT VARYING (L) BIT VARYING (L)

BINARY LARGE OBJECT (L) DCL 01 hvn1

49 hvn1_reserved FIXED BINARY (31)
49 hvn1_length FIXED BINARY (31)
49 hvn1_data CHAR (n);

BOOLEAN BIT(1)

SMALLINT FIXED BINARY(SPI), where SPI is implementation-defined

INTEGER FIXED BINARY(PI), where PI is implementation-defined

DECIMAL(P,S) FIXED DECIMAL (P,S)

NUMERIC(P,S) None

REAL None

DOUBLE PRECISION None

FLOAT(P) FLOAT BINARY (P)

DATE None

TIME(T) None

TIMESTAMP(T) None

INTERVAL(Q) None

user-defined type None

REF CHARACTER VARYING(N)

ARRAY None

ROW None

1hvn is the name of the host variable defined to correspond to the SQL data type

SQL-client modules 649

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

650 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

14 Data manipulation

14.1 <declare cursor>

Function
Define a cursor.

Format

<declare cursor> ::=
DECLARE <cursor name> [<cursor sensitivity>]
[<cursor scrollability>] CURSOR
[<cursor holdability>]
[<cursor returnability>]
FOR <cursor specification>

<cursor sensitivity> ::=
SENSITIVE

| INSENSITIVE
| ASENSITIVE

<cursor scrollability> ::=
SCROLL

| NO SCROLL

<cursor holdability> ::=
WITH HOLD

| WITHOUT HOLD

<cursor returnability> ::=
WITH RETURN

| WITHOUT RETURN

<cursor specification> ::=
<query expression> [<order by clause>]
[<updatability clause>]

<updatability clause> ::=
FOR { READ ONLY | UPDATE [OF <column name list>] }

<order by clause> ::=
ORDER BY <sort specification list>

<sort specification list> ::=
<sort specification> [{ <comma> <sort specification> }...]

<sort specification> ::=
<sort key> [<collate clause>] [<ordering specification>]

<sort key> ::=
<value expression>

<ordering specification> ::= ASC | DESC

Data manipulation 651

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.1 <declare cursor>

Syntax Rules

1) If a <declare cursor> is contained in an SQL-client module M, then:

a) The <cursor name> shall not be equivalent to the <cursor name> of any other <declare
cursor> in M.

b) Any <host parameter name> contained in the <cursor specification> shall be defined in a
<host parameter declaration> in the <externally-invoked procedure> that contains an <open
statement> that specifies the <cursor name>.

NOTE 285 – See the Syntax Rules of Subclause 13.1, ‘‘<SQL-client module definition>’’.

2) When <cursor name> is referenced in an <update statement: positioned>, no <object column>
in the <set clause> shall identify a column that is specified in a <sort specification> of an <order
by clause>.

3) Let T be the result of evaluating the <query expression> QE immediately contained in the
<cursor specification>.

4) Let CS be the cursor specified by the <declare cursor>.

5) If <cursor sensitivity> is not specified, then ASENSITIVE is implicit.

6) CS is sensitive if SENSITIVE is specified, insensitive if INSENSITIVE is specified, and asensi-
tive if ASENSITIVE is specified or implied.

7) If <cursor scrollability is not specified, then NO SCROLL is implicit.

8) If <cursor holdability is not specified, then WITHOUT HOLD is implicit.

9) If <cursor returnability is not specified, then WITHOUT RETURN is implicit.

10) If <updatability clause> is not specified, then:

a) If either INSENSITIVE, SCROLL, or ORDER BY is specified, or if QE is not a simply
updatable table, then an <updatability clause> of READ ONLY is implicit.

b) Otherwise, an <updatability clause> of FOR UPDATE without a <column name list> is
implicit.

11) If an <updatability clause> of FOR UPDATE with or without a <column name list> is specified,
then INSENSITIVE shall not be specified and QE shall be updatable.

12) If an <updatability clause> specifying FOR UPDATE is specified or implicit, then CS is updat-
able; otherwise, CS is not updatable.

13) If CS is updatable, then let LUTN be a <table name> that references the leaf underlying table
LUT of QE. LUTN is an exposed <table or query name> whose scope is <updatability clause>.

14) If an <order by clause> is specified, then the cursor specified by the <cursor specification> is
said to be an ordered cursor.

15) If WITH HOLD is specified, then the cursor specified by the <cursor specification> is said to be
a holdable cursor.

652 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.1 <declare cursor>

16) If WITH RETURN is specified, then the cursor specified by the <cursor specification> is said to
be a result set cursor.
NOTE 286 – ‘‘result set cursor’’ is defined in Subclause 4.29, ‘‘Cursors’’.

17) QE is the simply underlying table of CS.

18) If an <order by clause> is specified, then:

a) Let Ki be the <sort key> contained in the i-th <sort specification>.

b) Let DT be the declared type of Ki.

c) If DT is a user-defined type, then the comparison form of DT shall be FULL.

d) Ki shall not be a <literal>.

e) If QE is a <query expression body> that is a <non-join query expression> that is a <non-join
query term> that is a <non-join query primary> that is a <simple table> that is a <query
specification>, then the <cursor specification> is said to be a simple table query.

f) Case:

i) If <sort specification list> contains any <sort key> Ki that contains a column reference
to a column that is not a column of T, then:

1) The <cursor specification> shall be a simple table query.

2) Case:

A) If Ki is not equivalent to a <value expression> immediately contained in any
<derived column> in the <select list> SL of <query specification> QS contained
in QE, then:

I) T shall not be a grouped table.

II) QS shall not specify the <set quantifier> DISTINCT or directly contain one
or more <set function specification>s.

III) Let Cj be a column that is not a column of T and whose column reference is
contained in some Ki.

IV) Let SKL be the list of <derived column>s that are <column name>s of
column references to every Cj. The columns Cj are said to be extended sort
key columns.

V) Let TE be the <table expression> immediately contained in QS.

VI) Let ST be the result of evaluating the <query specification>:

SELECT SL, SKL FROM TE

B) Otherwise:

I) Let ST be T.

Data manipulation 653

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.1 <declare cursor>

II) For every <derived column> DCe of SL that is equivalent to Ki, if DCe has a
<column name>, then let CNe be that <column name>; otherwise:

1) Let CNe be an implementation-defined <column name> that is not equal
to any <column name> of any column of ST.

2) DCe is effectively replaced by DEe AS CNe in the <select list> of ST,
where DEe is the <derived element> of DCe.

III) Ki is effectively replaced by CNe.

ii) Otherwise, let ST be T.

g) ST is said to be a sort table.

h) Ki is a <value expression>. The <value expression> shall not contain a <subquery> or a <set
function specification>, but shall contain a <column reference>.

i) Let X be any <column reference> directly contained in Ki.

ii) If X does not contain an explicit <table or query name> or <correlation name>, then Ki
shall be a <column name> that shall be equivalent to the name of exactly one column of
ST.

NOTE 287 – A previous version of ISO/IEC 9075 allows <sort specification> to be a <signed in-
teger> to denote a column reference of a column of T. That facility no longer exists. See Annex E,
‘‘Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996’’.

19) If a <sort specification> contains a <collate clause>, then the declared type of the column
identified by the <sort specification> shall be character string. The column descriptor of the
corresponding column in the result has the collating sequence specified in <collate clause> and
the coercibility characteristic Explicit.

20) If an <updatability clause> of FOR UPDATE without a <column name list> is specified or
implicit, then a <column name list> that consists of the <column name> of every column of LUT
T is implicit.

21) If an <updatability clause> of FOR UPDATE with a <column name list> is specified, then each
<column name> in the <column name list> shall be the <column name> of a column of LUT.

22) If a <sort key> simply contains a <value expression> that simply contains a column reference
that identifies a column whose declared type is a user-defined type UDT, then the comparison
form of UDT shall be FULL.

Access Rules

None.

General Rules

1) If an <order by clause> is not specified, then the table specified by the <cursor specification> is
T and the ordering of rows in T is implementation-dependent.

2) If an <order by clause> is specified, then the ordering of rows of the result is effectively deter-
mined by the <order by clause> as follows:

a) Let TS be the sort table.

654 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.1 <declare cursor>

b) Each <sort specification> specifies the sort direction for the corresponding sort key Ki.
If DESC is not specified in the i-th <sort specification>, then the sort direction for Ki is
ascending and the applicable <comp op> is the <less than operator>. Otherwise, the sort
direction for Ki is descending and the applicable <comp op> is the <greater than operator>.

c) Let P be any row of TS and let Q be any other row of TS, and let PVi and QVi be the values
of Ki in these rows, respectively. The relative position of rows P and Q in the result is
determined by comparing PVi and QVi according to the rules of Subclause 8.2, ‘‘<comparison
predicate>’’, where the <comp op> is the applicable <comp op> for Ki, with the following
special treatment of null values. Whether a sort key value that is null is considered greater
or less than a non-null value is implementation-defined, but all sort key values that are null
shall either be considered greater than all non-null values or be considered less than all
non-null values. PVi is said to precede QVi if the value of the <comparison predicate> ‘‘PVi
<comp op> QVi’’ is true for the applicable <comp op>. If PVi and QVi are not null and the
result of ‘‘PVi <comp op> QVi’’ is unknown , then the relative ordering of PVi and QVi is
implementation-dependent.

d) In TS, the relative position of row P is before row Q if PVn precedes QVn for some n greater
than 0 (zero) and less than the number of <sort specification>s and PVi = QVi for all i < n.
The relative order of two rows that are not distinct with respect to the <sort specification>s
are implementation-dependent.

e) The result table specified by the <cursor specification> is TS with all extended sort key
columns (if any) removed.

3) If WITH HOLD is specified and the cursor is in an open state when an SQL-transaction is
terminated with a <commit statement>, then the cursor is not closed and remains open into the
next SQL-transaction.
NOTE 288 – A holdable cursor that has been held open retains its position when the new SQL-
transaction is initiated. However, even if the cursor is currently positioned on a row when the SQL-
transaction is terminated, before either an <update statement: positioned> or a <delete statement:
positioned> is permitted to reference that cursor in the new SQL-transaction, a <fetch statement> must
be issued against the cursor.

Conformance Rules

1) Without Feature T231, ‘‘SENSITIVE cursors’’, a <declare cursor> shall not specify SENSITIVE.

2) Without Feature F791, ‘‘Insensitive cursors’’, a <declare cursor shall not specify INSENSITIVE.

3) Without Feature F791, ‘‘Insensitive cursors’’, or Feature T231, ‘‘SENSITIVE cursors’’, a <declare
cursor> shall not specify ASENSITIVE.

4) Without Feature F431, ‘‘Read-only scrollable cursors’’, a <declare cursor> shall not specify
<cursor scrollability>.

5) Without Feature T471, ‘‘Result sets return value’’, a <declare cursor> shall not specify <cursor
returnability>.

6) Without Feature F831, ‘‘Full cursor update’’, if an <updatability clause> of FOR UPDATE with
or without a <column name list> is specified, then <cursor scrollability> shall not be specified.

7) Without Feature F831, ‘‘Full cursor update’’, if an <updatability clause> of FOR UPDATE with
or without a <column name list> is specified, then ORDER BY shall not be specified.

Data manipulation 655

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.1 <declare cursor>

8) Without Feature T551, ‘‘Optional key words for default syntax’’, conforming SQL language shall
not specify WITHOUT HOLD.

9) Without Feature S024, ‘‘Enhanced structured types’’, a <value expression> that is a <sort key>
shall not be of a structured type.

656 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.2 <open statement>

14.2 <open statement>

Function
Open a cursor.

Format

<open statement> ::=
OPEN <cursor name>

Syntax Rules

1) The containing SQL-client module shall contain a <declare cursor> DC whose <cursor name>
is equivalent to the <cursor name> contained in the <open statement>. Let CR be the cursor
specified by DC.

Access Rules

1) The Access Rules for the <query expression> simply contained in the <declare cursor> identified
by the <cursor name> are applied.

General Rules

1) If CR is not in the closed state, then an exception condition is raised: invalid cursor state.

2) Let S be the <cursor specification> of cursor CR.

3) Cursor CR is opened in the following steps:

a) A copy of S is effectively created in which:

i) Each <target specification> is replaced by the value of the target.

ii) Each <value specification> generally contained in S that is CURRENT_USER,
CURRENT_ROLE, SESSION_USER, or SYSTEM_USER is replaced by the value re-
sulting from evaluation of CURRENT_USER, CURRENT_ROLE, SESSION_USER, or
SYSTEM_USER, respectively, with all such evaluations effectively done at the same
instant in time.

iii) Each <datetime value function> generally contained in S is replaced by the value re-
sulting from evaluation of that <datetime value function>, with all such evaluations
effectively done at the same instant in time.

iv) Each <value specification> generally contained in S that is CURRENT_PATH is replaced
by the value resulting from evaluation of CURRENT_PATH, with all such evaluations
effectively done at the same instant in time.

b) Let T be the table specified by the copy of S.

c) A table descriptor for T is effectively created.

d) The General Rules of Subclause 14.1, ‘‘<declare cursor>’’, are applied.

Data manipulation 657

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.2 <open statement>

e) Case:

i) If S specifies INSENSITIVE, then a copy of T is effectively created and cursor CR is
placed in the open state and its position is before the first row of the copy of T.

ii) Otherwise, cursor CR is placed in the open state and its position is before the first row
of T.

4) If CR specifies INSENSITIVE, and the SQL-implementation is unable to guarantee that signif-
icant changes will be invisible through CR during the SQL-transaction in which CR is opened
and every subsequent SQL-transaction during which it may be held open, then an exception
condition is raised: cursor sensitivity exception — request rejected.

5) If CR specifies SENSITIVE, and the SQL-implementation is unable to guarantee that significant
changes will be visible through CR during the SQL-transaction in which CR is opened, then an
exception condition is raised: cursor sensitivity exception — request rejected.
NOTE 289 – The visibility of significant changes through a sensitive holdable cursor during a subse-
quent SQL-transaction is implementation-defined.

6) Whether an SQL-implementation is able to disallow significant changes that would not be
visible through a currently open cursor is implementation-defined.

Conformance Rules

None.

658 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.3 <fetch statement>

14.3 <fetch statement>

Function
Position a cursor on a specified row of a table and retrieve values from that row.

Format

<fetch statement> ::=
FETCH [[<fetch orientation>] FROM]
<cursor name> INTO <fetch target list>

<fetch orientation> ::=
NEXT

| PRIOR
| FIRST
| LAST
| { ABSOLUTE | RELATIVE } <simple value specification>

<fetch target list> ::=
<target specification> [{ <comma> <target specification> }...]

Syntax Rules

1) <fetch target list> shall not contain a <target specification> that specifies a <column reference>.

2) If the <fetch orientation> is omitted, then NEXT is implicit.

3) Let DC be the <declare cursor> denoted by the <cursor name> and let T be the table defined by
the <cursor specification> of DC. Let CR be the cursor specified by DC.

4) If the implicit or explicit <fetch orientation> is not NEXT, then DC shall specify SCROLL.

5) If a <fetch orientation> that contains a <simple value specification> is specified, then the
declared type of that <simple value specification> shall be exact numeric with a scale of 0 (zero).

6) Case:

a) If the <fetch target list> contains a single <target specification> TS and the degree of table
T is greater than 1 (one), then the declared type of TS shall be a row type.

Case:

i) If TS is the <SQL parameter name> of an SQL parameter of an SQL-invoked routine,
then the Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply to TS and the row
type of table T as TARGET and VALUE, respectively.

ii) Otherwise, the Syntax Rules of Subclause 9.1, ‘‘Retrieval assignment’’, apply to TS and
the row type of table T as TARGET and VALUE, respectively.

b) Otherwise:

i) The number of <target specification>s in the <fetch target list> shall be the same as the
degree of table T. The i-th <target specification> in the <fetch target list> corresponds
with the i-th column of table T.

Data manipulation 659

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.3 <fetch statement>

ii) For each <target specification> TS1 that is the <SQL parameter name> of an SQL
parameter of an SQL-invoked routine, the Syntax Rules of Subclause 9.2, ‘‘Store assign-
ment’’, apply to TS1 and the corresponding column of table T as TARGET and VALUE,
respectively.

iii) For each <target specification> TS2 that is a <host parameter name>, the Syntax Rules
of Subclause 9.1, ‘‘Retrieval assignment’’, apply to each TS2 and the corresponding
column of table T, as TARGET and VALUE, respectively.

Access Rules

None.

General Rules

1) If cursor CR is not in the open state, then an exception condition is raised: invalid cursor state.

2) Case:

a) If the <fetch orientation> contains a <simple value specification>, then let J be the value of
that <simple value specification>.

b) If the <fetch orientation> specifies NEXT or FIRST, then let J be +1.

c) If the <fetch orientation> specifies PRIOR or LAST, then let J be�1.

3) Let Tt be a table of the same degree as T.

Case:

a) If the <fetch orientation> specifies ABSOLUTE, FIRST, or LAST, then let Tt contain all rows
of T, preserving their order in T.

b) If the <fetch orientation> specifies NEXT or specifies RELATIVE with a positive value of J,
then:

i) If the table T identified by cursor CR is empty or if the position of CR is on or after the
last row of T, then let Tt be a table of no rows.

ii) If the position of CR is on a row R that is other than the last row of T, then let Tt
contain all rows of T ordered after row R, preserving their order in T.

iii) If the position of CR is before a row R, then let Tt contain row R and all rows of T
ordered after row R, preserving their order in T.

c) If the <fetch orientation> specifies PRIOR or specifies RELATIVE with a negative value of
J, then:

i) If the table T identified by cursor CR is empty or if the position of CR is on or before the
first row of T, then let Tt be a table of no rows.

ii) If the position of CR is on a row R that is other than the first row of T, then let Tt
contain all rows of T ordered before row R, preserving their order in T.

660 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.3 <fetch statement>

iii) If the position of CR is before a row R that is not the first row of T, then let Tt contain
row all rows of T ordered before row R, preserving their order in T.

iv) If the position of CR is after the last row of T, then let Tt contain all rows of T, preserv-
ing their order in T.

d) If RELATIVE is specified with a zero value of J, then:

i) If the position of CR is on a row of T, then let Tt be a table comprising that one row.

ii) Otherwise, let Tt be an empty table.

4) Let N be the number of rows in Tt. If J is positive, then let K be J. If J is negative, then let
K be N+J+1. If J is zero and ABSOLUTE is specified, then let K be zero; if J is zero and
RELATIVE is specified, then let K be 1.

5) Case:

a) If K is greater than 0 (zero) and not greater than N, then CR is positioned on the K-th row
of Tt and the corresponding row of T. That row becomes the current row of CR.

b) Otherwise, no SQL-data values are assigned to any targets in the <fetch target list>, and a
completion condition is raised: no data.

Case:

i) If the <fetch orientation> specifies RELATIVE with J equal to zero, then the position of
CR is unchanged.

ii) If the <fetch orientation> implicitly or explicitly specifies NEXT, specifies ABSOLUTE
or RELATIVE with K greater than N, or specifies LAST, then CR is positioned after the
last row.

iii) Otherwise, the <fetch orientation> specifies PRIOR, FIRST, or ABSOLUTE or
RELATIVE with K not greater than N and CR is positioned before the first row.

6) If a completion condition no data has been raised, then no further General Rules of this
Subclause are applied.

7) Case:

a) If the <fetch target list> contains a single <target specification> TS and the degree of table
T is greater than 1 (one), then the current row is assigned to TS and

Case:

i) If TS is the <SQL parameter name> of an SQL parameter of an SQL-invoked routine,
then the General Rules of Subclause 9.2, ‘‘Store assignment’’, apply to TS and the
current row as TARGET and VALUE, respectively.

ii) Otherwise, the General Rules of Subclause 9.1, ‘‘Retrieval assignment’’, are applied to
TS and the current row as TARGET and VALUE, respectively.

b) Otherwise, if the <fetch target list> contains more than one <target specification>, then
values from the current row are assigned to their corresponding targets identified by the
<fetch target list>. The assignments are made in an implementation-dependent order. Let
TV be a target and let SV denote its corresponding value in the current row of CR.

Data manipulation 661

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.3 <fetch statement>

Case:

i) If TV is the <SQL parameter name> of an SQL parameter of an SQL-invoked routine,
then the General Rules of Subclause 9.2, ‘‘Store assignment’’, apply to TS and SV as
TARGET and VALUE, respectively.

ii) Otherwise, the General Rules of Subclause 9.1, ‘‘Retrieval assignment’’, are applied to
TV and SV as TARGET and VALUE, respectively.

NOTE 290 – SQL parameters cannot have as their data types any row type.

8) If an exception condition occurs during the assignment of a value to a target, then the values of
all targets are implementation-dependent and CR remains positioned on the current row.
NOTE 291 – It is implementation-dependent whether CR remains positioned on the current row when
an exception condition is raised during the derivation of any <derived column>.

Conformance Rules

1) Without Feature F431, ‘‘Read-only scrollable cursors’’, a <fetch statement> shall not specify a
<fetch orientation>.

662 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.4 <close statement>

14.4 <close statement>

Function
Close a cursor.

Format

<close statement> ::=
CLOSE <cursor name>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let CR be the cursor identified by the <cursor name> immediately contained in the <close
statement>.

2) If cursor CR is not in the open state, then an exception condition is raised: invalid cursor state.

3) Let RS be the result set of CR.

4) Cursor CR is placed in the closed state and the copy of the <cursor specification> of the <declare
cursor> that specified CR is destroyed.

5) Any triggered actions that were deferred are effectively executed.

6) If RS was one of an ordered set of result sets RRS returned from an SQL-invoked procedure
SIP, then:

a) Let RTN be the number of result sets returned by SIP.

b) Let RSN be the ordinal position of RS within RRS.

c) Case:

i) If RSN = RTN, then a completion condition is raised: no data — no additional dynamic
result sets returned.

ii) Otherwise:

1) CR is opened on RS in ordinal position RSN + 1 and CR is positioned before the
first row of RS.

2) A completion condition is raised: warning — additional result sets returned.

Data manipulation 663

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.4 <close statement>

Conformance Rules

None.

664 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.5 <select statement: single row>

14.5 <select statement: single row>

Function
Retrieve values from a specified row of a table.

Format

<select statement: single row> ::=
SELECT [<set quantifier>] <select list>
INTO <select target list>
<table expression>

<select target list> ::=
<target specification> [{ <comma> <target specification> }...]

Syntax Rules

1) <select target list> shall not contain a <target specification> that specifies a <column reference>.

2) The number of elements in the <select list> shall be the same as the number of elements in the
<select target list>. The i-th <target specification> in the <select target list> corresponds with
the i-th element of the <select list>.

3) For each <target specification> TS that is the <SQL parameter name> of a parameter of an
SQL-invoked routine, the Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply to TS and
the corresponding element of the <select list>, as TARGET and VALUE, respectively.

4) For each <target specification> TS that is a <host parameter name>, the Syntax Rules of
Subclause 9.1, ‘‘Retrieval assignment’’, apply to TS and the corresponding element of the <select
list>, as TARGET and VALUE, respectively.

5) A <select statement: single row> is possibly non-deterministic if it contains a <routine invo-
cation> whose subject routines is an SQL-invoked routine that is possibly non-deterministic.

6) Let S be a <query specification> whose <select list> and <table expression> are those specified
in the <select statement: single row> and that specifies the <set quantifier> if it is specified in
the <select statement: single row>. S shall be a valid <query specification>.

Access Rules

None.

General Rules

1) Let Q be the result of <query specification> S.

2) Case:

a) If the cardinality of Q is greater than 1 (one), then an exception condition is raised: car-
dinality violation. It is implementation-dependent whether or not SQL-data values are
assigned to the targets identified by the <select target list>.

Data manipulation 665

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.5 <select statement: single row>

b) If Q is empty, then no SQL-data values are assigned to any targets identified by the <select
target list>, and a completion condition is raised: no data.

c) Otherwise, values in the row of Q are assigned to their corresponding targets.

3) If a completion condition no data has been raised, then no further General Rules of this
Subclause are applied.

4) For each <target specification> TS that is the <SQL parameter name> of a parameter of an
SQL-invoked routine, the corresponding value in the row of Q is assigned to TS according to the
General Rules of Subclause 9.2, ‘‘Store assignment’’, as VALUE and TARGET, respectively. The
assignment of values to targets in the <select target list> is in an implementation-dependent
order.

5) For each <target specification> TS that is a <host parameter name>, the corresponding value
in the row of Q is assigned to TS according to the General Rules of Subclause 9.1, ‘‘Retrieval
assignment’’, as VALUE and TARGET, respectively. The assignment of values to targets in the
<select target list> is in an implementation-dependent order.

6) If an exception condition is raised during the assignment of a value to a target, then the values
of all targets are implementation-dependent.

Conformance Rules

None.

666 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.6 <delete statement: positioned>

14.6 <delete statement: positioned>

Function
Delete a row of a table.

Format

<delete statement: positioned> ::=
DELETE FROM <target table>
WHERE CURRENT OF <cursor name>

<target table> ::= [ONLY] <left paren> <table name> <right paren>

Syntax Rules

1) Let CR be the cursor denoted by the <cursor name>.

2) Let TN be the <table name> contained in <target table>.

3) If <target table> TT immediately contains ONLY and the table identified by TN is not a typed
table, then TT is equivalent to TN.

4) Let T be the simply underlying table of CR. T is the subject table of the <delete statement:
positioned>. T shall have exactly one leaf underlying table LUT.

5) The subject table of a <delete statement: positioned> shall not identify an old transition table
or a new transition table.

6) CR shall be an updatable cursor.

7) TN shall identify LUT.

8) <target table> shall specify ONLY if and only if the <table reference> contained in T that
references LUT specifies ONLY.

9) The schema identified by the explicit or implicit qualifier of TN shall include the descriptor of
LUT.

10) The <table name> specified by <target table> is an exposed <table or query name> whose scope
is the <delete statement: positioned>.

Access Rules

1) Case:

a) If <delete statement: positioned> is contained in an <SQL schema statement>, then the
applicable privileges for the owner of that schema shall include DELETE for TN.

b) Otherwise, the current privileges shall include DELETE for TN.
NOTE 292 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

Data manipulation 667

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.6 <delete statement: positioned>

General Rules

1) If the access mode of the current SQL-transaction or the access mode of the branch of the
current SQL-transaction at the current SQL-connection is read-only, and not every leaf generally
underlying table of CR is a temporary table, then an exception condition is raised: invalid
transaction state — read-only SQL-transaction.

2) If there is any sensitive cursor CR that is currently open in the SQL-transaction in which this
SQL-statement is being executed, then

Case:

a) If CR has not been held into a subsequent SQL-transaction, then either the change resulting
from the successful execution of this statement shall be made visible to CR or an exception
condition is raised: cursor sensitivity exception — request failed.

b) Otherwise, whether the change resulting from the successful execution of this SQL-
statement is made visible to CR is implementation-defined.

3) If there is any cursor CR that is currently open and whose <declare cursor> contained
INSENSITIVE, then either the change resulting from the successful execution of this state-
ment shall be invisible to CR, or an exception condition is raised: cursor sensitivity exception —
request failed.

4) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

5) If cursor CR is not positioned on a row, then an exception condition is raised: invalid cursor
state.

6) If CR is a holdable cursor and a <fetch statement> has not been issued against CR within the
current SQL-transaction, then an exception condition is raised: invalid cursor state.

7) Let R be the current row of CR. Exactly one row R1 in LUT such that each field in R is not
distinct from the corresponding field in R1 is identified for deletion from LUT.
NOTE 293 – In case more than one row R1 satisfies the stated condition, it is implementation-
dependent which one is identified for deletion.

NOTE 294 – Identifying a row for deletion is an implementation-dependent mechanism.

8) Case:

a) If LUT is a base table, then

Case:

i) If <target table> specifies ONLY, then LUT is identified for deletion processing without
subtables.

ii) Otherwise, LUT is identified for deletion processing with subtables.
NOTE 295 – Identifying a base table for deletion processing, with or without subtables, is an
implementation-dependent mechanism.

b) If LUT is a viewed table, then the General Rules of Subclause 14.16, ‘‘Effect of deleting some
rows from a viewed table’’, are applied with <target table> as VIEW NAME.

9) The General Rules of Subclause 14.14, ‘‘Effect of deleting rows from base tables’’, are applied.

668 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.6 <delete statement: positioned>

10) If, while CR is open, the row from which the current row of CR is derived has been marked for
deletion by any <delete statement: searched>, marked for deletion by any <delete statement:
positioned> that identifies any cursor other than CR, updated by any <update statement:
searched>, or updated by any <update statement: positioned> that identifies any cursor other
than CR, then a completion condition is raised: warning — cursor operation conflict.

11) If the <delete statement: positioned> deleted the last row of CR, then the position of CR is after
the last row; otherwise, the position of CR is before the next row.

Conformance Rules

None.

Data manipulation 669

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.7 <delete statement: searched>

14.7 <delete statement: searched>

Function
Delete rows of a table.

Format

<delete statement: searched> ::=
DELETE FROM <target table>
[WHERE <search condition>]

Syntax Rules

1) Let TN be the <table name> contained in the <target table>. Let T be the table identified by
TN.

2) T shall be an updatable table.

3) TN is an exposed <table or query name> whose scope is the <delete statement: searched>.

4) If the <delete statement: searched> is contained in a <triggered SQL statement>, then the
<search condition> shall not contain a <value specification> that specifies a parameter reference.

5) T is the subject table of the <delete statement: searched>.

6) TN shall not identify an old transition table or a new transition table.

7) If WHERE <search condition> is not specified, then WHERE TRUE is implicit.

8) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that possibly modifies SQL-data.

Access Rules

1) Case:

a) If <delete statement: searched> is contained in an <SQL schema statement>, then let A be
the <authorization identifier> that owns that schema.

i) The applicable privileges for A shall include DELETE for TN.

ii) If <target table> immediately contains ONLY, then the applicable privileges for A shall
include SELECT WITH HIERARCHY OPTION on at least one supertable of T.

b) Otherwise,

i) The current privileges shall include DELETE for TN.

ii) If <target table> immediately contains ONLY, then the current privileges shall include
SELECT WITH HIERARCHY OPTION on at least one supertable of T.

NOTE 296 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

670 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.7 <delete statement: searched>

General Rules

1) If the access mode of the current SQL-transaction or the access mode of the branch of the cur-
rent SQL-transaction at the current SQL-connection is read-only, and T is not a temporary table,
then an exception condition is raised: invalid transaction state — read-only SQL-transaction.

2) If there is any sensitive cursor CR that is currently open in the SQL-transaction in which this
SQL-statement is being executed, then

Case:

a) If CR has not been held into a subsequent SQL-transaction, then either the change resulting
from the successful execution of this statement shall be made visible to CR or an exception
condition is raised: cursor sensitivity exception — request failed.

b) Otherwise, whether the change resulting from the successful execution of this SQL-
statement is made visible to CR is implementation-defined.

3) If there is any cursor CR that is currently open and whose <declare cursor> contained
INSENSITIVE, then either the change resulting from the successful execution of this state-
ment shall be invisible to CR, or an exception condition is raised: cursor sensitivity exception —
request failed.

4) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

5) The <search condition> is applied to each row of T with the exposed <correlation name>s or
<table or query name>s of the <table reference> bound to that row.

6) Case:

a) If <target table> contains ONLY, then the rows for which the result of the <search condi-
tion> is true and for which there is no subrow in a proper subtable of T are identified for
deletion from T.

b) Otherwise, the rows for which the result of the <search condition> is true are identified for
deletion from T.

NOTE 297 – Identifying a row for deletion is an implementation-dependent mechanism.

7) Case:

a) If T is a base table, then

Case:

i) If <target table> specifies ONLY, then T is identified for deletion processing without
subtables.

ii) Otherwise, T is identified for deletion processing with subtables.
NOTE 298 – Identifying a base table for deletion processing, with or without subtables, is an
implementation-dependent mechanism.

b) If T is a viewed table, then the General Rules of Subclause 14.16, ‘‘Effect of deleting some
rows from a viewed table’’, are applied with <target table> as VIEW NAME.

8) The General Rules of Subclause 14.14, ‘‘Effect of deleting rows from base tables’’, are applied.

Data manipulation 671

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.7 <delete statement: searched>

9) Each <subquery> in the <search condition> is effectively executed for each row of T and the
results are used in the application of the <search condition> to the given row of T. If any
executed <subquery> contains an outer reference to a column of T, then the reference is to the
value of that column in the given row of T.
NOTE 299 – ‘‘Outer reference’’ is defined in Subclause 6.6, ‘‘<column reference>’’.

10) If any row that is marked for deletion by the <delete statement: searched> has been marked for
deletion by any <delete statement: positioned> that identifies some cursor CR that is still open
or updated by any <update statement: positioned> that identifies some cursor CR that is still
open, then a completion condition is raised: warning — cursor operation conflict.

11) All rows that are marked for deletion are effectively deleted at the end of the <delete statement:
searched>, prior to the checking of any integrity constraints.

12) If <search condition> is specified, then the <search condition> is evaluated for each row of T
prior to the invocation of any <triggered action> caused by the imminent or actual deletion of
any row of T.

13) If no row is deleted, then a completion condition is raised: no data.

Conformance Rules

1) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table of T
shall be an underlying table of any <query expression> generally contained in the <search
condition>.

672 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.8 <insert statement>

14.8 <insert statement>

Function
Create new rows in a table.

Format

<insert statement> ::=
INSERT INTO <insertion target>
<insert columns and source>

<insertion target> ::=
<table name>

<insert columns and source> ::=
<from subquery>

| <from constructor>
| <from default>

<from subquery> ::=
[<left paren> <insert column list> <right paren>]
[override clause>]
<query expression>

<from constructor> ::=
[<left paren> <insert column list> <right paren>]
[<override clause>]
<contextually typed table value constructor>

<override clause> ::=
OVERRIDING USER VALUE

| OVERRIDING SYSTEM VALUE

<from default> ::=
DEFAULT VALUES

<insert column list> ::= <column name list>

Syntax Rules

1) Let TN be the <table name>; let T be the table identified by TN. If T is a view, then <target
table> is effectively replaced by:

ONLY (TN)

2) T shall be insertable-into.

3) If the descriptor of T includes a user-defined type name UDTN, then the data type descriptor of
the user-defined type UDT shall indicate that UDT is instantiable.

4) If LUT is a leaf generally underlying table of T and the descriptor of LUT includes a user-
defined type name UDTN, then the data type descriptor of the user-defined type UDT shall
indicate that UDT is instantiable.

5) A column identified by the <insert column list> is an object column.

Data manipulation 673

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.8 <insert statement>

6) T shall be an updatable table; each object column of T shall be an updatable column.

7) T is the subject table of the <insert statement>.

8) TN shall not identify an old transition table or a new transition table.

9) An <insert columns and source> that specifies DEFAULT VALUES is implicitly replaced by an
<insert columns and source> that specifies a <query expression> of the form

VALUES (DEFAULT, DEFAULT, . . . , DEFAULT)

where the number of ‘‘DEFAULT’’ entries is equal to the number of columns of T.

10) Each <column name> in the <insert column list> shall identify an updatable column of T. No
<column name> of T shall be identified more than once. If the <insert column list> is omitted,
then an <insert column list> that identifies all columns of T in the ascending sequence of their
ordinal positions within T is implicit.

11) Case:

a) If T is a referenceable table, then:

i) Let C be the self-referencing column.

ii) If C is a system-generated self-referencing column or a derived self-referencing column
and C is contained in <insert column list>, then <override clause> shall be specified;
otherwise, <override clause> shall not be specified.

b) Otherwise, <override clause> shall not be specified.

12) If <contextually typed table value constructor> CVC is specified, then the data type of every
<contextually typed value specification> CVS specified in every <contextually typed row value
expression> CRVS contained in CVC is the data type DT indicated in the column descriptor for
the positionally corresponding column in the explicit or implicit <insert column list>. If CVS is
an <empty specification>, DT shall be a collection type.

13) Let QT be the table specified by the <query expression> or <contextually typed table value
constructor>. The degree of QT shall be equal to the number of <column name>s in the <insert
column list>. The column of table T identified by the i-th <column name> in the <insert column
list> corresponds with the i-th column of QT.

14) The Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply to corresponding columns of T
and QT as TARGET and VALUE, respectively.

15) If the <insert statement> is contained in a <triggered SQL statement>, then the insert value
shall not contain a <value specification> that specifies a parameter reference.

Access Rules

1) Case:

a) If <insert statement> is contained in an <SQL schema statement>, then let A be the <au-
thorization identifier> that owns that schema. The applicable privileges for A for TN shall
include INSERT for each object column.

674 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.8 <insert statement>

b) Otherwise, the current privileges for TN shall include INSERT for each object column.
NOTE 300 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

2) If the <insert statement> is not contained in a <triggered SQL statement> and an <insert
column list> is specified, then the current privileges for TN shall include INSERT for each
<column name> in the <insert column list>.
NOTE 301 – The applicable privileges for a <table name> are defined in Subclause 10.5, ‘‘<privileges>’’.

General Rules

1) If the access mode of the current SQL-transaction or the access mode of the branch of the cur-
rent SQL-transaction at the current SQL-connection is read-only, and T is not a temporary table,
then an exception condition is raised: invalid transaction state — read-only SQL-transaction.

2) If there is any sensitive cursor CR that is currently open in the SQL-transaction in which this
SQL-statement is being executed, then

Case:

a) If CR has not been held into a subsequent SQL-transaction, then either the change resulting
from the successful execution of this statement shall be made visible to CR or an exception
condition is raised: cursor sensitivity exception — request failed.

b) Otherwise, whether the change resulting from the successful execution of this SQL-
statement is made visible to CR is implementation-defined.

3) If there is any cursor CR that is currently open and whose <declare cursor> contained
INSENSITIVE, then either the change resulting from the successful execution of this state-
ment shall be invisible to CR, or an exception condition is raised: cursor sensitivity exception —
request failed.

4) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

5) QT is effectively evaluated before insertion of any rows into T.

6) Let Q be the result of evaluating QT.

7) For each row R of Q:

a) A candidate row of T is effectively created in which the value of each column is its default
value, as specified in the General Rules of Subclause 11.5, ‘‘<default clause>’’. The candidate
row consists of every column of T.

b) If T has a self-referencing column RC, then

Case:

i) If RC is a system-generated self-referencing column, then the value of RC is effectively
replaced by the REF value of the candidate row.

ii) If RC is a derived self-referencing column, then the value of RC is effectively re-
placed by a value derived from the columns in the candidate row that correspond to
the list of attributes of the derived representation of the reference type of RC in an
implementation-dependent manner.

Data manipulation 675

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.8 <insert statement>

c) For each object column in the candidate row, let Ci be the object column identified by the
i-th <column name> in the <insert column list> and let SV be the i-th value of R. The
General Rules of Subclause 9.2, ‘‘Store assignment’’, are applied to C and SV as TARGET
and SOURCE, respectively.

d) For every Ci for which one of the following conditions is true:

i) Ci is not a self-referencing column of T.

ii) Ci is a user-generated self-referencing column of T.

iii) Ci is a self-referencing column of T and OVERRIDING SYSTEM VALUE is specified.

The General Rules of Subclause 9.2, ‘‘Store assignment’’, are applied to C and SV as
TARGET and SOURCE, respectively.

NOTE 302 – The data values allowable in the candidate row may be constrained by a WITH CHECK
OPTION constraint. The effect of a WITH CHECK OPTION constraint is defined in the General Rules of
Subclause 14.19, ‘‘Effect of inserting a table into a viewed table’’.

8) Let S be the table consisting of the candidate rows.

Case:

a) If T is a base table, then T is identified for insertion of source table S.
NOTE 303 – Identifying a base table for insertion of a source table is an implementation-dependent
operation.

b) If T is a viewed table, then the General Rules of Subclause 14.19, ‘‘Effect of inserting a table
into a viewed table’’, are applied with S as SOURCE and T as TARGET.

9) The General Rules of Subclause 14.17, ‘‘Effect of inserting tables into base tables’’, are applied.

10) If Q is empty, then a completion condition is raised: no data.

Conformance Rules

1) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table of T
shall be generally contained in the <query expression> immediately contained in the <insert
columns and source> except as the <table or query name> or <correlation name> of a column
reference.

2) Without Feature F222, ‘‘INSERT statement: DEFAULT VALUES clause’’, the <insert columns
and source> shall not specify DEFAULT VALUES.

3) Without Feature S024, ‘‘Enhanced structured types’’, for each column C identified in the explicit
or implicit <insert column list>, if the declared type of C is a structured type TY, then the
declared type of the corresponding column of the <query expression> or <contextually typed
table value constructor> shall be TY.

4) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not specify
<override clause>.

676 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.9 <update statement: positioned>

14.9 <update statement: positioned>

Function
Update a row of a table.

Format

<update statement: positioned> ::=
UPDATE <target table>
SET <set clause list>
WHERE CURRENT OF <cursor name>

<set clause list> ::=
<set clause> [{ <comma> <set clause> }...]

<set clause> ::=
<update target> <equals operator> <update source>

| <mutated set clause> <equals operator> <update source>

<update target> ::=
<object column>

| ROW
| <object column>

<left bracket or trigraph> <simple value specification> <right bracket or trigraph>

<object column> ::= <column name>

<mutated set clause> ::=
<mutated target> <period> <method name>

<mutated target> ::=
<object column>

| <mutated set clause>

<update source> ::=
<value expression>

| <contextually typed value specification>

Syntax Rules

1) If the <update source> of <set clause> SC specifies a <contextually typed value specification>
CVS, then the data type of CVS is the data type of the <update target> or <mutated set clause>
specified in SC.

2) Let CR be the cursor denoted by the <cursor name>.

3) Let TU be the simply underlying table of CR. TU is the subject table of the <update statement:
positioned>. TU shall have exactly one leaf underlying table LUT.
NOTE 304 – The ‘‘simply underlying table’’ of a <cursor specification> is defined in Subclause 14.1,
‘‘<declare cursor>’’.

4) Let TN be the <table name> contained in <target table>. TN shall identify LUT.

Data manipulation 677

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.9 <update statement: positioned>

5) <target table> shall specify ONLY if and only if the <table reference> contained in TY that
references LUT specifies ONLY.

6) TN shall not identify an old transition table or a new transition table.

7) CR shall be an updatable cursor.

8) Let T be the table identified by TN.

9) If an <update target> specifies ROW, then:

a) <set clause list> shall consist of exactly one <set clause> SC.

b) The Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply with an arbitrary site whose
declared type is the row type of T as TARGET and the <update source> of SC as VALUE,
respectively.

10) Each <column name> specified as an <object column> shall identify an updatable column of T.

11) If CR is an ordered cursor, then for each <object column> OC, the column of T identified by OC
shall not be directly or indirectly referenced in the <order by clause> of the defining <cursor
specification> for CR.

12) A <value expression> in a <set clause> shall not directly contain a <set function specification>.

13) If the <set clause list> OSCL contains one or more <set clause>s that contain a <mutated set
clause>, then:

a) Let N be the number of <set clause>s in OSCL that contain a <mutated set clause>.

b) The declared type of the column identified by the <object column> contained in a <mutated
set clause> shall be a user-defined type.

c) Let RCVEi, 1 � i � N, be the <row value expression> simply contained in the i-th <set
clause> MSCi that contains a <mutated set clause>. Let FNi be the <method name> im-
mediately contained in MSCi. Let MTi be the <mutated target> immediately contained in
MSCi.

d) OSCL is equivalent to a <set clause list> NSCL derived as follows:

i) Let SCL be a <set column list> derived from OSCL be replacing every <set clause> SCi,
1 (one) � i � N, that contains a <mutated set clause> with:

MTi = MTi.FNi (RCVEi)

Let Ni be the number of <method name>s contained in MSCi and let FNi;j, 1 (one) � j �
Ni, be the <method name> contained in MSCi, in order from right to left.

Let MT1;j be MTi and let FN1;j be FNi. For each j between 1 (one) and Ni, let MTi;j be
MTi;j+1 <period> FNi;j+1. In the j-th <mutated set clause> in MSCi, let Vi;1 be RCVEi
and let Vi;j be:

MTi;j.FNi;j = Vi;j

For each j from 2 to Ni, the j-th <mutated set clause> is replaced by:

MTi;j = MTi;j . FNi;j (MTi;j�1 . FNi;j�1 (Vi;j�1))

678 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.9 <update statement: positioned>

ii) Let SCi, 1 � i � N, be the <set clause> in SCL that corresponds to the <mutated set
clause> MSCi in OSCL.

iii) For i ranging from 1 (one) to N, if the <object column> contained in SCi identifies a
column C that is the <object column> of a <set clause> SCj that corresponds to the
<mutated set clause> MSCj in OSCL, where j < i, then:

1) Every occurrence of a column reference that refers to C in SCi is replaced by the
<row value expression> contained in SCj.

2) SCj is deleted from SCL.

iv) Let NSCL be SCL.

14) Equivalent <object column>s shall not appear more than once in a <set clause list>.
NOTE 305 – Multiple occurrences of equivalent <object column>s within <mutated set clause>s are
eliminated by the preceding Syntax Rules of this Subclause.

15) If the cursor identified by <cursor name> was specified using an explicit or implicit <updatabil-
ity clause> of FOR UPDATE, then each <column name> specified as an <object column> shall
identify a column in the explicit or implicit <column name list> associated with the <updatabil-
ity clause>.

16) The scope of the <table reference> is the entire <update statement: positioned>.

17) For every <object column> in a <set clause>,

Case:

a) If the <update target> immediately contains <simple value specification>, then the declared
type of the column of T identified by the <object column> shall be an array type. The Syntax
Rules of Subclause 9.2, ‘‘Store assignment’’, apply to an arbitrary site whose declared type
is the element type of the column of T identified by the <object column> and the <update
source> of the <set clause> as TARGET and VALUE, respectively.

b) Otherwise, the Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply to the column of T
identified by the <object column> and the <update source> of the <set clause> as TARGET
and VALUE, respectively.

18) The <table name> specified by <target table> is an exposed <table or query name> whose scope
is the <update statement: positioned>.

Access Rules

1) Case:

a) If <update statement: positioned> is contained in an <SQL schema statement>, then let
A be the <authorization identifier> that owns that schema. The applicable privileges for A
shall include UPDATE for each <object column>.

b) Otherwise, the current privileges shall include UPDATE for each <object column>.
NOTE 306 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

Data manipulation 679

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.9 <update statement: positioned>

General Rules

1) If the access mode of the current SQL-transaction or the access mode of the branch of the
current SQL-transaction at the current SQL-connection is read-only and not every leaf generally
underlying table of CR is a temporary table, then an exception condition is raised: invalid
transaction state — read-only SQL-transaction.

2) If there is any sensitive cursor CR that is currently open in the SQL-transaction in which this
SQL-statement is being executed, then

Case:

a) If CR has not been held into a subsequent SQL-transaction, then either the change resulting
from the successful execution of this statement shall be made visible to CR or an exception
condition is raised: cursor sensitivity exception — request failed.

b) Otherwise, whether the change resulting from the successful execution of this SQL-
statement is made visible to CR is implementation-defined.

3) If there is any cursor CR that is currently open and whose <declare cursor> contained
INSENSITIVE, then either the change resulting from the successful execution of this state-
ment shall be invisible to CR, or an exception condition is raised: cursor sensitivity exception —
request failed.

4) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

5) If cursor CR is not positioned on a row, then an exception condition is raised: invalid cursor
state.

6) If CR is a holdable cursor and a <fetch statement> has not been issued against CR within the
current SQL-transaction, then an exception condition is raised: invalid cursor state.

7) An object row is any row of a base table from which the current row of CR is derived.

8) If, while CR is open, an object row has been marked for deletion by any <delete statement:
searched>, marked for deletion by any <delete statement: positioned> that identifies any cursor
other than CR, updated by any <update statement: searched>, or updated by any <update
statement: positioned> that identifies any cursor other than CR, then a completion condition is
raised: warning — cursor operation conflict.

9) The value associated with DEFAULT is the default value for the <object column> in the contain-
ing <set clause>, as indicated in the General Rules of Subclause 11.5, ‘‘<default clause>’’.

10) Each <update source> is effectively evaluated for the current row before any of the current row’s
object rows is updated.

11) CR remains positioned on its current row, even if an exception condition is raised during evalu-
ation of any <update source>.

12) A <set clause> specifies one or more object columns and an update value. An object column is
a column identified by an <object column> in the <set clause>. The update value is the value
specified by the <row value expression>.
NOTE 307 – The data values allowable in the current row may be constrained by a WITH CHECK
OPTION constraint. The effect of a WITH CHECK OPTION constraint is defined in the General Rules of
Subclause 14.22, ‘‘Effect of replacing some rows in a viewed table’’.

680 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.9 <update statement: positioned>

13) If a <set clause> contains a <row value expression> that is a <row value constructor> that
immediately contains a <row subquery> RS, and the result of RS is an empty table, then the
update value for that <set clause> is D null values, where D is the degree of RS.

14) A candidate new row is constructed by copying the current row of CR and updating it as speci-
fied by each <set clause>. For each <set clause>, the value of the column identified by the i-th
object column in the <set clause>, denoted by C, is replaced as follows:

Case:

a) If the i-th <set clause> contains an <update target> that immediately contains a <simple
value specification>, then

Case:

i) If the value of C is null, then an exception condition is raised: data exception — null
value in array target.

ii) Otherwise:

1) Let N be the maximum cardinality of C.

2) Let M be the cardinality of the value of C.

3) Let I be the value of the <simple value specification> immediately contained in
<update target>.

4) Let EDT be the element type of C.

5) Case:

A) If I is greater than zero and less than or equal to M, then the value of C is
replaced by an array A with element type EDT and cardinality M derived as
follows:

I) For j varying from 1 (one) to I�1 and from I+1 to M, the j-th element in A is
the value of the j-th element in C.

II) The I-th element of A is set to the specified update value, denoted by SV, by
applying the General Rules of Subclause 9.2, ‘‘Store assignment’’, to the I-th
element of A and SV as TARGET and VALUE, respectively.

III) If an exception condition is raised during the assignment of SV to the I-th
element of A, then CR remains positioned on its current row.

B) If I is greater than M and less than or equal to N, then the value of C is replaced
by an array A with element type EDT and cardinality I derived as follows:

I) For j varying from 1 (one) to M, the j-th element in A is the value of the j-th
element in C.

II) For j varying from M+1 to I�1, the j-th element in A is the null value.

III) The I-th element of A is set to the specified update value, denoted by SV, by
applying the General Rules of Subclause 9.2, ‘‘Store assignment’’, to the I-th
element of A and SV as TARGET and VALUE, respectively.

Data manipulation 681

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.9 <update statement: positioned>

IV) If an exception condition is raised during the assignment of SV to the I-th
element of A, then CR remains positioned on its current row.

C) Otherwise, an exception condition is raised: data exception — array element
error.

b) Otherwise, the value of C is replaced by the i-th column value of the specified update value,
denoted by SV. The General Rules of Subclause 9.2, ‘‘Store assignment’’, are applied to C
and SV as TARGET and VALUE, respectively. If an exception condition occurs during the
assignment of SV to C, then CR remains positioned on its current row.

15) Case:

a) If <update target> specifies ROW, then let CL be the set of all columns of T.

b) Otherwise, let CL be the columns of T identified by the <object columns> contained in the
<set clause list>.

16) Let R1 be the candidate new row. The current row R of CR is replaced by R1. Exactly one row
TR in T such that each field in R is not distinct from the corresponding field in TR is identified
for replacement in T. Let TR1 be a row consisting of the fields of R1 and the fields of TR
that have no corresponding fields in R1, ordered according to the order of their corresponding
columns in T. TR1 is the replacement row for TR and { (TR, TR1) } is the replacement set for
T.
NOTE 308 – In case more than one row R1 satisfies the stated condition, it is implementation-
dependent which one is identified for replacement.

NOTE 309 – Identifying a row for replacement, associating a replacement row with an identified row,
and associating a replacement set with a table are implementation-dependent mechanisms.

17) Case:

a) If LUT is a base table, then

Case:

i) If <target table> specifies ONLY, then LUT is identified for replacement processing
without subtables with respect to object columns CL.

ii) Otherwise, LUT is identified for replacement processing with subtables with respect to
object columns CL.

NOTE 310 – Identifying a base table for replacement processing, with or without subtables, is an
implementation-dependent mechanism. In general, though not here, the list of object columns can be
empty.

b) If LUT is a viewed table, then the General Rules of Subclause 14.22, ‘‘Effect of replacing
some rows in a viewed table’’, are applied with <target table> as VIEW NAME.

18) The General Rules of Subclause 14.20, ‘‘Effect of replacing rows in base tables’’, are applied.

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not contain any
<update target> that immediately contains a <simple value specification>.

2) Without Feature F831, ‘‘Full cursor update’’, CR shall not be an ordered cursor.

682 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.9 <update statement: positioned>

3) Without Feature T411, ‘‘UPDATE statement: SET ROW option’’, <update target> shall not
specify ROW.

4) Without Feature S024, ‘‘Enhanced structured types’’, if the declared type of the <update target>
UT in a <set clause> is a structured type TY, then the declared type of the <update source>
contained in the same <set clause> shall be TY.

5) Without Feature S024, ‘‘Enhanced structured types’’, if the declared type of the last <method
name> LMN in a <set clause> is a structured type TY, then the declared type of the <update
source> contained in the same <set clause> shall be TY.

Data manipulation 683

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.10 <update statement: searched>

14.10 <update statement: searched>

Function
Update rows of a table.

Format

<update statement: searched> ::=
UPDATE <target table>
SET <set clause list>
[WHERE <search condition>]

Syntax Rules

1) Let TN be the <table name> contained in <target table>; let T be the table identified by TN. T
shall be an updatable table.

2) T is the subject table of the <update statement: searched>.

3) TN shall not identify an old transition table or a new transition table.

4) If an <update target> specifies ROW, then:

a) <set clause list> shall consist of exactly one <set clause> SC.

b) The Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply with an arbitrary site whose
declared type is the row type of T as TARGET and the <update source> of SC as VALUE,
respectively.

5) A <value expression> in a <set clause> shall not directly contain a <set function specification>.

6) Each <column name> specified as an <object column> shall identify an updatable column of T.

7) If the <set clause list> OSCL contains one or more <set clause>s that contain a <mutated set
clause>, then:

a) Let N be the number of <set clause>s in OSCL that contain a <mutated set clause>.

b) The declared type of the column identified by the <object column> contained in a <mutated
set clause> shall be a user-defined type.

c) Let RCVEi, 1 � i � N, be the <row value expression> simply contained in the i-th <set
clause> MSCi that contains a <mutated set clause>. Let FNi be the <method name> im-
mediately contained in MSCi. Let MTi be the <mutated target> immediately contained in
MSCi.

d) OSCL is equivalent to a <set clause list> NSCL derived as follows:

i) Let SCL be a <set column list> derived from OSCL be replacing every <set clause> SCi,
1 (one) � i � N, that contains a <mutated set clause> with:

MTi = MTi.FNn (RVEi)

Let Ni be the number of <method name>s contained in MSCi and let FNi;j, 1 (one) � j �
Ni, be the <method name> contained in MSCi, in order from right to left.

684 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.10 <update statement: searched>

Let MT1;j be MTi and let FN1;j be FNi. For each j between 1 (one) and Ni, let MTi;j be
MTi;j+1 <period> FNi;j+1. In the j-th <mutated set clause> in MSCi, let Vi;1 be RCVEi
and let Vi;j be:

MTi;j . FNi;j = Vi;j

For each j from 2 to Ni, the j-th <mutated set clause> is replaced by:

MTi;j = MTi;j . FNi;j (MTi;j�1 . FNi;j�1 (Vi;j�1))

ii) Let SCi, 1 � i � N, be the <set clause> in SCL that corresponds to the <mutated set
clause> MSCi in OSCL.

iii) For i ranging from 1 (one) to N, if the <object column> contained in SCi identifies a
column C that is the <object column> of a <set clause> SCj that corresponds to the
<mutated set clause> MSCj in OSCL, where j < i, then:

1) Every occurrence of a column reference that refers to C in SCi is replaced by the
<row value expression> contained in SCj.

2) SCj is deleted from SCL.

iv) Let NSCL be SCL.

8) Equivalent <object column>s shall not appear more than once in a <set clause list>.
NOTE 311 – Multiple occurrences of equivalent <object column>s within <mutated set clause>s are
eliminated by the preceding Syntax Rules of this Subclause.

9) TN is an exposed <table or query name> whose scope is the <update statement: searched>.

10) For every <object column> in a <set clause>,

Case:

a) If the <update target> immediately contains <simple value specification>, then the declared
type of the column of T identified by the <object column> shall be an array type. The Syntax
Rules of Subclause 9.2, ‘‘Store assignment’’, apply to an arbitrary site whose declared type
is the element type of the column of T identified by the <object column> and the <update
source> of the <set clause> as TARGET and VALUE, respectively.

b) Otherwise, the Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, apply to the column of T
identified by the <object column> and the <update source> of the <set clause> as TARGET
and VALUE, respectively.

11) If the <update statement: searched> is contained in a <triggered SQL statement>, then the
<search condition> shall not contain a <value specification> that specifies a parameter reference.

12) The <search condition> shall not generally contain a <routine invocation> whose subject routine
is an SQL-invoked routine that possibly modifies SQL-data.

Data manipulation 685

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.10 <update statement: searched>

Access Rules

1) Case:

a) If <update statement: searched> is contained in an <SQL schema statement>, then let A be
the <authorization identifier> that owns that schema.

i) The applicable privileges for A for TN shall include UPDATE for each <object column>.

ii) If <target table> immediately contains ONLY, then the applicable privileges for A shall
include SELECT WITH HIERARCHY OPTION on at least one supertable of T.

b) Otherwise,

i) The current privileges for TN shall include UPDATE for each <object column>.

ii) If <target table> immediately contains ONLY, then the current privileges shall include
SELECT WITH HIERARCHY OPTION on at least one supertable of T.

NOTE 312 – ‘‘current privileges’’ and ‘‘applicable privileges’’ are defined in Subclause 10.5, ‘‘<privi-
leges>’’.

General Rules

1) If the access mode of the current SQL-transaction or the access mode of the branch of the cur-
rent SQL-transaction at the current SQL-connection is read-only and T is not a temporary table,
then an exception condition is raised: invalid transaction state — read-only SQL-transaction.

2) If there is any sensitive cursor CR that is currently open in the SQL-transaction in which this
SQL-statement is being executed, then

Case:

a) If CR has not been held into a subsequent SQL-transaction, then either the change resulting
from the successful execution of this statement shall be made visible to CR or an exception
condition is raised: cursor sensitivity exception — request failed.

b) Otherwise, whether the change resulting from the successful execution of this SQL-
statement is made visible to CR is implementation-defined.

3) If there is any cursor CR that is currently open and whose <declare cursor> contained
INSENSITIVE, then either the change resulting from the successful execution of this state-
ment shall be invisible to CR, or an exception condition is raised: cursor sensitivity exception —
request failed.

4) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

5) Case:

a) If <target table> contains ONLY, then

Case:

i) If a <search condition> is not specified, then all rows of T for which there is no subrow
in a proper subtable of T are the subject rows.

686 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.10 <update statement: searched>

ii) If a <search condition> is specified, then it is applied to each row of T with the exposed
<correlation name>s or <table or query name>s of the <table reference> bound to that
row, and the subject rows are those rows for which the result of the <search condition> is
true and for which there is no subrow in a proper subtable of T. The <search condition>
is effectively evaluated for each row of T before updating any row of T.

Each <subquery> in the <search condition> is effectively executed for each row of T and
the results used in the application of the <search condition> to the given row of T. If any
executed <subquery> contains an outer reference to a column of T or to T itself, then the
reference is to the value of that column in the given row of T.

b) Otherwise,

Case:

i) If a <search condition> is not specified, then all rows of T are the subject rows.

ii) If a <search condition> is specified, then it is applied to each row of T with the exposed
<table name> of the <target table> bound to that row, and the subject rows are those
rows for which the result of the <search condition> is true . The <search condition> is
effectively evaluated for each row of T before any row of T is updated.

Each <subquery> in the <search condition> is effectively executed for each row of T and
the results used in the application of the <search condition> to the given row of T. If any
executed <subquery> contains an outer reference to a column of T or to T itself, then the
reference is to the value of that column in the given row of T.
NOTE 313 – Outer reference is defined in Subclause 6.6, ‘‘<column reference>’’.

6) If T is a base table, then each subject row is also an object row; otherwise, an object row is any
row of a leaf generally underlying table of T from which a subject row is derived.

7) If any row in the set of object rows has been marked for deletion by any <delete statement:
positioned> that identifies some cursor CR that is still open or updated by any <update state-
ment: positioned> that identifies some cursor CR that is still open, then a completion condition
is raised: warning — cursor operation conflict.

8) If a <search condition> is specified, then the <search condition> is evaluated for each row of T
prior to the invocation of any <triggered action> caused by the update of any row of T.

9) The <update source> of each <set clause> is effectively evaluated for each row of T before any
row of T is updated.

10) A <set clause> specifies one or more object columns and an update value. An object column is
a column identified by an <object column> in the <set clause>. The update value is the value
specified by the <update source> contained in the <set clause>.
NOTE 314 – The data values allowable in the object rows may be constrained by a WITH CHECK
OPTION constraint. The effect of a WITH CHECK OPTION constraint is defined in the General Rules of
Subclause 14.22, ‘‘Effect of replacing some rows in a viewed table’’.

11) If a <set clause> contains a <row value expression> that is a <row value constructor> that
immediately contains a <row subquery> RS, and the result of RS is an empty table, then for
each subject row the update value for that <set clause> is D null values, where D is the degree
of RS.

Data manipulation 687

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.10 <update statement: searched>

12) For each subject row, a candidate new row is constructed by copying the subject row and updat-
ing it as specified by each <set clause>. For each <set clause>, the value of the column identified
by the i-th object column in the <set clause>, denoted by C, is replaced as follows:

Case:

a) If the i-th <set clause> contains an <update target> that immediately contains a <simple
value specification>, then

Case:

i) If the value of C is null, then an exception condition is raised: data exception — null
value in array target.

ii) Otherwise:

1) Let N be the maximum cardinality of C.

2) Let M be the cardinality of the value of C.

3) Let I be the value of the <simple value specification> immediately contained in
<update target>.

4) Let EDT be the element type of C.

5) Case:

A) If I is greater than zero and less than or equal to M, then the value of C is
replaced by an array A with element type EDT and cardinality M derived as
follows:

I) For j varying from 1 (one) to I�1 and from I+1 to M, the j-th element in A is
the value of the j-th element in C.

II) The I-th element of A is set to the specified update value, denoted by SV, by
applying the General Rules of Subclause 9.2, ‘‘Store assignment’’, to the I-th
element of A and SV as TARGET and VALUE, respectively.

B) If I is greater than M and less than or equal to N, then the value of C is replaced
by an array A with element type EDT and cardinality I derived as follows:

I) For j varying from 1 (one) to M, the j-th element in A is the value of the j-th
element in C.

II) For j varying from M+1 to I�1, the j-th element in A is the null value.

III) The I-th element of A is set to the specified update value, denoted by SV, by
applying the General Rules of Subclause 9.2, ‘‘Store assignment’’, to the I-th
element of A and SV as TARGET and VALUE, respectively.

C) Otherwise, an exception condition is raised: data exception — array element
error.

b) Otherwise, the value of C is replaced by the i-th column value of the specified update value,
denoted by SV. The General Rules of Subclause 9.2, ‘‘Store assignment’’, are applied to C
and SV as TARGET and VALUE, respectively.

688 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.10 <update statement: searched>

13) Case:

a) If <update target> specifies ROW, then let CL be the set of all columns of T.

b) Otherwise, let CL be the columns of T identified by the <object columns> contained in the
<set clause list>.

14) Each subject row SR is identified for replacement, by its corresponding candidate new row CNR,
in T. The set of (SR, CNR) pairs is the replacement set for T.
NOTE 315 – Identifying a row for replacement, associating a replacement row with an identified row,
and associating a replacement set with a table are implementation-dependent operations.

15) Case:

a) If T is a base table, then

Case:

i) If <target table> specifies ONLY, then T is identified for replacement processing without
subtables with respect to object columns CL.

ii) Otherwise, T is identified for replacement processing with subtables with respect to object
columns CL.

NOTE 316 – Identifying a base table for replacement processing, with or without subtables, is an
implementation-dependent mechanism. In general, though not here, the list of object columns can be
empty.

b) If T is a viewed table, then the General Rules of Subclause 14.22, ‘‘Effect of replacing some
rows in a viewed table’’, are applied with <target table> as VIEW NAME.

16) The General Rules of Subclause 14.20, ‘‘Effect of replacing rows in base tables’’, are applied.

17) If the set of object rows is empty, then a completion condition is raised: no data.

Conformance Rules

1) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table of T
shall be an underlying table of any <query expression> generally contained in the <search con-
dition> or in any <value expression> simply contained in a <row value expression> immediately
contained in any <set clause> contained in the <set clause list>.

Data manipulation 689

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.11 <temporary table declaration>

14.11 <temporary table declaration>

Function
Declare a declared local temporary table.

Format

<temporary table declaration> ::=
DECLARE LOCAL TEMPORARY TABLE <table name>
<table element list>
[ON COMMIT <table commit action> ROWS]

Syntax Rules

1) Let TN be the <table name> of a <temporary table declaration> TTD, and let T be the <qualified
identifier> of TN.

Case:

a) If TN contains a <local or schema qualifier> LSQ, then TTD shall be contained in an
SQL-client module M and LSQ shall be ‘‘MODULE’’.

b) If TN does not contain a <local or schema qualifier>, then TTD shall be contained in an
SQL-client module M and ‘‘MODULE’’ is implicit.

2) If a <temporary table declaration> is contained in an SQL-client module, then the <qualified
identifier> of TN shall not be equivalent to the <qualified identifier> of the <table name> of any
other <temporary table declaration> that is contained in M.

3) The descriptor of the table defined by a <temporary table declaration> includes TN and the
column descriptor specified by each <column definition>. The i-th column descriptor is given by
the i-th <column definition>.

4) A <temporary table declaration> shall contain at least one <column definition>.

5) If ON COMMIT is not specified, then ON COMMIT DELETE ROWS is implicit.

Access Rules

None.

General Rules

1) Let U be the implementation-dependent <schema name> that is effectively derived from the
implementation-dependent SQL-session identifier associated with the SQL-session and an
implementation-dependent name associated with the SQL-client module that contains the
<temporary table declaration>.

2) Let UI be the current user identifier and let R be the current role name.

Case:

a) If UI is not the null value, then let A be UI.

690 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.11 <temporary table declaration>

b) Otherwise, let A be R.

3) The definition of T within an SQL-client module is effectively equivalent to the definition of
a persistent base table U.T. Within the SQL-client module, any reference to MODULE.T is
equivalent to a reference to U.T.

4) A set of privilege descriptors is created that define the privileges INSERT, SELECT, UPDATE,
DELETE, and REFERENCES on this table and INSERT, SELECT, UPDATE, and REFERENCES
for every <column definition> in the table definition to A. These privileges are not grantable.
The grantor for each of these privilege descriptors is set to the special grantor value ‘‘_
SYSTEM’’.

5) The definition of a temporary table persists for the duration of the SQL-session. The termi-
nation of the SQL-session is effectively followed by the execution of the following <drop table
statement> with the current authorization identifier A and current <schema name> U without
further Access Rule checking:

DROP TABLE T CASCADE

6) The definition of a declared local temporary table does not appear in any view of the Information
Schema.

Conformance Rules

1) Without Feature F531, ‘‘Temporary tables’’, conforming SQL language shall not contain any
<temporary table declaration>.

Data manipulation 691

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.12 <free locator statement>

14.12 <free locator statement>

Function
Remove the association between a locator variable and the value that is represented by that locator.

Format

<free locator statement> ::=
FREE LOCATOR <locator reference> [{ <comma> <locator reference> }...]

<locator reference> ::= <host parameter name>

Syntax Rules

1) Each host parameter identified by <host parameter name> immediately contained in <locator
reference> shall be a binary large object locator parameter, a character large object locator
parameter, an array locator parameter, or a user-defined type locator parameter.

Access Rules

None.

General Rules

1) For every <locator reference> LR immediately contained in <free locator statement>, let L be
the value of LR.

Case:

a) If L is not a valid locator value, then an exception condition is raised: locator exception —
invalid specification.

b) Otherwise, L is marked invalid.

Conformance Rules

None.

692 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.13 <hold locator statement>

14.13 <hold locator statement>

Function
Mark a locator variable as being holdable.

Format

<hold locator statement> ::=
HOLD LOCATOR <locator reference> [{ <comma> <locator reference> }...]

Syntax Rules

1) Each host parameter identified by <host parameter name> immediately contained in <locator
reference> shall be a binary large object locator parameter, a character large object locator
parameter, an array locator parameter, or a user-defined type locator parameter.

Access Rules

None.

General Rules

1) For every <locator reference> LR immediately contained in <hold locator statement>, let L be
the value of LR.

Case:

a) If L is not a valid locator value, then an exception condition is raised: locator exception —
invalid specification.

b) Otherwise, L is marked holdable.

Conformance Rules

1) Without Feature T561, ‘‘Holdable locators’’, conforming SQL language shall not contain any
<hold locator statement>.

Data manipulation 693

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.14 Effect of deleting rows from base tables

14.14 Effect of deleting rows from base tables

Function
Specify the effect of deleting rows from one or more base tables.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let TT be the set consisting of every base table that is identified for deletion processing. Let S
be the set consisting of every row identified for deletion in some table in TT.

2) For every row R in S, every row SR that is a subrow or a superrow of R is identified for deletion
from the base table BT containing SR, and BT is identified for deletion processing.

3) The current trigger execution context CTEC, if any, is preserved, and new trigger execution
context NTEC is created with an empty set of state changes SSC.

4) For every table T in TT, for every table ST that is a supertable of T or, unless T is identified
for deletion processing without subtables, a subtable of T, a state change SC is added to SSC as
follows:

a) The set of affected rows SAR by the SQL-update operation consists of one copy each of every
row that is a subrow or superrow of a member of S.

b) The set of transitions of SC is SAR.

c) The trigger event of SC is DELETE.

d) The subject table of SC is ST.

e) The column list of SC is empty.

5) The Syntax Rules and General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are
applied with SSC as the SET OF STATE CHANGES.

6) Every row that is identified for deletion in some table identified for deletion processing is
marked for deletion. These rows are no longer identified for deletion, nor are their containing
tables identified for deletion processing.
NOTE 317 – The General Rules of Subclause 11.8, ‘‘<referential constraint definition>’’, are now appli-
cable.

NOTE 318 – ‘‘Marking for deletion’’ is an implementation-dependent mechanism.

7) Each row that is marked for deletion from T is deleted from T.
NOTE 319 – See Subclause 4.16.3, ‘‘Operations involving tables’’, for the effect of deleting a row from a
table.

694 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.14 Effect of deleting rows from base tables

8) The Syntax Rule and General Rules of Subclause 10.11, ‘‘Execution of AFTER triggers’’, are
applied with SSC as the SET OF STATE CHANGES.
NOTE 320 – All constraints have already been checked for the deletion of the deleted rows of the
subject table, including all referential constraints.

9) CTEC, if present, is restored to become the current trigger execution context.

Data manipulation 695

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.15 Effect of deleting some rows from a derived table

14.15 Effect of deleting some rows from a derived table

Function
Specify the effect of deleting some rows from a derived table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let QE be TABLE in the application of this Subclause and let T be the result of evaluating QE.

2) Case:

a) If QE simply contains a <non-join query primary> that immediately contains a <non-join
query expression>, then let NJQE be that <non-join query expression>. Apply the General
Rules of Subclause 14.15, ‘‘Effect of deleting some rows from a derived table’’, with the table
identified by NJQE as TABLE.

b) If QE simply contains a <non-join query expression> NJE that specifies UNION ALL,
then let LO and RO be the <query expression> and the <query term>, respectively, that
are immediately contained in NJE. Let T1 and T2 be the tables identified by LO and RO,
respectively.

i) For every row R in T that has been identified for deletion, let RD be the row in either T1
or T2 from which R has been derived and let TD be that table. Identify RD for deletion.

ii) The General Rules of Subclause 14.15, ‘‘Effect of deleting some rows from a derived
table’’, are applied with T1 as TABLE.

iii) The General Rules of Subclause 14.15, ‘‘Effect of deleting some rows from a derived
table’’, are applied with T2 as TABLE.

c) Otherwise, let QS be the <query specification> simply contained in QE. Let TE be the
<table expression> immediately contained in QS, and TREF be the <table reference>s
simply contained in the <from clause> of TE.

i) Case:

1) If TREF contains only one <table reference>, then let TR1 be that <table reference>,
and let m be 1 (one).

2) Otherwise, let m be the number of <table reference>s that identify tables with
respect to which QS is one-to-one. Let TRi, 1 (one) � i � m, be those <table refer-
ence>s.
NOTE 321 – The notion of one-to-one <query specification>s is defined in Subclause 7.11,
‘‘<query specification>’’.

696 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.15 Effect of deleting some rows from a derived table

ii) Let TTi, 1 (one) � i � m, be the table identified by TRi.

iii) For every row R of T that has been identified for deletion, and for i ranging from 1 (one)
to m, let RD be the row in TTi from which R has been derived. Identify that RD for
deletion.

iv) For i ranging from 1 (one) to m,

Case:

1) If TTi is a base table, then

Case:

A) If TRi specifies ONLY, then TTi is identified for deletion processing without
subtables.

B) Otherwise, TTi is identified for deletion processing with subtables.

2) If TTi is a viewed table, then the General Rules of Subclause 14.16, ‘‘Effect of
deleting some rows from a viewed table’’, are applied with TRi as VIEW NAME.

3) Otherwise, the General Rules of Subclause 14.15, ‘‘Effect of deleting some rows from
a derived table’’, are applied with TRi as TABLE.

Data manipulation 697

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.16 Effect of deleting some rows from a viewed table

14.16 Effect of deleting some rows from a viewed table

Function
Specify the effect of deleting some rows from a viewed table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let VN be VIEW NAME in the application of this Subclause.

2) If VN specifies ONLY, then let QE be the original <query expression> included in the descriptor
of the view V identified by VN; otherwise, let QE be the <query expression> contained in that
descriptor. Let T be the result of evaluating QE.

3) For each row R of V that has been identified for deletion, let RD be the row in T from which R
has been derived; identify that row for deletion.

4) The General Rules of Subclause 14.15, ‘‘Effect of deleting some rows from a derived table’’, are
applied with QE as TABLE.

698 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.17 Effect of inserting tables into base tables

14.17 Effect of inserting tables into base tables

Function
Specify the effect of inserting each of one or more given tables into its associated base table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let TT be the set of base tables identified for insertion. Let S be the source (table) and let T be
the target (base table) specified in an application of this Subclause.

2) The current trigger execution context CTEC, if any, is preserved, and a new trigger execution
context NTEC is created with an empty set of state changes SSC.

3) Every supertable ST of T is identified for insertion. A source table for insertion into each ST is
constructed as follows:

a) Let S be the source table for the insertion into T. Let TVC be some <table value constructor>
whose value is S.

b) Let n be the number of column descriptors included in the table descriptor of ST and let
CDi, 1 (one) � i � n, be those column descriptors. Let SL be a <select list> containing n
<select sublist>s such that, for i ranging from 1 (one) to n, the i-th <select sublist> consists
of the column name included in CDi.

c) The source table for insertion into ST consists of the rows in the result of the <query
expression>:

SELECT SL FROM TVC

4) For every base table T that is identified for insertion, for every supertable ST of T (including T
itself), a new state change SC is added to SSC as follows:

a) The set of affected rows SAR consists of the rows in the source table for ST.

b) The set of transitions of SC is SAR.

c) The trigger event of SC is INSERT.

d) The subject table of SC is ST.

e) The column list of SC is empty.

5) The Syntax Rules and General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are
applied with SSC as the SET OF STATE CHANGES.

Data manipulation 699

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.17 Effect of inserting tables into base tables

6) For every base table T that is identified for insertion, for every supertable ST of T (including T
itself):

a) Let S be the source table for insertion into ST.

b) Each row in S is effectively replaced by the value of its new transition variable.

c) Every row in S is inserted into ST and ST is no longer identified for insertion.
NOTE 322 – See Subclause 4.16.3, ‘‘Operations involving tables’’, for the effect of inserting a row
into a table.

NOTE 323 – The General Rules of Subclause 11.8, ‘‘<referential constraint definition>’’, are now
applicable.

7) The Syntax Rules and General Rules of Subclause 10.11, ‘‘Execution of AFTER triggers’’, are
applied with SSC as the SET OF STATE CHANGES.
NOTE 324 – All constraints have already been checked for the insertion of the inserted rows of the
subject table, including all referential constraints.

8) CTEC, if present, is restored to become the current trigger execution context.

700 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.18 Effect of inserting a table into a derived table

14.18 Effect of inserting a table into a derived table

Function
Specify the effect of inserting a table into a derived table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let Q and T be the SOURCE and TARGET, respectively, in the application of this Subclause.

2) Let QE be the <query expression> included in the descriptor of T.

Case:

a) If QE simply contains a <non-join query primary> that immediately contains a <non-join
query expression>, let NJE be that <non-join query expression>. Apply the General Rules
of Subclause 14.18, ‘‘Effect of inserting a table into a derived table’’, with Q as SOURCE and
the result of NJE as TARGET.

b) Otherwise, let QS be the <query specification> simply contained in QE. Let TE be the <table
expression> immediately contained in QS, and TREF be the <table reference>s simply
contained in the <from clause> of TE. Let SL be the <select list> immediately contained in
QS, and n the number of <value expression>s VEj, 1 (one) � j � n, simply contained in SL.

i) Case:

1) If TREF contains only one <table reference>, then let TR1 be that <table reference>,
and let m be 1 (one).

2) Otherwise, let m be the number of <table reference>s that identify tables with
respect to which QS is one-to-one. Let TRi, 1 (one) � i � m, be those <table refer-
ence>s.

ii) Let TTi, 1 (one) � i � m, be the table identified by TRi, and let Si be an initially empty
table of candidate rows for TTi.

iii) For every row R of Q, and for i ranging from 1 (one) to m:

1) A candidate row of TTi is effectively created in which the value of each column is its
default value, as specified the General Rules of Subclause 11.5, ‘‘<default clause>’’.
The candidate row includes every column of TTi.

2) For j ranging from 1 (one) to n, let C be a column of some candidate row identified
by VEj, and let SV be the j-th value of R. The General Rules of Subclause 9.2, ‘‘Store
assignment’’, are applied to C and SV as TARGET and SOURCE, respectively.

3) The candidate rows are added to the corresponding Si.

Data manipulation 701

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.18 Effect of inserting a table into a derived table

iv) For i ranging from 1 (one) to m,

Case:

1) If TTi is a base table, then TTi is identified for insertion of source table Si.

2) If TTi is a viewed table, the General Rules of Subclause 14.19, ‘‘Effect of inserting a
table into a viewed table’’, are applied with Si as SOURCE and TTi as TARGET.

3) Otherwise, the General Rules of Subclause 14.18, ‘‘Effect of inserting a table into a
derived table’’, are applied with Si as SOURCE and TTi as TARGET.

702 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.19 Effect of inserting a table into a viewed table

14.19 Effect of inserting a table into a viewed table

Function
Specify the effect of inserting a table into a viewed table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let S and T be the SOURCE and TARGET, respectively, in application of this Subclause. Let
TD be the view descriptor of T. Let QE be the original <query expression> included in TD.

2) If TD indicates WITH CHECK OPTION, then:

a) Case:

i) If TD specifies LOCAL, then let VD be a view descriptor derived from TD as follows:

1) The WITH CHECK OPTION indication is removed.

2) Every reference contained in QE to a leaf underlying table LUT of QE is replaced by
a reference to a temporary table consisting of a copy of LUT.

ii) Otherwise, let VD be a view descriptor derived from TD as follows:

1) The WITH CHECK OPTION indication is removed.

2) Every reference contained in QE to an underlying table UV of QE that is a viewed
table is replaced by a reference to a view whose descriptor is identical to that of UV
except that WITH CASCADED CHECK OPTION is indicated.

3) Every reference contained in QE to a leaf underlying table LUT of QE that is a base
table is replaced by a reference to a temporary table consisting of a copy of LUT.

b) The General Rules of this Subclause are applied with S as SOURCE and the view V de-
scribed by VD as TARGET.

c) If the result of

EXISTS (SELECT * FROM S
EXCEPT ALL
SELECT * FROM V)

is true , then an exception condition is raised: with check option violation.

3) The General Rules of Subclause 14.18, ‘‘Effect of inserting a table into a derived table’’, are
applied, with S as SOURCE and QE as TARGET.

Data manipulation 703

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.20 Effect of replacing rows in base tables

14.20 Effect of replacing rows in base tables

Function
Specify the effect of replacing some of the rows in one or more base tables.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let TT be the set consisting of every base table that is identified for replacement processing.
Let S be the set consisting of every row identified for replacement in every table in TT.

2) For every base table T in TT, let OC be the object columns with respect to which T is identified
for replacement processing. Every table ST that is a subtable or supertable of T is identified for
replacement processing with respect to the intersection (possibly empty) of OC and the columns
of ST.

3) For every row R that is identified for replacement in some table T in TT, every row SR that is
a subrow or a superrow of R is identified for replacement in the base table ST that contains SR.
The replacement set RST for ST is derived from the replacement set RR for T as follows.

Case:

a) If ST is a subtable of T, each replacement row in RST is the corresponding replacement
row in RR extended with those fields of the corresponding identified row in ST that have no
corresponding column in T.

b) If ST is a supertable of T, each replacement row in RST is the corresponding replacement
row in RR minus those fields that have no corresponding column in ST.

4) The current trigger execution context CTEC, if any, is preserved and a new trigger execution
context NTEC is created with an empty set of state changes SSC.

5) For every table T in TT, for every table ST that is a supertable of T or, unless T is identified for
replacement processing without subtables, a subtable of T, let TL be the set consisting of the
names of the columns of ST. For every subset STL of TL such that either STL is empty or the
intersection of STL and OC is not empty, a state change SC is added to SSC as follows:

a) The set of affected rows SAR by the SQL-update operation consists of copies of the rows
identified for replacement in ST.

b) The set of transitions of SC is SAR.

c) The trigger event of SC is UPDATE.

d) The subject table of SC is ST.

e) The column list of SC is STL.

704 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.20 Effect of replacing rows in base tables

6) The Syntax Rules and General Rules of Subclause 10.10, ‘‘Execution of BEFORE triggers’’, are
applied with SSC as the SET OF STATE CHANGES.

7) For every table T in TT, for every table ST that is a supertable or a subtable of T, for every row
R that is identified for replacement in ST, R is replaced by its new transition variable. R is no
longer identified for replacement. ST is no longer identified for replacement processing.
NOTE 325 – The General Rules of Subclause 11.8, ‘‘<referential constraint definition>’’, are now appli-
cable.

8) The Syntax Rules and General Rules of Subclause 10.11, ‘‘Execution of AFTER triggers’’, are
applied with SSC as the SET OF STATE CHANGES.
NOTE 326 – All constraints have already been checked for the update of the replaced rows of the
identified tables, including all referential constraints.

9) CTEC, if present, is restored to become the current trigger execution context.

Data manipulation 705

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.21 Effect of replacing some rows in a derived table

14.21 Effect of replacing some rows in a derived table

Function
Specify the effect of replacing some rows in a derived table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let QE be the TABLE and RS the replacement for TABLE in the application of this Subclause.

2) Let T be the result of evaluating QE. Let CL be the object columns of QE.

3) Case:

a) If QE simply contains a <non-join query primary> that immediately contains a <non-join
query expression>, then let NJQE be that <non-join query expression>. Apply the General
Rules of Subclause 14.21, ‘‘Effect of replacing some rows in a derived table’’, with TR as the
table identified by NJQE, and with RS as the replacement set for TR.

b) If QE simply contains a <non-join query expression> NJE that specifies UNION ALL, let LO
and RO be the <query expression> and the <query term>, respectively, that are immediately
contained in NJE. Let T1 and T2 be the tables identified by LO and RO, respectively. Let
the columns of T1 and T2 that are underlying columns of the object columns of CL be
the object columns CL1 and CL2, respectively. Let RS1 and RS2 be the initially empty
replacement sets for T1 and T2, respectively.

i) For every pair (SR, CNR) of RS:

Case:

1) If SR has been derived from a row of T1, then identify that row SR1 for replacement
by CNR; the pair (SR1, CNR) is effectively added to RS1.

2) Otherwise, let SR2 be the row of T2 from which SR has been derived; identify that
row for replacement by CNR; the pair (SR2, CNR) is effectively added to RS2.

ii) The General Rules of Subclause 14.21, ‘‘Effect of replacing some rows in a derived table’’,
are applied with T1 as TABLE.

iii) The General rules of Subclause 14.21, ‘‘Effect of replacing some rows in a derived table’’,
are applied with T2 as TABLE.

c) Otherwise, let QS be the <query specification> simply contained in QE. Let TE be the <table
expression> immediately contained in QS, and let TREF be the <table reference>s simply
contained in the <from clause> of TE. Let SL be the <select list> immediately contained in

706 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.21 Effect of replacing some rows in a derived table

QS, and let n be the number of <value expression>s VEj, 1 (one) � j � n, simply contained
in SL.

i) Case:

1) If TREF contains only one <table reference>, then let TR1 be that <table reference>,
and let m be 1 (one).

2) Otherwise, let m be the number of <table reference>s that identify tables with
respect to which QS is one-to-one. Let TRi, 1 (one) � i � m, be those <table refer-
ence>s.

ii) Let TTi, 1 (one) � i � m, be the table identified by TRi, let RSi be an initially empty
replacement set for TTi, and let CLi be the object column list of TTi, such that every
column of CLi is an underlying column of CL.

iii) For every pair (SR, CNR) of RS, and for i ranging from 1 (one) to m:

1) Let SRTI be the row of TTi from which SR has been derived.

2) A candidate row CNRI of TTi is effectively created in which the value of each column
is its default value, as specified the General Rules of Subclause 11.5, ‘‘<default
clause>’’. The candidate row includes every column of TTi.

3) For j ranging from 1 (one) to n, let C be a column of some candidate row identified
by VEj, and let SV be the j-th value of R. The General Rules of Subclause 9.2, ‘‘Store
assignment’’, are applied to C and SV as TARGET and SOURCE, respectively.

4) Identify SRTI for replacement by CNRI; the pair (SRTI, CNRI) is effectively added
to SRi.

iv) For i ranging from 1 (one) to m

Case:

1) If TTi is a base table, then

Case:

A) If TRi specifies ONLY, then TTi is identified for replacement processing without
subtables with respect to the object columns CLi.

B) Otherwise, TTi is identified for replacement processing with subtables with
respect to the object columns CLi.

2) If TTi is a viewed table, then the General rules of Subclause 14.22, ‘‘Effect of replac-
ing some rows in a viewed table’’, are applied with TRi as VIEW NAME.

3) If TTi is a derived table, then the General rules of Subclause 14.21, ‘‘Effect of
replacing some rows in a derived table’’, are applied with TRi as TABLE.

Data manipulation 707

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
14.22 Effect of replacing some rows in a viewed table

14.22 Effect of replacing some rows in a viewed table

Function
Specify the effect of replacing some rows in a viewed table.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the VIEW NAME and RS the replacement set for VIEW NAME in application of this
Subclause. Let TD be the view descriptor of T. If VN specifies ONLY, then let QE be the original
<query expression> included in TD; otherwise, let QE be the <query expression> included in TD.

2) If TD indicates WITH CHECK OPTION, then:

a) Case:

i) If TD specifies LOCAL, then let VD be a view descriptor derived from TD as follows:

1) The WITH CHECK OPTION indication is removed.

2) Every reference contained in QE to a leaf underlying table LUT of QE is replaced by
a reference to a temporary table consisting of a copy of LUT.

ii) Otherwise, let VD be a view descriptor derived from TD as follows.

1) The WITH CHECK OPTION indication is removed.

2) Every reference contained in QE to an underlying table UV of QE that is a viewed
table is replaced by a reference to a view whose descriptor is identical to that of UV
except that WITH CASCADED CHECK OPTION is indicated.

3) Every reference contained in QE to a leaf underlying table LUT of T that is a base
table is replaced by a reference to a temporary table consisting of a copy of LUT.

b) The General Rules of this Subclause are applied with the view V described by VD as VIEW
NAME and RS as the replacement set for V.

c) Let S be the table consisting of the candidate new rows of RS. If the result of

EXISTS (SELECT * FROM S
EXCEPT ALL
SELECT * FROM V)

is true , then an exception condition is raised: with check option violation.

708 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
14.22 Effect of replacing some rows in a viewed table

3) The General Rules of Subclause 14.21, ‘‘Effect of replacing some rows in a derived table’’, are
applied with QE as TABLE and RS as the replacement set for QE.

Data manipulation 709

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

710 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

15 Control statements

15.1 <call statement>

Function
Invoke an SQL-invoked routine.

Format

<call statement> ::=
CALL <routine invocation>

Syntax Rules

1) Let RI be the <routine invocation> immediately contained in the <call statement>.

2) Let SR be the subject routine specified by applying the Syntax Rules of Subclause 10.4, ‘‘<rou-
tine invocation>’’, to RI.

3) SR shall be an SQL-invoked procedure.

Access Rules

None.

General Rules

1) SR is effectively invoked according to the General Rules of Subclause 10.4, ‘‘<routine invoca-
tion>’’, with RI and SR as the <routine invocation> and the subject routine, respectively.

Conformance Rules

None.

Control statements 711

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
15.2 <return statement>

15.2 <return statement>

Function
Return a value from an SQL function.

Format

<return statement> ::=
RETURN <return value>

<return value> ::=
<value expression>

| NULL

Syntax Rules

1) <return statement> shall be contained in an <SQL routine body> that is the <routine body> of
an <SQL-invoked function> F. Let RDT be the <returns data type> of the <returns clause> of F.

2) The <return value> <null specification> is equivalent to the <value expression>:

CAST (NULL AS RDT)

3) Let VE be the <value expression> of the <return value> immediately contained in <return
statement>.

4) The declared type of VE shall be assignable to an item of the data type RDT, according to the
Syntax Rules of Subclause 9.2, ‘‘Store assignment’’, with RDT and VE as TARGET and VALUE,
respectively.

Access Rules

None.

General Rules

1) Let RV be the value of VE.

2) Case:

a) If F is type preserving, then:

i) Let MAT be the most specific type of the value of the argument substituted for the result
SQL parameter of F.

ii) If the most specific type of RV is not compatible with MAT, then an exception condition
is raised: data exception — most specific type mismatch.

b) Otherwise, let RT be an item of data type RDT, arbitrarily chosen.

712 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
15.2 <return statement>

3) The returned value of the execution of the <SQL routine body> of F is the value resulting from
the assignment of RV to RT according to the General Rules of Subclause 9.2, ‘‘Store assignment’’,
with RT and RV as TARGET and VALUE, respectively.

4) The execution of the <SQL routine body> of F is terminated immediately.

Conformance Rules

None.

Control statements 713

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

714 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

16 Transaction management

16.1 <start transaction statement>

Function
Start an SQL-transaction and set its characteristics.

Format

<start transaction statement> ::=
START TRANSACTION <transaction mode> [{ <comma> <transaction mode> }...]

<transaction mode> ::=
<isolation level>

| <transaction access mode>
| <diagnostics size>

<transaction access mode> ::=
READ ONLY

| READ WRITE

<isolation level> ::=
ISOLATION LEVEL <level of isolation>

<level of isolation> ::=
READ UNCOMMITTED

| READ COMMITTED
| REPEATABLE READ
| SERIALIZABLE

<diagnostics size> ::=
DIAGNOSTICS SIZE <number of conditions>

<number of conditions> ::= <simple value specification>

Syntax Rules

1) None of <isolation level>, <transaction access mode>, and <diagnostics size> shall be specified
more than once in a single <start transaction statement>.

2) If an <isolation level> is not specified, then a <level of isolation> of SERIALIZABLE is implicit.

3) If READ WRITE is specified, then the <level of isolation> shall not be READ UNCOMMITTED.

4) If a <transaction access mode> is not specified and a <level of isolation> of READ UNCOMMITTED
is specified, then READ ONLY is implicit. Otherwise, READ WRITE is implicit.

5) The declared type of <number of conditions> shall be exact numeric with scale 0 (zero).

Transaction management 715

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.1 <start transaction statement>

Access Rules

None.

General Rules

1) If a <start transaction statement> statement is executed when an SQL-transaction is currently
active, then an exception condition is raised: invalid transaction state — active SQL-transaction.

2) If <number of conditions> is specified and is less than 1 (one), then an exception condition is
raised: invalid condition number.

3) Let TXN be the SQL-transaction that is started by the <start transaction statement>.
NOTE 327 – The characteristics of a transaction begun by a <start transaction statement> are as spec-
ified in these General Rules regardless of the characteristics specified by any preceding <set transaction
statement>. That is, even if one or more characteristics are omitted by the <start transaction statement>,
the defaults specified in the Syntax Rules of this Subclause are effective and are not affected by any
(preceding) <set transaction statement>.

4) If READ ONLY is specified, then the access mode of TXN is set to read-only. If READ WRITE
is specified, then the access mode of TXN is set to read-write.

5) The isolation level of TXN is set to an implementation-defined isolation level that will not
exhibit any of the phenomena that the explicit or implicit <level of isolation> would not exhibit,
as specified in Table 10, ‘‘SQL-transaction isolation levels and the three phenomena’’.

6) If <number of conditions> is specified, then the diagnostics area limit of TXN is set to <number
of conditions>.

7) If <number of conditions> is not specified, then the diagnostics area limit of TXN is set to an
implementation-dependent value not less than 1 (one).

8) TXN is started.

Conformance Rules

1) Without Feature T241, ‘‘START TRANSACTION statement’’, conforming SQL language shall
not contain any <start transaction statement>.

2) Without Feature F111, ‘‘Isolation levels other than SERIALIZABLE’’, an <isolation level> shall
not contain a <level of isolation> other than SERIALIZABLE.

3) Without Feature F121, ‘‘Basic diagnostics management’’, conforming SQL language shall not
specify <diagnostics size>.

716 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
16.2 <set transaction statement>

16.2 <set transaction statement>

Function
Set the characteristics of the next SQL-transaction for the SQL-agent.
NOTE 328 – This statement has no effect on any SQL-transactions subsequent to the next SQL-transaction.

Format

<set transaction statement> ::=
SET [LOCAL] <transaction characteristics>

<transaction characteristics> ::=
TRANSACTION <transaction mode> [{ <comma> <transaction mode> }...]

Syntax Rules

1) None of <isolation level>, <transaction access mode>, and <diagnostics size> shall be specified
more than once in a single <transaction attributes>.

2) If LOCAL is specified, then <number of conditions> shall not be specified.

Access Rules

None.

General Rules

1) Case:

a) If a <set transaction statement> that does not specify LOCAL is executed, then

Case:

i) If an SQL-transaction is currently active, then an exception condition is raised: invalid
transaction state — active SQL-transaction.

ii) If an SQL-transaction is not currently active, then if there are any holdable cursors
remaining open from the previous SQL-transaction and the isolation level of the previ-
ous SQL-transaction is not the same as the isolation level determined by the <level of
isolation>, then an exception condition is raised: invalid transaction state — held cursor
requires same isolation level.

b) If a <set transaction statement> that specifies LOCAL is executed, then:

i) If the SQL-implementation does not support SQL-transactions that affect more than
one SQL-server, then an exception condition is raised: feature not supported — multiple
server transactions.

ii) If there is no SQL-transaction that is currently active, then an exception condition is
raised: invalid transaction state — no active SQL-transaction for branch transaction.

Transaction management 717

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.2 <set transaction statement>

iii) If there is an active SQL-transaction and there has been a transaction-initiating SQL-
statement executed at the current SQL-connection in the context of the active SQL-
transaction, then an exception condition is raised: invalid transaction state — branch
transaction already active.

iv) If the transaction access mode of the SQL-transaction is read-only and <transaction
access mode> specifies READ WRITE, then an exception condition is raised: invalid
transaction state — inappropriate access mode for branch transaction.

v) If the isolation level of the SQL-transaction is SERIALIZABLE and <level of isolation>
specifies anything except SERIALIZABLE, then an exception condition is raised: invalid
transaction state — inappropriate isolation level for branch transaction.

vi) If the isolation level of the SQL-transaction is REPEATABLE READ and <level of
isolation> specifies anything except REPEATABLE READ or SERIALIZABLE, then an
exception condition is raised: invalid transaction state — inappropriate isolation level
for branch transaction.

vii) If the isolation level of the SQL-transaction is READ COMMITTED and <level of isola-
tion> specifies READ UNCOMMITTED, then an exception condition is raised: invalid
transaction state — inappropriate isolation level for branch transaction.
NOTE 329 – If the isolation level of the SQL-transaction is READ UNCOMMITTED, then any
<level of isolation> is permissible.

2) If <number of conditions> is specified and is less than 1 (one), then an exception condition is
raised: invalid condition number.

3) Case:

a) If LOCAL is not specified, then let TXN be the next SQL-transaction for the SQL-agent.

b) Otherwise, let TXN be the branch of the active SQL-transaction at the current SQL-
connection.

4) If READ ONLY is specified, then the access mode of TXN is set to read-only. If READ WRITE
is specified, then the access mode of TXN is set to read-write.

5) The isolation level of TXN is set to an implementation-defined isolation level that will not
exhibit any of the phenomena that the explicit or implicit <level of isolation> would not exhibit,
as specified in Table 10, ‘‘SQL-transaction isolation levels and the three phenomena’’.

6) If <number of conditions> is specified, then the diagnostics area limit of TXN is set to <number
of conditions>.

7) If <number of conditions> is not specified, then the diagnostics area limit of TXN is set to an
implementation-dependent value not less than 1 (one).

Conformance Rules

1) Without Feature T251, ‘‘SET TRANSACTION statement: LOCAL option’’, conforming SQL
language shall not specify LOCAL.

718 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
16.3 <set constraints mode statement>

16.3 <set constraints mode statement>

Function
If an SQL-transaction is currently active, then set the constraint mode for that SQL-transaction in
the current SQL-session. If no SQL-transaction is currently active, then set the constraint mode for
the next SQL-transaction in the current SQL-session for the SQL-agent.
NOTE 330 – This statement has no effect on any SQL-transactions subsequent to this SQL-transaction.

Format

<set constraints mode statement> ::=
SET CONSTRAINTS <constraint name list> { DEFERRED | IMMEDIATE }

<constraint name list> ::=
ALL

| <constraint name> [{ <comma> <constraint name> }...]

Syntax Rules

1) If a <constraint name> is specified, then it shall identify a constraint.

2) The constraint identified by <constraint name> shall be DEFERRABLE.

Access Rules

None.

General Rules

1) If an SQL-transaction is currently active, then let TXN be the currently active SQL-transaction.
Otherwise, let TXN be the next SQL-transaction for the SQL-agent.

2) If IMMEDIATE is specified, then

Case:

a) If ALL is specified, then the constraint mode in TXN of all constraints that are DEFERRABLE
is set to immediate.

b) Otherwise, the constraint mode in TXN for the constraints identified by the <constraint
name>s in the <constraint name list> is set to immediate.

3) If DEFERRED is specified, then

Case:

a) If ALL is specified, then the constraint mode in TXN of all constraints that are DEFERRABLE
is set to deferred.

b) Otherwise, the constraint mode in TXN for the constraints identified by the <constraint
name>s in the <constraint name list> is set to deferred.

Transaction management 719

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.3 <set constraints mode statement>

Conformance Rules

1) Without Feature F721, ‘‘Deferrable constraints’’, conforming SQL language shall not contain any
<set constraints mode statement>.

720 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
16.4 <savepoint statement>

16.4 <savepoint statement>

Function
Establish a savepoint.

Format

<savepoint statement> ::= SAVEPOINT <savepoint specifier>

<savepoint specifier> ::=
<savepoint name>

| <simple target specification>

Syntax Rules

1) If the <savepoint specifier> is specified as a <simple target specification>, let T be the <simple
target specification>. The declared type of T shall be exact numeric with scale 0 (zero).

Access Rules

None.

General Rules

1) If <savepoint specifier> is specified as <savepoint name>, then let S be the <identifier> specified
as <savepoint name>; otherwise, let S be the value of T.

2) If <savepoint specifier> is specified as <simple target specification> and S is not 0 (zero) and
does not identify an existing savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception — invalid specification.

3) If S identifies an existing savepoint established within the current SQL-transaction, then that
savepoint is destroyed.

4) If the number of savepoints that now exist within the current SQL-transaction is equal to the
implementation-defined maximum number of savepoints per SQL-transaction, then an exception
condition is raised: savepoint exception — too many.

5) If <savepoint specifier> is specified as <simple target specification>, then S is set to an
implementation-dependent value that is non-zero, non-null, and different from all other values
that have been used to identify savepoints within the current SQL-transaction.

6) A savepoint is established at the current point in the current SQL-transaction and S is assigned
as the identifier of that savepoint.

Conformance Rules

1) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall contain no <savepoint
statement>.

Transaction management 721

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.5 <release savepoint statement>

16.5 <release savepoint statement>

Function
Destroy a savepoint.

Format

<release savepoint statement> ::=
RELEASE SAVEPOINT <savepoint specifier>

Syntax Rules

1) If <savepoint specifier> is specified as <simple target specification>, then let T be that <simple
target specification>. The declared type of T shall be exact numeric with scale 0 (zero).

Access Rules

None.

General Rules

1) If <savepoint specifier> is specified as <savepoint name>, then let S be the identifier specified
as <savepoint name>; otherwise, let S be the value of T.

2) If S does not identify a savepoint defined within the current SQL-transaction, then an exception
condition is raised: savepoint exception — invalid specification.

3) The savepoint identified by S and all savepoints established in the current SQL-transaction
subsequent to the establishment of S are destroyed.

Conformance Rules

1) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall contain no <release save-
point statement>.

722 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
16.6 <commit statement>

16.6 <commit statement>

Function
Terminate the current SQL-transaction with commit.

Format

<commit statement> ::=
COMMIT [WORK] [AND [NO] CHAIN]

Syntax Rules

1) If neither AND CHAIN nor AND NO CHAIN is specified, then AND NO CHAIN is implicit.

Access Rules

None.

General Rules

1) If the current SQL-transaction is part of an encompassing transaction that is controlled by
an agent other than the SQL-agent, then an exception condition is raised: invalid transaction
termination.

2) If an atomic execution context is active, then an exception condition is raised: invalid transac-
tion termination.

3) For every open cursor that is not a holdable cursor CR in any SQL-client module associated
with the current SQL-transaction, the following statement is implicitly executed:

CLOSE CR

4) For every temporary table in any SQL-client module associated with the current SQL-
transaction that specifies the ON COMMIT DELETE option and that was updated by the
current SQL-transaction, the execution of the <commit statement> is effectively preceded by the
execution of a <delete statement: searched> that specifies DELETE FROM T, where T is the
<table name> of that temporary table.

5) The effects specified in the General Rules of Subclause 16.3, ‘‘<set constraints mode statement>’’
occur as if the statement SET CONSTRAINTS ALL IMMEDIATE were executed for each active
SQL-connection.

6) Case:

a) If any constraint is not satisfied, then any changes to SQL-data or schemas that were
made by the current SQL-transaction are canceled and an exception condition is raised:
transaction rollback — integrity constraint violation.

b) If the execution of any <triggered SQL statement> is unsuccessful, then any changes to
SQL-data or schemas that were made by the current SQL-transaction are canceled and an
exception condition is raised: transaction rollback — triggered action exception.

Transaction management 723

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.6 <commit statement>

c) If any other error preventing commitment of the SQL-transaction has occurred, then any
changes to SQL-data or schemas that were made by the current SQL-transaction are can-
celed and an exception condition is raised: transaction rollback with an implementation-
defined subclass value.

d) Otherwise, any changes to SQL-data or schemas that were made by the current SQL-
transaction are eligible to be perceived by all concurrent and subsequent SQL-transactions.

7) Any savepoints established in the current SQL-transaction are destroyed.

8) Every valid non-holdable locator value is marked invalid.

9) The current SQL-transaction is terminated. If AND CHAIN was specified, then a new SQL-
transaction is initiated with the same access mode, isolation level, and diagnostics area size as
the SQL-transaction just terminated. Any branch transactions of the SQL-transaction are initi-
ated with the same access mode, isolation level, and diagnostics area size as the corresponding
branch of the SQL-transaction just terminated.

Conformance Rules

1) Without Feature T261, ‘‘Chained transactions’’, conforming SQL language shall not specify
CHAIN.

724 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
16.7 <rollback statement>

16.7 <rollback statement>

Function
Terminate the current SQL-transaction with rollback, or rollback all actions affecting SQL-data
and/or schemas since the establishment of a savepoint.

Format

<rollback statement> ::=
ROLLBACK [WORK] [AND [NO] CHAIN]
[<savepoint clause>]

<savepoint clause> ::=
TO SAVEPOINT <savepoint specifier>

Syntax Rules

1) If <savepoint specifier> is specified as <simple target specification>, then let T be that <simple
target specification>. The declared type of T shall be exact numeric with scale 0 (zero).

2) If AND CHAIN is specified, then <savepoint clause> shall not be specified.

3) If neither AND CHAIN nor AND NO CHAIN is specified, then AND NO CHAIN is implicit.

Access Rules

None.

General Rules

1) If the current SQL-transaction is part of an encompassing transaction that is controlled by an
agent other than the SQL-agent and the <rollback statement> is not being implicitly executed,
then an exception condition is raised: invalid transaction termination.

2) If a <savepoint clause> is not specified, then:

a) If an atomic execution context is active, then an exception condition is raised: invalid
transaction termination.

b) Any changes to SQL-data or schemas that were made by the current SQL-transaction are
canceled.

c) All savepoints defined by the current SQL-transaction are destroyed.

d) Every valid locator is marked invalid.

e) Any open cursors in any SQL-client module associated with the current SQL-transaction are
closed.

f) The current SQL-transaction is terminated. If AND CHAIN was specified, then a new SQL-
transaction is initiated with the same access mode, isolation level, and diagnostics area size
as the SQL-transaction just terminated. Any branch transactions of the SQL-transaction

Transaction management 725

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
16.7 <rollback statement>

are initiated with the same access mode, isolation level, and diagnostics area size as the
corresponding branch of the SQL-transaction just terminated.

3) If a <savepoint clause> is specified, then:

a) If <savepoint specifier> is specified as <savepoint name>, then let S be the <identifier>
specified as <savepoint name>; otherwise, let S be the value of T.

b) If S does not specify a savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception — invalid specification.

c) If an atomic execution context is active, and S specifies a savepoint established before the
beginning of the most recent atomic execution context, then an exception condition is raised:
savepoint exception — invalid specification.

d) Any changes to SQL-data or schemas that were made by the current SQL-transaction
subsequent to the establishment of S are canceled.

e) All savepoints established by the current SQL-transaction subsequent to the establishment
of S are destroyed.

f) Every valid locator is marked invalid.

g) For every open cursor CR in any SQL-client module associated with the current SQL-
transaction that was opened subsequent to the establishment of S, the following statement
is implicitly executed:

CLOSE CR

h) The status of any open cursors in any SQL-client module associated with the current SQL-
transaction that were opened by the current SQL-transaction before the establishment of S
is implementation-defined.
NOTE 331 – The current SQL-transaction is not terminated, and there is no other effect on the
SQL-data or schemas.

Conformance Rules

1) Without Feature T271, ‘‘Savepoints’’, a <rollback statement> shall contain no <savepoint
clause>.

2) Without Feature T261, ‘‘Chained transactions’’, conforming SQL language shall not specify
CHAIN.

726 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

17 Connection management

17.1 <connect statement>

Function
Establish an SQL-session.

Format

<connect statement> ::=
CONNECT TO <connection target>

<connection target> ::=
<SQL-server name>
[AS <connection name>]
[USER <connection user name>]

| DEFAULT

Syntax Rules

1) If <connection user name> is not specified, then an implementation-defined <connection user
name> for the SQL-connection is implicit.

Access Rules

None.

General Rules

1) If a <connect statement> is executed after the first transaction-initiating SQL-statement exe-
cuted by the current SQL-transaction and the SQL-implementation does not support transac-
tions that affect more than one SQL-server, then an exception condition is raised: feature not
supported — multiple server transactions.

2) If <connection user name> is specified, then let S be <connection user name> and let V be the
character string that is the value of

TRIM (BOTH ’ ’ FROM S)

3) If V does not conform to the Format and Syntax Rules of a <user identifier>, then an exception
condition is raised: invalid authorization specification.

4) If the SQL-client module that contains the <externally-invoked procedure> that contains the
<connect statement> specifies a <module authorization identifier>, then whether or not <connec-
tion user name> must be identical to that <module authorization identifier> is implementation-
defined, as are any other restrictions on the value of <connection user name>. Otherwise, any
restrictions on the value of <connection user name> are implementation-defined.

Connection management 727

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
17.1 <connect statement>

5) If the value of <connection user name> does not conform to the implementation-defined restric-
tions, then an exception condition is raised: invalid authorization specification.

6) If <connection name> was specified, then let CV be <simple value specification> immediately
contained in <connection name>. If neither DEFAULT nor <connection name> were specified,
then let CV be <SQL-server name>. Let CN be the result of

TRIM (BOTH ’ ’ FROM CV)

If CN does not conform to the Format and Syntax Rules of an <identifier>, then an exception
condition is raised: invalid connection name.

7) If an SQL-connection with name CN has already been established by the current SQL-agent
and has not been disconnected, or if DEFAULT is specified and a default SQL-connection has
already been established by the current SQL-agent and has not been disconnected, then an
exception condition is raised: connection exception — connection name in use.

8) Case:

a) If DEFAULT is specified, then the default SQL-session is initiated and associated with
the default SQL-server. The method by which the default SQL-server is determined is
implementation-defined.

b) Otherwise, an SQL-session is initiated and associated with the SQL-server identified by
<SQL-server name>. The method by which <SQL-server name> is used to determine the
appropriate SQL-server is implementation-defined.

9) If the <connect statement> successfully initiates an SQL-session, then:

a) The current SQL-connection and current SQL-session, if any, become a dormant SQL-
connection and a dormant SQL-session, respectively. The SQL-session context information
is preserved and is not affected in any way by operations performed over the initiated
SQL-connection.
NOTE 332 – The SQL-session context information is defined in Subclause 4.34, ‘‘SQL-sessions’’.

b) The SQL-session initiated by the <connect statement> becomes the current SQL-session and
the SQL-connection established to that SQL-session becomes the current SQL-connection.

NOTE 333 – If the <connect statement> fails to initiate an SQL-session, then the current SQL-
connection and current SQL-session, if any, remain unchanged.

10) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised:
connection exception — SQL-client unable to establish SQL-connection.

11) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition
is raised: connection exception — SQL-server rejected establishment of SQL-connection.

12) The SQL-server for the subsequent execution of <externally-invoked procedure>s in any SQL-
client modules associated with the SQL-agent is set to the SQL-server identified by <SQL-server
name>.

13) The SQL-session user identifier and the current user identifier are set to <connection user
name>. The current role name is set to the null value.

728 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
17.1 <connect statement>

Conformance Rules

1) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not contain
any <connect statement>.

Connection management 729

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
17.2 <set connection statement>

17.2 <set connection statement>

Function
Select an SQL-connection from the available SQL-connections.

Format

<set connection statement> ::=
SET CONNECTION <connection object>

<connection object> ::=
DEFAULT

| <connection name>

Syntax Rules

None.

Access Rules

None.

General Rules

1) If a <set connection statement> is executed after the first transaction-initiating SQL-statement
executed by the current SQL-transaction and the SQL-implementation does not support trans-
actions that affect more than one SQL-server, then an exception condition is raised: feature not
supported — multiple server transactions.

2) Case:

a) If DEFAULT is specified and there is no default SQL-connection that is current or dormant
for the current SQL-agent, then an exception condition is raised: connection exception —
connection does not exist.

b) Otherwise, if <connection name> does not identify an SQL-session that is current or dor-
mant for the current SQL-agent, then an exception condition is raised: connection exception
— connection does not exist.

3) If the SQL-connection identified by <connection object> cannot be selected, then an exception
condition is raised: connection exception — connection failure.

4) The current SQL-connection and current SQL-session become a dormant SQL-connection and a
dormant SQL-session, respectively. The SQL-session context information is preserved and is not
affected in any way by operations performed over the selected SQL-connection.
NOTE 334 – The SQL-session context information is defined in Subclause 4.34, ‘‘SQL-sessions’’.

5) The SQL-connection identified by <connection object> becomes the current SQL-connection and
the SQL-session associated with that SQL-connection becomes the current SQL-session. All
SQL-session context information is restored to the same state as at the time the SQL-connection
became dormant.

730 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
17.2 <set connection statement>

NOTE 335 – The SQL-session context information is defined in Subclause 4.34, ‘‘SQL-sessions’’.

6) The SQL-server for the subsequent execution of <externally-invoked procedure>s in any SQL-
client modules associated with the SQL-agent are set to that of the current SQL-connection.

Conformance Rules

1) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not contain
any <set connection statement>.

Connection management 731

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
17.3 <disconnect statement>

17.3 <disconnect statement>

Function
Terminate an SQL-connection.

Format

<disconnect statement> ::=
DISCONNECT <disconnect object>

<disconnect object> ::=
<connection object>

| ALL
| CURRENT

Syntax Rules

None.

Access Rules

None.

General Rules

1) If <connection name> is specified and <connection name> does not identify an SQL-connection
that is current or dormant for the current SQL-agent, then an exception condition is raised:
connection exception — connection does not exist.

2) If DEFAULT is specified and there is no default SQL-connection that is current or dormant for
the current SQL-agent, then an exception condition is raised: connection exception — connection
does not exist.

3) If CURRENT is specified and there is no current SQL-connection for the current SQL-agent,
then an exception condition is raised: connection exception — connection does not exist.

4) Let C be the current SQL-connection.

5) Let L be a list of SQL-connections. If a <connection name> is specified, then L is that SQL-
connection. If CURRENT is specified, then L is the current SQL-connection. If ALL is specified,
then L is a list representing every SQL-connection that is current or dormant for the current
SQL-agent, in an implementation-dependent order. If DEFAULT is specified, then L is the
default SQL-connection.

6) If any SQL-connection in L is active, then an exception condition is raised: invalid transaction
state — active SQL-transaction.

7) For every SQL-connection C1 in L, treating the SQL-session S1 identified by C1 as the current
SQL-session, all of the actions that are required after the last call of a <externally-invoked
procedure> by an SQL-agent, except for the execution of a <rollback statement> or a <commit
statement>, are performed. C1 is terminated, regardless of any exception condition that might
occur during the disconnection process.

732 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
17.3 <disconnect statement>

NOTE 336 – See the General Rules of Subclause 13.1, ‘‘<SQL-client module definition>’’, for the actions
to be performed after the last call of a <externally-invoked procedure> by an SQL-agent.

8) If any error is detected during execution of a <disconnect statement>, then a completion condi-
tion is raised: warning — disconnect error.

9) If C is contained in L, then there is no current SQL-connection following the execution of the
<disconnect statement>. Otherwise, C remains the current SQL-connection.

Conformance Rules

1) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not contain
any <disconnect statement>.

Connection management 733

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

734 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

18 Session management

18.1 <set session characteristics statement>

Function
Set one or more characteristics for the current SQL-session.

Format

<set session characteristics statement> ::=
SET SESSION CHARACTERISTICS AS
<session characteristic list>

<session characteristic list> ::=
<session characteristic> [{ <comma> <session characteristic> }...]

<session characteristic> ::=
<transaction characteristics>

Syntax Rules

1) None of <isolation level>, <transaction access mode>, and <diagnostics size> shall be specified
more than once in a single <session characteristic list>.

Access Rules

None.

General Rules

1) If <transaction characteristics> is specified in a <session characteristic list>, then the endur-
ing transaction characteristics of the SQL-session are set to the values explicitly specified
in the <transaction characteristics>; enduring characteristics corresponding to <transaction
characteristics> values not explicitly specified are unchanged.

Conformance Rules

1) Without Feature F761, ‘‘Session management’’, <set session characteristics statement> shall not
specify <transaction characteristics>.

2) Without Feature F111, ‘‘Isolation levels other than SERIALIZABLE’’, a <set session char-
acteristics statement> shall not contain a <level of isolation> other than SERIALIZABLE.

Session management 735

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
18.2 <set session user identifier statement>

18.2 <set session user identifier statement>

Function
Set the SQL-session user identifier and the current user identifier of the current SQL-session
context.

Format

<set session user identifier statement> ::=
SET SESSION AUTHORIZATION <value specification>

Syntax Rules

1) The declared type of the <value specification> shall be an SQL character data type.

Access Rules

None.

General Rules

1) If a <set session user identifier statement> is executed and an SQL-transaction is currently
active, then an exception condition is raised: invalid transaction state — active SQL-transaction.

2) Let S be <value specification> and let V be the character string that is the value of

TRIM (BOTH ’ ’ FROM S)

3) If V does not conform to the Format and Syntax Rules of an <authorization identifier>, then an
exception condition is raised: invalid authorization specification.

4) Whether or not the SQL-session user identifier can be set to a different <user identifier> is
implementation-defined, as are any restrictions pertaining to such changes.

5) If the current user identifier and the current role name are restricted from setting the user
identifier to V, then an exception condition is raised: invalid authorization specification.

6) The SQL-session user identifier of the current SQL-session context is set to V.

7) The user identifier in every cell of the authorization stack of the current SQL-session context is
set to V.

8) The role name in every cell of the authorization stack of the current SQL-session context is set
to the null value.

Conformance Rules

1) Without Feature F321, ‘‘User authorization’’, conforming SQL language shall not contain any
<set session user identifier statement>.

736 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
18.3 <set role statement>

18.3 <set role statement>

Function
Set the current role name for the current SQL-session context.

Format

<set role statement> ::=
SET ROLE <role specification>

<role specification> ::=
<value specification>

| NONE

Syntax Rules

1) The declared type of the <value specification> shall be an SQL character data type.

Access Rules

None.

General Rules

1) If a <set role statement> is executed and an SQL-transaction is currently active, then an
exception condition is raised: invalid transaction state — active SQL-transaction.

2) Let S be <value specification> and let V be the character string that is the value of

TRIM (BOTH ’ ’ FROM S)

3) If V does not conform to the Format and Syntax Rules of a <role name>, then an exception
condition is raised: invalid role specification.

4) If no role authorization descriptor exists that indicates that the role identified by V has been
granted to either the current user identifier or to PUBLIC, then an exception condition is raised:
invalid role specification.

5) The role name in the latest cell of the authorization stack of the current SQL-session context is
set to

Case:

a) If NONE is specified, then the null value.

b) Otherwise, V.

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <set role
statement>.

Session management 737

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
18.4 <set local time zone statement>

18.4 <set local time zone statement>

Function
Set the default local time zone displacement for the current SQL-session.

Format

<set local time zone statement> ::=
SET TIME ZONE <set time zone value>

<set time zone value> ::=
<interval value expression>

| LOCAL

Syntax Rules

1) The declared type of the <interval value expression> immediately contained in the <set time
zone value> shall be INTERVAL HOUR TO MINUTE.

Access Rules

None.

General Rules

1) Case:

a) If LOCAL is specified, then the default local time zone displacement of the current SQL-
session is set to the original local time zone displacement of the current SQL-session.

b) Otherwise,

Case:

i) If the value of the <interval value expression> is not the null value and is between
INTERVAL �’12:59’ and INTERVAL +’13:00’, then the default local time zone displace-
ment of the current SQL-session is set to the value of the <interval value expression>.

ii) Otherwise, an exception condition is raised: data exception — invalid time zone displace-
ment value.

Conformance Rules

1) Without Feature F411, ‘‘Time zone specification’’, conforming SQL language shall not contain
any <set local time zone statement>.

738 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

19 Diagnostics management

19.1 <get diagnostics statement>

Function
Get exception or completion condition information from the diagnostics area.

Format

<get diagnostics statement> ::=
GET DIAGNOSTICS <SQL diagnostics information>

<SQL diagnostics information> ::=
<statement information>

| <condition information>

<statement information> ::=
<statement information item> [{ <comma> <statement information item> }...]

<statement information item> ::=
<simple target specification> <equals operator> <statement information item name>

<statement information item name> ::=
NUMBER

| MORE
| COMMAND_FUNCTION
| COMMAND_FUNCTION_CODE
| ROW_COUNT
| TRANSACTIONS_COMMITTED
| TRANSACTIONS_ROLLED_BACK
| TRANSACTION_ACTIVE

<condition information> ::=
EXCEPTION <condition number>
<condition information item> [{ <comma> <condition information item> }...]

<condition information item> ::=
<simple target specification> <equals operator> <condition information item name>

<condition information item name> ::=
CATALOG_NAME

| CLASS_ORIGIN
| COLUMN_NAME
| CONDITION_NUMBER
| CONNECTION_NAME
| CONSTRAINT_CATALOG
| CONSTRAINT_NAME
| CONSTRAINT_SCHEMA
| CURSOR_NAME
| MESSAGE_LENGTH
| MESSAGE_OCTET_LENGTH
| MESSAGE_TEXT

Diagnostics management 739

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
19.1 <get diagnostics statement>

| PARAMETER_MODE
| PARAMETER_NAME
| PARAMETER_ORDINAL_POSITION
| RETURNED_SQLSTATE
| ROUTINE_CATALOG
| ROUTINE_NAME
| ROUTINE_SCHEMA
| SCHEMA_NAME
| SERVER_NAME
| SPECIFIC_NAME
| SUBCLASS_ORIGIN
| TABLE_NAME
| TRIGGER_CATALOG
| TRIGGER_NAME
| TRIGGER_SCHEMA

<condition number> ::= <simple value specification>

Syntax Rules

1) The declared type of a <simple target specification> contained in a <statement information
item> or <condition information item> shall be the data type specified in Table 25, ‘‘<identifier>s
for use with <get diagnostics statement>’’, for the corresponding <statement information item
name> or <condition information item name>.

2) The declared type of <condition number> shall be exact numeric with scale 0 (zero).

740 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
19.1 <get diagnostics statement>

Table 25—<identifier>s for use with <get diagnostics statement>

<identifier> Declared Type

<statement information item name>s

COMMAND_FUNCTION variable-length character string with maximum length L

COMMAND_FUNCTION_CODE exact numeric with scale 0 (zero)

MORE fixed-length character string with length 1

NUMBER exact numeric with scale 0 (zero)

ROW_COUNT exact numeric with scale 0 (zero)

TRANSACTION_ACTIVE exact numeric with scale 0 (zero)

TRANSACTIONS_COMMITTED exact numeric with scale 0 (zero)

TRANSACTIONS_ROLLED_BACK exact numeric with scale 0 (zero)

<condition information item name>s

CATALOG_NAME variable-length character string with maximum length L

CLASS_ORIGIN variable-length character string with maximum length L

COLUMN_NAME variable-length character string with maximum length L

CONDITION_NUMBER exact numeric with scale 0 (zero)

CONNECTION_NAME variable-length character string with maximum length L

CONSTRAINT_CATALOG variable-length character string with maximum length L

CONSTRAINT_NAME variable-length character string with maximum length L

CONSTRAINT_SCHEMA variable-length character string with maximum length L

CURSOR_NAME variable-length character string with maximum length L

MESSAGE_LENGTH exact numeric with scale 0 (zero)

MESSAGE_OCTET_LENGTH exact numeric with scale 0 (zero)

MESSAGE_TEXT variable-length character string with maximum length L

PARAMETER_MODE exact numeric with scale 0 (zero)

PARAMETER_NAME variable-length character string with maximum length L

PARAMETER_ORDINAL_
POSITION

exact numeric with scale 0 (zero)

RETURNED_SQLSTATE fixed-length character string with length 5

ROUTINE_CATALOG variable-length character string with maximum length L

ROUTINE_NAME variable-length character string with maximum length L

ROUTINE_SCHEMA variable-length character string with maximum length L

SCHEMA_NAME variable-length character string with maximum length L

SERVER_NAME variable-length character string with maximum length L

SPECIFIC_NAME variable-length character string with maximum length L

Where L is an implementation-defined integer not less than 128.

(Continued on next page)

Diagnostics management 741

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
19.1 <get diagnostics statement>

Table 25—<identifier>s for use with <get diagnostics statement> (Cont.)

<identifier> Declared Type

<condition information item name>s

SUBCLASS_ORIGIN variable-length character string with maximum length L

TABLE_NAME variable-length character string with maximum length L

TRIGGER_CATALOG variable-length character string with maximum length L

TRIGGER_NAME variable-length character string with maximum length L

TRIGGER_SCHEMA variable-length character string with maximum length L

Access Rules

None.

General Rules

1) Specification of <statement information item> retrieves information about the statement execu-
tion recorded in the diagnostics area into <simple target specification>.

a) The value of NUMBER is the number of exception or completion conditions that have been
stored in the diagnostics area as a result of executing the previous SQL-statement other
than a <get diagnostics statement>.
NOTE 337 – The <get diagnostics statement> itself may return information via the SQLSTATE
parameter, but does not modify the previous contents of the diagnostics area.

b) The value of MORE is:

Y More conditions were raised during execution of the SQL-statement than have been stored in
the diagnostics area.

N All of the conditions that were raised during execution of the SQL-statement have been
stored in the diagnostics area.

c) The value of COMMAND_FUNCTION is the identification of the SQL-statement executed.
Table 26, ‘‘SQL-statement codes’’ specifies the identifier of the SQL-statements.

d) The value of COMMAND_FUNCTION_CODE is a number identifying the SQL-statement
executed. Table 26, ‘‘SQL-statement codes’’ specifies the code for the SQL-statements.
Positive values are reserved for SQL-statements defined by ISO/IEC 9075; negative values
are reserved for implementation-defined SQL-statements.

Table 26—SQL-statement codes

SQL-statement Identifier Code

<alter domain statement> ALTER DOMAIN 3

<alter routine statement> ALTER ROUTINE 17

<alter type statement> ALTER TYPE 60

<alter table statement> ALTER TABLE 4

742 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
19.1 <get diagnostics statement>

Table 26—SQL-statement codes (Cont.)

SQL-statement Identifier Code

<assertion definition> CREATE ASSERTION 6

<call statement> CALL 7

<character set definition> CREATE CHARACTER SET 8

<close statement> CLOSE CURSOR 9

<collation definition> CREATE COLLATION 10

<commit statement> COMMIT WORK 11

<connect statement> CONNECT 13

<declare cursor> DECLARE CURSOR 101

<delete statement: positioned> DELETE CURSOR 18

<delete statement: searched> DELETE WHERE 19

<disconnect statement> DISCONNECT 22

<domain definition> CREATE DOMAIN 23

<drop assertion statement> DROP ASSERTION 24

<drop character set statement> DROP CHARACTER SET 25

<drop collation statement> DROP COLLATION 26

<drop data type statement> DROP TYPE 35

<drop domain statement> DROP DOMAIN 27

<drop role statement> DROP ROLE 29

<drop routine statement> DROP ROUTINE 30

<drop schema statement> DROP SCHEMA 31

<drop table statement> DROP TABLE 32

<drop transform statement> DROP TRANSFORM 116

<drop translation statement> DROP TRANSLATION 33

<drop trigger statement> DROP TRIGGER 34

<drop user-defined ordering statement> DROP ORDERING 115

<drop view statement> DROP VIEW 36

<fetch statement> FETCH 45

<free locator statement> FREE LOCATOR 98

<hold locator statement> HOLD LOCATOR 99

<grant statement> GRANT 48

<grant role statement> GRANT ROLE 49

<insert statement> INSERT 50

<open statement> OPEN 53

<release savepoint statement> RELEASE SAVEPOINT 57

<return statement> RETURN 58

<revoke statement> REVOKE 59

Diagnostics management 743

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
19.1 <get diagnostics statement>

Table 26—SQL-statement codes (Cont.)

SQL-statement Identifier Code

<role definition> CREATE ROLE 61

<rollback statement> ROLLBACK WORK 62

<savepoint statement> SAVEPOINT 63

<schema definition> CREATE SCHEMA 64

<schema routine> CREATE ROUTINE 14

<select statement: single row> SELECT 65

<set connection statement> SET CONNECTION 67

<set constraints mode statement> SET CONSTRAINT 68

<set local time zone statement> SET TIME ZONE 71

<set role statement> SET ROLE 73

<set transaction statement> SET TRANSACTION 75

<set session user identifier statement> SET SESSION AUTHORIZATION 76

<set session characteristics statement> SET SESSION CHARACTERISTICS 109

<start transaction statement> START TRANSACTION 111

<table definition> CREATE TABLE 77

<transform definition> CREATE TRANSFORM 117

<translation definition> CREATE TRANSLATION 79

<trigger definition> CREATE TRIGGER 80

<update statement: positioned> UPDATE CURSOR 81

<update statement: searched> UPDATE WHERE 82

<user-defined type definition> CREATE TYPE 83

<user-defined ordering definition> CREATE ORDERING 114

<view definition> CREATE VIEW 84

NOTE 338 – Other, additional, values are used in other parts of ISO/IEC 9075; please see the
corresponding table in the other parts of ISO/IEC 9075 for more information.

e) The value of ROW_COUNT is the number of rows affected as the result of executing a
<delete statement: searched>, <insert statement>, or <update statement: searched> or
as a direct result of executing the previous SQL-statement. Let S be the <delete state-
ment: searched>, <insert statement>, or <update statement: searched>. Let T be the table
identified by the <table name> directly contained in S.

Case:

i) If S is an <insert statement>, then the value of ROW_COUNT is the number of rows
inserted into T.

ii) If S is not an <insert statement> and does not contain a <search condition>, then the
value of ROW_COUNT is the cardinality of T before the execution of S.

744 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
19.1 <get diagnostics statement>

iii) Otherwise, let SC be the <search condition> directly contained in S. The value of ROW_
COUNT is effectively derived by executing the statement:

SELECT COUNT(�) FROM T WHERE SC

before the execution of S.

The value of ROW_COUNT following the execution of an SQL-statement that does not
directly result in the execution of a <delete statement: searched>, an <insert statement>, or
an <update statement: searched> is implementation-dependent.

f) The value of TRANSACTIONS_COMMITTED is the number of SQL-transactions that have
been committed since the most recent time at which the Diagnostics Area was emptied.
NOTE 339 – See the General Rules of Subclause 13.3, ‘‘<externally-invoked procedure>’’, and
Subclause 13.4, ‘‘Calls to an <externally-invoked procedure>’’. TRANSACTIONS_COMMITTED
indicates the number of SQL-transactions that were committed during the invocation of an external
routine.

g) The value of TRANSACTIONS_ROLLED_BACK is the number of SQL-transactions that
have been rolled back since the most recent time at which the Diagnostics Area was emp-
tied.
NOTE 340 – See the General Rules of Subclause 13.3, ‘‘<externally-invoked procedure>’’, and
Subclause 13.4, ‘‘Calls to an <externally-invoked procedure>’’. TRANSACTIONS_ROLLED_BACK
indicates the number of SQL-transactions that were rolled back during the invocation of an external
routine.

h) The value of TRANSACTION_ACTIVE is 1 (one) if an SQL-transaction is currently active,
and 0 (zero) if an SQL-transaction is not currently active.
NOTE 341 – TRANSACTION_ACTIVE indicates whether an SQL-transaction is active upon return
from an external routine.

2) If <condition information> was specified, then let N be the value of <condition number>. If N
is less than 1 (one) or greater than the number of conditions stored in the diagnostics area,
then an exception condition is raised: invalid condition number. If <condition number> has the
value 1, then the diagnostics information retrieved corresponds to the condition indicated by
the SQLSTATE value actually returned by execution of the previous SQL-statement other than
a <get diagnostics statement>. Otherwise, the association between <condition number> values
and specific conditions raised during evaluation of the General Rules for that SQL-statement is
implementation-dependent.

3) Specification of <condition information item> retrieves information about the N-th condition in
the diagnostics area into the <simple target specification>.

a) The value of CONDITION_NUMBER is the value of <condition number>.

b) The value of CLASS_ORIGIN is the identification of the naming authority that defined the
class value of RETURNED_SQLSTATE. That value shall be ’ISO 9075’ for any RETURNED_
SQLSTATE whose class value is fully defined in Subclause 22.1, ‘‘SQLSTATE’’, and shall be
an implementation-defined character string other than ’ISO 9075’ for any RETURNED_
SQLSTATE whose class value is an implementation-defined class value.

c) The value of SUBCLASS_ORIGIN is the identification of the naming authority that de-
fined the subclass value of RETURNED_SQLSTATE. That value shall be ’ISO 9075’ for
any RETURNED_SQLSTATE whose subclass value is fully defined in Subclause 22.1,
‘‘SQLSTATE’’, and shall be an implementation-defined character string other than ’ISO

Diagnostics management 745

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
19.1 <get diagnostics statement>

9075’ for any RETURNED_SQLSTATE whose subclass value is an implementation-defined
subclass value.

d) The value of RETURNED_SQLSTATE is the SQLSTATE parameter that would have been
returned if this were the only completion or exception condition possible.

e) If the value of RETURNED_SQLSTATE corresponds to warning with a subclass of cursor
operation conflict, then the value of CURSOR_NAME is the name of the cursor that caused
the completion condition to be raised.

f) If the value of RETURNED_SQLSTATE corresponds to integrity constraint violation, trans-
action rollback — integrity constraint violation, or a triggered data change violation that was
caused by a violation of a referential constraint, then:

i) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the <catalog
name> and the <unqualified schema name> of the <schema name> of the schema con-
taining the constraint or assertion. The value of CONSTRAINT_NAME is the <qualified
identifier> of the constraint or assertion.

ii) Case:

1) If the violated integrity constraint is a table constraint, then the values of
CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>,
the <unqualified schema name> of the <schema name>, and the <qualified identi-
fier> or <local table name>, respectively, of the table in which the table constraint is
contained.

2) If the violated integrity constraint is an assertion and if only one table referenced by
the assertion has been modified as a result of executing the SQL-statement, then the
values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name>, and the <qualified
identifier> or <local table name>, respectively, of the modified table.

3) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME
are a zero-length string.

If TABLE_NAME identifies a declared local temporary table, then CATALOG_NAME is
a zero-length string and SCHEMA_NAME is ‘‘MODULE’’.

g) If the value of RETURNED_SQLSTATE corresponds to triggered action exception, trans-
action rollback — triggered action exception, or a triggered data change violation that was
caused by a trigger, then:

i) The values of TRIGGER_CATALOG and TRIGGER_SCHEMA are the <catalog name>
and the <unqualified schema name> of the <schema name> of the schema containing
the trigger. The value of TRIGGER_NAME is the <qualified identifier> of the <trigger
name> of the trigger.

ii) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <cat-
alog name>, the <unqualified schema name> of the <schema name>, and the <quali-
fied identifier> of the <table name>, respectively, of the table on which the trigger is
defined.

746 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
19.1 <get diagnostics statement>

h) If the value of RETURNED_SQLSTATE corresponds to syntax error or access rule violation,
then:

i) Case:

1) If the syntax error or access rule violation was caused by reference to a specific table,
then the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are:

A) If the specific table referenced was not a declared local temporary table, then
the <catalog name>, the <unqualified schema name> of the <schema name> of
the schema that contains the table that caused the syntax error or access rule
violation, and the <qualified identifier>, respectively.

B) Otherwise, the a zero-length string, ‘‘MODULE’’, and the <local table name>,
respectively.

2) Otherwise, CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME contain a
zero-length string.

ii) If the syntax error or access rule violation was for an inaccessible column, then the
value of COLUMN_NAME is the <column name> of that column. Otherwise, the value
of COLUMN_NAME is a zero-length string.

i) If the value of RETURNED_SQLSTATE corresponds to invalid cursor state, then the value
of CURSOR_NAME is the name of the cursor that is in the invalid state.

j) If the value of RETURNED_SQLSTATE corresponds to with check option violation, then the
values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>,
the <unqualified schema name> of the <schema name> of the schema that contains the view
that caused the violation of the WITH CHECK OPTION, and the <qualified identifier> of
that view, respectively.

k) If the value of RETURNED_SQLSTATE does not correspond to syntax error or access rule
violation, then:

i) If the values of CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, and COLUMN_
NAME identify a column for which no privileges are granted to the enabled autho-
rization identifiers, then the value of COLUMN_NAME is replaced by a zero-length
string.

ii) If the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify a
table for which no privileges are granted to the enabled authorization identifiers, then
the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are replaced by
a zero-length string.

iii) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_
NAME identify a <table constraint> for some table T and if no privileges for T are
granted to the enabled authorization identifiers, then the values of CONSTRAINT_
CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are replaced by a
zero-length string.

iv) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_
NAME identify an assertion contained in some schema S and if the owner of S is not in-
cluded in the set of enabled authorization identifiers, then the values of CONSTRAINT_
CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are replaced by a
zero-length string.

Diagnostics management 747

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
19.1 <get diagnostics statement>

l) If the value of RETURNED_SQLSTATE corresponds to external routine invocation exception,
external routine exception, SQL routine exception, or warning, then;

i) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name>
and the <unqualified schema name>, respectively, of the <schema name> of the schema
containing the SQL-invoked routine.

ii) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name> of the SQL-invoked routine,
respectively.

iii) Case:

1) If the condition is related to parameter Pi of the SQL-invoked routine, then:

A) The value of PARAMETER_MODE is the <parameter mode> of Pi.

B) The value of PARAMETER_ORDINAL_POSITION is the value of i.

C) The value of PARAMETER_NAME is a zero-length string.

2) Otherwise:

A) The value of PARAMETER_MODE is a zero-length string.

B) The value of PARAMETER_ORDINAL_POSITION is 0 (zero).

C) The value of PARAMETER_NAME is a zero-length string.

m) If the value of RETURNED_SQLSTATE corresponds to external routine invocation ex-
ception, external routine exception, SQL routine exception, or warning, then the value of
MESSAGE_TEXT is the message text item of the SQL-invoked routine that raised the ex-
ception. Otherwise the value of MESSAGE_TEXT is an implementation-defined character
string.
NOTE 342 – An SQL-implementation may set this to <space>s, to a zero-length string, or to a
character string describing the condition indicated by RETURNED_SQLSTATE.

n) The value of MESSAGE_LENGTH is the length in characters of the character string value
in MESSAGE_TEXT.

o) The value of MESSAGE_OCTET_LENGTH is the length in octets of the character string
value in MESSAGE_TEXT.

p) The values of CONNECTION_NAME and SERVER_NAME are respectively

Case:

i) If COMMAND_FUNCTION or DYNAMIC_FUNCTION identifies an <SQL connection
statement>, then the <connection name> and the <SQL-server name> specified by or
implied by the <SQL connection statement>.

ii) Otherwise, the <connection name> and <SQL-server name> of the SQL-session in which
the condition was raised.

748 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
19.1 <get diagnostics statement>

q) If the value of RETURNED_SQLSTATE corresponds to data exception — numeric value
out of range, data exception — invalid character value for cast, data exception — string
data, right truncation, data exception — interval field overflow, integrity constraint violation,
warning — string data, right truncation, or warning — implicit zero-bit padding, and the
condition was raised as the result of an assignment to an SQL parameter during an SQL-
invoked routine invocation, then:

i) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name>
and the <unqualified schema name>, respectively, of the <schema name> of the schema
containing the routine.

ii) The values of the ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name>, respectively, of the routine.

iii) If the condition is related to parameter Pi of the SQL-invoked routine, then:

1) The value of PARAMETER_MODE is the <parameter mode> of Pi.

2) The value of PARAMETER_ORDINAL_POSITION is the value of i.

3) If an <SQL parameter name> was specified for the SQL parameter when the SQL-
invoked routine was created, then the value of PARAMETER_NAME is the <SQL
parameter name> of Pi. Otherwise, the value of PARAMETER_NAME is a zero-
length string.

4) The values of character string items where not otherwise specified by the preceding rules are
set to a zero-length string.
NOTE 343 – There are no numeric items that are not set by these rules.

5) The General Rules of Subclause 9.2, ‘‘Store assignment’’, apply to <simple target specification>
and whichever of <statement information item name> or <condition information item name> is
specified, as TARGET and VALUE, respectively.

Conformance Rules

1) Without Feature F121, ‘‘Basic diagnostics management’’, conforming SQL language shall not
contain any <get diagnostics statement>.

2) Without Feature F121, ‘‘Basic diagnostics management’’, and Feature T511, ‘‘Transaction
counts’’, conforming SQL language shall not specify a <statement information item name> that
is TRANSACTIONS_COMMITTED, TRANSACTIONS_ROLLED_BACK, or TRANSACTION_
ACTIVE.

Diagnostics management 749

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

750 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

20 Information Schema

20.1 Introduction to Information Schema and Definition
Schema

The views of the Information Schema are viewed tables defined in terms of the base tables of the
Definition Schema. The only purpose of the Definition Schema is to provide a data model to support
the Information Schema and to assist understanding. An SQL-implementation need do no more
than simulate the existence of the Definition Schema, as viewed through the Information Schema
views.

The Information Schema views are defined as being in a schema named INFORMATION_SCHEMA,
enabling these views to be accessed in the same way as any other tables in any other schema.
SELECT on most of these views is granted to PUBLIC WITH GRANT OPTION, so that they can be
queried by any user and so that SELECT privilege can be further granted on views that reference
these Information Schema views. No other privilege is granted on them, so they cannot be updated.

In order to provide access to the same information that is available via the INFORMATION_
SCHEMA to an SQL-Agent in an SQL-environment where the SQL-implementation does not sup-
port Feature F391, ‘‘Long identifiers’’, alternative views are provided that use only short identifiers.

The Information Schema also contains a small number of domains on which the columns of the
Definition Schema are based. USAGE on all these domains is granted to PUBLIC WITH GRANT
OPTION, so that they can be used by any user.

An SQL-implementation may define objects that are associated with INFORMATION_SCHEMA
that are not defined in this Clause. An SQL-implementation or any future version of ISO/IEC 9075
may also add columns to tables that are defined in this Clause.

The Definition Schema base tables are defined as being in a schema named DEFINITION_
SCHEMA. Because <unqualified schema name>s are prohibited from specifying DEFINITION_
SCHEMA, the Definition Schema cannot be accessed in an SQL-statement.
NOTE 344 – The Information Schema tables may be supposed to be represented in the Definition Schema
in the same way as any other tables, and are hence self-describing.

NOTE 345 – The Information Schema is a definition of the SQL data model, specified as an SQL-schema, in
terms of <SQL schema statement>s as defined in ISO/IEC 9075. Constraints defined in this Clause are not
actual SQL constraints.

The representation of an <identifier> in the base tables and views of the Information Schema is by
a character string corresponding to its <identifier body> (in the case of a <regular identifier>) or its
<delimited identifier body> (in the case of a <delimited identifier>). Within this character string,
any lower-case letter appearing in a <regular identifier> is replaced by the equivalent upper-case
letter, and any <doublequote symbol> appearing in a <delimited identifier body> is replaced by a
<double quote>. Where an <actual identifier> has multiple forms that are equal according to the
rules of Subclause 8.2, ‘‘<comparison predicate>’’, the form stored is that encountered at definition
time.

Information Schema 751

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.2 INFORMATION_SCHEMA Schema

20.2 INFORMATION_SCHEMA Schema

Function
Identify the schema that is to contain the Information Schema tables.

Definition
CREATE SCHEMA INFORMATION_SCHEMA

AUTHORIZATION INFORMATION_SCHEMA

Conformance Rules

None.

752 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.3 INFORMATION_SCHEMA_CATALOG_NAME base table

20.3 INFORMATION_SCHEMA_CATALOG_NAME base table

Function
Identify the catalog that contains the Information Schema.

Definition
CREATE TABLE INFORMATION_SCHEMA_CATALOG_NAME

(CATALOG_NAME SQL_IDENTIFIER,

CONSTRAINT INFORMATION_SCHEMA_CATALOG_NAME_PRIMARY_KEY
PRIMARY KEY (CATALOG_NAME),

CONSTRAINT INFORMATION_SCHEMA_CATALOG_NAME_CHECK

CHECK (1 = (SELECT COUNT(*)
FROM INFORMATION_SCHEMA_CATALOG_NAME))

);

GRANT SELECT ON TABLE INFORMATION_SCHEMA_CATALOG_NAME
TO PUBLIC WITH GRANT OPTION;

Description

1) The value of CATALOG_NAME is the name of the catalog in which this Information Schema
resides.

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.INFORMATION_SCHEMA_CATALOG_NAME.

Information Schema 753

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.4 CARDINAL_NUMBER domain

20.4 CARDINAL_NUMBER domain

Function
Define a domain that contains a non-negative number.

Definition
CREATE DOMAIN CARDINAL_NUMBER AS INTEGER

CONSTRAINT CARDINAL_NUMBER_DOMAIN_CHECK

CHECK (VALUE >= 0);

GRANT USAGE ON DOMAIN CARDINAL_NUMBER
TO PUBLIC WITH GRANT OPTION;

Description

1) The domain CARDINAL_NUMBER contains any non-negative number that is less than the
implementation-defined maximum for INTEGER (i.e., the implementation-defined value of
NUMERIC_PRECISION_RADIX raised to the power of implementation-defined NUMERIC_
PRECISION).

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CARDINAL_NUMBER.

20.5 CHARACTER_DATA domain

Function
Define a domain that contains any character data.

Definition
CREATE DOMAIN CHARACTER_DATA AS

CHARACTER VARYING (ML)

CHARACTER SET SQL_TEXT;

GRANT USAGE ON DOMAIN CHARACTER_DATA
TO PUBLIC WITH GRANT OPTION;

Description

1) This domain specifies any character data.

2) ML is the implementation-defined maximum length of a variable-length character string.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CHARACTER_DATA.

754 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.6 SQL_IDENTIFIER domain

20.6 SQL_IDENTIFIER domain

Function
Define a domain that contains all valid <identifier body>s and <delimited identifier body>s.

Definition
CREATE DOMAIN SQL_IDENTIFIER AS

CHARACTER VARYING (L)

CHARACTER SET SQL_IDENTIFIER;

GRANT USAGE ON DOMAIN SQL_IDENTIFIER
TO PUBLIC WITH GRANT OPTION;

Description

1) This domain specifies all variable-length character values that conform to the rules for formation
and representation of an SQL <identifier body> or an SQL <delimited identifier body>.
NOTE 346 – There is no way in SQL to specify a <domain constraint> that would be true for the body
of any valid SQL <regular identifier> or <delimited identifier> and false for all other character string
values.

2) L is the implementation-defined maximum length of <identifier body> and <delimited identifier
body>.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_IDENTIFIER.

20.7 TIME_STAMP domain

Function
Define a domain that contains a timestamp.

Definition
CREATE DOMAIN TIME_STAMP AS TIMESTAMP (2)

DEFAULT CURRENT_TIMESTAMP(2);

GRANT USAGE ON DOMAIN TIME_STAMP
TO PUBLIC WITH GRANT OPTION;

Description

1) The domain TIME_STAMP contains an SQL timestamp value.

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, and Feature T011, ‘‘Timestamp in Information
Schema’’, conforming SQL language shall not reference INFORMATION_SCHEMA.TIME_
STAMP.

Information Schema 755

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.8 ADMINISTRABLE_ROLE_AUTHORIZATIONS view

20.8 ADMINISTRABLE_ROLE_AUTHORIZATIONS view

Function
Identify role authorizations for which the current user has WITH ADMIN OPTION.

Definition
CREATE VIEW ADMINISTRABLE_ROLE_AUTHORIZATIONS AS

SELECT GRANTEE, ROLE_NAME, IS_GRANTABLE
FROM DEFINITION_SCHEMA.ROLE_AUTHORIZATION_DESCRIPTORS
WHERE ROLE_NAME IN

(SELECT ROLE_NAME

FROM INFORMATION_SCHEMA.APPLICABLE_ROLES
WHERE IS_GRANTABLE = ’YES’);

GRANT SELECT ON TABLE ADMINISTRABLE_ROLE_AUTHORIZATIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ADMINISTRABLE_ROLE_AUTHORIZATIONS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ADMINISTRABLE_ROLE_AUTHORIZATIONS.

756 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.9 APPLICABLE_ROLES view

20.9 APPLICABLE_ROLES view

Function
Identifies the applicable roles for the current user.

Definition
CREATE RECURSIVE VIEW APPLICABLE_ROLES (GRANTEE, ROLE_NAME, IS_GRANTABLE) AS

((SELECT GRANTEE, ROLE_NAME, IS_GRANTABLE
FROM DEFINITION_SCHEMA.ROLE_AUTHORIZATION_DESCRIPTORS
WHERE GRANTEE IN

(CURRENT_USER, ’PUBLIC’))
UNION
(SELECT RAD.GRANTEE, RAD.ROLE_NAME, RAD.IS_GRANTABLE

FROM DEFINITION_SCHEMA.ROLE_AUTHORIZATION_DESCRIPTORS RAD
JOIN

APPLICABLE_ROLES R
ON

RAD.GRANTEE = R.ROLE_NAME));

GRANT SELECT ON TABLE APPLICABLE_ROLES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.APPLICABLE_ROLES.

Information Schema 757

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.10 ASSERTIONS view

20.10 ASSERTIONS view

Function
Identify the assertions defined in this catalog that are owned by a given user.

Definition
CREATE VIEW ASSERTIONS AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
IS_DEFERRABLE, INITIALLY_DEFERRED

FROM DEFINITION_SCHEMA.ASSERTIONS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ASSERTIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ASSERTIONS.

758 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.11 ATTRIBUTES view

20.11 ATTRIBUTES view

Function
Identify the attributes of user-defined types defined in this catalog that are accessible to a given
user.

Definition
CREATE VIEW ATTRIBUTES AS

SELECT DISTINCT
UDT_CATALOG, UDT_SCHEMA, UDT_NAME, A.ATTRIBUTE_NAME, ORDINAL_POSITION,
CASE

WHEN EXISTS
(SELECT *
FROM DEFINITION_SCHEMA.SCHEMATA AS S

WHERE (UDT_CATALOG, UDT_SCHEMA)
= (S.CATALOG_NAME, S.SCHEMA_NAME)

AND
(SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

THEN ATTRIBUTE_DEFAULT
ELSE NULL

END AS ATTRIBUTE_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
C1.CHARACTER_SET_CATALOG, C1.CHARACTER_SET_SCHEMA, C1.CHARACTER_SET_NAME,
D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA, D1.COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
D1.USER_DEFINED_TYPE_CATALOG AS ATTRIBUTE_UDT_CATALOG,
D1.USER_DEFINED_TYPE_SCHEMA AS ATTRIBUTE_UDT_SCHEMA,
D1.USER_DEFINED_TYPE_NAME AS ATTRIBUTE_UDT_NAME,
D1.SCOPE_CATALOG, D1.SCOPE_SCHEMA, D1.SCOPE_NAME,
MAXIMUM_CARDINALITY, A.DTD_IDENTIFIER, CHECK_REFERENCES

FROM (DEFINITION_SCHEMA.ATTRIBUTES AS A
LEFT JOIN
(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D1
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C1
ON ((C1.COLLATION_CATALOG, C1.COLLATION_SCHEMA, C1.COLLATION_NAME)

= (D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA, D1.COLLATION_NAME)))
ON ((A.UDT_CATALOG, A.UDT_SCHEMA, A.UDT_NAME,

’USER-DEFINED TYPE’, A.DTD_IDENTIFIER)
= (D1.OBJECT_CATALOG, D1.OBJECT_SCHEMA, D1.OBJECT_NAME,

D1.OBJECT_TYPE, D1.DTD_IDENTIFIER)))
WHERE (A.UDT_CATALOG, A.UDT_SCHEMA, A.UDT_NAME) IN

(SELECT UDT_CATALOG, UDT_SCHEMA, UDT_NAME
FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
A.UDT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

Information Schema 759

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.11 ATTRIBUTES view

GRANT SELECT ON TABLE ATTRIBUTES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ATTRIBUTES.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ATTRIBUTES.

760 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.12 CHARACTER_SETS view

20.12 CHARACTER_SETS view

Function
Identify the character sets defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW CHARACTER_SETS AS

SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
FORM_OF_USE, NUMBER_OF_CHARACTERS,
DEFAULT_COLLATE_CATALOG, DEFAULT_COLLATE_SCHEMA, DEFAULT_COLLATE_NAME

FROM DEFINITION_SCHEMA.CHARACTER_SETS
WHERE (CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,

’CHARACTER SET’) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES

WHERE (SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
CHARACTER_SET_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE CHARACTER_SETS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CHARACTER_SETS.

Information Schema 761

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.13 CHECK_CONSTRAINTS view

20.13 CHECK_CONSTRAINTS view

Function
Identify the check constraints defined in this catalog that are owned by a given user.

Definition
CREATE VIEW CHECK_CONSTRAINTS AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
CHECK_CLAUSE

FROM DEFINITION_SCHEMA.CHECK_CONSTRAINTS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE CHECK_CONSTRAINTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

None.

762 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.14 COLLATIONS view

20.14 COLLATIONS view

Function
Identify the character collations defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW COLLATIONS AS

SELECT COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
PAD_ATTRIBUTE, COLLATION_TYPE, COLLATION_DEFINITION,
COLLATION_DICTIONARY

FROM DEFINITION_SCHEMA.COLLATIONS
WHERE (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,

’COLLATION’) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES

WHERE (SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND COLLATION_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE COLLATIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLLATIONS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLLATIONS.

Information Schema 763

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.15 COLUMN_DOMAIN_USAGE view

20.15 COLUMN_DOMAIN_USAGE view

Function
Identify the columns defined that are dependent on a domain defined in this catalog and owned by
a user.

Definition
CREATE VIEW COLUMN_DOMAIN_USAGE AS

SELECT D.DOMAIN_CATALOG, D.DOMAIN_SCHEMA, D.DOMAIN_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM (DEFINITION_SCHEMA.COLUMNS C
JOIN

(DEFINITION_SCHEMA.DOMAINS D
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((DOMAIN_CATALOG, DOMAIN_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME)))
ON ((D.DOMAIN_CATALOG, D.DOMAIN_SCHEMA, D.DOMAIN_NAME)

= (C.DOMAIN_CATALOG, C.DOMAIN_SCHEMA, C.DOMAIN_NAME)))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
C.DOMAIN_NAME IS NOT NULL

AND
D.DOMAIN_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE COLUMN_DOMAIN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.COLUMN_DOMAIN_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE.

764 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.16 COLUMN_PRIVILEGES view

20.16 COLUMN_PRIVILEGES view

Function
Identify the privileges on columns of tables defined in this catalog that are available to or granted
by a given user.

Definition
CREATE VIEW COLUMN_PRIVILEGES AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE (GRANTEE IN

(’PUBLIC’, CURRENT_USER)
OR
GRANTOR = CURRENT_USER)

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE COLUMN_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_PRIVILEGES.

Information Schema 765

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.17 COLUMN_UDT_USAGE view

20.17 COLUMN_UDT_USAGE view

Function
Identify the columns defined that are dependent on a user-defined type defined in this catalog and
owned by a given user.

Definition

CREATE VIEW COLUMN_UDT_USAGE AS
SELECT USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,

USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM DEFINITION_SCHEMA.COLUMNS C
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON (C.USER_DEFINED_TYPE_CATALOG, C.USER_DEFINED_TYPE_SCHEMA)
= (S.CATALOG_NAME, S.SCHEMA_NAME)

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
C.USER_DEFINED_TYPE_NAME IS NOT NULL

AND
C.USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE COLUMN_UDT_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.COLUMN_UDT_USAGE.

766 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.18 COLUMNS view

20.18 COLUMNS view

Function
Identify the columns of tables defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW COLUMNS AS

SELECT DISTINCT
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
C.COLUMN_NAME, ORDINAL_POSITION,
CASE

WHEN EXISTS
(SELECT *
FROM DEFINITION_SCHEMA.SCHEMATA AS S
WHERE (TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME)
AND

(SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

THEN COLUMN_DEFAULT
ELSE NULL

END AS COLUMN_DEFAULT,
IS_NULLABLE,
COALESCE (D1.DATA_TYPE, D2.DATA_TYPE) AS DATA_TYPE,
COALESCE (D1.CHARACTER_MAXIMUM_LENGTH, D2.CHARACTER_MAXIMUM_LENGTH)

AS CHARACTER_MAXIMUM_LENGTH,
COALESCE (D1.CHARACTER_OCTET_LENGTH, D2.CHARACTER_OCTET_LENGTH)

AS CHARACTER_OCTET_LENGTH,
COALESCE (D1.NUMERIC_PRECISION, D2.NUMERIC_PRECISION)

AS NUMERIC_PRECISION,
COALESCE (D1.NUMERIC_PRECISION_RADIX, D2.NUMERIC_PRECISION_RADIX)

AS NUMERIC_PRECISION_RADIX,
COALESCE (D1.NUMERIC_SCALE, D2.NUMERIC_SCALE)

AS NUMERIC_SCALE,
COALESCE (D1.DATETIME_PRECISION, D2.DATETIME_PRECISION)

AS DATETIME_PRECISION,
COALESCE (D1.INTERVAL_TYPE, D2.INTERVAL_TYPE)

AS INTERVAL_TYPE,
COALESCE (D1.INTERVAL_PRECISION, D2.INTERVAL_PRECISION)

AS INTERVAL_PRECISION,
COALESCE (C1.CHARACTER_SET_CATALOG, C2.CHARACTER_SET_CATALOG)

AS CHARACTER_SET_CATALOG,
COALESCE (C1.CHARACTER_SET_SCHEMA, C2.CHARACTER_SET_SCHEMA)

AS CHARACTER_SET_SCHEMA,
COALESCE (C1.CHARACTER_SET_NAME, C2.CHARACTER_SET_NAME)

AS CHARACTER_SET_NAME,
COALESCE (D1.COLLATION_CATALOG, D2.COLLATION_CATALOG)

AS COLLATION_CATALOG,
COALESCE (D1.COLLATION_SCHEMA, D2.COLLATION_SCHEMA)

AS COLLATION_SCHEMA,
COALESCE (D1.COLLATION_NAME, D2.COLLATION_NAME)

AS COLLATION_NAME,
DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,

Information Schema 767

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.18 COLUMNS view

COALESCE (D1.USER_DEFINED_TYPE_CATALOG, D2.USER_DEFINED_TYPE_CATALOG)
AS UDT_CATALOG,

COALESCE (D1.USER_DEFINED_TYPE_SCHEMA, D2.USER_DEFINED_TYPE_SCHEMA)
AS UDT_SCHEMA,

COALESCE (D1.USER_DEFINED_TYPE_NAME, D2.USER_DEFINED_TYPE_NAME)
AS UDT_NAME,

COALESCE (D1.SCOPE_CATALOG, D2.SCOPE_CATALOG) AS SCOPE_CATALOG,
COALESCE (D1.SCOPE_SCHEMA, D2.SCOPE_SCHEMA) AS SCOPE_SCHEMA,
COALESCE (D1.SCOPE_NAME, D2.SCOPE_NAME) AS SCOPE_NAME,

COALESCE (D1.MAXIMUM_CARDINALITY, D2.MAXIMUM_CARDINALITY)
AS MAXIMUM_CARDINALITY,

COALESCE (D1.DTD_IDENTIFIER, D2.DTD_IDENTIFIER)
AS DTD_IDENTIFIER,

IS_SELF_REFERENCING
FROM ((DEFINITION_SCHEMA.COLUMNS AS C

LEFT JOIN
(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D1
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C1
ON ((C1.COLLATION_CATALOG, C1.COLLATION_SCHEMA, C1.COLLATION_NAME)

= (D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA, D1.COLLATION_NAME)))
ON ((C.TABLE_CATALOG, C.TABLE_SCHEMA, C.TABLE_NAME,

’TABLE’, C.DTD_IDENTIFIER)
= (D1.OBJECT_CATALOG, D1.OBJECT_SCHEMA, D1.OBJECT_NAME,

D1.OBJECT_TYPE, D1.DTD_IDENTIFIER))))
LEFT JOIN
(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D2
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C2
ON ((C2.COLLATION_CATALOG, C2.COLLATION_SCHEMA, C2.COLLATION_NAME)

= (D2.COLLATION_CATALOG, D2.COLLATION_SCHEMA, D2.COLLATION_NAME)))
ON ((C.DOMAIN_CATALOG, C.DOMAIN_SCHEMA, C.DOMAIN_NAME,

’DOMAIN’, C.DTD_IDENTIFIER)
= (D2.OBJECT_CATALOG, D2.OBJECT_SCHEMA, D2.OBJECT_NAME,

D2.OBJECT_TYPE, D2.DTD_IDENTIFIER))
WHERE (C.TABLE_CATALOG, C.TABLE_SCHEMA, C.TABLE_NAME, C.COLUMN_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
C.TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE COLUMNS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMNS.

768 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.19 CONSTRAINT_COLUMN_USAGE view

20.19 CONSTRAINT_COLUMN_USAGE view

Function
Identify the columns used by referential constraints, unique constraints, check constraints, and
assertions defined in this catalog and owned by a given user.

Definition
CREATE VIEW CONSTRAINT_COLUMN_USAGE AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM ((SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM DEFINITION_SCHEMA.CHECK_COLUMN_USAGE)
UNION

(SELECT PK.TABLE_CATALOG, PK.TABLE_SCHEMA, PK.TABLE_NAME, PK.COLUMN_NAME,
FK.CONSTRAINT_CATALOG, FK.CONSTRAINT_SCHEMA, FK.CONSTRAINT_NAME

FROM DEFINITION_SCHEMA.REFERENTIAL_CONSTRAINTS AS FK
JOIN

DEFINITION_SCHEMA.KEY_COLUMN_USAGE AS PK
ON

(FK.UNIQUE_CONSTRAINT_CATALOG, FK.UNIQUE_CONSTRAINT_SCHEMA,
FK.UNIQUE_CONSTRAINT_NAME)

= (PK.CONSTRAINT_CATALOG, PK.CONSTRAINT_SCHEMA,
PK.CONSTRAINT_NAME))

UNION
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM DEFINITION SCHEMA.KEY_COLUMN_USAGE

NATURAL JOIN
DEFINITION_SCHEMA.TABLE_CONSTRAINTS

WHERE CONSTRAINT_TYPE IN
(’UNIQUE’, ’PRIMARY KEY’)))

JOIN
DEFINITION_SCHEMA.SCHEMATA
ON
= ((TABLE_CATALOG, TABLE_SCHEMA)

(CATALOG_NAME, SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE CONSTRAINT_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.CONSTRAINT_COLUMN_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE.

Information Schema 769

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.20 CONSTRAINT_TABLE_USAGE view

20.20 CONSTRAINT_TABLE_USAGE view

Function
Identify the tables that are used by referential constraints, unique constraints, check constraints,
and assertions defined in this catalog and owned by a given user.

Definition
CREATE VIEW CONSTRAINT_TABLE_USAGE AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM ((SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM DEFINITION_SCHEMA.CHECK_TABLE_USAGE)
UNION
(SELECT PK.TABLE_CATALOG, PK.TABLE_SCHEMA, PK.TABLE_NAME,

FK.CONSTRAINT_CATALOG, FK.CONSTRAINT_SCHEMA, FK.CONSTRAINT_NAME
FROM DEFINITION_SCHEMA.REFERENTIAL_CONSTRAINTS AS FK
JOIN

DEFINITION_SCHEMA.TABLE_CONSTRAINTS AS PK
ON (FK.UNIQUE_CONSTRAINT_CATALOG, FK.UNIQUE_CONSTRAINT_SCHEMA,

FK.UNIQUE_CONSTRAINT_NAME)
= (PK.CONSTRAINT_CATALOG, PK.CONSTRAINT_SCHEMA,
PK.CONSTRAINT_NAME))

UNION
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’)))
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE CONSTRAINT_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.CONSTRAINT_TABLE_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE.

770 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.21 DATA_TYPE_PRIVILEGES view

20.21 DATA_TYPE_PRIVILEGES view

Function
Identify those schema objects whose included data type descriptors are accessible to a given user.

Definition
CREATE VIEW DATA_TYPE_PRIVILEGES

(OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER)

AS
(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,

’USER-DEFINED TYPE’, DTD_IDENTIFIER
FROM ATTRIBUTES

UNION
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

’TABLE’, DTD_IDENTIFIER
FROM COLUMNS

UNION
SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

’DOMAIN’, DTD_IDENTIFIER
FROM DOMAINS

UNION
SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’, DTD_IDENTIFIER
FROM METHOD_SPECIFICATIONS

UNION
SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’, DTD_IDENTIFIER
FROM METHOD_SPECIFICATION_PARAMETERS

UNION
SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

’ROUTINE’, DTD_IDENTIFIER
FROM PARAMETERS

UNION
SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

’ROUTINE’, DTD_IDENTIFIER
FROM ROUTINES

UNION
SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’, SOURCE_DTD_IDENTIFIER
FROM USER_DEFINED_TYPES

UNION
SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’, REF_DTD_IDENTIFIER
FROM USER_DEFINED_TYPES;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES.

Information Schema 771

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.22 DIRECT_SUPERTABLES view

20.22 DIRECT_SUPERTABLES view

Function
Identify the direct supertables related to a table that are defined in this catalog and owned by a
given user.

Definition
CREATE VIEW DIRECT_SUPERTABLES AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, SUPERTABLE_NAME
FROM DEFINITION_SCHEMA.DIRECT_SUPERTABLES
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE DIRECT_SUPERTABLES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.DIRECT_SUPERTABLES.

772 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.23 DIRECT_SUPERTYPES view

20.23 DIRECT_SUPERTYPES view

Function
Identify the direct supertypes related to a user-defined type that are defined in this catalog and
owned by a given user.

Definition
CREATE VIEW DIRECT_SUPERTYPES AS

SELECT USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME

FROM DEFINITION_SCHEMA.DIRECT_SUPERTYPES
WHERE (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME) IN
(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME
FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE DIRECT_SUPERTYPES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA.DIRECT_SUPERTYPES.

Information Schema 773

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.24 DOMAIN_CONSTRAINTS view

20.24 DOMAIN_CONSTRAINTS view

Function
Identify the domain constraints of domains in this catalog that are accessible to a given user.

Definition
CREATE VIEW DOMAIN_CONSTRAINTS AS

SELECT DISTINCT
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
IS_DEFERRABLE, INITIALLY_DEFERRED

FROM DEFINITION_SCHEMA.DOMAIN_CONSTRAINTS
JOIN

DEFINITION_SCHEMA.SCHEMATA AS S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE DOMAIN_CONSTRAINTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS.

774 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.25 DOMAIN_UDT_USAGE view

20.25 DOMAIN_UDT_USAGE view

Function
Identify the domains defined that are dependent on user-defined types defined in this catalog and
owned by a given user.

Definition

CREATE VIEW DOMAIN_UDT_USAGE AS
SELECT USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,

USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME

FROM DEFINITION_SCHEMA.DOMAINS D
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON (D.USER_DEFINED_TYPE_CATALOG, D.USER_DEFINED_TYPE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME)
WHERE (SCHEMA_OWNER = CURRENT_USER

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND C.USER_DEFINED_TYPE_NAME IS NOT NULL
AND C.USER_DEFINED_TYPE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE DOMAIN_UDT_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.DOMAIN_UDT_USAGE.

Information Schema 775

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.26 DOMAINS view

20.26 DOMAINS view

Function
Identify the domains defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW DOMAINS AS

SELECT DISTINCT
DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA,COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,

USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, D1.DTD_IDENTIFIER

FROM DEFINITION_SCHEMA.DOMAINS AS D1
JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D2
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS S

USING (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME))
ON ((DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,

’DOMAIN’, D1.DTD_IDENTIFIER)
= (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, D2.DTD_IDENTIFIER))
WHERE ((DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME, ’DOMAIN’) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES

WHERE (SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER))

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

OR
(DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME) IN
(SELECT DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME

FROM COLUMNS))
AND

DOMAIN_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE DOMAINS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS.

776 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.27 ELEMENT_TYPES view

20.27 ELEMENT_TYPES view

Function
Identify the array element types defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW ELEMENT_TYPES AS

SELECT DISTINCT
E.OBJECT_CATALOG, E.OBJECT_SCHEMA, E.OBJECT_NAME,
E.OBJECT_TYPE, ARRAY_TYPE_IDENTIFIER, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, E.DTD_IDENTIFIER

FROM DEFINITION_SCHEMA.ELEMENT_TYPES AS E
JOIN (DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D

LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS S
USING (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME))

ON ((E.OBJECT_CATALOG, E.OBJECT_SCHEMA, E.OBJECT_NAME,
E.OBJECT_TYPE, E.DTD_IDENTIFIER)

= (D.OBJECT_CATALOG, D.OBJECT_SCHEMA, D.OBJECT_NAME,
D.OBJECT_TYPE, D.DTD_IDENTIFIER))

WHERE (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ARRAY_TYPE_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES);

GRANT SELECT ON TABLE ELEMENT_TYPES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ELEMENT_TYPES.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ELEMENT_TYPES.

Information Schema 777

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.28 ENABLED_ROLES view

20.28 ENABLED_ROLES view

Function
Identify the enabled roles for the current SQL-session.

Definition
CREATE RECURSIVE VIEW ENABLED_ROLES (ROLE_NAME) AS

VALUES (CURRENT_ROLE)
UNION

SELECT RAD.ROLE_NAME

FROM ROLE_AUTHORIZATION_DESCRIPTORS RAD
JOIN

ENABLED_ROLES R
ON RAD.GRANTEE = R.ROLE_NAME;

GRANT SELECT ON TABLE ENABLED_ROLES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ENABLED_ROLES.

778 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.29 FIELDS view

20.29 FIELDS view

Function
Identify the field types defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW FIELDS AS

SELECT DISTINCT
F.OBJECT_CATALOG, F.OBJECT_SCHEMA, F.OBJECT_NAME,
F.OBJECT_TYPE, ROW_IDENTIFIER, FIELD_NAME,
ORDINAL_POSITION, IS_NULLABLE, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
DOMAIN_DEFAULT,
USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, F.DTD_IDENTIFIER

FROM DEFINITION_SCHEMA.FIELDS AS F
JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS S
USING (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME))

ON ((F.OBJECT_CATALOG, F.OBJECT_SCHEMA, F.OBJECT_NAME,
F.OBJECT_TYPE, F.DTD_IDENTIFIER)

= (D.OBJECT_CATALOG, D.OBJECT_SCHEMA, D.OBJECT_NAME,
D.OBJECT_TYPE, D.DTD_IDENTIFIER))

WHERE (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ROW_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES);

GRANT SELECT ON TABLE FIELDS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.FIELDS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.FIELDS.

Information Schema 779

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.30 KEY_COLUMN_USAGE view

20.30 KEY_COLUMN_USAGE view

Function
Identify the columns defined in this catalog that are constrained as keys by a given user.

Definition
CREATE VIEW KEY_COLUMN_USAGE AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, ORDINAL_POSITION

FROM DEFINITION_SCHEMA.KEY_COLUMN_USAGE
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE-NAME
FROM ENABLED_ROLES))

AND
CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE KEY_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.KEY_COLUMN_USAGE.

780 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.31 METHOD_SPECIFICATION_PARAMETERS view

20.31 METHOD_SPECIFICATION_PARAMETERS view

Function
Identify the SQL parameters of method specifications described in the METHOD_SPECIFICATIONS
view.

Definition
CREATE VIEW METHOD_SPECIFICATION_PARAMETERS AS

SELECT P.SPECIFIC_CATALOG, P.SPECIFIC_SCHEMA, P.SPECIFIC_NAME,
P.ORDINAL_POSITION, P.PARAMETER_MODE, P.IS_RESULT,
P.AS_LOCATOR, P.PARAMETER_NAME,
P.FROM_SQL_SPECIFIC_CATALOG, P.FROM_SQL_SPECIFIC_SCHEMA,
P.FROM_SQL_SPECIFIC_NAME, D.DATA_TYPE,
D.CHARACTER_MAXIMUM_LENGTH, D.CHARACTER_OCTET_LENGTH,
C.CHARACTER_SET_CATALOG, C.CHARACTER_SET_SCHEMA, C.CHARACTER_SET_NAME,
D.COLLATION_CATALOG, D.COLLATION_SCHEMA, D.COLLATION_NAME,
D.NUMERIC_PRECISION, D.NUMERIC_PRECISION_RADIX, D.NUMERIC_SCALE,
D.DATETIME_PRECISION, D.INTERVAL_TYPE, D.INTERVAL_PRECISION,

D.USER_DEFINED_TYPE_CATALOG AS PARAMETER_UDT_CATALOG,
D.USER_DEFINED_TYPE_SCHEMA AS PARAMETER_UDT_SCHEMA,
D.USER_DEFINED_TYPE_NAME AS PARAMETER_UDT_NAME,
D.SCOPE_CATALOG, D.SCOPE_SCHEMA, D.SCOPE_NAME,
D.MAXIMUM_CARDINALITY, D.DTD_IDENTIFIER

FROM (DEFINITION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS P
JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR D

LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS C
ON ((C.COLLATION_CATALOG, C.COLLATION_SCHEMA,

C.COLLATION_NAME)
= (D.COLLATION_CATALOG, D.COLLATION_SCHEMA,

D.COLLATION_NAME)))
ON

(P.USER_DEFINED_TYPE_CATALOG, P.USER_DEFINED_TYPE_SCHEMA,
P.USER_DEFINED_TYPE_NAME,
’USER-DEFINED TYPE’, P.DTD_IDENTIFIER)

= (D.OBJECT_CATALOG, D.OBJECT_SCHEMA,
D.OBJECT_NAME,
D.OBJECT_TYPE, D.DTD_IDENTIFIER))

JOIN
DEFINITION_SCHEMA.METHOD_SPECIFICATIONS M

ON ((P.USER_DEFINED_TYPE_CATALOG, P.USER_DEFINED_TYPE_SCHEMA,
P.USER_DEFINED_TYPE_NAME,
P.METHOD_CATALOG, P.METHOD_SCHEMA, P.METHOD_NAME,
P.METHOD_SPECIFICATION_IDENTIFIER)

= (M.USER_DEFINED_TYPE_CATALOG, M.USER_DEFINED_TYPE_SCHEMA,
M.USER_DEFINED_TYPE_NAME,
M.METHOD_CATALOG, M.METHOD_SCHEMA, M.METHOD_NAME,
M.METHOD_SPECIFICATION_IDENTIFIER))

WHERE (M.USER_DEFINED_TYPE_CATALOG, M.USER_DEFINED_TYPE_SCHEMA,
M.USER_DEFINED_TYPE_NAME) IN

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME

Information Schema 781

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.31 METHOD_SPECIFICATION_PARAMETERS view

FROM ENABLED_ROLES))
AND

M.USER_DEFINED_TYPE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE METHOD_SPECIFICATIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS.

782 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.32 METHOD_SPECIFICATIONS view

20.32 METHOD_SPECIFICATIONS view

Function
Identify the SQL-invoked routines in the catalog that are accessible to a given user.

Definition
CREATE VIEW METHOD_SPECIFICATIONS AS

SELECT M.SPECIFIC_CATALOG, M.SPECIFIC_SCHEMA, M.SPECIFIC_NAME,
M.USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
M.USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
M.USER_DEFINED_TYPE_NAME AS UDT_NAME,
M.SPECIFIC_NAME, IS_STATIC, IS_OVERRIDING,

D.DATA_TYPE, D.CHARACTER_MAXIMUM_LENGTH, D.CHARACTER_OCTET_LENGTH,
C.CHARACTER_SET_CATALOG, C.CHARACTER_SET_SCHEMA, C.CHARACTER_SET_NAME,
D.COLLATION_CATALOG, D.COLLATION_SCHEMA, D.COLLATION_NAME,
D.NUMERIC_PRECISION, D.NUMERIC_PRECISION_RADIX, D.NUMERIC_SCALE,
D.DATETIME_PRECISION, D.INTERVAL_TYPE, D.INTERVAL_PRECISION,
D.USER_DEFINED_TYPE_CATALOG AS RETURN_UDT_CATALOG,
D.USER_DEFINED_TYPE_SCHEMA AS RETURN_UDT_SCHEMA,
D.USER_DEFINED_TYPE_NAME AS RETURN_UDT_NAME,
D.SCOPE_CATALOG, D.SCOPE_SCHEMA, D.SCOPE_NAME,
D.MAXIMUM_CARDINALITY, D.DTD_IDENTIFIER, M.METHOD_LANGUAGE,
M.PARAMETER_STYLE, M.IS_DETERMINISTIC, M.SQL_DATA_ACCESS,
M.IS_NULL_CALL,
M.TO_SQL_SPECIFIC_CATALOG, M.TO_SQL_SPECIFIC_SCHEMA,
M.TO_SQL_SPECIFIC_NAME
M.CREATED, M.LAST_ALTERED

FROM (DEFINITION_SCHEMA.METHOD_SPECIFICATIONS M
JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR D
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C
ON (C.COLLATION_CATALOG, C.COLLATION_SCHEMA, C.COLLATION_NAME)
= (D.COLLATION_CATALOG, D.COLLATION_SCHEMA, D.COLLATION_NAME))

ON (M.USER_DEFINED_TYPE_CATALOG, M.USER_DEFINED_TYPE_SCHEMA,
M.USER_DEFINED_TYPE_NAME,
’USER-DEFINED TYPE’, DTD_IDENTIFIER)

= (D.OBJECT_CATALOG, D.OBJECT_SCHEMA,
D.OBJECT_NAME,
D.OBJECT_TYPE, D.DTD_IDENTIFIER))

WHERE (M.USER_DEFINED_TYPE_CATALOG, M.USER_DEFINED_TYPE_SCHEMA,
M.USER_DEFINED_TYPE_NAME) IN

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER))
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
M.USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE METHOD_SPECIFICATIONS
TO PUBLIC WITH GRANT OPTION;

Information Schema 783

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.32 METHOD_SPECIFICATIONS view

Conformance Rules

1) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.

2) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.CREATED or
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.LAST_ALTERED.

3) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.

784 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.33 PARAMETERS view

20.33 PARAMETERS view

Function
Identify the SQL parameters of SQL-invoked routines defined in this catalog.

Definition
CREATE VIEW PARAMETERS AS

SELECT P1.SPECIFIC_CATALOG, P1.SPECIFIC_SCHEMA, P1.SPECIFIC_NAME,
P1.ORDINAL_POSITION, PARAMETER_MODE,
P1.IS_RESULT, P1.AS_LOCATOR, PARAMETER_NAME,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
C1.CHARACTER_SET_CATALOG, C1.CHARACTER_SET_SCHEMA, C1.CHARACTER_SET_NAME,
D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA, D1.COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION,INTERVAL_TYPE, INTERVAL_PRECISION,

D1.USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
D1.USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
D1.USER_DEFINED_TYPE_NAME AS UDT_NAME,
D1.SCOPE_CATALOG, D1.SCOPE_SCHEMA, D1.SCOPE_NAME,
D1.MAXIMUM_CARDINALITY, D1.DTD_IDENTIFIER

FROM (DEFINITION_SCHEMA.PARAMETERS P1
LEFT JOIN
(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR D1
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS C1
ON ((C1.COLLATION_CATALOG, C1.COLLATION_SCHEMA,

C1.COLLATION_NAME)
= (D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA,

D1.COLLATION_NAME)))
ON (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

’ROUTINE’, P1.DTD_IDENTIFIER)
= (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, D1.DTD_IDENTIFIER))
JOIN

DEFINITION_SCHEMA.ROUTINES R1
ON ((P1.SPECIFIC_CATALOG, P1.SPECIFIC_SCHEMA, P1.SPECIFIC_NAME

= (R1.SPECIFIC_CATALOG, R1.SPECIFIC_SCHEMA, R1.SPECIFIC_NAME))
WHERE (((MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IS NULL

AND
(P1.SPECIFIC_CATALOG, P1.SPECIFIC_SCHEMA, P1.SPECIFIC_NAME) IN
(SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME
FROM DEFINITION_SCHEMA.ROUTINE_PRIVILEGES
WHERE GRANTEE IN

(’PUBLIC’, CURRENT_USER)))
OR

((MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IS NOT NULL
AND

(MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IN
(SELECT MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME
FROM DEFINITION_SCHEMA.MODULE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))))

AND P1.SPECIFIC_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

Information Schema 785

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.33 PARAMETERS view

GRANT SELECT ON TABLE PARAMETERS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.PARAMETERS.

786 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.34 REFERENCED_TYPES view

20.34 REFERENCED_TYPES view

Function
Identify the referenced types of reference types defined in this catalog that are accessible to a given
user.

Definition
CREATE VIEW REFERENCED_TYPES AS

SELECT DISTINCT
R.OBJECT_CATALOG, R.OBJECT_SCHEMA, R.OBJECT_NAME,
R.OBJECT_TYPE, REFERENCE_TYPE_IDENTIFIER, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, R.DTD_IDENTIFIER

FROM (DEFINITION_SCHEMA.REFERENCED_TYPES AS R
JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS S
USING (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME))

ON ((R.OBJECT_CATALOG, R.OBJECT_SCHEMA, R.OBJECT_NAME,
R.OBJECT_TYPE, R.DTD_IDENTIFIER)

= (D.OBJECT_CATALOG, D.OBJECT_SCHEMA, D.OBJECT_NAME,
D.OBJECT_TYPE, D.DTD_IDENTIFIER)))

WHERE (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, REFERENCE_TYPE_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES);

GRANT SELECT ON TABLE REFERENCED_TYPES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.REFERENCED_TYPES.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.REFERENCED_TYPES.

Information Schema 787

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.35 REFERENTIAL_CONSTRAINTS view

20.35 REFERENTIAL_CONSTRAINTS view

Function
Identify the referential constraints defined in this catalog that are owned by a given user.

Definition
CREATE VIEW REFERENTIAL_CONSTRAINTS AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME,
MATCH_OPTION, UPDATE_RULE, DELETE_RULE

FROM DEFINITION_SCHEMA.REFERENTIAL_CONSTRAINTS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE REFERENTIAL_CONSTRAINTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS.

788 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.36 ROLE_COLUMN_GRANTS view

20.36 ROLE_COLUMN_GRANTS view

Function
Identifies the privileges on columns defined in this catalog that are available to or granted by the
currently enabled roles.

Definition
CREATE VIEW ROLE_COLUMN_GRANTS AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME, PRIVILEGE_TYPE, IS_GRANTABLE
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE (GRANTEE IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND TABLE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_COLUMN_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS.

Information Schema 789

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.37 ROLE_ROUTINE_GRANTS view

20.37 ROLE_ROUTINE_GRANTS view

Function
Identify the privileges on SQL-invoked routines defined in this catalog that are available to or
granted by the currently enabled roles.

Definition
CREATE VIEW ROLE_ROUTINE_GRANTS AS

SELECT GRANTOR, GRANTEE,
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

FROM DEFINITION_SCHEMA.ROUTINE_PRIVILEGES

WHERE (GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
SPECIFIC_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_ROUTINE_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS.

790 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.38 ROLE_TABLE_GRANTS view

20.38 ROLE_TABLE_GRANTS view

Function
Identifies the privileges on tables defined in this catalog that are available to or granted by the
currently applicable roles.

Definition
CREATE VIEW ROLE_TABLE_GRANTS AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

PRIVILEGE_TYPE, IS_GRANTABLE, WITH_HIERARCHY
FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE (GRANTEE IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)

AND TABLE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_TABLE_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_TABLE_GRANTS.

Information Schema 791

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.39 ROLE_TABLE_METHOD_GRANTS view

20.39 ROLE_TABLE_METHOD_GRANTS view

Function
Identify the privileges on methods of tables of structured type defined in this catalog that are
available to or granted by the currently enabled roles.

Definition
CREATE VIEW ROLE_TABLE_METHOD_GRANTS AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE

FROM DEFINITION_SCHEMA.TABLE_METHOD_PRIVILEGES
WHERE (GRANTEE IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_TABLE_METHOD_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, and Feature T331, ‘‘Basic roles’’, conform-
ing SQL language shall not reference INFORMATION_SCHEMA.ROLE_TABLE_METHOD_
GRANTS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROLE_TABLE_METHOD_GRANTS.

792 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.40 ROLE_USAGE_GRANTS view

20.40 ROLE_USAGE_GRANTS view

Function
Identify the USAGE privileges on objects defined in this catalog that are available to or granted by
the currently enabled roles.

Definition
CREATE VIEW ROLE_USAGE_GRANTS AS

SELECT GRANTOR, GRANTEE,
OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,

’USAGE’ AS PRIVILEGE_TYPE, IS_GRANTABLE
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES
WHERE (GRANTEE IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
OBJECT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_USAGE_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA.ROLE_USAGE_GRANTS.

Information Schema 793

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.41 ROLE_UDT_GRANTS view

20.41 ROLE_UDT_GRANTS view

Function
Identify the privileges on user-defined types defined in this catalog that are available to or granted
by the currently enabled roles.

Definition

CREATE VIEW ROLE_UDT_GRANTS AS
SELECT GRANTOR, GRANTEE,

USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (GRANTEE IN

(SELECT ROLE_NAME
FROM ENABLED_ROLES)

OR
GRANTOR IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROLE_UDT_GRANTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_UDT_GRANTS.

794 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.42 ROUTINE_COLUMN_USAGE view

20.42 ROUTINE_COLUMN_USAGE view

Function
Identify the columns owned by a given user on which SQL-invoked routines defined in this catalog
are dependent.

Definition
CREATE VIEW ROUTINE_COLUMN_USAGE AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME, ROUTINE_CATALOG,
ROUTINE_SCHEMA, ROUTINE_NAME, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME

FROM (DEFINITION_SCHEMA.ROUTINE_COLUMN_USAGE
JOIN

DEFINITION_SCHEMA.ROUTINES
USING (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME))

JOIN
DEFINITION_SCHEMA.SCHEMATA S

ON ((TABLE_CATALOG, TABLE_SCHEMA)
= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
ROUTINE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROUTINE_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ROUTINE_COLUMN_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE.

Information Schema 795

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.43 ROUTINE_PRIVILEGES view

20.43 ROUTINE_PRIVILEGES view

Function
Identify the privileges on SQL-invoked routines defined in this catalog that are available to or
granted by a given user.

Definition
CREATE VIEW ROUTINE_PRIVILEGES AS

SELECT GRANTOR, GRANTEE, SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

FROM (SELECT GRANTOR, GRANTEE,
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

FROM DEFINITION_SCHEMA.ROUTINE_PRIVILEGES
WHERE (GRANTEE IN

(’PUBLIC’, CURRENT_USER)
OR

GRANTOR = CURRENT_USER)
AND

ROUTINE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)) AS RP
JOIN

DEFINITION_SCHEMA.ROUTINES
USING (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME);

GRANT SELECT ON TABLE ROUTINE_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES.

796 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.44 ROUTINE_TABLE_USAGE view

20.44 ROUTINE_TABLE_USAGE view

Function
Identify the tables owned by a given user on which SQL-invoked routines defined in this catalog are
dependent.

Definition
CREATE VIEW ROUTINE_TABLE_USAGE AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM (DEFINITION_SCHEMA.ROUTINE_TABLE_USAGE
JOIN

DEFINITION_SCHEMA.ROUTINES
USING (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME))

JOIN
DEFINITION_SCHEMA.SCHEMATA S

ON ((TABLE_CATALOG, TABLE_SCHEMA)
= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
SPECIFIC_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROUTINE_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ROUTINE_TABLE_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE.

Information Schema 797

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.45 ROUTINES view

20.45 ROUTINES view

Function
Identify the SQL-invoked routines in this catalog that are accessible to a given user.

Definition
CREATE VIEW ROUTINES AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE,
MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME,

R.USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
R.USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
R.USER_DEFINED_TYPE_NAME AS UDT_NAME,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
C.CHARACTER_SET_CATALOG, C.CHARACTER_SET_SCHEMA, C.CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
D.USER_DEFINED_TYPE_CATALOG AS TYPE_UDT_CATALOG,
D.USER_DEFINED_TYPE_SCHEMA AS TYPE_UDT_SCHEMA,
D.USER_DEFINED_TYPE_NAME AS TYPE_UDT_NAME,
D.SCOPE_CATALOG, D.SCOPE_SCHEMA, D.SCOPE_NAME,
D.MAXIMUM_CARDINALITY, D.DTD_IDENTIFIER, ROUTINE_BODY,
CASE

WHEN EXISTS
(SELECT *
FROM DEFINITION_SCHEMA.SCHEMATA AS S
WHERE (SPECIFIC_CATALOG, SPECIFIC_SCHEMA)

= (S.SCATALOG_NAME, S.SCHEMA_NAME)
AND

(SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

THEN ROUTINE_DEFINITION
ELSE NULL

END AS ROUTINE_DEFINITION,
EXTERNAL_NAME, EXTERNAL_LANGUAGE, PARAMETER_STYLE,
IS_DETERMINISTIC, SQL_DATA_ACCESS, IS_NULL_CALL, SQL_PATH,
SCHEMA_LEVEL_ROUTINE, MAX_DYNAMIC_RESULT_SETS,
IS_USER_DEFINED_CAST, IS_IMPLICITLY_INVOCABLE, SECURITY_TYPE,
TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA, TO_SQL_SPECIFIC_NAME,
AS_LOCATOR, CREATED, LAST_ALTERED

FROM (DEFINITION_SCHEMA.ROUTINES R
LEFT JOIN

(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR D
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C
ON (C.COLLATION_CATALOG, C.COLLATION_SCHEMA, C.COLLATION_NAME)

= (D.COLLATION_CATALOG, D.COLLATION_SCHEMA, D.COLLATION_NAME))
ON (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

’ROUTINE’, R.DTD_IDENTIFIER)
= (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, D.DTD_IDENTIFIER))
WHERE (((MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IS NULL

AND
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME) IN
(SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME

798 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.45 ROUTINES view

FROM DEFINITION_SCHEMA.ROUTINE_PRIVILEGES
WHERE GRANTEE IN

(’PUBLIC’, CURRENT_USER)))
OR

((MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IS NOT NULL
AND
(MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME) IN
(SELECT MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME
FROM DEFINITION_SCHEMA.MODULE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))))

AND SPECIFIC_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE ROUTINES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.ROUTINES.CREATED or INFORMATION_
SCHEMA.ROUTINES.LAST_ALTERED.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINES.

Information Schema 799

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.46 SCHEMATA view

20.46 SCHEMATA view

Function
Identify the schemata in a catalog that are owned by a given user.

Definition
CREATE VIEW SCHEMATA AS

SELECT CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER,
DEFAULT_CHARACTER_SET_CATALOG, DEFAULT_CHARACTER_SET_SCHEMA,
DEFAULT_CHARACTER_SET_NAME, SQL_PATH

FROM DEFINITION_SCHEMA.SCHEMATA

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
CATALOG_NAME

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE SCHEMATA
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SCHEMATA.

800 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.47 SQL_FEATURES view

20.47 SQL_FEATURES view

Function
List the features and subfeatures of this standard, and indicate which of these the SQL-implementation
supports.

Definition
CREATE VIEW SQL_FEATURES AS

SELECT FEATURE_ID, FEATURE_NAME, SUB_FEATURE_ID, SUB_FEATURE_NAME,

IS_SUPPORTED, IS_VERIFIED_BY, COMMENTS
FROM DEFINITION_SCHEMA.SQL_FEATURES
WHERE FEATURES_SUBREATURE_PACKAGE_CODE IN

(’FEATURE’, ’SUBFEATURE’);

GRANT SELECT ON TABLE SQL_FEATURES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

None.

Information Schema 801

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.48 SQL_IMPLEMENTATION_INFO view

20.48 SQL_IMPLEMENTATION_INFO view

Function
List the SQL-implementation information items defined in this standard and, for each of these,
indicate the value supported by the SQL-implementation.

Definition
CREATE VIEW SQL_IMPLEMENTATION_INFO AS

SELECT IMPLEMENTATION_INFO_ID, IMPLEMENTATION_INFO_NAME,
INTEGER_VALUE, CHARACTER_VALUE, COMMENTS

FROM DEFINITION_SCHEMA.SQL_IMPLEMENTATION_INFO;

GRANT SELECT ON TABLE SQL_IMPLEMENTATION_INFO
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language shall not
reference the INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO view.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_IMPLEMENTAION_INFO.

802 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.49 SQL_LANGUAGES view

20.49 SQL_LANGUAGES view

Function
Identify the conformance levels, options, and dialects supported by the SQL-implementation pro-
cessing data defined in this catalog.
NOTE 347 – The SQL_LANGUAGES view provides, among other information, the same information pro-
vided by the SQL object identifier specified in Subclause 6.3, "Object identifier for Database Language SQL",
in ISO/IEC 9075-1.

Definition
CREATE VIEW SQL_LANGUAGES AS

SELECT SQL_LANGUAGE_SOURCE, SQL_LANGUAGE_YEAR, SQL_LANGUAGE_CONFORMANCE,
SQL_LANGUAGE_INTEGRITY, SQL_LANGUAGE_IMPLEMENTATION,
SQL_LANGUAGE_BINDING_STYLE, SQL_LANGUAGE_PROGRAMMING_LANGUAGE

FROM DEFINITION_SCHEMA.SQL_LANGUAGES;

GRANT SELECT ON TABLE SQL_LANGUAGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_LANGUAGES.

Information Schema 803

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.50 SQL_PACKAGES view

20.50 SQL_PACKAGES view

Function
List the packages of this standard, and indicate which of these the SQL-implementation supports.

Definition
CREATE VIEW SQL_PACKAGES AS

SELECT FEATURE_ID, FEATURE_NAME, IS_SUPPORTED, IS_VERIFIED_BY,

COMMENTS
FROM DEFINITION_SCHEMA.SQL_FEATURES
WHERE FEATURES_SUBFEATURE_PACKAGE_CODE

= ’PACKAGE’;

GRANT SELECT ON TABLE SQL_PACKAGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language shall not
reference the INFORMATION_SCHEMA.SQL_PACKAGES view.

804 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.51 SQL_SIZING view

20.51 SQL_SIZING view

Function
List the sizing items defined in this standard and, for each of these, indicate the size supported by
the SQL-implementation.

Definition
CREATE VIEW SQL_SIZING AS

SELECT SIZING_ID, SIZING_NAME, SUPPORTED_VALUE, COMMENTS
FROM DEFINITION_SCHEMA.SQL_SIZING;

GRANT SELECT ON TABLE SQL_SIZING
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

None.

Information Schema 805

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.52 SQL_SIZING_PROFILES view

20.52 SQL_SIZING_PROFILES view

Function
List the sizing items defined in this standard and, for each of these, indicate the size required by
one or more profiles of the standard.

Definition

CREATE VIEW SQL_SIZING_PROFILES AS
SELECT SIZING_ID, SIZING_NAME, PROFILE_ID,

REQUIRED_VALUE, COMMENTS
FROM DEFINITION_SCHEMA.SQL_SIZING_PROFILES;

GRANT SELECT ON TABLE SQL_SIZING_PROFILES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language shall not
reference the INFORMATION_SCHEMA.SQL_SIZING_PROFILES view.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_SIZING_PROFILE.

806 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.53 TABLE_CONSTRAINTS view

20.53 TABLE_CONSTRAINTS view

Function
Identify the table constraints defined in this catalog that are owned by a given user.

Definition
CREATE VIEW TABLE_CONSTRAINTS AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_TYPE, IS_DEFERRABLE, INITIALLY_DEFERRED

FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TABLE_CONSTRAINTS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

None.

Information Schema 807

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.54 TABLE_METHOD_PRIVILEGES view

20.54 TABLE_METHOD_PRIVILEGES view

Function
Identify the privileges on methods of tables of structured type defined in those catalogs that are
available to or granted by a given user.

Definition
CREATE VIEW TABLE_METHOD_PRIVILEGES AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE

FROM DEFINITION_SCHEMA.TABLE_METHOD_PRIVILEGES
WHERE (GRANTEE IN

(’PUBLIC’, CURRENT_USER)
OR
GRANTOR = CURRENT_USER)

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TABLE_METHOD_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA.TABLE_METHOD_PRIVILEGES.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLE_METHOD_PRIVILEGES.

808 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.55 TABLE_PRIVILEGES view

20.55 TABLE_PRIVILEGES view

Function
Identify the privileges on tables defined in this catalog that are available to or granted by a given
user.

Definition
CREATE VIEW TABLE_PRIVILEGES AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE, WITH_HIERARCHY

FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE (GRANTEE IN

(’PUBLIC’, CURRENT_USER)
OR
GRANTOR = CURRENT_USER)

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TABLE_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLE_PRIVILEGES.

Information Schema 809

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.56 TABLES view

20.56 TABLES view

Function
Identify the tables defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW TABLES AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

TABLE_TYPE, SELF_REFERENCING_COLUMN_NAME, REFERENCE_GENERATION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM DEFINITION_SCHEMA.TABLES
WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE GRANTEE IN

(’PUBLIC’, CURRENT_USER)
UNION

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TABLES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLES.

810 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.57 TRANSFORMS view

20.57 TRANSFORMS view

Function
Identify the transforms on user-defined types defined in this catalog that are accessible to a given
user.

Definition
CREATE VIEW TRANSFORMS AS

SELECT USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
GROUP_NAME, TRANSFORM_TYPE

FROM DEFINITION_SCHEMA.TRANSFORMS
WHERE (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME) IN
(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME
FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, USER)
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TRANSFORMS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRANSFORMS.

Information Schema 811

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.58 TRANSLATIONS view

20.58 TRANSLATIONS view

Function
Identify the character translations defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW TRANSLATIONS AS

SELECT TRANSLATION_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME,
SOURCE_CHARACTER_SET_CATALOG, SOURCE_CHARACTER_SET_SCHEMA,
SOURCE_CHARACTER_SET_NAME,
TARGET_CHARACTER_SET_CATALOG, TARGET_CHARACTER_SET_SCHEMA,
TARGET_CHARACTER_SET_NAME

FROM DEFINITION_SCHEMA.TRANSLATIONS
WHERE (TRANSLATION_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME, ’TRANSLATION’) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES

WHERE (SCHEMA_OWNER IN
(’PUBLIC’, CURRENT_USER)

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
TRANSLATION_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TRANSLATIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRANSLATIONS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRANSLATIONS.

812 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.59 TRIGGERED_UPDATE_COLUMNS view

20.59 TRIGGERED_UPDATE_COLUMNS view

Function
Identify the columns in this catalog that are identified by the explicit UPDATE trigger event
columns of a trigger defined in this catalog that are owned by a given user.

Definition

CREATE VIEW TRIGGERED_UPDATE_COLUMNS AS
SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,

EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE,
EVENT_OBJECT_COLUMN

FROM DEFINITION_SCHEMA.TRIGGERED_UPDATE_COLUMNS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TRIGGER_CATALOG, TRIGGER_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
TRIGGER_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TRIGGERED_UPDATE_COLUMNS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS.

Information Schema 813

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.60 TRIGGER_COLUMN_USAGE view

20.60 TRIGGER_COLUMN_USAGE view

Function
Identify the columns on which triggers defined in this catalog and owned by a given user are de-
pendent because of their reference by the search condition or in appearance in a triggered SQL
statement of a trigger owned by a given user.

Definition
CREATE VIEW TRIGGER_COLUMN_USAGE AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM DEFINITION_SCHEMA.TRIGGER_COLUMN_USAGE
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TRIGGER_CATALOG, TRIGGER_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND TRIGGER_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TRIGGER_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.TRIGGER_COLUMN_USAGE.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_COLUMN_USAGE.

814 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.61 TRIGGER_TABLE_USAGE view

20.61 TRIGGER_TABLE_USAGE view

Function
Identify the tables on which triggers defined in this catalog and owned by a given user are depen-
dent.

Definition
CREATE VIEW TRIGGER_TABLE_USAGE AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.TRIGGER_TABLE_USAGE
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TRIGGER_CATALOG, TRIGGER_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
TRIGGER_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE TRIGGER_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, conforming
SQL language shall not reference the INFORMATION_SCHEMA.TRIGGER_TABLE_USAGE
view.

2) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_TABLE_USAGE.

Information Schema 815

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.62 TRIGGERS view

20.62 TRIGGERS view

Function
Identify the triggers in this catalog that are owned by a given user.

Definition
CREATE VIEW TRIGGERS AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
EVENT_MANIPULATION,
EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE,
ACTION_ORDER, ACTION_CONDITION, ACTION_STATEMENT,
ACTION_ORIENTATION, CONDITION_TIMING,
CONDITION_REFERENCE_OLD_TABLE, CONDITION_REFERENCE_NEW_TABLE,

CREATED
FROM DEFINITION_SCHEMA.TRIGGERS
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TRIGGER_CATALOG, TRIGGER_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))
WHERE (SCHEMA_OWNER = CURRENT_USER

OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
TRIGGER_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

CONDITION_TIMING, GRANT SELECT ON TABLE TRIGGERS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERS.

2) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic trigger
capability’’, conforming SQL language shall not reference INFORMATION_SCHEMA.TRIGGERS.TRIGGER_
CREATED.

3) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERS.

816 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.63 USAGE_PRIVILEGES view

20.63 USAGE_PRIVILEGES view

Function
Identify the USAGE privileges on objects defined in this catalog that are available to or granted by
a given user.

Definition
CREATE VIEW USAGE_PRIVILEGES AS

SELECT GRANTOR, GRANTEE,
OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ’USAGE’ AS PRIVILEGE_TYPE, IS_GRANTABLE

FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES

WHERE (GRANTEE IN
(’PUBLIC’, CURRENT_USER)

OR
GRANTOR = CURRENT_USER)

AND
OBJECT_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE USAGE_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.USAGE_PRIVILEGES.

Information Schema 817

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.64 UDT_PRIVILEGES view

20.64 UDT_PRIVILEGES view

Function
Identify the privileges on user-defined types defined in this catalog that are accessible to or granted
by a given user.

Definition

CREATE VIEW UDT_PRIVILEGES AS
SELECT GRANTOR, GRANTEE,

USER_DEFINED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFINED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFINED_TYPE_NAME AS UDT_NAME,

PRIVILEGE_TYPE, IS_GRANTABLE
FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (GRANTEE IN

(’PUBLIC’, CURRENT_USER)
OR
GRANTOR = CURRENT_USER)

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE UDT_PRIVILEGES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.UDT_PRIVILEGES.

818 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.65 USER_DEFINED_TYPES view

20.65 USER_DEFINED_TYPES view

Function
Identify the user-defined types defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW USER_DEFINED_TYPES AS

SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
USER_DEFINED_TYPE_CATEGORY, IS_INSTANTIABLE, IS_FINAL,
ORDERING_FORM, ORDERING_CATEGORY,
ORDERING_ROUTINE_CATALOG, ORDERING_ROUTINE_SCHEMA, ORDERING_ROUTINE_NAME,
REFERENCE_TYPE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
C1.CHARACTER_SET_CATALOG, C1.CHARACTER_SET_SCHEMA, C1.CHARACTER_SET_NAME,
D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA, D1.COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
SOURCE_DTD_IDENTIFIER, REF_DTD_IDENTIFIER

FROM (DEFINITION_SCHEMA.USER_DEFINED_TYPES AS U
LEFT JOIN
(DEFINITION_SCHEMA.DATA_TYPE_DESCRIPTOR AS D1
LEFT JOIN
DEFINITION_SCHEMA.COLLATIONS AS C1
ON ((C1.COLLATION_CATALOG, C1.COLLATION_SCHEMA,

C1.COLLATION_NAME)
= (D1.COLLATION_CATALOG, D1.COLLATION_SCHEMA,

D1.COLLATION_NAME)))
ON ((U.USER_DEFINED_TYPE_CATALOG, U.USER_DEFINED_TYPE_SCHEMA,

U.USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’,
U.SOURCE_DTD_IDENTIFIER)

= (OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE,
D1.DTD_IDENTIFIER)

OR
(U.USER_DEFINED_TYPE_CATALOG, U.USER_DEFINED_TYPE_SCHEMA,

U.USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’,
U.SOURCE_DTD_IDENTIFIER)

= (OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE,
D1.DTD_IDENTIFIER)))

WHERE (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IN

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM DEFINITION_SCHEMA.USER_DEFINED_TYPE_PRIVILEGES
WHERE (SCHEMA_OWNER IN

(’PUBLIC’, CURRENT_USER)
OR
SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES)))

AND
USER_DEFINED_TYPE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE USER_DEFINED_TYPES
TO PUBLIC WITH GRANT OPTION;

Information Schema 819

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.65 USER_DEFINED_TYPES view

Conformance Rules

None.

820 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.66 VIEW_COLUMN_USAGE view

20.66 VIEW_COLUMN_USAGE view

Function
Identify the columns on which viewed tables defined in this catalog and owned by a given user are
dependent.

Definition
CREATE VIEW VIEW_COLUMN_USAGE AS

SELECT VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM DEFINITION_SCHEMA.VIEW_COLUMN_USAGE
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
VIEW_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE VIEW_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.VIEW_COLUMN_USAGE.

Information Schema 821

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.67 VIEW_TABLE_USAGE view

20.67 VIEW_TABLE_USAGE view

Function
Identify the tables on which viewed tables defined in this catalog and owned by a given user are
dependent.

Definition
CREATE VIEW VIEW_TABLE_USAGE AS

SELECT VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.VIEW_TABLE_USAGE
JOIN

DEFINITION_SCHEMA.SCHEMATA S
ON ((TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE (SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM ENABLED_ROLES))

AND
VIEW_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE VIEW_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.VIEW_TABLE_USAGE.

822 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.68 VIEWS view

20.68 VIEWS view

Function
Identify the viewed tables defined in this catalog that are accessible to a given user.

Definition
CREATE VIEW VIEWS AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CASE
WHEN EXISTS

(SELECT *
FROM DEFINITION_SCHEMA.SCHEMATA AS S
WHERE (TABLE_CATALOG, TABLE_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME)
AND

(SCHEMA_OWNER = CURRENT_USER
OR

SCHEMA_OWNER IN
(SELECT ROLE_NAME
FROM_ENABLED_ROLES)))

THEN VIEW_DEFINITION
ELSE NULL

END AS VIEW_DEFINITION,
CHECK_OPTION, IS_UPDATABLE, IS_INSERTABLE_INTO

FROM DEFINITION_SCHEMA.VIEWS
WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES)

AND
TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME);

GRANT SELECT ON TABLE VIEWS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

None.

Information Schema 823

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

20.69 Short name views

Function
Provide alternative views that use only identifiers that do not require Feature F391, ‘‘Long identi-
fiers’’.

Definition
CREATE VIEW CATALOG_NAME

(CATALOG_NAME) AS
SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME;

GRANT SELECT ON TABLE CATALOG_NAME
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ADMIN_ROLE_AUTHS
(GRANTEE, ROLE_NAME, IS_GRANTABLE) AS

SELECT GRANTEE, ROLE_NAME, IS_GRANTABLE
FROM INFORMATION_SCHEMA.INFORMATION_SCHEMA_CATALOG_NAME;

GRANT SELECT ON TABLE ADMIN_ROLE_AUTHS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ATTRIBUTES_S
(UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
ATTRIBUTE_NAME, ORDINAL_POSITION, ATTRIBUTE_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHAR_MAX_LENGTH,
CHAR_OCTET_LENGTH, CHAR_SET_CATALOG, CHAR_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, NUMERIC_PRECISION, NUMERIC_PREC_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, ATT_UDT_CAT, ATT_UDT_SCHEMA,
ATT_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDINALITY, DTD_IDENTIFIER,
CHECK_REFERENCES) AS

SELECT UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
ATTRIBUTE_NAME, ORDINAL_POSITION, COLUMN_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, ATTRIBUTE_UDT_CATALOG, ATTRIBUTE_UDT_SCHEMA,
ATTRIBUTE_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER, CHECK_REFERENCES

FROM INFORMATION_SCHEMA.ATTRIBUTES;

GRANT SELECT ON TABLE ATTRIBUTES_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW CHARACTER_SETS_S
(CHAR_SET_CATALOG, CHAR_SET_SCHEMA, CHARACTER_SET_NAME,
FORM_OF_USE, NUMBER_OF_CHARS, DEF_COLLATE_CAT,
DEF_COLLATE_SCHEMA, DEF_COLLATE_NAME) AS

SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
FORM_OF_USE, NUMBER_OF_CHARACTERS, DEFAULT_COLLATE_CATALOG,
DEFAULT_COLLATE_SCHEMA, DEFAULT_COLLATE_NAME

FROM INFORMATION_SCHEMA.CHARACTER_SETS;

GRANT SELECT ON TABLE CHARACTER_SETS_S
TO PUBLIC WITH GRANT OPTION;

824 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.69 Short name views

CREATE VIEW COLLATIONS_S
(COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
CHAR_SET_CATALOG, CHAR_SET_SCHEMA, CHARACTER_SET_NAME,
PAD_ATTRIBUTE, COLLATION_TYPE, COLLATION_DEFN,
COLLATION_DICT) AS

SELECT COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
PAD_ATTRIBUTE, COLLATION_TYPE, COLLATION_DEFINITION,
COLLATION_DICTIONARY

FROM INFORMATION_SCHEMA.COLLATIONS;

GRANT SELECT ON TABLE COLLATIONS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW COL_DOMAIN_USAGE
(DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME) AS

SELECT DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE;

GRANT SELECT ON TABLE COL_DOMAIN_USAGE
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW COLUMNS_S
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHAR_MAX_LENGTH,
CHAR_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_PREC_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, CHAR_SET_CATALOG, CHAR_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDINALITY, DTD_IDENTIFIER,
IS_SELF_REF) AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER,
IS_SELF_REFERENCING

FROM INFORMATION_SCHEMA.COLUMNS;

GRANT SELECT ON TABLE COLUMNS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW CONSTR_COL_USAGE
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
CONSTRAINT_NAME) AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE;

GRANT SELECT ON TABLE CONSTR_COL_USAGE
TO PUBLIC WITH GRANT OPTION;

Information Schema 825

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

CREATE VIEW CONSTR_TABLE_USAGE
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME) AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE;

GRANT SELECT ON TABLE CONSTR_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW DOMAINS_S
(DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
DATA_TYPE, CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH,
CHAR_SET_CATALOG, CHAR_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PREC_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
DOMAIN_DEFAULT, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDINALITY, DTD_IDENTIFIER) AS

SELECT DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA,COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
DOMAIN_DEFAULT, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.DOMAINS;

GRANT SELECT ON TABLE DOMAINS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ELEMENT_TYPES_S
(OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ARRAY_TYPE_ID, DATA_TYPE,
CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH, CHAR_SET_CATALOG,
CHAR_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PREC_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAX_CARDINALITY, DTD_IDENTIFIER) AS

SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ARRAY_TYPE_IDENTIFIER, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.ELEMENT_TYPES

GRANT SELECT ON TABLE ELEMENT_TYPES_S
TO PUBLIC WITH GRANT OPTION;

826 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.69 Short name views

CREATE VIEW FIELDS_S
(OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ROW_IDENTIFIER, FIELD_NAME,
ORDINAL_POSITION, IS_NULLABLE, DATA_TYPE,
CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH, CHAR_SET_CATALOG,
CHAR_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PREC_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAX_CARDINALITY, DTD_IDENTIFIER) AS

SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ROW_IDENTIFIER, FIELD_NAME,
ORDINAL_POSITION, IS_NULLABLE, DATA_TYPE,
CHARACTER_MAX_LENGTH, CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.FIELDS

GRANT SELECT ON TABLE FIELDS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW METHOD_SPECS
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
METHOD_NAME, IS_STATIC, IS_OVERRIDING,
DATA_TYPE, CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH,
CHAR_SET_CATALOG, CHAR_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PREC_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
RETURN_UDT_CATALOG, RETURN_UDT_SCHEMA, RETURN_UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAX_CARDINALITY, DTD_IDENTIFIER, METHOD_LANGUAGE,
PARAMETER_STYLE, IS_DETERMINISTIC, SQL_DATA_ACCESS,
IS_NULL_CALL, TO_SQL_SPEC_CAT, TO_SQL_SPEC_SCHEMA,
TO_SQL_SPEC_NAME, AS_LOCATOR, CREATED,
LAST_ALTERED) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
METHOD_NAME, IS_STATIC, IS_OVERRIDING,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
RETURN_UDT_CATALOG, RETURN_UDT_SCHEMA, RETURN_UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, DTD_IDENTIFIER, METHOD_LANGUAGE,
PARAMETER_STYLE, IS_DETERMINISTIC, SQL_DATA_ACCESS,
IS_NULL_CALL, TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA,
TO_SQL_SPECIFIC_NAME, AS_LOCATOR, CREATED,
LAST_ALTERED

FROM INFORMATION_SCHEMA.METHOD_SPECIFICATIONS;

GRANT SELECT ON TABLE METHOS_SPECS
TO PUBLIC WITH GRANT OPTION;

Information Schema 827

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

CREATE VIEW METHOD_SPEC_PARAMS
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ORDINAL_POSITION, PARAMETER_MODE, IS_RESULT,
AS_LOCATOR, PARAMETER_NAME, FROM_SQL_SPEC_CAT,
FROM_SQL_SPEC_SCH, FROM_SQL_SPEC_NAME, DATA_TYPE,
CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH, CHAR_SET_CATALOG,
CHAR_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PREC_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, PARM_UDT_CATALOG,
PARM_UDT_SCHEMA, PARM_UDT_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, SCOPE_NAME, MAX_CARDINALITY,
DTD_IDENTIFIER) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ORDINAL_POSITION, PARAMETER_MODE, IS_RESULT,
AS_LOCATOR, PARAMETER_NAME, FROM_SQL_SPECIFIC_CATALOG,
FROM_SQL_SPECIFIC_SCHEMA, FROM_SQL_SPECIFIC_NAME, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, PARM_UDT_CATALOG,
PARM_UDT_SCHEMA, PARM_UDT_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, SCOPE_NAME, MAXIMUM_CARDINALITY,
DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS;

GRANT SELECT ON TABLE METHOD_SPEC_PARAMS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW PARAMETERS_S
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ORDINAL_POSITION, PARAMETER_MODE, IS_RESULT,
AS_LOCATOR, PARAMETER_NAME, FROM_SQL_SPEC_CAT,
FROM_SQL_SPEC_SCH, FROM_SQL_SPEC_NAME, TO_SQL_SPEC_CAT,
TO_SQL_SPEC_SCHEMA, TO_SQL_SPEC_NAME, DATA_TYPE,
CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH, CHAR_SET_CATALOG,
CHAR_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PREC_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, UDT_CATALOG,
UDT_SCHEMA, UDT_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, SCOPE_NAME, MAX_CARDINALITY,
DTD_IDENTIFIER) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ORDINAL_POSITION, PARAMETER_MODE, IS_RESULT,
AS_LOCATOR, PARAMETER_NAME, FROM_SQL_SPECIFIC_CATALOG,
FROM_SQL_SPECIFIC_SCHEMA, FROM_SQL_SPECIFIC_NAME, TO_SQL_SPECIFIC_CATALOG,
TO_SQL_SPECIFIC_SCHEMA, TO_SQL_SPECIFIC_NAME, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, UDT_CATALOG,
UDT_SCHEMA, UDT_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, SCOPE_NAME, MAXIMUM_CARDINALITY,
DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.PARAMETERS;

GRANT SELECT ON TABLE PARAMETERS_S
TO PUBLIC WITH GRANT OPTION;

828 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.69 Short name views

CREATE VIEW REFERENCED_TYPES_S
(OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, REFERENCE_TYPE_ID, DATA_TYPE,
CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH, CHAR_SET_CATALOG,
CHAR_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PREC_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAX_CARDINALITY, DTD_IDENTIFIER, ROOT_TYPE_ID) AS

SELECT R.OBJECT_CATALOG, R.OBJECT_SCHEMA, R.OBJECT_NAME,
R.OBJECT_TYPE, REFERENCE_TYPE_IDENTIFIER, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, COLLATION_CATALOG,
COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_PRECISION,
NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
INTERVAL_TYPE, INTERVAL_PRECISION, DOMAIN_DEFAULT,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME,
MAXIMUM_CARDINALITY, R.DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.REFERENCED_TYPES

GRANT SELECT ON TABLE REFERENCED_TYPES_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW REF_CONSTRAINTS
(CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
UNIQUE_CONSTR_CAT, UNIQUE_CONSTR_SCH, UNIQUE_CONSTR_NAME,
MATCH_OPTION, UPDATE_RULE, DELETE_RULE) AS

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME,
MATCH_OPTION, UPDATE_RULE, DELETE_RULE

FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS;

GRANT SELECT ON TABLE REF_CONSTRAINTS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ROLE_ROUT_GRANTS
(GRANTOR, GRANTEE, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, ROUTINE_CATALOG,
ROUTINE_SCHEMA, ROUTINE_NAME, PRIVILEGE_TYPE,
IS_GRANTABLE) AS

SELECT GRANTOR, GRANTEE, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, ROUTINE_CATALOG,
ROUTINE_SCHEMA, ROUTINE_NAME, PRIVILEGE_TYPE,
IS_GRANTABLE

FROM INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS;

GRANT SELECT ON TABLE ROLE_ROUT_GRANTS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ROL_TAB_METH_GRNTS
(GRANTOR, GRANTEE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE) AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE

FROM DEFINITION_SCHEMA.ROLE_TABLE_METHOD_GRANTS

GRANT SELECT ON TABLE ROL_TAB_METH_GRNTS
TO PUBLIC WITH GRANT OPTION;

Information Schema 829

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

CREATE VIEW ROUTINE_COL_USAGE
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME

FROM INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE;

GRANT SELECT ON TABLE ROUTINE_COL_USAGE
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ROUT_TABLE_USAGE
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE;

GRANT SELECT ON TABLE ROUT_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW ROUTINES_S
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
ROUTINE_TYPE, MODULE_CATALOG, MODULE_SCHEMA,
MODULE_NAME, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, DATA_TYPE, CHAR_MAX_LENGTH,
CHAR_OCTET_LENGTH, CHAR_SET_CATALOG, CHAR_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, NUMERIC_PRECISION, NUMERIC_PREC_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, TYPE_UDT_CATALOG, TYPE_UDT_SCHEMA,
TYPE_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDINALITY, DTD_IDENTIFIER,
ROUTINE_BODY, ROUTINE_DEFINITION, EXTERNAL_NAME,
EXTERNAL_LANGUAGE, PARAMETER_STYLE, IS_DETERMINISTIC,
SQL_DATA_ACCESS, IS_NULL_CALL, SQL_PATH,
SCH_LEVEL_ROUTINE, MAX_DYN_RESLT_SETS, IS_USER_DEFND_CAST,
IS_IMP_INVOCABLE, SECURITY_TYPE, TO_SQL_SPEC_CAT,
TO_SQL_SPEC_SCHEMA, TO_SQL_SPEC_NAME, AS_LOCATOR,
CREATED, LAST_ALTERED) AS

SELECT SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
ROUTINE_CATALOG, ROUTINE_SCHEMA, ROUTINE_NAME,
ROUTINE_TYPE, MODULE_CATALOG, MODULE_SCHEMA,
MODULE_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, TYPE_UDT_CATALOG, TYPE_UDT_SCHEMA,
TYPE_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER,
ROUTINE_BODY, ROUTINE_DEFINITION, EXTERNAL_NAME,
EXTERNAL_LANGUAGE, PARAMETER_STYLE, IS_DETERMINISTIC,
SQL_DATA_ACCESS, IS_NULL_CALL, SQL_PATH, SCHEMA_LEVEL_ROUTINE,
MAX_DYNAMIC_RESULT_SETS, IS_USER_DEFINED_CAST, IS_IMPLICITLY_INVOCABLE,
SECURITY_TYPE, TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA,
TO_SQL_SPECIFIC_NAME, AS_LOCATOR, CREATED,
LAST_ALTERED

830 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.69 Short name views

FROM INFORMATION_SCHEMA.ROUTINES;

GRANT SELECT ON TABLE ROUTINES_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW SCHEMATA_S
(CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER,
DEF_CHAR_SET_CAT, DEF_CHAR_SET_SCH, DEF_CHAR_SET_NAME,
SQL_PATH) AS

SELECT CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER,
DEFAULT_CHARACTER_SET_CATALOG, DEFAULT_CHARACTER_SET_SCHEMA,
DEFAULT_CHARACTER_SET_NAME, SQL_PATH

FROM INFORMATION_SCHEMA.SCHEMATA;

GRANT SELECT ON TABLE SCHEMATA_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW SQL_IMPL_INFO
(IMPL_INFO_ID, IMPL_INFO_NAME, INTEGER_VALUE,
CHARACTER_VALUE, COMMENTS) AS

SELECT IMPLEMENTATION_INFO_ID, IMPLEMENTATION_INFO_NAME, INTEGER_VALUE,
CHARACTER_VALUE, COMMENTS

FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO;

GRANT SELECT ON TABLE SQL_IMPL_INFO
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW SQL_SIZING_PROFS
(SIZING_ID, SIZING_NAME, PROFILE_ID,
REQUIRED_VALUE, COMMENTS) AS

SELECT SIZING_ID, SIZING_NAME, PROFILE_ID,
REQUIRED_VALUE, COMMENTS

FROM INFORMATION_SCHEMA.SQL_SIZING_PROFILES;

GRANT SELECT ON TABLE SQL_SIZING_PROFS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW SQL_LANGUAGES_S
(SOURCE, YEAR, CONFORMANCE,
INTEGRITY, IMPLEMENTATION, BINDING_STYLE,
PROGRAMMING_LANGUAGE) AS

SELECT SQL_LANGUAGE_SOURCE, SQL_LANGUAGE_YEAR, SQL_LANGUAGE_CONFORMANCE,
SQL_LANGUAGE_INTEGRITY, SQL_LANGUAGE_IMPLEMENTATION, SQL_LANGUAGE_BINDING_STYLE,
SQL_LANGUAGE_PROGRAMMING_LANGUAGE

FROM INFORMATION_SCHEMA.SQL_LANGUAGES;

GRANT SELECT ON TABLE SQL_LANGUAGES_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW TABLE_METHOD_PRIVS
(GRANTOR, GRANTEE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE) AS

SELECT GRANTOR, GRANTEE, TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME, IS_GRANTABLE

FROM INFORMATION_SCHEMA.TABLE_METHOD_PRIVILEGES;

GRANT SELECT ON TABLE TABLE_METHOD_PRIVS
TO PUBLIC WITH GRANT OPTION;

Information Schema 831

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

CREATE VIEW TABLES_S
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
TABLE_TYPE, SELF_REF_COLUMN, REF_GENERATION,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME) AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
TABLE_TYPE, SELF_REFERENCING_COLUMN, REFERENCE_GENERATION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM INFORMATION_SCHEMA.TABLES;

GRANT SELECT ON TABLE TABLES_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW TRANSLATIONS_S
(TRANS_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME,
SRC_CHAR_SET_CAT, SRC_CHAR_SET_SCH, SRC_CHAR_SET_NAME,
TGT_CHAR_SET_CAT, TGT_CHAR_SET_SCH, TGT_CHAR_SET_NAME) AS

SELECT TRANSLATION_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME,
SOURCE_CHARACTER_SET_CATALOG, SOURCE_CHARACTER_SET_SCHEMA,
SOURCE_CHARACTER_SET_NAME,
TARGET_CHARACTER_SET_CATALOG, TARGET_CHARACTER_SET_SCHEMA,
TARGET_CHARACTER_SET_NAME

FROM INFORMATION_SCHEMA.TRANSLATIONS;

GRANT SELECT ON TABLE TRANSLATIONS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW TRIG_UPDATE_COLS
(TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
EVENT_OBJECT_CAT, EVENT_OBJECT_SCH, EVENT_OBJECT_TABLE,
EVENT_OBJECT_COL) AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE,
EVENT_OBJECT_COLUMN

FROM INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS;

GRANT SELECT ON TABLE TRIG_UPDATE_COLS
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW TRIG_COLUMN_USAGE
(TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME) AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME

FROM INFORMATION_SCHEMA.TRIGGER_COLUMN_USAGE;

GRANT SELECT ON TABLE TRIG_COLUMN_USAGE
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW TRIG_TABLE_USAGE
(TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM INFORMATION_SCHEMA.TRIGGER_TABLE_USAGE;

GRANT SELECT ON TABLE TRIGGER_TABLE_USAGE
TO PUBLIC WITH GRANT OPTION;

832 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.69 Short name views

CREATE VIEW TRIGGERS_S
(TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
EVENT_MANIPULATION, EVENT_OBJECT_CAT, EVENT_OBJECT_SCH,
EVENT_OBJECT_TABLE, ACTION_ORDER, ACTION_CONDITION,
ACTION_STATEMENT, ACTION_ORIENTATION, CONDITION_TIMING,
COND_REF_OLD_TABLE, COND_REF_NEW_TABLE, CREATED) AS

SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,
EVENT_MANIPULATION, EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA,
EVENT_OBJECT_TABLE, ACTION_ORDER, ACTION_CONDITION,
ACTION_STATEMENT, ACTION_ORIENTATION, CONDITION_TIMING,
CONDITION_REFERENCE_OLD_TABLE, CONDITION_REFERENCE_NEW_TABLE, CREATED

FROM INFORMATION_SCHEMA.TRIGGERS;

GRANT SELECT ON TABLE TRIGGERS_S
TO PUBLIC WITH GRANT OPTION;

CREATE VIEW UDT_S
(UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
UDT_CATEGORY, IS_INSTANTIABLE, IS_FINAL,
ORDERING_FORM, ORDERING_CATEGORY, ORDERING_ROUT_CAT,
ORDERING_ROUT_SCH, ORDERING_ROUT_NAME, REFERENCE_TYPE,
DATA_TYPE, CHAR_MAX_LENGTH, CHAR_OCTET_LENGTH,
CHAR_SET_CATALOG, CHAR_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PREC_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
SOURCE_DTD_ID, REF_DTD_IDENTIFIER) AS

SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
CATEGORY, IS_INSTANTIABLE, IS_FINAL,
ORDERING_FORM, ORDERING_CATEGORY, ORDERING_ROUTINE_CATALOG,
ORDERING_ROUTINE_SCHEMA, ORDERING_ROUTINE_NAME, REFERENCE_TYPE,
DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
SOURCE_DTD_IDENTIFIER, REF_DTD_IDENTIFIER

FROM INFORMATION_SCHEMA.USER_DEFINED_TYPES;

GRANT SELECT ON TABLE UDT_S
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ADMIN_ROLE_AUTHS.

2) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ATTRIBUTES_S.

3) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLLATIONS_S.

4) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.COL_DOMAIN_USAGE.

5) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.CONST_COL_USAGE.

6) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.CONST_TABLE_USAGE.

Information Schema 833

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.69 Short name views

7) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS_S.

8) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECS.

9) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.CREATED or
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.LAST_ALTERED.

10) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPEC_PARAMS.

11) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_ROUT_GRANTS.

12) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ROUTINE_COL_USAGE.

13) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.ROUT_TABLE_USAGE.

14) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.ROUTINES_S.CREATED or INFORMATION_
SCHEMA.ROUTINES_S.LAST_ALTERED.

15) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language shall not
reference the INFORMATION_SCHEMA.SQL_IMPL_INFO view.

16) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language shall not
reference the INFORMATION_SCHEMA.SQL_SIZING_PROFS view.

17) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA.TABLE_METHOD_PRIVS.

18) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRANSLATIONS_S.

19) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.TRIG_UPDATE_COLS

20) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIG_COLUMN_USAGE.

21) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, conforming
SQL language shall not reference the INFORMATION_SCHEMA.TRIG_TABLE_USAGE view.

22) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERS_S.

23) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic trigger
capability’’, conforming SQL language shall not reference INFORMATION_SCHEMA.TRIGGERS.CREATED.

834 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

20.70 Definition of SQL built-in functions

Function
Define the SQL built-in functions.

Definition
CREATE FUNCTION "POSITION" (

S1 CHARACTER (CML),
S2 CHARACTER (CML))
RETURNS NUMERIC (P1, 0)
SPECIFIC POSITION1
RETURN POSITION (S1 IN S2) ;

CREATE FUNCTION "POSITION" (
S1 CHARACTER VARYING (CML),
S2 CHARACTER (CML))
RETURNS NUMERIC (P1, 0)
SPECIFIC POSITION2
RETURN POSITION (S1 IN S2) ;

CREATE FUNCTION "POSITION" (
S1 CHARACTER (CML),
S2 CHARACTER VARYING (CML))
RETURNS NUMERIC (P1, 0)
SPECIFIC POSITION3
RETURN POSITION (S1 IN S2) ;

CREATE FUNCTION "POSITION" (
S1 CHARACTER VARYING (CML),
S2 CHARACTER VARYING (CML))
RETURNS NUMERIC (P1, 0)
SPECIFIC POSITION4
RETURN POSITION (S1 IN S2) ;

CREATE FUNCTION "CHAR_LENGTH" (
S1 CHARACTER (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHAR_LENGTH1
RETURN CHAR_LENGTH (S1) ;

CREATE FUNCTION "CHAR_LENGTH" (
S1 CHARACTER VARYING (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHAR_LENGTH2
RETURN CHAR_LENGTH (S1) ;

CREATE FUNCTION "CHAR_LENGTH" (
S1 BIT (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHAR_LENGTH3
RETURN CHAR_LENGTH (S1) ;

CREATE FUNCTION "CHAR_LENGTH" (
S1 BIT VARYING (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHAR_LENGTH4
RETURN CHAR_LENGTH (S1) ;

CREATE FUNCTION "CHARACTER_LENGTH" (
S1 CHARACTER (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHARACTER_LENGTH1
RETURN CHARACTER_LENGTH (S1) ;

Information Schema 835

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.70 Definition of SQL built-in functions

CREATE FUNCTION "CHARACTER_LENGTH" (
S1 CHARACTER VARYING (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHARACTER_LENGTH2
RETURN CHARACTER_LENGTH (S1) ;

CREATE FUNCTION "CHARACTER_LENGTH" (
S1 BIT (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHARACTER_LENGTH3
RETURN CHARACTER_LENGTH (S1) ;

CREATE FUNCTION "CHARACTER_LENGTH" (
S1 BIT VARYING (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC CHARACTER_LENGTH4
RETURN CHARACTER_LENGTH (S1) ;

CREATE FUNCTION "OCTET_LENGTH" (
S1 CHARACTER (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC OCTET_LENGTH1
RETURN OCTET_LENGTH (S1) ;

CREATE FUNCTION "OCTET_LENGTH" (
S1 CHARACTER VARYING (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC OCTET_LENGTH2
RETURN OCTET_LENGTH (S1) ;

CREATE FUNCTION "OCTET_LENGTH" (
S1 BIT (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC OCTET_LENGTH3
RETURN OCTET_LENGTH (S1) ;

CREATE FUNCTION "OCTET_LENGTH" (
S1 BIT VARYING (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC OCTET_LENGTH4
RETURN OCTET_LENGTH (S1) ;

CREATE FUNCTION "BIT_LENGTH" (
S1 CHARACTER (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC BIT_LENGTH1
RETURN BIT_LENGTH (S1) ;

CREATE FUNCTION "BIT_LENGTH" (
S1 CHARACTER VARYING (CML))
RETURNS NUMERIC (P2, 0)
SPECIFIC BIT_LENGTH2
RETURN BIT_LENGTH (S1) ;

CREATE FUNCTION "BIT_LENGTH" (
S1 BIT (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC BIT_LENGTH3
RETURN BIT_LENGTH (S1) ;

CREATE FUNCTION "BIT_LENGTH" (
S1 BIT VARYING (BML))
RETURNS NUMERIC (P2, 0)
SPECIFIC BIT_LENGTH4
RETURN BIT_LENGTH (S1) ;

836 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

CREATE FUNCTION "ABS" (
N NUMERIC (P, S))
RETURNS NUMERIC (P, S)
SPECIFIC ABSNUMERICP_S
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N DECIMAL (P, S))
RETURNS DECIMAL (P, S)
SPECIFIC ABSDECIMALP_S
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTEGER)
RETURNS INTEGER
SPECIFIC ABSINTEGER
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N SMALLINT)
RETURNS SMALLINT
SPECIFIC ABSSMALLINT
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N FLOAT (BP))
RETURNS FLOAT (BP)
SPECIFIC ABSFLOATBP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N REAL)
RETURNS REAL
SPECIFIC ABSREAL
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N DOUBLE PRECISION)
RETURNS DOUBLE PRECISION
SPECIFIC ABSDOUBLEPRECISION
RETURN ABS (N) ;

CREATE FUNCTION "MOD" (
N1 NUMERIC (MP, 0),
N2 NUMERIC (P, 0))
RETURNS NUMERIC (P, 0)
SPECIFIC MODNUMERICMP_NUMERICP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 NUMERIC (MP, 0),
N2 DECIMAL (P, 0))
RETURNS DECIMAL (P, 0)
SPECIFIC MODNUMERICMP_DECIMALP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 NUMERIC (MP, 0),
N2 INTEGER)
RETURNS INTEGER
SPECIFIC MODNUMERICMP_INTEGER
RETURN MOD (N1, N2) ;

Information Schema 837

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.70 Definition of SQL built-in functions

CREATE FUNCTION "MOD" (
N1 NUMERIC (MP, 0),
N2 SMALLINT)
RETURNS SMALLINT
SPECIFIC MODNUMERICMP_SMALLINT
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 DECIMAL (MP, 0),
N2 NUMERIC (P, 0))
RETURNS NUMERIC (P, 0)
SPECIFIC MODDECIMALMP_NUMERICP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 DECIMAL (MP, 0),
N2 DECIMAL (P, 0))
RETURNS DECIMAL (P, 0)
SPECIFIC MODDECIMALMP_DECIMALP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 DECIMAL (MP, 0),
N2 INTEGER)
RETURNS INTEGER
SPECIFIC MODDECIMALMP_INTEGER
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 DECIMAL (MP, 0),
N2 SMALLINT)
RETURNS SMALLINT
SPECIFIC MODDECIMALMP_SMALLINT
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 INTEGER,
N2 NUMERIC (P, 0))
RETURNS NUMERIC (P, 0)
SPECIFIC MODINTEGER_NUMERICP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 INTEGER,
N2 DECIMAL (P, 0))
RETURNS DECIMAL (P, 0)
SPECIFIC MODINTEGER_DECIMALP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 INTEGER,
N2 INTEGER)
RETURNS INTEGER
SPECIFIC MODINTEGER_INTEGER
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 INTEGER,
N2 SMALLINT)
RETURNS SMALLINT
SPECIFIC MODINTEGER_SMALLINT
RETURN MOD (N1, N2) ;

838 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

CREATE FUNCTION "MOD" (
N1 SMALLINT,
N2 NUMERIC (P, 0))
RETURNS NUMERIC (P, 0)
SPECIFIC MODSMALLINT_NUMERICP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 SMALLINT,
N2 DECIMAL (P, 0))
RETURNS DECIMAL (P, 0)
SPECIFIC MODSMALLINT_DECIMALP
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 SMALLINT,
N2 INTEGER)
RETURNS INTEGER
SPECIFIC MODSMALLINT_INTEGER
RETURN MOD (N1, N2) ;

CREATE FUNCTION "MOD" (
N1 SMALLINT,
N2 SMALLINT)
RETURNS SMALLINT
SPECIFIC MODSMALLINT_SMALLINT
RETURN MOD (N1, N2) ;

CREATE FUNCTION "ABS" (
N INTERVAL (YEAR (IP)))
RETURNS INTERVAL (YEAR (IP))
SPECIFIC ABSINTERVALYEARIP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (YEAR (IP) TO MONTH))
RETURNS INTERVAL (YEAR (IP) TO MONTH)
SPECIFIC ABSINTERVALYEARIP_MONTH
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (MONTH (IP)))
RETURNS INTERVAL (MONTH (IP))
SPECIFIC ABSINTERVALMONTHIP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (DAY (IP)))
RETURNS INTERVAL (DAY (IP))
SPECIFIC ABSINTERVALDAYIP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (DAY (IP) TO HOUR))
RETURNS INTERVAL (DAY (IP) TO HOUR)
SPECIFIC ABSINTERVALDAYIP_HOUR
RETURN ABS (N) ;

Information Schema 839

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.70 Definition of SQL built-in functions

CREATE FUNCTION "ABS" (
N INTERVAL (DAY (IP) TO MINUTE))
RETURNS INTERVAL (DAY (IP) TO MINUTE)
SPECIFIC ABSINTERVALDAYIP_MINUTE
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (DAY (IP) TO SECOND (IS)))
RETURNS INTERVAL (DAY (IP) TO SECOND (IS))
SPECIFIC ABSINTERVALDAYIP_SECONDIS
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (HOUR (IP)))
RETURNS INTERVAL (HOUR (IP))
SPECIFIC ABSINTERVALHOURIP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (HOUR (IP) TO MINUTE))
RETURNS INTERVAL (HOUR (IP) TO MINUTE)
SPECIFIC ABSINTERVALHOURIP_MINUTE
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (HOUR (IP) TO SECOND (IS)))
RETURNS INTERVAL (HOUR (IP) TO SECOND (IS))
SPECIFIC ABSINTERVALHOURIP_SECONDIS
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (MINUTE (IP)))
RETURNS INTERVAL (MINUTE (IP))
SPECIFIC ABSINTERVALMINUTEIP
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (MINUTE (IP) TO SECOND (IS)))
RETURNS INTERVAL (MINUTE (IP) TO SECOND (IS))
SPECIFIC ABSINTERVALMINUTEIP_SECONDIS
RETURN ABS (N) ;

CREATE FUNCTION "ABS" (
N INTERVAL (SECOND (IP , IS)))
RETURNS INTERVAL (SECOND (IP , IS))
SPECIFIC ABSINTERVALSECONDIP_IS
RETURN ABS (N) ;

CREATE FUNCTION "SUBSTRING" (
S CHARACTER (CML),
START NUMERIC (MP, 0),
LENGTH NUMERIC (MP, 0))
RETURNS CHARACTER VARYING (CML)
SPECIFIC SUBSTRING1
RETURN SUBSTRING (S FROM START FOR LENGTH) ;

CREATE FUNCTION "SUBSTRING" (
S CHARACTER VARYING (CML),
START NUMERIC (MP, 0),
LENGTH NUMERIC (MP, 0))
RETURNS CHARACTER VARYING (CML)
SPECIFIC SUBSTRING2
RETURN SUBSTRING (S FROM START FOR LENGTH) ;

840 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

CREATE FUNCTION "SUBSTRING" (
S CHARACTER (CML),
START NUMERIC (MP, 0))
RETURNS CHARACTER VARYING (CML)
SPECIFIC SUBSTRING3
RETURN SUBSTRING (S FROM START) ;

CREATE FUNCTION "SUBSTRING" (
S CHARACTER VARYING (CML),
START NUMERIC (MP, 0))
RETURNS CHARACTER VARYING (CML)
SPECIFIC SUBSTRING4
RETURN SUBSTRING (S FROM START) ;

CREATE FUNCTION "SUBSTRING" (
S BIT (BML),
START NUMERIC (MP, 0),
LENGTH NUMERIC (MP, 0))
RETURNS BIT VARYING (BML)
SPECIFIC SUBSTRING5
RETURN SUBSTRING (S FROM START FOR LENGTH) ;

CREATE FUNCTION "SUBSTRING" (
S BIT VARYING (BML),
START NUMERIC (MP, 0),
LENGTH NUMERIC (MP, 0))
RETURNS BIT VARYING (BML)
SPECIFIC SUBSTRING6
RETURN SUBSTRING (S FROM START FOR LENGTH) ;

CREATE FUNCTION "SUBSTRING" (
S BIT (BML),
START NUMERIC (MP, 0))
RETURNS BIT VARYING (BML)
SPECIFIC SUBSTRING7
RETURN SUBSTRING (S FROM START) ;

CREATE FUNCTION "SUBSTRING" (
S BIT VARYING (BML),
START NUMERIC (MP, 0))
RETURNS BIT VARYING (BML)
SPECIFIC SUBSTRING8
RETURN SUBSTRING (S FROM START) ;

CREATE FUNCTION "UPPER" (
S CHARACTER (CML))
RETURNS CHARACTER (CML)
SPECIFIC UPPER1
RETURN UPPER (S) ;

CREATE FUNCTION "UPPER" (
S CHARACTER VARYING (CML))
RETURNS CHARACTER VARYING (CML)
SPECIFIC UPPER2
RETURN UPPER (S) ;

CREATE FUNCTION "LOWER" (
S CHARACTER (CML))
RETURNS CHARACTER (CML)
SPECIFIC LOWER1
RETURN LOWER (S) ;

CREATE FUNCTION "LOWER" (
S CHARACTER VARYING (CML))
RETURNS CHARACTER VARYING (CML)
SPECIFIC LOWER2
RETURN LOWER (S) ;

Information Schema 841

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.70 Definition of SQL built-in functions

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.POSITION1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.POSITION2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.POSITION3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.POSITION4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHAR_LENGTH1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHAR_LENGTH2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHAR_LENGTH3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHAR_LENGTH4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHARACTER_LENGTH1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHARACTER_LENGTH2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHARACTER_LENGTH3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.CHARACTER_LENGTH4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.OCTET_LENGTH1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.OCTET_LENGTH2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.OCTET_LENGTH3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.OCTET_LENGTH4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.BIT_LENGTH1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.BIT_LENGTH2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.BIT_LENGTH3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.BIT_LENGTH4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSNUMERICP_S
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSDECIMALP_S
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTEGER
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSSMALLINT
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSFLOATBP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSREAL
TO PUBLIC;

842 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSDOUBLEPRECISION
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODNUMERICMP_NUMERICP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODNUMERICMP_DECIMALP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODNUMERICMP_INTEGER
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODNUMERICMP_SMALLINT
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODDECIMALMP_NUMERICP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODDECIMALMP_DECIMALP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODDECIMALMP_INTEGER
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODDECIMALMP_SMALLINT
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODINTEGER_NUMERICP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODINTEGER_DECIMALP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODINTEGER_INTEGER
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODINTEGER_SMALLINT
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODSMALLINT_NUMERICP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODSMALLINT_DECIMALP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODSMALLINT_INTEGER
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.MODSMALLINT_SMALLINT
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALYEARIP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALYEARIP_MONTH
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALMONTHIP
TO PUBLIC;

Information Schema 843

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
20.70 Definition of SQL built-in functions

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALDAYIP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALDAYIP_HOUR
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALDAYIP_MINUTE
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALDAYIP_SECONDIS
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALHOURIP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALHOURIP_MINUTE
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALHOURIP_SECONDIS
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALMINUTEIP
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALMINUTEIP_SECONDIS
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.ABSINTERVALSECONDIP_IS
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING3
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING4
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING5
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING6
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING7
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.SUBSTRING8
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.UPPER1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.UPPER2
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.LOWER1
TO PUBLIC;

GRANT EXECUTE ON SPECIFIC FUNCTION INFORMATION_SCHEMA.LOWER2
TO PUBLIC;

844 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
20.70 Definition of SQL built-in functions

Description

1) CML is the implementation-defined maximum length for <character string type>, BML is the
implementation-defined maximum length for bit string length, MP is the implementation-
defined maximum precision for <exact numeric type>, P1 is the implementation-defined pre-
cision for the value of a <position expression>, P2 is the implementation-defined precision for
the value of a <length expression>, MBP is the implementation-defined maximum binary preci-
sion for <approximate numeric type>, MILFP is the implementation-defined maximum value for
<interval leading field precision>, and MIFSP is the implementation-defined maximum value for
<interval fractional seconds precision>.

2) Let P assume all character string values that are the minimal literal for an exact numeric value
of scale 0 (zero) between 1 (one) and MP, let S assume all character string values that are
the minimal literal for an exact numeric value of scale 0 (zero) between 1 (one) and P, let BP
assume all character string values that are the minimal literal for an exact numeric value of
scale 0 (zero) between 1 (one) and MBP, let IP assume all character string values that are the
minimal literal for an exact numeric value of scale 0 (zero) between 1 (one) and MILFP, and let
IS assume all character string values that are the minimal literal for an exact numeric value of
scale 0 (zero) between 0 (zero) and MIFSP.

Information Schema 845

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

846 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

21 Definition Schema

21.1 Introduction to the Definition Schema

The base tables of the Definition Schema are all defined in a <schema definition> for the schema
named DEFINITION_SCHEMA. The table definitions are as complete as the definitional power
of SQL allows. The table definitions are supplemented with assertions where appropriate. Each
description comprises three parts:

1) The function of the definition is stated.

2) The SQL definition of the object is presented as a <table definition>.

3) An explanation of the object.

The specification provides only a model of the base tables that are required, and does not imply that
an SQL-implementation shall provide the functionality in the manner described in this Clause.

Definition Schema 847

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.2 DEFINITION_SCHEMA Schema

21.2 DEFINITION_SCHEMA Schema

Function
Create the schema that is to contain the base tables that underlie the Information Schema

Definition
CREATE SCHEMA DEFINITION_SCHEMA

AUTHORIZATION DEFINITION_SCHEMA

Description

None.

848 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.3 EQUAL_KEY_DEGREES assertion

21.3 EQUAL_KEY_DEGREES assertion

Function
The assertion EQUAL_KEY_DEGREES ensures that every foreign key is of the same degree as the
corresponding unique constraint.

Definition
CREATE ASSERTION EQUAL_KEY_DEGREES

CHECK
(NOT EXISTS
(SELECT *
FROM (SELECT COUNT (DISTINCT FK.COLUMN_NAME),

COUNT (DISTINCT PK.COLUMN_NAME)
FROM KEY_COLUMN_USAGE AS FK,

REFERENTIAL_CONSTRAINTS AS RF,
KEY_COLUMN_USAGE AS PK

WHERE (FK.CONSTRAINT_CATALOG, FK.CONSTRAINT_SCHEMA,
FK.CONSTRAINT_NAME) =

(RF.CONSTRAINT_CATALOG, RF.CONSTRAINT_SCHEMA,
RF.CONSTRAINT_NAME)

AND
(PK.CONSTRAINT_CATALOG, PK.CONSTRAINT_SCHEMA,
PK.CONSTRAINT_NAME) =

(RF.UNIQUE_CONSTRAINT_CATALOG, RF.UNIQUE_CONSTRAINT_SCHEMA,
RF.UNIQUE_CONSTRAINT_NAME)

GROUP BY
RF.CONSTRAINT_CATALOG, RF.CONSTRAINT_SCHEMA, RF.CONSTRAINT_NAME)

AS REF (FK_DEGREE, PK_DEGREE)
WHERE FK_DEGREE <> PK_DEGREE))

Definition Schema 849

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.4 KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_1 assertion

21.4 KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_1
assertion

Function
The assertion KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_1 ensures that every unique or
primary key constraint has at least one unique column and that every referential constraint has at
least one referencing column.

Definition
CREATE ASSERTION KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_1

CHECK
(NOT EXISTS
(SELECT *
FROM TABLE_CONSTRAINTS
FULL OUTER JOIN

KEY_COLUMN_USAGE
USING (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)

WHERE COLUMN_NAME IS NULL
AND

CONSTRAINT_TYPE IN
(’UNIQUE’, ’PRIMARY KEY’, ’FOREIGN KEY’)))

850 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.5 UNIQUE_CONSTRAINT_NAME assertion

21.5 UNIQUE_CONSTRAINT_NAME assertion

Function
The UNIQUE_CONSTRAINT_NAME assertion ensures that the same combination of <schema
name> and <constraint name> is not used by more than one constraint.
NOTE 348 – The UNIQUE_CONSTRAINT_NAME assertion avoids the need for separate checks on
DOMAINS, TABLE_CONSTRAINTS, and ASSERTIONS.

Definition
CREATE ASSERTION UNIQUE_CONSTRAINT_NAME

CHECK (1 =
(SELECT MAX (OCCURRENCES)
FROM (SELECT COUNT (*) AS OCCURRENCES

FROM (SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM DOMAIN_CONSTRAINTS

UNION ALL
SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM TABLE_CONSTRAINTS

UNION ALL
SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM ASSERTIONS)

GROUP BY
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)))

Definition Schema 851

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.6 ASSERTIONS base table

21.6 ASSERTIONS base table

Function
The ASSERTIONS table has one row for each assertion. It effectively contains a representation of
the assertion descriptors.

Definition
CREATE TABLE ASSERTIONS

(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ASSERTIONS_IS_DEFERRABLE_NOT_NULL
NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ASSERTIONS_INITIALLY_DEFERRED_NOT_NULL
NOT NULL,

CHECK_TIME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ASSERTIONS_CHECK_TIME_CHECK
CHECK (CHECK_TIME IN (’IMMEDIATE’, ’DEFERRED’)),

CONSTRAINT ASSERTIONS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT ASSERTIONS_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)
REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT ASSERTIONS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT ASSERTIONS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

VALUES ((’NO’, ’NO’),
(’YES’, ’NO’),
(’YES’, ’YES’)))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
assertion being described.

2) The values of IS_DEFERRABLE have the following meanings:

YES The assertion is deferrable.

NO The assertion is not deferrable.

3) The values of INITIALLY_DEFERRED have the following meanings:

YES The assertion is initially deferred.

NO The assertion is initially immediate.

852 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.7 ATTRIBUTES base table

21.7 ATTRIBUTES base table

Function
The ATTRIBUTES base table contains one row for each attribute. It effectively contains a represen-
tation of the attribute descriptors.

Definition
CREATE TABLE ATTRIBUTES (

UDT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
UDT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
UDT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ATTRIBUTE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT ORDINAL_POSITION_NOT_NULL
NOT NULL

CONSTRAINT ATTRIBUTES_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT ATTRIBUTES_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM ATTRIBUTES
GROUP BY UDT_CATALOG, UDT_SCHEMA, UDT_NAME)),

DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
ATTRIBUTE_DEFAULT INFORMATION_SCHEMA.CHARACTER_DATA,
IS_NULLABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ATTRIBUTES_IS_NULLABLE_NOT_NULL
NOT NULL

CONSTRAINT ATTRIBUTES_IS_NULLABLE_CHECK
CHECK (IS_NULLABLE IN (’YES’, ’NO’)),

CHECK_REFERENCES INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ATTRIBUTES_CHECK_REFERENCES_CHECK
CHECK (CHECK_REFERENCES IN (’YES’, ’NO’)),

IS_DERIVED_REFERENCE_ATTRIBUTE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ATTRIBUTES_IS_DERIVED_REFERENCE_ATTRIBUTE_NOT_NULL
NOT NULL

CONSTRAINT ATTRIBUTES_IS_DERIVED_REFERENCE_ATTRIBUTE_CHECK
CHECK (IS_DERIVED_REFERENCE_ATTRIBUTE (’YES’, ’NO’)),

CONSTRAINT ATTRIBUTES_PRIMARY_KEY
PRIMARY KEY (UDT_CATALOG, UDT_SCHEMA, UDT_NAME, ATTRIBUTE_NAME),

CONSTRAINT ATTRIBUTES_UNIQUE
UNIQUE (UDT_CATALOG, UDT_SCHEMA, UDT_NAME, ORDINAL_POSITION),

CONSTRAINT ATTRIBUTES_CHECK_DATA_TYPE
CHECK ((UDT_CATALOG, UDT_SCHEMA, UDT_NAME,

’USER-DEFINED TYPE’, DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OJBECT_TYPE, DTD_IDENTIFIER)
FROM DATA_TYPE_DESCRIPTOR)),

CONSTRAINT CHECK_ATTRIBUTES_UDT_IS_STRUCTURED
CHECK ((UDT_CATALOG, UDT_SCHEMA, UDT_NAME) IN

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME

FROM USER_DEFINED_TYPES
WHERE USER_DEFINED_TYPE_CATEGORY = ’STRUCTURED’))

)

Definition Schema 853

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.7 ATTRIBUTES base table

Description

1) The values of UDT_CATALOG, UDT_SCHEMA, and UDT_NAME are the catalog name, unqual-
ified schema name, and qualified identifier, respectively, of the user-defined type containing the
attribute being described.

2) The value of ATTRIBUTE_NAME is the name of the attribute being described.

3) The values of UDT_CATALOG, UDT_SCHEMA, UDT_NAME, and DTD_IDENTIFIER are the
values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and DTD_IDENTIFIER,
respectively, of the row in DATA_TYPE_DESCRIPTOR that describes the data type of the
attribute.

4) The value of ORDINAL_POSITION is the ordinal position of the attribute in the user-defined
type.

5) The value of ATTRIBUTE_DEFAULT is null if the attribute being described has no explicit
default value or if its default value comes only from a domain. If the character representation
of the default value cannot be represented without truncation, then the value of ATTRIBUTE_
DEFAULT is ‘‘TRUNCATED’’. Otherwise, the value of ATTRIBUTE_DEFAULT is a character
representation of the default value for the column that obeys the rules specified for <default
option> in Subclause 11.5, ‘‘<default clause>’’.
NOTE 349 – ‘‘TRUNCATED’’ is different from other values like CURRENT_USER or CURRENT_
TIMESTAMP in that it is not an SQL <key word> and does not correspond to a defined value in SQL.

6) The values of IS_NULLABLE have the following meanings:

YES The attribute is possibly nullable.

NO The attribute is known not nullable.

7) The value of CHECK_REFERENCES is null if the data type of the attribute is not a reference
type that specifies a <scope clause>. Otherwise, the values of CHECK_REFERENCES have the
following meanings:

YES Reference values are checked.

NO Reference values are not checked.

854 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.8 CHARACTER_SETS base table

21.8 CHARACTER_SETS base table

Function
The CHARACTER_SETS table has one row for each character set descriptor.

Definition
CREATE TABLE CHARACTER_SETS (

CHARACTER_SET_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CHARACTER_SET_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CHARACTER_SET_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
FORM_OF_USE INFORMATION_SCHEMA.SQL_IDENTIFIER,
NUMBER_OF_CHARACTERS INFORMATION_SCHEMA.CARDINAL_NUMBER,
DEFAULT_COLLATE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT CHARACTER_SETS_DEFAULT_COLLATE_CATALOG_NOT_NULL
NOT NULL,

DEFAULT_COLLATE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT CHARACTER_SETS_DEFAULT_COLLATE_SCHEMA_NOT_NULL
NOT NULL,

DEFAULT_COLLATE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT CHARACTER_SETS_DEFAULT_COLLATE_NAME_NOT_NULL
NOT NULL,

CONSTRAINT CHARACTER_SETS_PRIMARY_KEY
PRIMARY KEY (CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME),

CONSTRAINT CHARACTER_SETS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT CHARACTER_SETS_CHECK_REFERENCES_COLLATIONS
CHECK (DEFAULT_COLLATE_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(DEFAULT_COLLATE_CATALOG, DEFAULT_COLLATE_SCHEMA,
DEFAULT_COLLATE_NAME) IN

(SELECT COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME
FROM COLLATIONS))

)

Description

1) The values of CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_
SET_NAME are the catalog name, unqualified schema name, and qualified identifier, respec-
tively, of the character set being described.

2) The value of FORM_OF_USE is a string consisting of a single space.

3) The value of NUMBER_OF_CHARACTERS is a string consisting of a single space.

4) The values of DEFAULT_COLLATE_CATALOG, DEFAULT_COLLATE_SCHEMA, and
DEFAULT_COLLATE_NAME are the catalog name, unqualified schema name, and qualified
identifier, respectively, of the explicit or implicit default collation for the character set.

5) There is a row in this table for the character set INFORMATION_SCHEMA.SQL_TEXT. In that
row:

a) CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_
NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_TEXT’, respec-
tively.

Definition Schema 855

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.8 CHARACTER_SETS base table

b) DEFAULT_COLLATE_CATALOG, DEFAULT_COLLATE_SCHEMA, and DEFAULT_
COLLATE_NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_
TEXT’, respectively.

6) There is a row in this table for the character set INFORMATION_SCHEMA.SQL_IDENTIFIER.
In that row:

a) CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_
NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_IDENTIFIER’,
respectively.

b) DEFAULT_COLLATE_CATALOG, DEFAULT_COLLATE_SCHEMA, and DEFAULT_
COLLATE_NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_
IDENTIFIER’, respectively.

856 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.9 CHECK_COLUMN_USAGE base table

21.9 CHECK_COLUMN_USAGE base table

Function
The CHECK_COLUMN_USAGE table has one row for each column identified by a <column refer-
ence> contained in the <search condition> of a check constraint, domain constraint, or assertion.

Definition
CREATE TABLE CHECK_COLUMN_USAGE (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT CHECK_COLUMN_USAGE_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME),

CONSTRAINT CHECK_COLUMN_USAGE_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)
REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT CHECK_COLUMN_USAGE_CHECK_REFERENCES_COLUMNS
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME
FROM COLUMNS))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
constraint being described.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME are
the catalog name, unqualified schema name, qualified identifier, and column name, respectively,
of a column identified by a <column reference> explicitly or implicitly contained in the <search
condition> of the constraint being described.

Definition Schema 857

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.10 CHECK_TABLE_USAGE base table

21.10 CHECK_TABLE_USAGE base table

Function
The CHECK_TABLE_USAGE table has one row for each table identified by a <table name> simply
contained in a <table reference> contained in the <search condition> of a check constraint, domain
constraint, or assertion.

Definition
CREATE TABLE CHECK_TABLE_USAGE

(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT CHECK_TABLE_USAGE_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT CHECK_TABLE_USAGE_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)
REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT CHECK_TABLE_USAGE_CHECK_REFERENCES_TABLES
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
constraint being described.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of a table identified by a <table
name> simply contained in a <table reference> contained in the <search condition> of the
constraint being described.

858 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.11 CHECK_CONSTRAINTS base table

21.11 CHECK_CONSTRAINTS base table

Function
The CHECK_CONSTRAINTS table has one row for each domain constraint, table check constraint,
and assertion.

Definition
CREATE TABLE CHECK_CONSTRAINTS (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CHECK_CLAUSE INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT CHECK_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT CHECK_CONSTRAINTS_SOURCE_CHECK
CHECK ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME) IN

(SELECT *
FROM (SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM ASSERTIONS
UNION

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM TABLE_CONSTRAINTS

UNION
SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM DOMAIN_CONSTRAINTS)))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
constraint being described.

2) Case:

a) If the character representation of the <search condition> contained in the <check con-
straint definition>, <domain constraint definition>, or <assertion definition> that defined
the check constraint being described can be represented without truncation, then the value
of CHECK_CLAUSE is that character representation.

b) Otherwise, the value of CHECK_CLAUSE is the null value.
NOTE 350 – Any implicit column references that were contained in the <search condition> associ-
ated with a <check constraint definition> or an <assertion definition> are replaced by explicit column
references in CHECK_CONSTRAINTS.

Definition Schema 859

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.12 COLLATIONS base table

21.12 COLLATIONS base table

Function
The COLLATIONS table has one row for each character collation descriptor.

Definition
CREATE TABLE COLLATIONS (

COLLATION_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLLATION_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLLATION_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CHARACTER_SET_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT COLLATIONS_CHARACTER_SET_CATALOG_NOT_NULL
NOT NULL,

CHARACTER_SET_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT COLLATIONS_CHARACTER_SET_SCHEMA_NOT_NULL
NOT NULL,

CHARACTER_SET_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT COLLATIONS_CHARACTER_SET_NAME_NOT_NULL
NOT NULL,

PAD_ATTRIBUTE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT COLLATIONS_PAD_ATTRIBUTE_CHECK
CHECK (PAD_ATTRIBUTE IN

(’NO PAD’, ’PAD SPACE’)),
COLLATION_TYPE INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLLATION_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,
COLLATION_DICTIONARY INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT COLLATIONS_PAD_PRIMARY_KEY
PRIMARY KEY (COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME),

CONSTRAINT COLLATIONS_PAD_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (COLLATION_CATALOG, COLLATION_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT COLLATIONS_CHECK_REFERENCES_CHARACTER_SETS
CHECK (CHARACTER_SET_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME) IN

(SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME

FROM CHARACTER_SETS))
)

Description

1) The values of COLLATION_CATALOG, COLLATION_SCHEMA, and COLLATION_NAME are
the catalog name, unqualified schema name, and qualified identifier, respectively, of the collation
being described.

2) The values of CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_
SET_NAME are the catalog name, unqualified schema name, and qualified identifier, respec-
tively, of the character set on which the collation is defined.

3) The values of COLLATION_TYPE, COLLATION_DICTIONARY, and COLLATION_DEFINITION
are a string consisting of a single space.

860 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.12 COLLATIONS base table

4) The values of PAD_ATTRIBUTE have the following meanings:

NO PAD The collation being described has the NO PAD characteristic.

PAD SPACE The collation being described has the PAD SPACE characteristic.

5) There is a row in this table for the collation INFORMATION_SCHEMA.SQL_TEXT. That row
contains the definition of the collation corresponding to the default collation for the characters
in the character set SQL_TEXT. In that row:

a) COLLATION_CATALOG, COLLATION_SCHEMA, and COLLATION_NAME are the name
of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_TEXT’, respectively.

b) CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_
NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_TEXT’, respec-
tively.

c) PAD_ATTRIBUTE is implementation-defined.

6) There is a row in this table for the collation INFORMATION_SCHEMA.SQL_IDENTIFIER.
That row contains the definition of the collation corresponding to the default collation for the
characters in the character set SQL_IDENTIFIER. In that row:

a) COLLATION_CATALOG, COLLATION_SCHEMA, and COLLATION_NAME are the name
of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_IDENTIFIER’, respectively.

b) CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_
NAME are the name of the catalog, ’INFORMATION_SCHEMA’, and ’SQL_IDENTIFIER’,
respectively.

c) PAD_ATTRIBUTE is implementation-defined.

Definition Schema 861

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.13 COLUMN_PRIVILEGES base table

21.13 COLUMN_PRIVILEGES base table

Function
The COLUMN_PRIVILEGES table has one row for each column privilege descriptor. It effectively
contains a representation of the column privilege descriptors.

Definition
CREATE TABLE COLUMN_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
PRIVILEGE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT COLUMN_PRIVILEGE_TYPE_CHECK
CHECK (PRIVILEGE_TYPE IN

(’SELECT’, ’INSERT’, ’UPDATE’, ’REFERENCES’)),
IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT COLUMN_PRIVILEGE_IS_GRANTABLE_NOT_NULL
NOT NULL

CONSTRAINT COLUMN_PRIVILEGE_IS_GRANTABALE_CHECK
CHECK (IS_GRANTABLE IN (’YES’, ’NO’)),

CONSTRAINT COLUMN_PRIVILEGE_PRIMARY_KEY
PRIMARY KEY (GRANTOR, GRANTEE,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
PRIVILEGE_TYPE, COLUMN_NAME),

CONSTRAINT COLUMN_PRIVILEGE_FOREIGN_KEY_COLUMNS
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME)
REFERENCES COLUMNS,

CONSTRAINT COLUMN_PRIVILEGE_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT COLUMN_PRIVILEGE_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

)

Description

1) The value of GRANTOR is the <authorization identifier> of the user or role who granted column
privileges, on the column identified by TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
and COLUMN_NAME, to the user or role identified by the value of GRANTEE for the column
privilege being described.

2) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the column privilege being described is granted.

862 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.13 COLUMN_PRIVILEGES base table

3) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
column on which the privilege being described was granted.

4) The values of PRIVILEGE_TYPE have the following meanings:

SELECT The user has SELECT privilege on the column identified by TABLE_CATALOG, TABLE_
SCHEMA, TABLE_NAME, and COLUMN_NAME.

INSERT The user has INSERT privilege on the column identified by TABLE_CATALOG, TABLE_
SCHEMA, TABLE_NAME, and COLUMN_NAME.

UPDATE The user has UPDATE privilege on the column identified by TABLE_CATALOG, TABLE_
SCHEMA, TABLE_NAME, and COLUMN_NAME.

REFERENCE The user has REFERENCES privilege on the column identified by TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus grantable.

NO The privilege being described was not granted WITH GRANT OPTION and is thus not
grantable.

Definition Schema 863

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.14 COLUMNS base table

21.14 COLUMNS base table

Function
The COLUMNS table has one row for each column. It effectively contains a representation of the
column descriptors.

Definition
CREATE TABLE COLUMNS (

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER

CONSTRAINT COLUMNS_ORDINAL_POSITION_NOT_NULL
NOT NULL

CONSTRAINT COLUMNS_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT COLUMNS_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM COLUMNS
GROUP BY

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)),
DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_DEFAULT INFORMATION_SCHEMA.CHARACTER_DATA,
IS_NULLABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT COLUMNS_IS_NULLABLE_NOT_NULL
NOT NULL

CONSTRAINT COLUMNS_IS_NULLABLE_CHECK
CHECK (IS_NULLABLE IN (’YES’, ’NO’)),

IS_SELF_REFERENCING INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT COLUMNS_IS_SELF_REFERENCING_NOT_NULL
NOT NULL

CONSTRAINT COLUMNS_IS_SELF_REFERENCING_CHECK
CHECK (IS_SELF_REFERENCING IN (’YES’, ’NO’)),

CONSTRAINT COLUMNS_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME),

CONSTRAINT COLUMNS_UNIQUE
UNIQUE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, ORDINAL_POSITION),

CONSTRAINT COLUMNS_FOREIGN_KEY_TABLES
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)
REFERENCES TABLES,

CONSTRAINT COLUMNS_CHECK_REFERENCES_DOMAIN
CHECK (DOMAIN_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME) IN
(SELECT DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME
FROM DOMAINS)),

864 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.14 COLUMNS base table

CONSTRAINT COLUMN_CHECK_DATA_TYPE
CHECK (DOMAIN_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

((DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME)
IS NOT NULL

AND
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

’TABLE’, DTD_IDENTIFIER) NOT IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR))

OR
((DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME)
IS NULL

AND
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
’COLUMN’, COLUMN_NAME) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM DATA_TYPE_DESCRIPTOR)))
)

Description

1) Case:

a) If a column is described by a column descriptor included in a table descriptor, then the table
descriptor and the column descriptor are associated with that column.

b) If a column is described by a column descriptor included in a view descriptor, then the view
descriptor and the corresponding column descriptor of the table of the <query expression>
are associated with that column.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of the table containing the
column being described.

3) The value of COLUMN_NAME is the name of the column being described.

4) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and DTD_IDENTIFIER
are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and DTD_
IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes the data
type of the column.

5) The values of DOMAIN_CATALOG, DOMAIN_SCHEMA, and DOMAIN_NAME are null if
the column being described is not defined using a <domain name>. Otherwise, the values of
DOMAIN_CATALOG, DOMAIN_SCHEMA, and DOMAIN_NAME are the catalog name, unqual-
ified schema name, and qualified identifier, respectively, of the domain used by the column being
described.

6) The value of ORDINAL_POSITION is the ordinal position of the column in the table.

7) The value of COLUMN_DEFAULT is null if the column being described has no explicit default
value or if its default value comes only from a domain. If the character representation of the
default value cannot be represented without truncation, then the value of COLUMN_DEFAULT

Definition Schema 865

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.14 COLUMNS base table

is ‘‘TRUNCATED’’. Otherwise, the value of COLUMN_DEFAULT is a character representa-
tion of the default value for the column that obeys the rules specified for <default option> in
Subclause 11.5, ‘‘<default clause>’’.
NOTE 351 – ‘‘TRUNCATED’’ is different from other values like CURRENT_USER or CURRENT_
TIMESTAMP in that it is not an SQL <key word> and does not correspond to a defined value in SQL.

8) The values of IS_NULLABLE have the following meanings:

YES The column is possibly nullable.

NO The column is known not nullable.

9) The values of IS_SELF_REFERENCING have the following meanings:

YES The column is a self-referencing column.

NO The column is not a self-referencing column.

866 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.15 DATA_TYPE_DESCRIPTOR base table

21.15 DATA_TYPE_DESCRIPTOR base table

Function
The DATA_TYPE_DESCRIPTOR table has one row for each domain, one row for each column
(in each table) and for each attribute (in each structured type) that is defined as having a data
type rather than a domain, one row for each distinct type, one row for the result type of each SQL
parameter of each SQL-invoked routine, one row for the result type of each method specification, one
row for each parameter of each method specification, and one row for each structured type whose
associated reference type has a user-defined representation. It effectively contains a representation
of the data type descriptors.

Definition
CREATE TABLE DATA_TYPE_DESCRIPTOR (

OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT DATA_TYPE_DESCRIPTOR_CHECK_OBJECT_TYPE
CHECK (OBJECT_TYPE IN

(’TABLE’, ’DOMAIN’, ’USER-DEFINED TYPE’, ’ROUTINE’)),
DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

DATA_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT DATA_TYPE_DESCRIPTOR_OBJECT_DATA_TYPE_NOT_NULL
NOT NULL,

CHARACTER_MAXIMUM_LENGTH INFORMATION_SCHEMA.CARDINAL_NUMBER,
CHARACTER_OCTET_LENGTH INFORMATION_SCHEMA.CARDINAL_NUMBER,
COLLATION_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLLATION_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLLATION_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
NUMERIC_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,
NUMERIC_PRECISION_RADIX INFORMATION_SCHEMA.CARDINAL_NUMBER,
NUMERIC_SCALE INFORMATION_SCHEMA.CARDINAL_NUMBER,
DATETIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,
INTERVAL_TYPE INFORMATION_SCHEMA.CHARACTER_DATA,
INTERVAL_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,
USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCOPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCOPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCOPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

MAXIMUM_CARDINALITY INFORMATION_SCHEMA.CARDINAL_NUMBER,

Definition Schema 867

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.15 DATA_TYPE_DESCRIPTOR base table

CONSTRAINT DATA_TYPE_DESCRIPTOR_DATA_TYPE_CHECK_COMBINATIONS
CHECK ((DATA_TYPE IN

(’CHARACTER’, ’CHARACTER VARYING’, ’CHARACTER LARGE OBJECT’)
AND

(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NOT NULL

AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’BIT’, ’BIT VARYING’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH) IS NOT NULL

AND
(COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’BINARY LARGE OBJECT’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH)

IS NOT NULL
AND

(COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’INTEGER’, ’SMALLINT’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
NUMERIC_PRECISION_RADIX IN
(2, 10)

AND
NUMERIC_PRECISION IS NOT NULL

868 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.15 DATA_TYPE_DESCRIPTOR base table

AND
NUMERIC_SCALE = 0

AND
DATETIME_PRECISION IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’NUMERIC’, ’DECIMAL’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
NUMERIC_PRECISION_RADIX = 10

AND
(NUMERIC_PRECISION, NUMERIC_SCALE) IS NOT NULL

AND
DATETIME_PRECISION IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’REAL’, ’DOUBLE PRECISION’, ’FLOAT’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
NUMERIC_PRECISION IS NOT NULL

AND
NUMERIC_PRECISION_RADIX = 2

AND
NUMERIC_SCALE IS NULL

AND
DATETIME_PRECISION IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE IN
(’DATE’, ’TIME’, ’TIMESTAMP’,
’TIME WITH TIME ZONE’, ’TIMESTAMP WITH TIME ZONE’)

AND
(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX) IS NOT NULL

AND
NUMERIC_SCALE IS NULL

AND
DATETIME_PRECISION IS NOT NULL

Definition Schema 869

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.15 DATA_TYPE_DESCRIPTOR base table

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE = ’INTERVAL’
AND

(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX) IS NOT NULL

AND
NUMERIC_SCALE IS NULL

AND
DATETIME_PRECISION IS NOT NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
INTERVAL_TYPE IN
(’YEAR’, ’MONTH’, ’DAY’, ’HOUR’, ’MINUTE’, ’SECOND’,
’YEAR TO MONTH’, ’DAY TO HOUR’, ’DAY TO MINUTE’, ’DAY TO SECOND’, ’HOUR TO MINUTE’,
’HOUR TO SECOND’, ’MINUTE TO SECOND’)

AND
INTERVAL_PRECISION IS NOT NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE = ’BOOLEAN’
AND

(CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IS NULL

AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX) IS NULL

AND
NUMERIC_SCALE IS NULL

AND
DATETIME_PRECISION IS NULL

AND
(INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE = ’USER-DEFINED’
AND

(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_OCTET_LENGTH,
CHARACTER_MAXIMUM_LENGTH, INTERVAL_TYPE, INTERVAL_PRECISION,
SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NOT NULL

870 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.15 DATA_TYPE_DESCRIPTOR base table

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE = ’REF’
AND

(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_OCTET_LENGTH,
CHARACTER_MAXIMUM_LENGTH, INTERVAL_TYPE, INTERVAL_PRECISION) IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NOT NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE = ’ARRAY’
AND

(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_OCTET_LENGTH,
CHARACTER_MAXIMUM_LENGTH, INTERVAL_TYPE, INTERVAL_PRECISION)
IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NOT NULL)

OR
(DATA_TYPE = ’ROW’
AND

(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_OCTET_LENGTH,
CHARACTER_MAXIMUM_LENGTH, INTERVAL_TYPE, INTERVAL_PRECISION)
IS NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL

AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

AND
MAXIMUM_CARDINALITY IS NULL)

OR
(DATA_TYPE NOT IN
(’CHARACTER’, ’CHARACTER VARYING’, ’CHARACTER LARGE OBJECT’,
’BINARY LARGE OBJECT’,
’BIT’, ’BIT VARYING’,
’INTEGER’, ’SMALLINT’, ’NUMERIC’, ’DECIMAL’,
’REAL’, ’DOUBLE PRECISION’, ’FLOAT’,
’DATE’, ’TIME’, ’TIMESTAMP’,
’INTERVAL’, ’BOOLEAN’, ’USER-DEFINED’,

Definition Schema 871

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.15 DATA_TYPE_DESCRIPTOR base table

’REF’, ’ARRAY’, ’ROW’)),

CONSTRAINT DATA_TYPE_DESCRIPTOR_CHECK_REFERENCES_UDT
CHECK (USER_DEFINED_TYPE_CATALOG <>

ANY (SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IN
(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME
FROM USER_DEFINED_TYPES)),

CONSTRAINT DATA_TYPE_DESCRIPTOR_PRIMARY_KEY
PRIMARY KEY (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, DTD_IDENTIFIER),

CONSTRAINT DATA_TYPE_DESCRIPTOR_CHECK_REFERENCES_COLLATION
CHECK (COLLATION_CATALOG <>

ANY (SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME) IN
(SELECT COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME
FROM COLLATIONS)),

CONSTRAINT DATA_TYPE_DESCRIPTOR_FOREIGN_KEY_SCHEMATA

FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA)
REFERENCES SCHEMATA

)

Description

1) The values of OBJECT_CATALOG, OBJECT_SCHEMA, and OBJECT_NAME are the catalog
name, the unqualified schema name, and the unqualified identifier, respectively, of the schema
that contains the object (domain, column, SQL-invoked routine, or user-defined type) whose
descriptor includes the data type descriptor, and OBJECT_TYPE is ’TABLE’, ’DOMAIN’, ’USER-
DEFINED TYPE’, or ’ROUTINE’, as the case may be.

2) The value of DTD_IDENTIFIER is the implementation-dependent value that uniquely identifies
the data type descriptor among all data type descriptors of the schema object identified by
OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE.

3) The values of DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_
LENGTH, COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME, NUMERIC_
PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE, DATETIME_PRECISION,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_
TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME contain the data
type, the maximum length in characters or bits if it is a character or bit type respectively, max-
imum length in octets if it is a character type, the qualified name of the applicable collation if
it is a character type, the precision and radix of the precision if it is a numeric type, the scale
if it is a numeric type, the fractional seconds precision if it is a datetime or interval type, the
qualified name of the user-defined type or the referenced structured type if it is a reference type,
and the qualified name of a referenceable table, if specified, of the data type being described.

872 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.15 DATA_TYPE_DESCRIPTOR base table

4) If DATA_TYPE is ’INTERVAL’, then the values of INTERVAL_TYPE are the value for <interval
qualifier> (as specified in Table 6, "Codes used for <LB>LB>interval qualifier>s in Dynamic
SQL", in ISO/IEC 9075-5) for the data type being described; otherwise, INTERVAL_TYPE is the
null value.

5) If DATA_TYPE is ’INTERVAL’, then the values of INTERVAL_PRECISION are the interval
leading field precision of the data type being described; otherwise, INTERVAL_PRECISION is
the null value.

6) If DATA_TYPE is ’USER-DEFINED’, then the values of USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are the null value
if the data type being described is not a user-defined type. Otherwise, the values of USER_
DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_
TYPE_NAME are the qualified name of a user-defined type or the qualified name of the user-
defined type that is the data type being described.

7) If DATA_TYPE is ’REF’, then the values of SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_
NAME are the qualfied name of the referenceable table, if any; otherwise, the values of SCOPE_
CATALOG, SCOPE_SCHEMA, and SCOPE_NAME are the null value.

8) If DATA_TYPE is the name of some character or bit string type and OBJECT_SCHEMA
is ’INFORMATION_SCHEMA’, then the values for CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, COLLATION_CATALOG, COLLATION_SCHEMA, and
COLLATION_NAME are implementation-defined.

9) If DATA_TYPE is ’ARRAY’, then the value of MAXIMUM_CARDINALITY is the maximum car-
dinality of the array type being described. Otherwise, the value of MAXIMUM_CARDINALITY
is the null value.

10) If DATA_TYPE is ’ROW’ then the data type being described is a row type.

Definition Schema 873

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.16 DIRECT_SUPERTABLES base table

21.16 DIRECT_SUPERTABLES base table

Function
The DIRECT_SUPERTABLES base table contains one row for each direct subtable-supertable
relationship.

Definition
CREATE TABLE DIRECT_SUPERTABLES (

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SUPERTABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT DIRECT_SUPERTABLES_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, SUPERTABLE_NAME),

CONSTRAINT DIRECT_SUPERTABLES_FOREIGN_KEY_TABLE_TABLES
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)
REFERENCES TABLES,

CONSTRAINT DIRECT_SUPERTABLES_FOREIGN_KEY_SUPERTABLE_TABLES
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, SUPERTABLE_NAME)
REFERENCES TABLES,

CONSTRAINT DIRECT_SUPERTABLES_CHECK_NOT_SAME_TABLES
CHECK (TABLE_NAME <> SUPERTABLE_NAME),

CONSTRAINT DIRECT_SUPERTABLES_CHECK_NO_REFLEXITIVITY
CHECK ((SUPERTABLE_CATALOG, SUPERTABLE_SCHEMA,

SUPERTABLE_NAME, TABLE_NAME) NOT IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, SUPERTABLE_NAME
FROM DIRECT_SUPERTABLES)),

CONSTRAINT DIRECT_SUPERTABLES_CHECK_NOT_ALSO_INDIRECT
CHECK (
NOT EXISTS (
WITH RECURSIVE SUPER

(SUBTABLE_CATALOG, SUBTABLE_SCHEMA, SUBTABLE_NAME,
SUPERTABLE_CATALOG, SUPERTABLE_SCHEMA, SUPERTABLE_NAME)

AS
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

TABLE_CATALOG, TABLE_SCHEMA, SUPERTABLE_NAME,
FROM DIRECT_SUPERTABLES

UNION
SELECT D1.SUBTABLE_CATALOG, D1.SUBTABLE_SCHEMA,

D1.SUBTABLE_NAME,
D2.SUPERTABLE_CATALOG, D2.SUPERTABLE_SCHEMA,
D2.SUPERTABLE_NAME

FROM SUPER D1, DIRECT_SUPERTABLES D2
WHERE (D1.SUPERTABLE_CATALOG, D1.SUPERTABLE_SCHEMA,

D1.SUPERTABLE_NAME) =
(D2.SUBTABLE_CATALOG, D2.SUBTABLE_SCHEMA,
D2.SUBTABLE_NAME))

SELECT *
FROM SUPER
WHERE (SUPERTABLE_CATALOG, SUPERTABLE_SCHEMA,

SUPERTABLE_NAME) =
(SUBTABLE_CATALOG, SUBTABLE_SCHEMA,
SUBTABLE_NAME)))

)

874 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.16 DIRECT_SUPERTABLES base table

Description

1) The values of TABLE_CATALOG and TABLE_SCHEMA are the catalog name and unqualified
schema name, respectively, of the schema in which the subtable and the direct supertable being
described are defined.

2) The value of TABLE_NAME is the name of the subtable.

3) The value of SUPERTABLE_NAME is the name of the direct supertable.

Definition Schema 875

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.17 DIRECT_SUPERTYPES base table

21.17 DIRECT_SUPERTYPES base table

Function
The DIRECT_SUPERTYPES base table contains one row for each direct subtype-supertype relation-
ship.

Definition
CREATE TABLE DIRECT_SUPERTYPES (

USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SUPERTYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SUPERTYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SUPERTYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT DIRECT_SUPERTYPES_PRIMARY_KEY
PRIMARY KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME,
SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME),

CONSTRAINT DIRECT_SUPERTYPES_FOREIGN_KEY_USER_DEFINED_TYPES_1
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME)
REFERENCES USER_DEFINED_TYPES,

CONSTRAINT DIRECT_SUPERTYPES_FOREIGN_KEY_USER_DEFINED_TYPES_2
FOREIGN KEY (SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME)
REFERENCES USER_DEFINED_TYPES,

CONSTRAINT DIRECT_SUPERTYPES_CHECK_NOT_SAME_TYPES
CHECK ((USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME) <>
(SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME)),

CONSTRAINT DIRECT_SUPERTYPES_CHECK_NO_REFLEXIVITY
CHECK ((SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME,

USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) NOT IN

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME,
SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA,
SUPERTYPE_NAME

FROM DIRECT_SUPERTYPES)),

876 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.17 DIRECT_SUPERTYPES base table

CONSTRAINT DIRECT_SUPERTYPES_CHECK_NOT_ALSO_INDIRECT
CHECK (
NOT EXISTS (

WITH RECURSIVE SUPER
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME,
SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME) AS

(SELECT USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME,
SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, SUPERTYPE_NAME

FROM DIRECT_SUPERTYPES
UNION

SELECT D1.USER_DEFINED_TYPE_CATALOG, D1.USER_DEFINED_TYPE_SCHEMA,
D1.USER_DEFINED_TYPE_NAME,
D2.SUPERTYPE_CATALOG, D2.SUPERTYPE_SCHEMA, D2.SUPERTYPE_NAME

FROM SUPER D1, DIRECT_SUPERTYPES D2
WHERE (D1.USER_DEFINED_TYPE_CATALOG, D1.USER_DEFINED_TYPE_SCHEMA,

D1.USER_DEFINED_TYPE_NAME) =
(D2.SUPERTYPE_CATALOG, D2.SUPERTYPE_SCHEMA,
D2.SUPERTYPE_NAME))

SELECT *
FROM SUPER
WHERE (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME) =
(SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA,
SUPERTYPE_NAME)))

)

Description

1) Rows are inserted into this table whenever a <user-defined type definition> is executed that
contains an <under clause>. Rows are deleted from this table whenever a <drop user-defined
type statement> is executed.

2) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the qualified name of the user-defined type that is the
subtype of the type described by SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, and
SUPERTYPE_NAME.

3) The values of SUPERTYPE_CATALOG, SUPERTYPE_SCHEMA, and SUPERTYPE_NAME are
the qualified name of the user-defined type that is the direct supertype of the type described
by USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_
DEFINED_TYPE_NAME.

Definition Schema 877

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.18 DOMAIN_CONSTRAINTS base table

21.18 DOMAIN_CONSTRAINTS base table

Function
The DOMAIN_CONSTRAINTS table has one row for each domain constraint associated with a
domain. It effectively contains a representation of the domain constraint descriptors.

Definition
CREATE TABLE DOMAIN_CONSTRAINTS (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT DOMAIN_CATALOG_NOT_NULL
NOT NULL,

DOMAIN_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT DOMAIN_SCHEMA_NOT_NULL
NOT NULL,

DOMAIN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT DOMAIN_NAME_NOT_NULL
NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT DOMAIN_CONSTRAINTS_DEFERRABLE_NOT_NULL
NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT DOMAIN_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL
NOT NULL,

CONSTRAINT DOMAIN_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT DOMAIN_CONSTRAINTS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT DOMAIN_CONSTRAINTS_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (DOMAIN_CATALOG, DOMAIN_SCHEMA, CONSTRAINT_NAME)
REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT DOMAIN_CONSTRAINTS_FOREIGN_KEY_DOMAINS
FOREIGN KEY (DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME)
REFERENCES DOMAINS,

CONSTRAINT DOMAIN_CONSTRAINTS_CHECK_DEFERRABLE
CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

(VALUES (’NO’, ’NO’),
(’YES’, ’NO’),
(’YES’, ’YES’)))

)

Description

1) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the catalog name
and unqualified schema name of the schema in which the domain constraint is defined.

2) The value of CONSTRAINT_NAME is the name of the domain constraint.

3) The values of DOMAIN_CATALOG, DOMAIN_SCHEMA and DOMAIN_NAME are the catalog
name, unqualified schema name, and qualified identifier, respectively, of the domain in which
the domain constraint is defined.

878 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.18 DOMAIN_CONSTRAINTS base table

4) The values of IS_DEFERRABLE have the following meanings:

YES The domain constraint is deferrable.

NO The domain constraint is not deferrable.

5) The values of INITIALLY_DEFERRED have the following meanings:

YES The domain constraint is initially deferred.

NO The domain constraint is initially immediate.

Definition Schema 879

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.19 DOMAINS base table

21.19 DOMAINS base table

Function
The DOMAINS table has one row for each domain. It effectively contains a representation of the
domain descriptors.

Definition
CREATE TABLE DOMAINS (

DOMAIN_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
DOMAIN_DEFAULT INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT DOMAINS_PRIMARY_KEY
PRIMARY KEY (DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME),

CONSTRAINT DOMAINS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (DOMAIN_CATALOG, DOMAIN_SCHEMA) REFERENCES SCHEMATA,

CONSTRAINT DOMAIN_CHECK_DATA_TYPE
CHECK (

DOMAIN_CATALOG NOT IN
(SELECT CATALOG_NAME FROM SCHEMATA)

OR
(DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,

’DOMAIN’, DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR))

)

Description

1) The values of DOMAIN_CATALOG and DOMAIN_SCHEMA are the catalog name and unquali-
fied schema name, respectively, of the schema in which the domain is defined.

2) The value of DOMAIN_NAME is the name of the domain.

3) The values of DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME, and DTD_
IDENTIFIER are the values of DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes
the data type of the domain.

4) The value of DOMAIN_DEFAULT is null if the domain being described has no explicit de-
fault value. If the character representation of the default value cannot be represented without
truncation, then the value of DOMAIN_DEFAULT is ‘‘TRUNCATED’’. Otherwise, the value
of DOMAIN_DEFAULT is a character representation of the default value for the domain that
obeys the rules specified for <default option> in Subclause 11.5, ‘‘<default clause>’’.
NOTE 352 – ‘‘TRUNCATED’’ is different from other values like CURRENT_USER or CURRENT_
TIMESTAMP in that it is not an SQL <key word> and does not correspond to a defined value in SQL.

880 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.20 ELEMENT_TYPES base table

21.20 ELEMENT_TYPES base table

Function
The ELEMENT_TYPES table has one row for each array type. It effectively contains a representa-
tion of the element descriptor of the array type.

Definition
CREATE TABLE ELEMENT_TYPES (

OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_TYPE INFORMATION_SCHEMA.SQL_IDENTIFIER,
ARRAY_TYPE_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROOT_DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT ELEMENT_TYPES_PRIMARY_KEY
PRIMARY KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, ARRAY_TYPE_IDENTIFIER),

CONSTRAINT ELEMENT_TYPES_CHECK_ARRAY_TYPE
CHECK (
(OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, ARRAY_TYPE_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR
WHERE DATA_TYPE = ’ARRAY’)),

CONSTRAINT ELEMENT_TYPES_FOREIGN_KEY_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR,

CONSTRAINT ELEMENT_TYPES_FOREIGN_KEY_ROOT_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, ROOT_DTD_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR

)

Description

1) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, and
ARRAY_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_
NAME, OBJECT_TYPE, and DTD_IDENTIFIER respectively of the row in DATA_TYPE_
DESCRIPTOR that describes the array type whose element type is being described.

2) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_
NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_
DESCRIPTOR that describes the element type of the array type.

3) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and ROOT_DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_
TYPE_DESCRIPTOR that describes the root data type of the element type.

Definition Schema 881

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.21 FIELDS base table

21.21 FIELDS base table

Function
The FIELDS table has one row for each field of each row type. It effectively contains a representa-
tion of the field descriptors.

Definition
CREATE TABLE FIELDS (

OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_TYPE INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROW_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROOT_DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
FIELD_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT FIELDS_ORDINAL_POSITION_NOT_NULL
NOT NULL

CONSTRAINT FIELDS_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT FIELDS_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM FIELDS
GROUP BY OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, ROW_IDENTIFIER)),
DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_NULLABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT FIELDS_IS_NULLABLE_NOT_NULL
NOT NULL

CONSTRAINT FIELDS_IS_NULLABLE_CHECK
CHECK (IS_NULLABLE IN (’YES’, ’NO’)),

CONSTRAINT FIELDS_PRIMARY_KEY
PRIMARY KEY (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, ROW_IDENTIFIER, FIELD_NAME),

CONSTRAINT FIELDS_UNIQUE
UNIQUE (OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, ROW_IDENTIFIER, ORDINAL_POSITION),

CONSTRAINT FIELDS_CHECK_ROW_TYPE
CHECK (
(OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, ROW_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM DATA_TYPE_DESCRIPTOR
WHERE DATA_TYPE = ’ROW’)),

CONSTRAINT FIELDS_REFERENCED_TYPES_FOREIGN_KEY_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, ROW_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR,

CONSTRAINT FIELDS_REFERENCED_TYPES_FOREIGN_KEY_ROOT_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, ROOT_DTD_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR

)

882 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.21 FIELDS base table

Description

1) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, and
ROW_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_
NAME, OBJECT_TYPE, and DTD_IDENTIFIER respectively of the row in DATA_TYPE_
DESCRIPTOR that describes the row type containing the field being described.

2) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and ROOT_DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_
TYPE_DESCRIPTOR that describes the root data type of the field type.

3) The value of FIELD_NAME is the name of the field being described.

4) The value of ORDINAL_POSITION is the ordinal position of the field in the row type.

5) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_
NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_
DESCRIPTOR that describes the data type of the field being described.

6) The values of IS_NULLABLE have the following meanings:

YES The field is possibly nullable.

NO The field is known not nullable.

Definition Schema 883

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.22 KEY_COLUMN_USAGE base table

21.22 KEY_COLUMN_USAGE base table

Function
The KEY_COLUMN_USAGE table has one or more rows for each row in the TABLE_CONSTRAINTS
table that has a CONSTRAINT_TYPE of ‘‘UNIQUE’’, ‘‘PRIMARY KEY’’, or ‘‘FOREIGN KEY’’. The
rows list the columns that constitute each unique constraint, and the referencing columns in each
foreign key constraint.

Definition
CREATE TABLE KEY_COLUMN_USAGE (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT KEY_COLUMN_TABLE_CATALOG_NOT_NULL
NOT NULL,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT KEY_COLUMN_TABLE_SCHEMA_NOT_NULL
NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT KEY_COLUMN_TABLE_NAME_NOT_NULL
NOT NULL,

COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT KEY_COLUMN_ORDINAL_POSITION_NOT_NULL
NOT NULL

CONSTRAINT KEY_COLUMN_USAGE_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT KEY_COLUMN_USAGE_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM KEY_COLUMN_USAGE
GROUP BY CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME)),

CONSTRAINT KEY_COLUMN_USAGE_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

COLUMN_NAME),

CONSTRAINT KEY_COLUMN_USAGE_UNIQUE
UNIQUE (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,

CONSTRAINT_NAME, ORDINAL_POSITION),

CONSTRAINT KEY_COLUMN_USAGE_FOREIGN_KEY_COLUMNS
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME)
REFERENCES COLUMNS,

CONSTRAINT KEY_COLUMN_CONSTRAINT_TYPE_CHECK
CHECK (

(CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME) IN
(SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’, ’FOREIGN KEY’)))
)

884 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.22 KEY_COLUMN_USAGE base table

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
constraint being described.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME
are the catalog name, unqualified schema name, qualified identifier of the table name, and
the column name of the column that participates in the unique, primary key, or foreign key
constraint being described.

3) The value of ORDINAL_POSITION is the ordinal position of the specific column in the con-
straint being described. If the constraint described is a key of cardinality 1 (one), then the
value of ORDINAL_POSITION is always 1 (one). If the constraint being described is a foreign
key constraint, then ORDINAL_POSITION also identifies the position within the uniqueness
constraint of the column that this column references.

Definition Schema 885

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.23 METHOD_SPECIFICATION_PARAMETERS base table

21.23 METHOD_SPECIFICATION_PARAMETERS base table

Function
The METHOD_SPECIFICATION_PARAMETERS base table has one row for each SQL parameter
of each method specification described in the METHOD_SPECIFICATIONS base table.

Definition
CREATE TABLE METHOD_SPECIFICATION_PARAMETERS (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

METHOD_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT METHOD_SPECIFICATION_PARAMETER_POSITION_NOT_NULL
NOT NULL

CONSTRAINT METHOD_SPECIFICATION_PARAMETERS_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT METHOD_SPECIFICATION_PARAMETERS_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM METHOD_SPECIFICATION_PARAMETERS
GROUP BY SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)),

DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
PARAMETER_MODE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATION_PARAMETER_MODE_CHECK
CHECK (PARAMETER_MODE IN

(’IN’)),
IS_RESULT INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT METHOD_SPECIFICATION_PARAMETER_IS_RESULT_CHECK
CHECK (IS_RESULT IN (’YES’, ’NO’)),

AS_LOCATOR INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT METHOD_SPECIFICATION_PARAMETER_AS_LOCATOR_CHECK
CHECK (AS_LOCATOR IN (’YES’, ’NO’)),

PARAMETER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT METHOD_SPECIFICATION_PARAMETERS_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

METHOD_CATALOG, METHOD_SCHEMA, METHOD_NAME,
METHOD_SPECIFICATION_IDENTIFIER, ORDINAL_POSITION),

CONSTRAINT METHOD_SPECIFICATION_PARAMETERS_FOREIGN_KEY
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES METHOD_SPECIFICATIONS

CONSTRAINT METHOD_SPECIFICATION_PARAMETERS_CHECK_DATA_TYPE
CHECK (
(SPECIFIC_CATALOG, SPECIFIC_SCHEMA,SPECIFIC_NAME,
’USER-DEFINED TYPE’, DTD_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
OBJECT_TYPE, DTD_IDENTIFIER

FROM DATA_TYPE_DESCRIPTOR))

)

886 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.23 METHOD_SPECIFICATION_PARAMETERS base table

Description

1) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked method whose parameters are being described.

2) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the catalog name, unqualified schema name, and qualified
identifier of the user-defined type name of the user-defined type with which the SQL-invoked
method is associated.

3) The value of ORDINAL_POSITION is the ordinal position of the SQL parameter in the SQL-
invoked method.

4) The values of PARAMETER_MODE have the following meanings:

IN The SQL parameter being described is an input parameter.

5) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME, and DTD_
IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,
and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes
the data type of the parameter being described.

6) The values of IS_RESULT have the following meanings:

YES The parameter is the RESULT parameter of a type-preserving function.

NO The parameter is not the RESULT parameter of a type-preserving function.

7) The values of AS_LOCATOR have the following meanings:

YES The parameter is passed AS LOCATOR.

NO The parameter is not passed AS LOCATOR.

8) Case:

a) If <SQL parameter name> was specified when the SQL-invoked routine was created, then
the value of PARAMETER_NAME is that <SQL parameter name>.

b) Otherwise, the value of PARAMETER_NAME is the null value.

9) FROM_SQL_SPECIFIC_CATALOG, FROM_SQL_SPECIFIC_SCHEMA, and FROM_SQL_
SPECIFIC_NAME are the catalog name, unqualified schema name, and qualified identifier,
respectively, of the specific name of the from-sql routine for the parameter being described.

Definition Schema 887

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.24 METHOD_SPECIFICATIONS base table

21.24 METHOD_SPECIFICATIONS base table

Function
The METHOD_SPECIFICATIONS base table has one row for each method specification.

Definition
CREATE TABLE METHOD_SPECIFICATIONS (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
METHOD_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_STATIC INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATION_IS_STATIC_CHECK
CHECK (IS_STATIC IN (’YES’, ’NO’)),

IS_OVERRIDING INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATION_IS_OVERRIDING_CHECK
CHECK (IS_OVERRIDING IN (’YES’, ’NO’)),

METHOD_LANGUAGE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_LANGUAGE_CHECK
CHECK (ROUTINE_BODY IN

(’SQL’, ’ ’ADA’, ’C’,
’COBOL’, ’FORTRAN’, ’MUMPS’, ’PASCAL’,’PLI’)),

PARAMETER_STYLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_PARAMETER_STYLE_CHECK
CHECK (PARAMETER_STYLE IN

(’SQL’, ’GENERAL’)
OR PARAMETER_STYLE IS NULL),

DTD_IDENTIFIER INFORMATION_SCHEMA.CHARACTER_DATA,
IS_DETERMINISTIC INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_IS_DETERMINISTIC_CHECK
CHECK (IS_DETERMINISTIC IN (’YES’, ’NO’)),

SQL_DATA_ACCESS INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_SQL_DATA_ACCESS_CHECK
CHECK (SQL_DATA_ACCESS IN (’NONE’, ’CONTAINS’,

’READS’, ’MODIFIES’)),
IS_NULL_CALL INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_IS_NULL_CALL_CHECK
CHECK (IS_NULL_CALL IN (’YES’, ’NO’)),

TO_SQL_SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
AS_LOCATOR INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT METHOD_SPECIFICATIONS_AS_LOCATOR_CHECK
CHECK (AS_LOCATOR IN (’YES’, ’NO’)),

CREATED INFORMATION_SCHEMA.TIME_STAMP,
LAST_ALTERED INFORMATION_SCHEMA.TIME_STAMP,

CONSTRAINT METHOD_SPECIFICATIONS_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME),

CONSTRAINT METHOD_SPECIFICATIONS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT METHOD_SPECIFICATIONS_FOREIGN_KEY_USER_DEFINED_TYPES
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME)
REFERENCES USER_DEFINED_TYPES MATCH FULL,

888 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.24 METHOD_SPECIFICATIONS base table

CONSTRAINT METHOD_SPECIFICATIONS_CHECK_DATA_TYPE
CHECK (

(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’, DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR)),

CONSTRAINT METHOD_SPECIFICATIONS_COMBINATIONS
CHECK (
((METHOD_LANGUAGE = ’SQL’
AND

IS_DETERMINISTIC IS NULL)
OR

(METHOD_LANGUAGE <> ’SQL’
AND

IS_DETERMINISTIC IS NOT NULL))),

CONSTRAINT METHOD_SPECIFICATIONS_SAME_SCHEMA
CHECK ((SPECIFIC_CATALOG, SPECIFIC_SCHEMA) =

(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA))

)

Description

1) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked method being described.

2) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the catalog name, unqualified schema name, and qualified
identifier, respectively, of the user-defined type name of the user-defined type with which the
SQL-invoked method is associated.

3) The values of METHOD_NAME is the identifier of the method name of the SQL-invoked method
being described.

4) The values of IS_STATIC have the following meanings:

YES The SQL-invoked routine is a static method.

NO The SQL-invoked routine is not a static method.

5) The values of IS_OVERRIDING have the following meanings:

YES The SQL-invoked method is an overriding method.

NO The SQL-invoked method is an original method.

6) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_
DEFINED_TYPE_NAME, and DTD_IDENTIFIER are the values of OBJECT_CATALOG,
OBJECT_SCHEMA, OBJECT_NAME, and DTD_IDENTIFIER, respectively, of the row in
DATA_TYPE_DESCRIPTOR that describes the result type of the method.

7) The values of IS_NULL_CALL have the following meanings:

YES The SQL-invoked routine is a null-call function.

NO The SQL-invoked routine is not a null-call function.

8) The value of METHOD_LANGUAGE is the explicit or implicit <language name> contained in
the method specification being described.

Definition Schema 889

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.24 METHOD_SPECIFICATIONS base table

9) Case:

a) If the method being defined specifies LANGUAGE SQL, then the values of IS_DETERMINISTIC,
PARAMETER_STYLE, TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA,
and TO_SQL_SPECIFIC_NAME are the null value.

b) Otherwise:

i) The values of IS_DETERMINISTIC have the following meanings:

YES The method is deterministic.

NO The method is possibly not deterministic.

ii) The values of PARAMETER_STYLE have the following meanings:

SQL The method specification specified PARAMETER STYLE SQL.

GENERAL The method specification specified PARAMETER STYLE GENERAL.

iii) TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA, and TO_SQL_
SPECIFIC_NAME are catalog name, unqualified schema name, and qualified identi-
fier, respectively, of the specific name of the to-sql routine for the result type of the
SQL-invoked method being described.

10) The values of SQL_DATA_ACCESS have the following meanings:

NONE The SQL-invoked routine does not possibly contain SQL.

CONTAINS The SQL-invoked routine possibly contains SQL.

READS The SQL-invoked routine possibly reads SQL-data.

MODIFIES The SQL-invoked routine possibly modifies SQL-data.

11) The values of AS_LOCATOR have the following meanings:

YES The return value is passed AS LOCATOR.

NO The return value is not passed AS LOCATOR.

12) The value of CREATED is the value of CURRENT_TIMESTAMP at the time when the SQL-
invoked method specification being described was created.

13) The value of LAST_ALTERED is the value of CURRENT_TIMESTAMP at the time that the
SQL-invoked method specification being described was last altered. This value is identical to
the value of CREATED for SQL-invoked routines that have never been altered.

890 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.25 PARAMETERS base table

21.25 PARAMETERS base table

Function
The PARAMETERS table has one row for each SQL parameter of each SQL-invoked routine de-
scribed in the ROUTINES base table.

Definition
CREATE TABLE PARAMETERS (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDINAL_POSITION INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT PARAMETERS_POSITION_NOT_NULL
NOT NULL

CONSTRAINT PARAMETERS_ORDINAL_POSITION_GREATER_THAN_ZERO_CHECK
CHECK (ORDINAL_POSITION > 0)

CONSTRAINT PARAMETERS_ORDINAL_POSITION_CONTIGUOUS_CHECK
CHECK (0 = ALL (SELECT MAX(ORDINAL_POSITION) - COUNT(*)

FROM PARAMETERS
GROUP BY SPECIFIC_CATALOG,

SPECIFIC_SCHEMA,
SPECIFIC_NAME)),

DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
PARAMETER_MODE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT PARAMETER_MODE_NOT_NULL
NOT NULL

CONSTRAINT PARAMETER_MODE_CHECK
CHECK (

PARAMETER_MODE IN
(’IN’, ’OUT’, ’INOUT’)),

IS_RESULT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT PARAMETERS_IS_RESULT_CHECK
CHECK (

IS_RESULT IN
(’YES’, ’NO’)),

AS_LOCATOR INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT PARAMETERS_AS_LOCATOR_CHECK
CHECK (

AS_LOCATOR IN
(’YES’, ’NO’)),

PARAMETER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
FROM_SQL_SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT PARAMETERS_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA,

SPECIFIC_NAME, ORDINAL_POSITION),

CONSTRAINT PARAMETERS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA)
REFERENCES SCHEMATA

Definition Schema 891

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.25 PARAMETERS base table

CONSTRAINT PARAMETERS_CHECK_DATA_TYPE
CHECK (

(SPECIFIC_CATALOG, SPECIFIC_SCHEMA,
SPECIFIC_NAME, ’ROUTINE’, DTD_IDENTIFIER) IN

(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER

FROM DATA_TYPE_DESCRIPTOR))

)

Description

1) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked routine that contains the SQL parameter being described.

2) The value of ORDINAL_POSITION is the ordinal position of the SQL parameter in the SQL-
invoked routine.

3) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME, and DTD_
IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and
DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes the
data type of the parameter.

4) The values of PARAMETER_MODE have the following meanings:

IN The SQL parameter being described is an input parameter.

OUT The SQL parameter being described is an output parameter.

INOUT The SQL parameter being described is an input parameter and an output parameter.

5) The values of IS_RESULT have the following meanings:

YES The parameter is the RESULT parameter of a type-preserving function.

NO The parameter is not the RESULT paramaeter of a type-preserving function.

6) The values of AS_LOCATOR have the following meanings:

YES The parameter is passed AS LOCATOR.

NO The parameter is not passed AS LOCATOR.

7) Case:

a) If <SQL parameter name> was specified when the SQL-invoked routine was created, then
the value of PARAMETER_NAME is that <SQL parameter name>.

b) Otherwise, the value of PARAMETER_NAME is the null value.

8) FROM_SQL_SPECIFIC_CATALOG, FROM_SQL_SPECIFIC_SCHEMA, and FROM_SQL_
SPECIFIC_NAME are the catalog name, unqualified schema name, and qualified identifier, re-
spectively, of the specific name of the from-sql routine for the input parameter being described.

9) TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA, and TO_SQL_SPECIFIC_
NAME are the catalog name, unqualified schema name, and qualified identifier, respectively, of
the specific name of the to-sql routine for the output parameter being described.

892 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.26 REFERENCED_TYPES base table

21.26 REFERENCED_TYPES base table

Function
The REFERENCE_TYPES table has one row for each reference type. It effectively contains a
representation of the referenced type descriptors.

Definition
CREATE TABLE REFERENCED_TYPES (

OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_TYPE INFORMATION_SCHEMA.SQL_IDENTIFIER,
REFERENCE_TYPE_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROOT_DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT REFERENCED_TYPES_PRIMARY_KEY
PRIMARY KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, REFERENCE_TYPE_IDENTIFIER),

CONSTRAINT REFERENCED_TYPES_CHECK_REFERENCE_TYPE
CHECK ((OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, REFERENCE_TYPE_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR
WHERE DATA_TYPE = ’REF’)),

CONSTRAINT REFERENCED_TYPES_FOREIGN_KEY_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR,

CONSTRAINT REFERENCED_TYPES_FOREIGN_KEY_ROOT_DATA_TYPE_DESCRIPTOR
FOREIGN KEY (OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, ROOT_DTD_IDENTIFIER)
REFERENCES DATA_TYPE_DESCRIPTOR

)

Description

1) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, and
REFERENCE_TYPE_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_
TYPE_DESCRIPTOR that describes the reference type whose referenced type is being described.

2) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_
NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_
DESCRIPTOR that describes the referenced type of the reference type.

3) The values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE,
and ROOT_DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_TYPE, and DTD_IDENTIFIER, respectively, of the row in DATA_
TYPE_DESCRIPTOR that describes the root data type of the reference type.

Definition Schema 893

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.27 REFERENTIAL_CONSTRAINTS base table

21.27 REFERENTIAL_CONSTRAINTS base table

Function
The REFERENTIAL_CONSTRAINTS table has one row for each row in the TABLE_CONSTRAINTS
table that has a CONSTRAINT_TYPE value of ‘‘FOREIGN KEY’’.

Definition
CREATE TABLE REFERENTIAL_CONSTRAINTS (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
UNIQUE_CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT UNIQUE_CONSTRAINT_CATALOG_NOT_NULL
NOT NULL,

UNIQUE_CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT UNIQUE_CONSTRAINT_SCHEMA_NOT_NULL
NOT NULL,

UNIQUE_CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT UNIQUE_CONSTRAINT_NAME_NOT_NULL
NOT NULL,

MATCH_OPTION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT REFERENTIAL_MATCH_OPTION_NOT_NULL
NOT NULL

CONSTRAINT REFERENTIAL_MATCH_OPTION_CHECK
CHECK (MATCH_OPTION IN

(’NONE’, ’PARTIAL’, ’FULL’)),
UPDATE_RULE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT REFERENTIAL_UPDATE_RULE_NOT_NULL
NOT NULL

CONSTRAINT REFERENTIAL_UPDATE_RULE_CHECK
CHECK (UPDATE_RULE IN

(’CASCADE’,
’SET NULL’,
’SET DEFAULT’,
’RESTRICT’,
’NO ACTION’)),

DELETE_RULE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT REFERENTIAL_DELETE_RULE_NOT_NULL
NOT NULL

CONSTRAINT REFERENTIAL_DELETE_RULE_CHECK
CHECK (DELETE_RULE IN

(’CASCADE’,
’SET NULL’,
’SET DEFAULT’,
’RESTRICT’,
’NO ACTION’)),

CONSTRAINT REFERENTIAL_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT REFERENTIAL_CONSTRAINTS_CONSTRAINT_TYPE_CHECK
CHECK ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME) IN

(SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE = ’FOREIGN KEY’)),

894 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.27 REFERENTIAL_CONSTRAINTS base table

CONSTRAINT UNIQUE_CONSTRAINT_CHECK_REFERENCES_UNIQUE_CONSTRAINT
CHECK (UNIQUE_CONSTRAINT_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
((UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA,

UNIQUE_CONSTRAINT_NAME) IN
(SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’))))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME
are the catalog name, unqualified schema name, and qualified identifier, respectively, of the
constraint being described.

2) The values of UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA, and
UNIQUE_CONSTRAINT_NAME are the catalog name, unqualified schema name, and qualified
identifier, respectively, of the unique or primary key constraint applied to the referenced column
list being described.

3) The values of MATCH_OPTION have the following meanings:

NONE No <match type> was specified.

PARTIAL A <match type> of PARTIAL was specified.

FULL A <match type> of FULL was specified.

4) The values of UPDATE_RULE have the following meanings for a referential constraint that has
an <update rule>:

NO ACTION A <referential action> of NO ACTION was specified.

RESTRICT A <referential action> of RESTRICT was specified.

CASCADE A <referential action> of CASCADE was specified.

SET NULL A <referential action> of SET NULL was specified.

SET DEFAULT A <referential action> of SET DEFAULT was specified.

5) The values of DELETE_RULE have the following meanings for a referential constraint that has
a <delete rule>:

NO ACTION A <referential action> of NO ACTION was specified.

RESTRICT A <referential action> of RESTRICT was specified.

CASCADE A <referential action> of CASCADE was specified.

SET NULL A <referential action> of SET NULL was specified.

SET DEFAULT A <referential action> of SET DEFAULT was specified.

Definition Schema 895

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.28 ROLE_AUTHORIZATION_DESCRIPTORS base table

21.28 ROLE_AUTHORIZATION_DESCRIPTORS base table

Function
Contains a representation of the role authorization descriptors.

Definition
CREATE TABLE ROLE_AUTHORIZATION_DESCRIPTORS (

ROLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT ROLE_AUTHORIZATION_DESCRIPTORS_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR GRANTEE IN
(SELECT USER_NAME
FROM USERS)),

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT ROLE_AUTHORIZATION_DESCRIPTORS_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROLE_AUTHORIZATION_DESCRIPTORS_IS_GRANTABLE_CHECK

CHECK (IS_GRANTABLE IN
(’YES’, ’NO’)),

CONSTRAINT ROLE_AUTHORIZATION_DESCRIPTORS_PRIMARY_KEY
PRIMARY KEY (ROLE_NAME, GRANTEE),

CONSTRAINT ROLE_AUTHORIZATION_DESCRIPTORS_FOREIGN_KEY_ROLES
FOREIGN KEY (ROLE_NAME)
REFERENCES ROLES

)

Description

1) A row is (or rows are) inserted into this table whenever a <grant role statement> or <role
definition> is executed unless the necessary row already exists, in which case the existing row
may be modified to change the IS_GRANTABLE column. A row is (or rows are) deleted from
this table whenever a <revoke role statement> or <drop role> is executed.

2) The value of ROLE_NAME is the <role name> of some <role granted> by the <grant role state-
ment> or the <role name> of a <role definition>.

3) The value of GRANTEE is an <authorization identifier>, possibly PUBLIC, or <role name>
specified as a <grantee> contained in a <grant role statement>, or the <authorization identifier>
of the current SQL-session when the <role definition> is executed.

4) The value of GRANTOR is the <authorization identifier> of the user or role who granted the
role identified by ROLE_NAME to the user or role identified by the value of GRANTEE.

896 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.28 ROLE_AUTHORIZATION_DESCRIPTORS base table

5) The values of IS_GRANTABLE have the following meanings:

YES The described role is grantable.

NO The described role is not grantable.

A role is grantable if the WITH ADMIN OPTION is specified in the <grant role statement> or a
<role definition> is executed.

Definition Schema 897

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.29 ROLES base table

21.29 ROLES base table

Function
The ROLES table has one row for each <role name> for each role known to the database manage-
ment system.

Definition
CREATE TABLE ROLES (

ROLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT ROLES_PRIMARY_KEY
PRIMARY KEY (ROLE_NAME),

CONSTRAINT ROLES_CHECK
CHECK (ROLE_NAME NOT IN

(SELECT USER_NAME
FROM USERS))

)

Description

1) A row is inserted into this table each time a <role definition> is executed. A row is deleted from
this table each time the <drop role statement> is executed.

2) The value of ROLE_NAME is the <role name> defined by <role definition>.

898 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.30 ROUTINE_COLUMN_USAGE base table

21.30 ROUTINE_COLUMN_USAGE base table

Function
The ROUTINE_COLUMN_USAGE table has one row for each column identified in an SQL-invoked
routine.

Definition
CREATE TABLE ROUTINE_COLUMN_USAGE (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT ROUTINE_COLUMN_USAGE_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME),

CONSTRAINT ROUTINE_COLUMN_USAGE_CHECK_REFERENCES_COLUMNS
CHECK (TABLE_CATALOG <>

ANY (SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME
FROM COLUMNS)),

CONSTRAINT ROUTINE_COLUMN_USAGE_FOREIGN_KEY_ROUTINES
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES

)

Description

1) The ROUTINE_COLUMN_USAGE table has one row for each table identified by at least one
of:

a) A <column reference> contained in a <search condition> contained in a <delete statement:
searched> or an <update statement: searched> contained in the <SQL routine body> of an
SQL-invoked routine.

b) A <column reference> contained in a <value expression> simply contained in a <row value
expression> immediately contained in a <set clause> contained in the <SQL routine body>
of an SQL-invoked routine.

c) A <column name> contained in an <insert column list> of an <insert statement> contained
in the <SQL routine body> of an SQL-invoked routine.

d) A <column name> is contained in an <object column> contained in either an <update state-
ment: positioned> or an <update statement: searched> contained in the <SQL routine
body> of an SQL-invoked routine.

2) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked routine being described.

Definition Schema 899

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.30 ROUTINE_COLUMN_USAGE base table

3) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME
are the catalog name, unqualified schema name, qualified identifier, and identifier respectively,
of a column that is referenced in the SQL-invoked routine being described.

900 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.31 ROUTINE_PRIVILEGES base table

21.31 ROUTINE_PRIVILEGES base table

Function
The ROUTINE_PRIVILEGES table has one row for each execute privilege descriptor for an SQL-
invoked routine. It effectively contains a representation of the execute privilege descriptors.

Definition
CREATE TABLE ROUTINE_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
PRIVILEGE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINE_PRIVILEGES_TYPE_CHECK
CHECK (PRIVILEGE_TYPE IN

(’EXECUTE’)),
IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ROUTINE_PRIVILEGES_GRANTABLE_NOT_NULL
NOT NULL

CONSTRAINT ROUTINE_PRIVILEGES_GRANTABLE_CHECK
CHECK (IS_GRANTABLE IN

(’YES’, ’NO’)),

CONSTRAINT ROUTINE_PRIVILEGES_PRIMARY_KEY
PRIMARY KEY (GRANTOR, GRANTEE, SPECIFIC_CATALOG, SPECIFIC_SCHEMA,

SPECIFIC_NAME, PRIVILEGE_TYPE),

CONSTRAINT ROUTINE_PRIVILEGES_FOREIGN_KEY_TABLES
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES,

CONSTRAINT ROUTINE_PRIVILEGE_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT ROUTINE_PRIVILEGE_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

)

Description

1) The value of GRANTOR is the <authorization identifier> of the user or role who granted ex-
ecute privileges, on the SQL-invoked routine identified by SPECIFIC_CATALOG, SPECIFIC_
SCHEMA, and SPECIFIC_NAME, to the user or role identified by the value of GRANTEE for
the privilege being described.

2) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the privilege being described is granted.

Definition Schema 901

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.31 ROUTINE_PRIVILEGES base table

3) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked routine on which the privilege being described has been granted.

4) The values of PRIVILEGE_TYPE have the following meanings:

EXECUTE The user has EXECUTE privilege on the SQL-invoked routine identified by
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus
grantable.

NO The privilege being described was not granted WITH GRANT OPTION and is thus
not grantable.

902 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.32 ROUTINE_TABLE_USAGE base table

21.32 ROUTINE_TABLE_USAGE base table

Function
The ROUTINE_TABLE_USAGE table has one row for each table identified in an SQL-invoked
routine.

Definition
CREATE TABLE ROUTINE_TABLE_USAGE (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT ROUTINE_TABLE_USAGE_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT ROUTINE_TABLE_USAGE_CHECK_REFERENCES_TABLES
CHECK (TABLE_CATALOG <>

ANY (SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES)),

CONSTRAINT ROUTINE_TABLE_USAGE_FOREIGN_KEY_ROUTINES
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES

)

Description

1) The ROUTINE_TABLE_USAGE table has one row for each table identified by at least one of:

a) A <table reference> contained in a <query expression> simply contained in a <cursor speci-
fication> or an <insert statement> contained in the <SQL routine body> of an SQL-invoked
routine.

b) A <table reference> contained in a <table expression> or <select list> immediately contained
in a <select statement: single row> contained in the <SQL routine body> of an SQL-invoked
routine.

c) A <table reference> contained in a <search condition> contained in a <delete statement:
searched> or an <update statement: searched> contained in the <SQL routine body> of an
SQL-invoked routine.

d) A <table reference> contained in a <value expression> simply contained in a <row value
expression> immediately contained in a <set clause> contained in the <SQL routine body>
of an SQL-invoked routine.

e) A <table name> contained in either a <delete statement: positioned> or a <delete statement:
searched> contained in the <SQL routine body> of an SQL-invoked routine.

f) A <table name> immediately contained in an <insert statement> that does not contain an
<insert column list> contained in the <SQL routine body> of an SQL-invoked routine.

Definition Schema 903

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.32 ROUTINE_TABLE_USAGE base table

2) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked routine being described.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of a table that is referenced in
the SQL-invoked routine being described.

904 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.33 ROUTINES base table

21.33 ROUTINES base table

Function
The ROUTINES base table has one row for each SQL-invoked routine.

Definition
CREATE TABLE ROUTINES (

SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROUTINE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROUTINE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROUTINE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
MODULE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
MODULE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
MODULE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
ROUTINE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINE_TYPE_NOT_NULL
NOT NULL

CONSTRAINT ROUTINE_TYPE_CHECK
CHECK (ROUTINE_TYPE IN

(’PROCEDURE’, ’FUNCTION’,
’INSTANCE METHOD’, ’STATIC METHOD’)),

DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

ROUTINE_BODY INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINE_BODY_NOT_NULL
NOT NULL

CONSTRAINT ROUTINE_BODY_CHECK
CHECK (ROUTINE_BODY IN

(’SQL’, ’EXTERNAL’)),
ROUTINE_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,
EXTERNAL_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
EXTERNAL_LANGUAGE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT EXTERNAL_LANGUAGE_CHECK
CHECK (EXTERNAL_LANGUAGE IN

(’ADA’, ’C’, ’COBOL’,
’FORTRAN’, ’MUMPS’, ’PASCAL’, ’PLI’)),

PARAMETER_STYLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT PARAMETER_STYLE_CHECK
CHECK (PARAMETER_STYLE IN

(’SQL’, ’GENERAL’)
OR

PARAMETER_STYLE IS NULL),
IS_DETERMINISTIC INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT IS_DETERMINISTIC_CHECK
CHECK (IS_DETERMINISTIC

IN (’YES’, ’NO’)),
SQL_DATA_ACCESS INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINES_SQL_DATA_ACCESS_NOT_NULL
NOT NULL

CONSTRAINT ROUTINES_SQL_DATA_ACCESS_CHECK
CHECK SQL_DATA_ACCESS IN

(’NONE’, ’CONTAINS’ ,’READS’ ’MODIFIES’),
IS_NULL_CALL INFORMATION_SCHEMA.CHARACTER_DATA,
CONSTRAINT ROUTINES_IS_NULL_CALL_CHECK
CHECK (IS_NULL_CALL IN

Definition Schema 905

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.33 ROUTINES base table

(’YES’, ’NO’)),
SQL_PATH INFORMATION_SCHEMA.CHARACTER_DATA,
SCHEMA_LEVEL_ROUTINE INFORMATION_SCHEMA.CHARACTER_DATA,
MAX_DYNAMIC_RESULT_SETS INFORMATION_SCHEMA.CARDINAL_NUMBER,
IS_USER_DEFINED_CAST INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINES_IS_USER_DEFINED_CAST_NOT_NULL
NOT NULL

CONSTRAINT ROUTINES_IS_USER_DEFINED_CAST_CHECK
CHECK (IS_USER_DEFINED_CAST IN

(’YES’, ’NO’)),
IS_IMPLICITLY_INVOCABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINES_IS_IMPLICITLY_INVOCABLE_CHECK
CHECK (IS_IMPLICITLY_INVOCABLE IN

(’YES’, ’NO’)),

SECURITY_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINES_SECURITY_TYPE_CHECK
CHECK (SECURITY_TYPE IN

(’DEFINER’, ’INVOKER’, ’IMPLEMENTATION DEFINED’)),
TO_SQL_SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TO_SQL_SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
AS_LOCATOR INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ROUTINES_AS_LOCATOR_CHECK
CHECK (AS_LOCATOR IN

(’YES’, ’NO’)),
CREATED INFORMATION_SCHEMA.TIME_STAMP,
LAST_ALTERED INFORMATION_SCHEMA.TIME_STAMP,

CONSTRAINT ROUTINES_PRIMARY_KEY
PRIMARY KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME),

CONSTRAINT ROUTINES_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (ROUTINE_CATALOG, ROUTINE_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT ROUTINES_FOREIGN_KEY_MODULES
FOREIGN KEY (MODULE_CATALOG, MODULE_SCHEMA, MODULE_NAME)
REFERENCES MODULES
MATCH FULL,

CONSTRAINT ROUTINES_FOREIGN_KEY_USER_DEFINED_TYPES
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME)
REFERENCES USER_DEFINED_TYPES
MATCH FULL,

CONSTRAINT ROUTINES_COMBINATIONS
CHECK ((ROUTINE_BODY = ’SQL’

AND

(EXTERNAL_NAME, EXTERNAL_LANGUAGE, PARAMETER_STYLE) IS NULL)
OR

(ROUTINE_BODY = ’EXTERNAL’
AND

(EXTERNAL_NAME, EXTERNAL_LANGUAGE, PARAMETER_STYLE) IS NOT NULL)),

CONSTRAINT ROUTINES_SAME_SCHEMA
CHECK ((SPECIFIC_CATALOG, SPECIFIC_SCHEMA) =

(ROUTINE_CATALOG, ROUTINE_SCHEMA)
OR (SPECIFIC_CATALOG, SPECIFIC_SCHEMA) =

(MODULE_CATALOG, MODULE_SCHEMA)
OR (SPECIFIC_CATALOG, SPECIFIC_SCHEMA) =

(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA)),

906 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.33 ROUTINES base table

CONSTRAINT ROUTINES_CHECK_RESULT_TYPE
CHECK ((ROUTINE_TYPE =’PROCEDURE’

AND
DTD_IDENTIFIER IS NULL)

OR
(ROUTINE_TYPE <>’PROCEDURE’
AND

(SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME,
’ROUTINE’, DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME,

OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR))

)

Description

1) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the SQL-invoked routine being described.

2) The values of ROUTINE_CATALOG, ROUTINE_SCHEMA, and ROUTINE_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the routine
name of the SQL-invoked routine being described.

3) The values of MODULE_CATALOG, MODULE_SCHEMA, and MODULE_NAME are the null
value.

4) Case:

a) If the SQL-invoked routine being described was defined as a method of a user-defined type,
then the values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
and USER_DEFINED_TYPE_NAME are the catalog name, unqualified schema name, and
qualified identifier, respectively, of the user-defined type name of this user-defined type.

b) Otherwise, the values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_
SCHEMA, and USER_DEFINED_TYPE_NAME are the null value.

5) The values of ROUTINE_TYPE have the following meanings:

PROCEDURE The SQL-invoked routine being described is an SQL-invoked procedure.

FUNCTION The SQL-invoked routine being described is an SQL-invoked function that is not an
SQL-invoked method.

INSTANCE
METHOD

The SQL-invoked routine being described is an SQL-invoked method that is not a
static SQL-invoked method.

STATIC
METHOD

The SQL-invoked routine being described is a static SQL-invoked method.

6) If the SQL-invoked routine being described is an SQL-invoked procedure, then DTD_IDENTIFIER
is the null value; otherwise, SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_
NAME, and DTD_IDENTIFIER are the values of OBJECT_CATALOG, OBJECT_SCHEMA,
OBJECT_NAME, and DTD_IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR
that describes the result type of the SQL-invoked routine being described.

Definition Schema 907

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.33 ROUTINES base table

7) The values of ROUTINE_BODY have the following meanings:

SQL The SQL-invoked routine being described is an SQL routine.

EXTERNAL The SQL-invoked routine being described is an external routine.

8) The values of SQL_DATA_ACCESS have the following meanings:

NONE The SQL-invoked routine does not possibly contain SQL.

CONTAINS The SQL-invoked routine possibly contains SQL.

READS The SQL-invoked routine possibly reads SQL-data.

MODIFIES The SQL-invoked routine possibly modifies SQL-data.

9) The value of IS_DETERMINISTIC indicates whether DETERMINISTIC was specified when the
SQL-invoked routine was defined.

10) The values of IS_NULL_CALL have the following meanings:

YES The SQL-invoked routine is a function and returns null if any of its parameters are
null.

NO The SQL-invoked routine is a function and its return value is determined by invoking
the routine.

null The routine being described is a procedure.

11) Case:

a) If the SQL-invoked routine being described is an SQL routine, and the SQL-invoked routine
is not contained in an SQL-server module definition, and the character representation of the
<routine body> that defined the SQL-invoked routine can be represented without truncation,
then the value of ROUTINE_DEFINITION is that character representation.

b) Otherwise, the value of ROUTINE_DEFINITION is the null value.

12) Case:

a) If the SQL-invoked routine being described is an external routine, then:

i) The value of EXTERNAL_NAME is the external name of the external routine.

ii) The value of EXTERNAL_LANGUAGE is the language of the external routine.

iii) The value of PARAMETER_STYLE is the SQL parameter passing style of the external
routine.

b) Otherwise, the values of EXTERNAL_NAME, EXTERNAL_LANGUAGE and PARAMETER_
STYLE are the null value.

13) Case:

a) If the routine being described is an SQL routine, then the value of SQL_PATH is the SQL-
path of the routine being described.

b) Otherwise, the value of SQL_PATH is the null value.

14) Case:

a) If the SQL-invoked routine is a schema-level routine, then the value of SCHEMA_LEVEL_
ROUTINE is ’YES’.

908 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.33 ROUTINES base table

b) Otherwise, the value of SCHEMA_LEVEL_ROUTINE is ’NO’.

15) The value of MAX_DYNAMIC_RESULT_SETS is

Case:

a) If the routine being described is an SQL-invoked procedure defined by an <SQL-invoked rou-
tine> for which <maximum dynamic result sets> was specified, then the value of <maximum
dynamic result sets>.

b) Otherwise, zero.

16) The values of IS_USER_DEFINED_CAST have the following meanings:

YES The function is a user-defined cast function.

NO The function is not a user-defined cast function.

17) The values of IS_IMPLICITLY_INVOCABLE have the following meanings:

YES The user-defined cast function is implicitly invocable.

NO The user-defined cast function is not implicitly invocable.

null The routine is not a user-defined cast function.

18) The values of SECURITY_TYPE have the following meanings:

DEFINER The external routine has the security characteristic DEFINER.

INVOKER The external routine has the security characteristic INVOKER.

IMPLEMENTATION
DEFINED

The external routine has the security characteristic IMPLEMENTATION DEFINED.

19) TO_SQL_SPECIFIC_CATALOG, TO_SQL_SPECIFIC_SCHEMA and TO_SQL_SPECIFIC_
NAME are the catalog name, unqualified schema name, and qualified identifier, respectively,
of the specific name of the to-sql routine for the result type of the SQL-invoked routine being
described.

20) The values of AS_LOCATOR have the following meanings:

YES The return value of the SQL-invoked routine being described is passed AS LOCATOR.

NO The return value of the SQL-invoked routine being described is not passed AS
LOCATOR.

21) The value of CREATED is the value of CURRENT_TIMESTAMP at the time when the SQL-
invoked routine being described was created.

22) The value of LAST_ALTERED is the value of CURRENT_TIMESTAMP at the time that the
SQL-invoked routine being described was last altered. This value is identical to the value of
CREATED for SQL-invoked routines that have never been altered.

Definition Schema 909

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.34 SCHEMATA base table

21.34 SCHEMATA base table

Function
The SCHEMATA table has one row for each schema.

Definition
CREATE TABLE SCHEMATA (

CATALOG_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCHEMA_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SCHEMA_OWNER INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT SCHEMA_OWNER_NOT_NULL
NOT NULL,

DEFAULT_CHARACTER_SET_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT DEFAULT_CHARACTER_SET_CATALOG_NOT_NULL
NOT NULL,

DEFAULT_CHARACTER_SET_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT DEFAULT_CHARACTER_SET_SCHEMA_NOT_NULL
NOT NULL,

DEFAULT_CHARACTER_SET_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT DEFAULT_CHARACTER_SET_NAME_NOT_NULL
NOT NULL,

SQL_PATH INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT SCHEMATA_PRIMARY_KEY
PRIMARY KEY (CATALOG_NAME, SCHEMA_NAME),

CONSTRAINT SCHEMATA_FOREIGN_KEY
FOREIGN KEY (SCHEMA_OWNER)
REFERENCES USERS

)

Description

1) All the values of CATALOG_NAME are the name of the catalog in which the schemata are
included.

2) The values of SCHEMA_NAME are the unqualified schema names of the schemata in the
catalog.

3) The values of SCHEMA_OWNER are the authorization identifiers that own the schemata.

4) The values of DEFAULT_CHARACTER_SET_CATALOG, DEFAULT_CHARACTER_SET_
SCHEMA, and DEFAULT_CHARACTER_SET_NAME are the catalog name, unqualified schema
name, and qualified identifier, respectively, of the default character set for columns and domains
in the schemata.

5) Case:

a) If <schema path specification> was specified in the <schema definition> that defined the
schema described by this row and the character representation of the <schema path spec-
ification> can be represented without truncation, then the value of SQL_PATH is that
character representation.

b) Otherwise, the value of SQL_PATH is the null value.

910 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.35 SQL_FEATURES base table

21.35 SQL_FEATURES base table

Function
The SQL_FEATURES base table has one row for each package, each feature, and each subfeature
identified by ISO/IEC 9075.

Definition
CREATE TABLE SQL_FEATURES

(
FEATURE_ID INFORMATION_SCHEMA.CHARACTER_DATA,
FEATURE_NAME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_FEATURES_FEATURE_NAME_NOT_NULL
NOT NULL,

/* Zero for SUB_FEATURE_ID indicates a feature or a package*/
SUB_FEATURE_ID INFORMATION_SCHEMA.CHARACTER_DATA,
/* Zero-length string for SUB_FEATURE_NAME indicates a feature or a package */
SUB_FEATURE_NAME INFORMATION_SCHEMA.CHARACTER_DATA
FEATURE_SUBFEATURE_PACKAGE_CODE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT_SQL_FEATURES_FEATURE_SUBFEATURE_PACKAGE_CODE_CHECK
CHECK (FEATURE_SUBFEATURE_PACKAGE_CODE IN

(’FEATURE’, ’SUBFEATURE’, ’PACKAGE’)),
CONSTRAINT SQL_FEATURES_SUB_FEATURE_NAME_NOT_NULL
NOT NULL,

IS_SUPPORTED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_FEATURES_IS_SUPPORTED_NOT_NULL
NOT NULL

CONSTRAINT_SQL_FEATURES_IS_SUPPORTED_CHECK
CHECK (IS_SUPPORTED IN

(’YES’, ’NO’)),
IS_VERIFIED_BY INFORMATION_SCHEMA.CHARACTER_DATA,

COMMENTS INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT SQL_FEATURES_PRIMARY_KEY
PRIMARY KEY (FEATURE_ID, SUB_FEATURE_ID),

CONSTRAINT SQL_FEATURES_CHECK_SUPPORTED_VERIFIED
CHECK (IS_SUPPORTED = ’YES’

OR
IS_VERIFIED_BY IS NULL)

) ;

Description

1) The SQL_FEATURES table consists of exactly one row for each SQL package, feature, and sub-
feature defined in Annex F, ‘‘SQL feature and package taxonomy’’, of this part and corresponding
Annexes in other parts of ISO/IEC 9075.

2) A feature is identified by a value of ’FEATURE’ in the FEATURE_SUBFEATURE_PACKAGE_
CODE column, a subfeature is identified by a value of ’SUBFEATURE’ in the FEATURE_
SUBFEATURE_PACKAGE_CODE column, and a package is identified by a value of ’PACKAGE’
in the FEATURE_SUBFEATURE_PACKAGE_CODE column.

3) The FEATURE_ID and FEATURE_NAME columns identify the package or feature by the fea-
ture identifier and name assigned to it.

Definition Schema 911

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.35 SQL_FEATURES base table

4) The SUB_FEATURE_ID and SUB_FEATURE_NAME columns identify the subfeature by the
subfeature identifier and name assigned to it. For features and packages, the values of SUB_
FEATURE_ID and SUB_FEATURE_NAME are each a character string consisting of a single
space.

5) The IS_SUPPORTED column is ’YES’ if an SQL-implementation fully supports that package,
feature, or subfeature when SQL-data in the identified catalog is accessed through that imple-
mentation and is ’NO’ if the SQL-implementation does not fully support that package, feature,
or subfeature when accessing SQL-data in that catalog.

6) If full support for the package, feature, or subfeature has been verified by testing, then the IS_
VERIFIED_BY column shall contain information identifying the conformance test used to verify
the conformance claim; otherwise, IS_VERIFIED_BY shall be the null value.

7) If the value of the IS_SUPPORTED column for a feature is ’YES’ and if that feature has subfea-
tures,then the value of the IS_SUPPORTED column in every row identifying subfeatures of the
feature shall also be ’YES’.

8) The COMMENTS column is intended for any implementer comments pertinent to the identified
SQL package, feature, or subfeature.

912 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.36 SQL_IMPLEMENTATION_INFO base table

21.36 SQL_IMPLEMENTATION_INFO base table

Function
The SQL_IMPLEMENTATION_INFO base table has one row for each SQL-implementation infor-
mation item defined by ISO/IEC 9075.

Definition
CREATE TABLE SQL_IMPLEMENTATION_INFO (

IMPLEMENTATION_INFO_ID INFORMATION_SCHEMA.CHARACTER_DATA,
IMPLEMENTATION_INFO_NAME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_IMPLEMENTATION_INFO_NAME_NOT_NULL
NOT NULL,

INTEGER_VALUE INFORMATION_SCHEMA.CARDINAL_NUMBER,
CHARACTER_VALUE INFORMATION_SCHEMA.CHARACTER_DATA,

COMMENTS INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT SQL_IMPLEMENTATION_INFO_PRIMARY_KEY
PRIMARY KEY (IMPLEMENTATION_INFO_ID)

) ;

Description

1) The SQL_IMPLEMENTATION_INFO table consists of exactly one row for each SQL-implementation
information item defined in ISO/IEC 9075.

2) The IMPLEMENTATION_INFO_ID and IMPLEMENTATION_INFO_NAME columns identify
the SQL-implementation information item by the integer and name assigned to it.

3) Depending on the type of information, the value is present in either INTEGER_VALUE or
CHARACTER_VALUE; the other column is the null value. Within the applicable column for the
item, the values are:

0 (zero) or a
zero-length
string (as appro-
priate)

The value for this item is unknown.

null The value is not applicable to the SQL-implementation.

Any other value The value of the item.

4) The COMMENTS column is intended for any implementer comments pertinent to the identified
item.

Definition Schema 913

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.37 SQL_LANGUAGES base table

21.37 SQL_LANGUAGES base table

Function
The SQL_LANGUAGES table has one row for each ISO and implementation-defined SQL language
binding and programming language for which conformance is claimed.
NOTE 353 – The SQL_LANGUAGES base table provides, among other information, the same information
provided by the SQL object identifier specified in Subclause 6.3, "Object identifier for Database Language
SQL", in ISO/IEC 9075-1.

Definition
CREATE TABLE SQL_LANGUAGES (

SQL_LANGUAGE_SOURCE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGES_SOURCE_NOT_NULL
NOT NULL,

SQL_LANGUAGE_YEAR INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGES_YEAR_ISO
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR IS NOT NULL
AND

SQL_LANGUAGE_YEAR IN
(’1987’, ’1989’, ’1992’, ’1999’))),

SQL_LANGUAGE_CONFORMANCE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGE_CONFORMANCE_ISO_1987
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1987’
OR

(SQL_LANGUAGE_CONFORMANCE IS NOT NULL
AND

SQL_LANGUAGE_CONFORMANCE IN
(’1’, ’2’))))

CONSTRAINT SQL_LANGUAGE_CONFORMANCE_ISO_1989
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1989’
OR

(SQL_LANGUAGE_CONFORMANCE IS NOT NULL
AND

SQL_LANGUAGE_CONFORMANCE IN
(’1’, ’2’))))

CONSTRAINT SQL_LANGUAGE_CONFORMANCE_ISO_1992
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1992’
OR

(SQL_LANGUAGE_CONFORMANCE IS NOT NULL
AND

SQL_LANGUAGE_CONFORMANCE IN
(’ENTRY’, ’INTERMEDIATE’, ’FULL’))))

CONSTRAINT SQL_LANGUAGE_CONFORMANCE_ISO_1999
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1999’
OR

(SQL_LANGUAGE_CONFORMANCE IS NOT NULL
AND

SQL_LANGUAGE_CONFORMANCE IN
(’CORE’)))),

SQL_LANGUAGE_INTEGRITY INFORMATION_SCHEMA.CHARACTER_DATA

914 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.37 SQL_LANGUAGES base table

CONSTRAINT SQL_LANGUAGE_INTEGRITY_ISO_1989
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_INTEGRITY IS NULL
OR

(SQL_LANGUAGE_YEAR = ’1989’
AND

SQL_LANGUAGE_INTEGRITY IS NOT NULL
AND

SQL_LANGUAGE_INTEGRITY IN
(’NO’, ’YES’)))),

SQL_LANGUAGE_IMPLEMENTATION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGE_IMPLEMENTATION_ISO
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
SQL_LANGUAGES_IMPLEMENTATION IS NULL),

SQL_LANGUAGE_BINDING_STYLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGE_BINDING_STYLE_ISO_1987
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1987’
OR

(SQL_LANGUAGE_BINDING_STYLE IS NOT NULL
AND

SQL_LANGUAGE_BINDING_STYLE IN
(’DIRECT’, ’EMBEDDED’, ’MODULE’))))

CONSTRAINT SQL_LANGUAGE_BINDING_STYLE_ISO_1989
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1989’
OR

(SQL_LANGUAGE_BINDING_STYLE IS NOT NULL
AND

SQL_LANGUAGE_BINDING_STYLE IN
(’DIRECT’, ’EMBEDDED’, ’MODULE’))))

CONSTRAINT SQL_LANGUAGE_BINDING_STYLE_ISO_1992
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1992’
OR

(SQL_LANGUAGE_BINDING_STYLE IS NOT NULL
AND

SQL_LANGUAGE_BINDING_STYLE IN
(’DIRECT’, ’EMBEDDED’, ’MODULE’)))),

SQL_LANGUAGE_PROGRAMMING_LANGUAGE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_LANGUAGES_STANDARD_VALID_CHECK_ISO_1987
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1987’
OR

(SQL_LANGUAGE_BINDING_STYLE = ’DIRECT’
AND

SQL_LANGUAGE_PROGRAMMING_LANGUAGE IS NULL)
OR

(SQL_LANGUAGE_BINDING_STYLE IN
(’EMBEDDED’, ’MODULE’)

AND
SQL_LANGUAGE_PROGRAMMING_LANGUAGE IN
(’COBOL’, ’FORTRAN’, ’PASCAL’, ’PLI’))))

CONSTRAINT SQL_LANGUAGES_STANDARD_VALID_CHECK_ISO_1989
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1989’
OR

Definition Schema 915

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.37 SQL_LANGUAGES base table

(SQL_LANGUAGE_BINDING_STYLE = ’DIRECT’
AND

SQL_LANGUAGE_PROGRAMMING_LANGUAGE IS NULL)
OR

(SQL_LANGUAGE_BINDING_STYLE IN
(’EMBEDDED’, ’MODULE’)

AND
SQL_LANGUAGE_PROGRAMMING_LANGUAGE IN
(’COBOL’, ’FORTRAN’, ’PASCAL’, ’PLI’))))

CONSTRAINT SQL_LANGUAGES_STANDARD_VALID_CHECK_ISO_1992
CHECK (SQL_LANGUAGE_SOURCE <> ’ISO 9075’

OR
(SQL_LANGUAGE_YEAR <> ’1992’
OR

(SQL_LANGUAGE_BINDING_STYLE = ’DIRECT’
AND

SQL_LANGUAGE_PROGRAMMING_LANGUAGE IS NULL)
OR

(SQL_LANGUAGE_BINDING_STYLE IN
(’EMBEDDED’, ’MODULE’)

AND
SQL_LANGUAGE_PROGRAMMING_LANGUAGE IN
(’ADA’, ’C’, ’COBOL’, ’FORTRAN’,
’MUMPS’, ’PASCAL’, ’PLI’))))

)

Description

1) Each row represents one binding of an ISO or implementation-defined SQL language.

2) The value of SQL_LANGUAGE_SOURCE is the name of the source of the language defini-
tion. The source of standard SQL language is the value ’ISO 9075’, while the source of an
implementation-defined version of SQL is implementation-defined.

3) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’, then the value of SQL_LANGUAGE_
YEAR is the year that the ISO standard was approved. Otherwise, the value of SQL_
LANGUAGE_YEAR is implementation-defined.
NOTE 354 – As each new ISO SQL standard revision is approved, a new valid value of SQL_
LANGUAGE_YEAR must be added to the CHECK constraint for this column.

4) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’, then the value of SQL_LANGUAGE_
CONFORMANCE is the conformance level to which conformance is claimed for the ISO stan-
dard. Otherwise, the value of SQL_LANGUAGE_CONFORMANCE is implementation-defined.

5) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’ and that language contains an optional
integrity enhancement feature, then the value of SQL_LANGUAGE_INTEGRITY is ’YES’ if
conformance is claimed to the integrity enhancement feature, and ’NO’ otherwise. Otherwise,
the value of SQL_LANGUAGE_INTEGRITY is implementation-defined.

6) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’, then the value of SQL_LANGUAGE_
IMPLEMENTATION is null. Otherwise, the value of SQL_LANGUAGE_IMPLEMENTATION is
an implementation-defined character string value.

7) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’, then the value of SQL_LANGUAGE_
BINDING_STYLE is the style of binding of the SQL language. If the value of SQL_LANGUAGE_
BINDING_STYLE is ’MODULE’, then the binding style of <SQL-client module definition> is
supported. If the value of SQL_LANGUAGE_BINDING_STYLE is ’EMBEDDED’, then the

916 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.37 SQL_LANGUAGES base table

binding style of <embedded SQL host program> is supported. If the value of SQL_LANGUAGE_
BINDING_STYLE is ’DIRECT’, then the binding style of <direct SQL statement> is supported.
Otherwise, the value of SQL_LANGUAGE_BINDING_STYLE is implementation-defined.

8) If the value of SQL_LANGUAGE_SOURCE is ’ISO 9075’, then the value of SQL_LANGUAGE_
PROGRAMMING_LANGUAGE is the programming language supported by the binding style
indicated by the value of SQL_LANGUAGE_BINDING_STYLE.

If the value of SQL_LANGUAGE_BINDING_STYLE is ’DIRECT’, then SQL_LANGUAGE_
PROGRAMMING_LANGUAGE is the null value. If the value of SQL_LANGUAGE_BINDING_
STYLE is ’MODULE’ or ’EMBEDDED’, then SQL_LANGUAGE_PROGRAMMING_LANGUAGE
has the value ’ADA’, ’C’, ’COBOL’, ’FORTRAN’, ’MUMPS’, ’PASCAL’, or ’PLI’.

Case:

a) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’ADA’, then Ada is supported with
the given binding style.

b) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’C’, then C is supported with the
given binding style.

c) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’COBOL’, then COBOL is supported
with the given binding style.

d) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’FORTRAN’, then Fortran is sup-
ported with the given binding style.

e) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’MUMPS’, then MUMPS is sup-
ported with the given binding style.

f) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’PASCAL’, then Pascal is supported
with the given binding style.

g) If SQL_LANGUAGE_PROGRAMMING_LANGUAGE is ’PLI’, then PL/I is supported with
the given binding style.

Otherwise, the value of SQL_LANGUAGE_PROGRAMMING_LANGUAGE is implementation-
defined.

Definition Schema 917

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.38 SQL_SIZING base table

21.38 SQL_SIZING base table

Function
The SQL_SIZING base table has one row for each sizing item defined in ISO/IEC 9075.

Definition
CREATE TABLE SQL_SIZING (

SIZING_ID INFORMATION_SCHEMA.CARDINAL_NUMBER,
SIZING_NAME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_SIZING_SIZING_NAME_NOT_NULL
NOT NULL,

/* If SUPPORTED_VALUE is the null value, that means that the item */
/* being described is not applicable in the implementation. */
/* If SUPPORTED_VALUE is 0 (zero), that means that the item */
/* being described has no limit or the limit cannot be determined.*/
SUPPORTED_VALUE INFORMATION_SCHEMA.CARDINAL_NUMBER,

COMMENTS INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT SQL_SIZING_PRIMARY_KEY
PRIMARY KEY (SIZING_ID)

) ;

Description

1) The SQL_SIZING table shall consist of exactly one row for each SQL sizing item defined in
ISO/IEC 9075.

2) The SIZING_ID and SIZING_NAME columns identify the sizing item by the integer and de-
scription assigned to it.

3) The values of the SUPPORTED_VALUE column are:

0 The SQL-implementation either places no limit on this sizing item or the SQL-
implementation cannot determine the limit.

null The SQL-implementation does support not any features for which this sizing item is
applicable.

Any other value The maximum size supported by the SQL-implementation for this sizing item.

4) The COMMENTS column is intended for any implementor comments pertinent to the identified
SQL sizing item.

918 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.39 SQL_SIZING_PROFILES base table

21.39 SQL_SIZING_PROFILES base table

Function
The SQL_SIZING base table has one row for each sizing idem defined in ISO/IEC 9075.

Definition
CREATE TABLE SQL_SIZING_PROFILES (

SIZING_ID INFORMATION_SCHEMA.CARDINAL_NUMBER,
SIZING_NAME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT SQL_SIZING_SIZING_NAME_NOT_NULL
NOT NULL,

PROFILE_ID INFORMATION_SCHEMA.CHARACTER_DATA,
/* If REQUIRED_VALUE is the null value, that means that the item */
/* being described is not applicable in the profile. */
/* If REQUIRED_VALUE is 0 (zero), that means that the profile */
/* does not set a limit for this sizing item. */
REQUIRED_VALUE INFORMATION_SCHEMA.CARDINAL_NUMBER,

COMMENTS INFORMATION_SCHEMA.CHARACTER_DATA,

CONSTRAINT SQL_SIZING_PROFILE_PRIMARY_KEY
PRIMARY KEY (SIZING_ID, PROFILE_ID)

) ;

Description

1) The SQL_SIZING_PROFILE table shall consist of exactly one row for each SQL sizing item
defined in ISO/IEC 9075 for each profile that is defined in the table.

2) The SIZING_ID and SIZING_NAME columns identify the sizing item by the integer and de-
scription assigned to it.

3) The PROFILE_ID column shall contain information identifying a profile.

4) The values of the REQUIRED_VALUE column are:

0 The profile places no limit on this sizing item.

null The profile does not require any features for which this sizing item is applicable.

Any other value The minimum size required by the profile for this sizing item.

5) The COMMENTS column is intended for any implementor comments pertinent to the identified
SQL sizing item within the profile.

Definition Schema 919

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.40 TABLE_CONSTRAINTS base table

21.40 TABLE_CONSTRAINTS base table

Function
The TABLE_CONSTRAINTS table has one row for each table constraint associated with a table. It
effectively contains a representation of the table constraint descriptors.

Definition
CREATE TABLE TABLE_CONSTRAINTS (

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT CONSTRAINT_TYPE_NOT_NULL
NOT NULL
CONSTRAINT CONSTRAINT_TYPE_CHECK
CHECK (CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’,
’FOREIGN KEY’, ’CHECK’)),

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TABLE_CONSTRAINTS_TABLE_CATALOG_NOT_NULL
NOT NULL,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TABLE_CONSTRAINTS_TABLE_SCHEMA_NOT_NULL
NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TABLE_CONSTRAINTS_TABLE_NAME_NOT_NULL
NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_CONSTRAINTS_IS_DEFERRABLE_NOT_NULL
NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL
NOT NULL,

CONSTRAINT TABLE_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT TABLE_CONSTRAINTS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

(VALUES (’NO’, ’NO’),
(’YES’, ’NO’),
(’YES’, ’YES’))),

CONSTRAINT TABLE_CONSTRAINTS_CHECK_VIEWS
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE <> ’VIEW’))),

920 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.40 TABLE_CONSTRAINTS base table

CONSTRAINT TABLE_CONSTRAINTS_UNIQUE_CHECK
CHECK (1 =
(SELECT COUNT (*)
FROM (SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’)
UNION ALL

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM REFERENTIAL_CONSTRAINTS

UNION ALL
SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME
FROM CHECK_CONSTRAINTS) AS X
WHERE (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME) =

(X.CONSTRAINT_CATALOG, X.CONSTRAINT_SCHEMA, X.CONSTRAINT_NAME))),

CONSTRAINT UNIQUE_TABLE_PRIMARY_KEY_CHECK
CHECK (UNIQUE (SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE = ’PRIMARY KEY’))

)

Description

1) The values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_
NAME are the catalog name, unqualified schema name, and qualified identifier, respectively,
of the constraint being described. If the <table constraint definition> or <add table constraint
definition> that defined the constraint did not specify a <constraint name>, then the val-
ues of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are
implementation-defined.

2) The values of CONSTRAINT_TYPE have the following meanings:

FOREIGN KEY The constraint being described is a foreign key constraint.

UNIQUE The constraint being described is a unique constraint.

PRIMARY KEY The constraint being described is a primary key constraint.

CHECK The constraint being described is a check constraint.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
the unqualified schema name, and the qualified identifier of the name of the table to which the
table constraint being described applies.

4) The values of IS_DEFERRABLE have the following meanings:

YES The table constraint is deferrable.

NO The table constraint is not deferrable.

5) The values of INITIALLY_DEFERRED have the following meanings:

YES The table constraint is initially deferred.

NO The table constraint is initially immediate.

Definition Schema 921

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.41 TABLE_METHOD_PRIVILEGES base table

21.41 TABLE_METHOD_PRIVILEGES base table

Function
The TABLE_METHOD_PRIVILEGES base table has one row for each table/method privilege de-
scriptor. It effectively contains a representation of the table/method privilege descriptors.

Definition
CREATE TABLE TABLE_METHOD_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_GRANTABLE INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TABLE_METHOD_PRIVILEGE_IS_GRANTABLE_NOT_NULL

NOT NULL
CONSTRAINT TABLE_METHOD_PRIVILEGE_IS_GRANTABLE_CHECK
CHECK (IS_GRANTABLE IN

(’YES’, ’NO’)),

CONSTRAINT TABLE_METHOD_PRIVILEGE_PRIMARY_KEY
PRIMARY KEY (GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME),

CONSTRAINT TABLE_METHOD_PRIVILEGE_FOREIGN_KEY_TABLES
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)
REFERENCES TABLES,

CONSTRAINT TABLE_METHOD_PRIVILEGE_FOREIGN_KEY_ROUTINES
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES,

CONSTRAINT TABLE_METHOD_PRIVILEGE_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT TABLE_METHOD_PRIVILEGE_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

)

922 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.41 TABLE_METHOD_PRIVILEGES base table

Description

1) The value of GRANTOR is the <authorization identifier> of the user or role who granted a
table/method privilege, on the table identified by TABLE_CATALOG, TABLE_SCHEMA, and
TABLE_NAME, and the method of the identified table’s structured type identified by the
SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME, to the user or role identi-
fied by the value of GRANTEE for the table/method privilege being described.

2) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the table/method privilege being described is granted.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of the table on which the privi-
lege being described was granted.

4) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the specific
name of the method on which the privilege being described was granted.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus grantable.

NO The privilege being described was not granted WITH GRANT OPTION and is thus not
grantable.

Definition Schema 923

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.42 TABLE_PRIVILEGES base table

21.42 TABLE_PRIVILEGES base table

Function
The TABLE_PRIVILEGES table has one row for each table privilege descriptor. It effectively con-
tains a representation of the table privilege descriptors.

Definition
CREATE TABLE TABLE_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
PRIVILEGE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_PRIVILEGE_TYPE_CHECK
CHECK (PRIVILEGE_TYPE IN

(’SELECT’, ’INSERT’, ’DELETE’, ’UPDATE’,
’TRIGGER’, ’REFERENCES’)),

IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_PRIVILEGE_GRANTABLE_NOT_NULL
NOT NULL

CONSTRAINT TABLE_PRIVILEGE_GRANTABLE_CHECK
CHECK (IS_GRANTABLE IN

(’YES’, ’NO’)),
WITH_HIERARCHY INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_PRIVILEGE_WITH_HIERARCHY_NOT_NULL

NOT NULL
CONSTRAINT TABLE_PRIVILEGE_WITH_HIERARCHY_CHECK
CHECK (WITH_HIERARCHY IN

(’YES’, ’NO’)),

CONSTRAINT TABLE_PRIVILEGE_PRIMARY_KEY
PRIMARY KEY (GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

PRIVILEGE_TYPE),

CONSTRAINT TABLE_PRIVILEGE_FOREIGN_KEY_TABLES
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)
REFERENCES TABLES,

CONSTRAINT TABLE_PRIVILEGE_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT TABLE_PRIVILEGE_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

)

924 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.42 TABLE_PRIVILEGES base table

Description

1) The value of GRANTOR is the <authorization identifier> of the user or role who granted table
privileges, on the table identified by TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME,
to the user or role identified by the value of GRANTEE for the table privilege being described.

2) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the table privilege being described is granted.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of the table on which the privi-
lege being described has been granted.

4) The values of PRIVILEGE_TYPE have the following meanings:

SELECT The user has SELECT privileges on the table identified by TABLE_CATALOG, TABLE_
SCHEMA, and TABLE_NAME.

DELETE The user has DELETE privileges on the table identified by TABLE_CATALOG, TABLE_
SCHEMA, and TABLE_NAME.

INSERT The user will automatically be granted INSERT privileges on any columns that may be
added to the table identified by TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME
in the future.

UPDATE The user will automatically be granted UPDATE privileges on any columns that may be
added to the table identified by TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME
in the future.

REFERENCES The user will automatically be granted REFERENCES privileges on any columns that may
be added to the table identified by TABLE_CATALOG, TABLE_SCHEMA, and TABLE_
NAME in the future.

TRIGGER The user has TRIGGER privilege on the table identified by TABLE_CATALOG, TABLE_
SCHEMA, and TABLE_NAME.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus grantable.

NO The privilege being described was not granted WITH GRANT OPTION and is thus not
grantable.

6) The values of WITH_HIERARCHY have the following meanings:

YES The privilege being described was granted WITH HIERARCHY OPTION and is thus
grantable.

NO The privilege being described was not granted WITH HIERARCHY OPTION and is thus
not grantable.

Definition Schema 925

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.43 TABLES base table

21.43 TABLES base table

Function
The TABLES table contains one row for each table including views. It effectively contains a repre-
sentation of the table descriptors.

Definition
CREATE TABLE TABLES (

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_TYPE_NOT_NULL
NOT NULL

CONSTRAINT TABLE_TYPE_CHECK
CHECK (TABLE_TYPE IN

(’BASE TABLE’, ’VIEW’, ’GLOBAL TEMPORARY’, ’LOCAL TEMPORARY’)),
SELF_REFERENCING_COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
REFERENCE_GENERATION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TABLE_TYPE_CHECK
CHECK (REFERENCE_GENERATION IN

(’SYSTEM GENERATED’, ’USER GENERATED’, ’DERIVED’)),
USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT TABLES_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT TABLES_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT TABLES_CHECK_TABLE_IN_COLUMNS
CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM COLUMNS)),

CONSTRAINT TABLES_FOREIGN_KEY_USER_DEFINED_TYPES
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_SCHEMA)
REFERENCES USER_DEFINED_TYPES MATCH FULL,

CONSTRAINT TABLES_CHECK_NOT_VIEW
CHECK (NOT EXISTS (

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = ’VIEW’

EXCEPT
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM VIEWS))

)

Description

1) The values of TABLE_CATALOG and TABLE_SCHEMA are the catalog name and unqualified
schema name, respectively, of the schema in which the table is defined.

2) The value of TABLE_NAME is the name of the table.

926 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.43 TABLES base table

3) The values of TABLE_TYPE have the following meanings:

BASE TABLE The table being described is a persistent base table.

VIEW The table being described is a viewed table.

GLOBAL TEMPORARY The table being described is a global temporary table.

LOCAL TEMPORARY The table being described is a created local temporary table.

4) The value of SELF_REFERENCING_COLUMN_NAME is the name of the self-referencing
column of the table, if any.

5) The values of REFERENCE_GENERATION have the following meanings:

SYSTEM GENERATED The values of the self-referencing column of the table are generated by the
SQL-server.

USER GENERATED The valus of the self-referencing column of the table are generated by the user.

DERIVED The values of the self-referencing column of the table are generated from columns
of the table.

null The table being described does not have a self-referencing column.

6) If the table being described is a table of a structured type TY, then the values of USER_
DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_
TYPE_NAME are the catalog name, unqualified schema name, and type name of TY, respec-
tively; otherwise, the values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_
SCHEMA, and USER_DEFINED_TYPE_NAME are the null value.

Definition Schema 927

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.44 TRANSFORMS base table

21.44 TRANSFORMS base table

Function
The TRANSFORMS base table has one row for each transform.

Definition
CREATE TABLE TRANSFORM (

USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
SPECIFIC_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
GROUP_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRANSFORM_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSFORM_TYPE_NOT_NULL TRANSFORM_TYPE
NOT NULL

CONSTRAINT TRANSFORM_TYPE_CHECK
CHECK (TRANSFORM_TYPE IN

(’TO SQL’, ’FROM SQL’)),

CONSTRAINT TRANSFORMS_PRIMARY_KEY
PRIMARY KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME, GROUP_NAME, TRANSFORM_TYPE),

CONSTRAINT TRANSFORMS_TYPES_FOREIGN_KEY
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME)
REFERENCES USER_DEFINED_TYPES,

CONSTRAINT TRANSFORMS_ROUTINES_FOREIGN_KEY
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES

)

Description

1) One or more rows are inserted in this table whenever a <transform definition> is executed and
one or more rows are deleted whenever a <drop transform statement> is executed.

2) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the catalog name, unqualified schema name, and qualified
identifier, respectively, of the user-defined type for which the transform being described applies.

3) The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the cat-
alog name, unqualified schema name, and qualified identifier, respectively, of the SQL-invoked
routine that acts as the transform function for the transform being described. The value of
GROUP_NAME is the identifier that acts as the name of a transform group.

4) The values of TRANSFORM_TYPE have the following meanings:

TO SQL The transform being described identifies a to-sql function

FROM SQL The transform being described identifies a from-sql function

928 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.45 TRANSLATIONS base table

21.45 TRANSLATIONS base table

Function
The TRANSLATIONS table has one row for each character translation descriptor.

Definition
CREATE TABLE TRANSLATIONS (

TRANSLATION_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRANSLATION_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRANSLATION_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
SOURCE_CHARACTER_SET_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_SOURCE_CHARACTER_SET_CATALOG_NOT_NULL
NOT NULL,

SOURCE_CHARACTER_SET_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_SOURCE_CHARACTER_SET_SCHEMA_NOT_NULL
NOT NULL,

SOURCE_CHARACTER_SET_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_SOURCE_CHARACTER_SET_NAME_NOT_NULL
NOT NULL,

TARGET_CHARACTER_SET_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_TARGET_CHARACTER_SET_CATALOG_NOT_NULL
NOT NULL,

TARGET_CHARACTER_SET_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_TARGET_CHARACTER_SET_SCHEMA_NOT_NULL
NOT NULL,

TARGET_CHARACTER_SET_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRANSLATIONS_TARGET_CHARACTER_SET_NAME_NOT_NULL
NOT NULL,

TRANSLATION_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSLATION_DEFINITION_NOT_NULL
NOT NULL,

CONSTRAINT TRANSLATIONS_PRIMARY_KEY
PRIMARY KEY (TRANSLATION_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME),

CONSTRAINT TRANSLATIONS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (TRANSLATION_CATALOG, TRANSLATION_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT TRANSLATIONS_CHECK_REFERENCES_SOURCE
CHECK (SOURCE_CHARACTER_SET_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(SOURCE_CHARACTER_SET_CATALOG, SOURCE_CHARACTER_SET_SCHEMA,
SOURCE_CHARACTER_SET_NAME) IN
(SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,

CHARACTER_SET_NAME
FROM CHARACTER_SETS)),

CONSTRAINT TRANSLATIONS_CHECK_REFERENCES_TARGET
CHECK (TARGET_CHARACTER_SET_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(TARGET_CHARACTER_SET_CATALOG, TARGET_CHARACTER_SET_SCHEMA,
TARGET_CHARACTER_SET_NAME) IN
(SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,

CHARACTER_SET_NAME
FROM CHARACTER_SETS))

)

Definition Schema 929

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.45 TRANSLATIONS base table

Description

1) The values of TRANSLATION_CATALOG, TRANSLATION_SCHEMA, and TRANSLATION_
NAME are the catalog name, unqualified schema name, and qualified identifier, respectively, of
the translation being described.

2) The values of SOURCE_CHARACTER_SET_CATALOG, SOURCE_CHARACTER_SET_
SCHEMA, and SOURCE_CHARACTER_SET_NAME are the catalog name, unqualified schema
name, and qualified identifier, respectively, of the character set specified as the source for the
translation.

3) The values of TARGET_CHARACTER_SET_CATALOG, TARGET_CHARACTER_SET_
SCHEMA, and TARGET_CHARACTER_SET_NAME are the catalog name, unqualified schema
name, and qualified identifier, respectively, of the character set specified as the target for the
translation.

4) The value of TRANSLATION_DEFINITION is a string consisting of a single space.

930 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.46 TRIGGERED_UPDATE_COLUMNS base table

21.46 TRIGGERED_UPDATE_COLUMNS base table

Function
The TRIGGERED_UPDATE_COLUMNS base table has one row for each column identified by a
<column name> in a <trigger column list> of a trigger definition.

Definition
CREATE TABLE TRIGGERED_UPDATE_COLUMNS (

TRIGGER_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
EVENT_OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT EVENT_OBJECT_CATALOG_NOT_NULL
NOT NULL,

EVENT_OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT EVENT_OBJECT_SCHEMA_NOT_NULL
NOT NULL,

EVENT_OBJECT_TABLE INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT EVENT_OBJECT_TABLE_NOT_NULL
NOT NULL,

EVENT_OBJECT_COLUMN INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT TRIGGERED_UPDATE_COLUMNS_PRIMARY_KEY
PRIMARY KEY
(TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME, EVENT_OBJECT_COLUMN),

CONSTRAINT TRIGGERED_UPDATE_COLUMNS_EVENT_MANIPULATION_CHECK
CHECK ((TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME) IN

(SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME
FROM TRIGGERS
WHERE EVENT_MANIPULATION = ’UPDATE’)),

CONSTRAINT TRIGGERED_UPDATE_COLUMNS_FOREIGN_KEY_TRIGGERS
FOREIGN KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME)
REFERENCES TRIGGERS,

CONSTRAINT TRIGGERED_UPDATE_COLUMNS_FOREIGN_KEY_COLUMNS
FOREIGN KEY (EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA,

EVENT_OBJECT_TABLE, EVENT_OBJECT_COLUMN)
REFERENCES COLUMNS

)

Description

1) The values of TRIGGER_CATALOG, TRIGGER_SCHEMA, and TRIGGER_NAME are the cata-
log name, schema name, and trigger name of the trigger being described.

2) The values of EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_
OBJECT_TABLE are the catalog name, schema name, and table name of the table contain-
ing the column being described. The TRIGGERED_UPDATE_COLUMNS base table has one
row for each column contained in an explicitly specified <trigger column list> of a trigger whose
trigger event is UPDATE.

Definition Schema 931

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.47 TRIGGER_COLUMN_USAGE base table

21.47 TRIGGER_COLUMN_USAGE base table

Function
The TRIGGER_COLUMN_USAGE base table has one row for each column of a table identified
by a <table name> contained in a <table reference> that is contained in the <search condition> of a
<triggered action> or explicitly or implicitly referenced in a <triggered SQL statement> of a <trigger
definition> of the trigger being described whose trigger event is not UPDATE.

Definition
CREATE TABLE TRIGGER_COLUMN_USAGE (

TRIGGER_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT TRIGGER_COLUMN_USAGE_PRIMARY_KEY
PRIMARY KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME),

CONSTRAINT TRIGGER_COLUMN_USAGE_EVENT_NOT_UPDATE_CHECK
CHECK ((TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME) IN
(SELECT TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME
FROM TRIGGERS
WHERE EVENT_MANIPULATION <> ’UPDATE’)),

CONSTRAINT TRIGGER_COLUMN_USAGE_CHECK_REFERENCES_COLUMNS
FOREIGN KEY

(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME)
REFERENCES COLUMNS,

CONSTRAINT TRIGGER_COLUMN_USAGE_FOREIGN_KEY_TRIGGERS
FOREIGN KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME)
REFERENCES TRIGGERS

)

Description

1) The TRIGGER_COLUMN_USAGE base table has one row for each column identified by at least
one of:

a) A <column reference> contained in a <search condition> contained in a <trigger definition>
of a trigger.

b) A <column reference> contained in a <search condition> contained in a <delete statement:
searched> or an <update statement: searched> contained in a <triggered SQL statement>
contained in a <trigger definition> of a trigger.

c) A <column reference> contained in a <value expression> simply contained in a <row value
constructor> immediately contained in a <set clause> contained in a <triggered SQL state-
ment> contained in a <trigger definition> of a trigger.

d) A <column reference> contained in a <value expression> simply contained in a <row value
constructor> immediately contained in a <set clause> contained in a <triggered SQL state-
ment> contained in a <trigger definition> of a trigger.

932 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.47 TRIGGER_COLUMN_USAGE base table

e) A <column name> contained in an <insert column list> of an <insert statement> contained
in the <triggered SQL statement> contained in a <trigger definition> of a trigger.

f) A <column name> contained in an <object column> contained in either an <update state-
ment: positioned> or an <update statement: searched> contained in the <triggered SQL
statement> contained in a <trigger definition> of a trigger.

2) The values of TRIGGER_CATALOG, TRIGGER_SCHEMA, and TRIGGER_NAME are the cat-
alog name, unqualified schema name, and qualified identifier, respectively, of the trigger being
described.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME are
the catalog name, unqualified schema name, qualified identifier, and column name, respectively,
of a column of a table identified by a <table name> contained in the <search condition> of a
<triggered action>, or explicitly or implicitly referenced in a <triggered SQL statement> of a
<trigger definition> of the trigger being described whose event is not UPDATE.

Definition Schema 933

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.48 TRIGGER_TABLE_USAGE base table

21.48 TRIGGER_TABLE_USAGE base table

Function
The TRIGGER_TABLE_USAGE base table has one row for each table identified by a <table name>
contained in the <search condition> of a <triggered action> or referenced in a <triggered SQL
statement> of a <trigger definition>.

Definition
CREATE TABLE TRIGGER_TABLE_USAGE (

TRIGGER_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT TRIGGER_TABLE_USAGE_PRIMARY_KEY
PRIMARY KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT TRIGGER_TABLE_USAGE_CHECK_REFERENCES_TABLES
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES)),

CONSTRAINT TRIGGER_TABLE_USAGE_FOREIGN_KEY_TRIGGERS
FOREIGN KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME)
REFERENCES TRIGGERS

)

Description

1) The TRIGGER_TABLE_USAGE base table has one row for each table identified by at least one
of:

a) A <table reference> contained in a <query expression> simply contained in a <cursor speci-
fication> or an <insert statement> contained in a <triggered SQL statement> contained in a
<trigger definition> of a trigger.

b) A <table reference> contained in a <table expression> or <select list> immediately contained
in a <select statement: single row> contained in a <triggered SQL statement> contained in
a <trigger definition> of a trigger.

c) A <table reference> contained in a <search condition> contained in a <delete statement:
searched> or an <update statement: searched> contained in a <triggered SQL statement>
contained in a <trigger definition> of a trigger.

d) A <table reference> contained in a <value expression> simply contained in a <row value con-
structor> immediately contained in a <set clause> contained in a <triggered SQL statement>
contained in a <trigger definition> of a trigger.

e) A <table reference> contained in a <value expression> simply contained in a <row value con-
structor> immediately contained in a <set clause> contained in a <triggered SQL statement>
contained in a <trigger definition> of a trigger.

934 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.48 TRIGGER_TABLE_USAGE base table

f) A <table name> contained in either a <delete statement: positioned> or a <delete statement:
searched> contained in a <triggered SQL statement> contained in a <trigger definition> of a
trigger.

g) A <table name> immediately contained in an <insert statement> that does not contain an
<insert column list> and that is contained in a <triggered SQL statement> contained in a
<trigger definition> of a trigger.

2) The values of TRIGGER_CATALOG, TRIGGER_SCHEMA, and TRIGGER_NAME are the cat-
alog name, unqualified schema name, and qualified identifier, respectively, of the trigger being
described.

3) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of a table identified by a <table
name> contained in the <search condition> of a <triggered action>, or referenced in a <triggered
SQL statement> of a <trigger definition> of the trigger being described.

Definition Schema 935

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.49 TRIGGERS base table

21.49 TRIGGERS base table

Function
The TRIGGERS base table has one row for each trigger. It effectively contains a representation of
the trigger descriptors.

Definition
CREATE TABLE TRIGGERS (

TRIGGER_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TRIGGER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
EVENT_MANIPULATION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT_TRIGGERS_EVENT_MANIPULATION_CHECK
CHECK (EVENT_MANIPULATION IN

(’INSERT’, ’DELETE’, ’UPDATE’)),
EVENT_OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRIGGERS_EVENT_OBJECT_CATALOG_NOT_NULL
NOT NULL,

EVENT_OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRIGGERS_EVENT_OBJECT_SCHEMA_NOT_NULL
NOT NULL,

EVENT_OBJECT_TABLE INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT TRIGGERS_EVENT_OBJECT_TABLE_NOT_NULL
NOT NULL,

ACTION_ORDER INFORMATION_SCHEMA.CARDINAL_NUMBER
CONSTRAINT TRIGGERS_ACTION_ORDER_NOT_NULL
NOT NULL,

ACTION_CONDITION INFORMATION_SCHEMA.CHARACTER_DATA,
ACTION_STATEMENT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRIGGERS_ACTION_STATEMENT_NOT_NULL
NOT NULL,

ACTION_ORIENTATION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRIGGERS_ACTION_ORIENTATION_CHECK
CHECK (ACTION_ORIENTATION IN

(’ROW’, ’STATEMENT’)),
CONDITION_TIMING INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRIGGERS_CONDITION_TIMING_CHECK
CHECK (CONDITION_TIMING IN

(’BEFORE’, ’AFTER’)),
CONDITION_REFERENCE_OLD_TABLE INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONDITION_REFERENCE_NEW_TABLE INFORMATION_SCHEMA.SQL_IDENTIFIER,

CREATED INFORMATION_SCHEMA.TIME_STAMP,

CONSTRAINT TRIGGERS_PRIMARY_KEY
PRIMARY KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME),

CONSTRAINT TRIGGERS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (TRIGGER_CATALOG, TRIGGER_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT EVENT_MANIPULATION_UPDATE_CHECK
CHECK ((EVENT_MANIPULATION <> ’UPDATE’

AND
COLUMN_LIST_IS_IMPLICIT IS NULL)

OR
(EVENT_MANIPULATION = ’UPDATE’
AND

COLUMN_LIST_IS_IMPLICIT IS NOT NULL)),

936 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.49 TRIGGERS base table

CONSTRAINT TRIGGERS_REFERENCES_TABLES
CHECK (EVENT_OBJECT_CATALOG <>

ANY (SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES))

)

Description

1) The values of TRIGGER_CATALOG, TRIGGER_SCHEMA, and TRIGGER_NAME are the cata-
log name, schema name, and trigger name of the trigger being described.

2) The values of EVENT_MANIPULATION have the following meaning:

INSERT The <trigger event> is INSERT.

DELETE The <trigger event> is DELETE.

UPDATE The <trigger event> is UPDATE.

3) The values of EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_
OBJECT_TABLE are the qualified name of the <table name> of the trigger being described.

4) The values of CONDITION_TIMING have the following meaning:

BEFORE The <trigger action time> is BEFORE.

AFTER The <trigger action time> is AFTER.

5) The value of CONDITION_REFERENCE_OLD_TABLE is the <old value correlation name> of
the trigger being described.

6) The value of CONDITION_REFERENCE_NEW_TABLE is the <new value correlation name> of
the trigger being described.

7) The value of ACTION_ORDER is the ordinal position of the triggered in the list of triggers
with the same EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, EVENT_OBJECT_
TABLE, EVENT_MANIPULATION, CONDITION_TIMING, and ACTION_ORIENTATION.

8) The value of ACTION_CONDITION is a character representation of the <search condition> in
the <triggered action> of the trigger being described.

9) ACTION_STATEMENT is a character representation of the <triggered SQL statement list> in
the <triggered action> of the trigger being described.

10) The values of ACTION_ORIENTATION have the following meanings:

ROW The <trigger action> specifies FOR EACH ROW.

STATEMENT The <trigger action> specified FOR EACH STATEMENT.

11) The value of CREATED is the value of CURRENT_TIMESTAMP at the time when the trigger
being described was created.

Definition Schema 937

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.50 USAGE_PRIVILEGES base table

21.50 USAGE_PRIVILEGES base table

Function
The USAGE_PRIVILEGES table has one row for each usage privilege descriptor. It effectively
contains a representation of the usage privilege descriptors.

Definition
CREATE TABLE USAGE_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
OBJECT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USAGE_PRIVILEGES_OBJECT_TYPE_CHECK
CHECK (OBJECT_TYPE IN

(’DOMAIN’, ’CHARACTER SET’,
’COLLATION’, ’TRANSLATION’)),

IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USAGE_PRIVILEGES_IS_GRANTABLE_NOT_NULL
NOT NULL

CONSTRAINT USAGE_PRIVILEGES_IS_GRANTABLE_CHECK
CHECK (IS_GRANTABLE IN

(’YES’, ’NO’)),

CONSTRAINT USAGE_PRIVILEGES_PRIMARY_KEY
PRIMARY KEY (GRANTOR, GRANTEE, OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE),

CONSTRAINT USAGE_PRIVILEGES_CHECK_REFERENCES_OBJECT
CHECK ((OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE) IN

(SELECT DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,’DOMAIN’
FROM DOMAINS

UNION
SELECT CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,

’CHARACTER SET’
FROM CHARACTER_SETS

UNION
SELECT COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME, ’COLLATION’
FROM COLLATIONS

UNION
SELECT TRANSLATION_CATALOG, TRANSLATION_SCHEMA, TRANSLATION_NAME,

’TRANSLATION’
FROM TRANSLATIONS)),

CONSTRAINT USAGE_PRIVILEGE_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT USAGE_PRIVILEGE_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

938 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.50 USAGE_PRIVILEGES base table

)

Description

1) The value of GRANTOR is the <authorization identifier> of the user or role who granted usage
privileges, on the object of the type identified by OBJECT_TYPE that is identified by OBJECT_
CATALOG, OBJECT_SCHEMA, and OBJECT_NAME, to the user or role identified by the value
of GRANTEE for the usage privilege being described.

2) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the usage privilege being described is granted.

3) The values of OBJECT_CATALOG, OBJECT_SCHEMA, and OBJECT_NAME are the catalog
name, unqualified schema name, and qualified identifier, respectively, of the object to which the
privilege applies.

4) The values of OBJECT_TYPE have the following meanings:

DOMAIN The object to which the privilege applies is a domain.

CHARACTER SET The object to which the privilege applies is a character set.

COLLATION The object to which the privilege applies is a collation.

TRANSLATION The object to which the privilege applies is a translation.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus grantable.

NO The privilege being described was not granted WITH GRANT OPTION and is thus not
grantable.

Definition Schema 939

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.51 USER_DEFINED_TYPE_PRIVILEGES base table

21.51 USER_DEFINED_TYPE_PRIVILEGES base table

Function
The USER_DEFINED_TYPE_PRIVILEGES table has one row for each user-defined type privilege
descriptor. It effectively contains a representation of the privilege descriptors.

Definition
CREATE TABLE USER_DEFINED_TYPE_PRIVILEGES (

GRANTOR INFORMATION_SCHEMA.SQL_IDENTIFIER,
GRANTEE INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
PRIVILEGE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT PRIVILEGE_TYPE_CHECK
CHECK (PRIVILEGE_TYPE = ’TYPE USAGE’),

IS_GRANTABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_IS_GRANTABLE_NOT_NULL
NOT NULL

CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_IS_GRANTABLE_CHECK
CHECK (IS_GRANTABLE IN

(’YES’, ’NO’)),

CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_PRIMARY_KEY
PRIMARY KEY(GRANTOR, GRANTEE,

USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, PRIVILEGE_TYPE),

CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_FOREIGN_KEY_USER_DEFINED_TYPE
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME)
REFERENCES USER_DEFINED_TYPES,

CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_GRANTOR_CHECK
CHECK (GRANTOR IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTOR IN
(SELECT USER_NAME
FROM USERS)),

CONSTRAINT USER_DEFINED_TYPE_PRIVILEGES_GRANTEE_CHECK
CHECK (GRANTEE IN

(SELECT ROLE_NAME
FROM ROLES)

OR
GRANTEE IN
(SELECT USER_NAME
FROM USERS))

)

Description

1) A row is inserted into this table when a <grant statement> is executed, unless the necessary row
already exists, in which case the existing row may be modified to change the IS_GRANTABLE
column. One or more rows are deleted from this table when a <revoke statement> is executed
for the user-defined type name.

940 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.51 USER_DEFINED_TYPE_PRIVILEGES base table

2) The value of GRANTOR is the <authorization identifier> of the user or role who granted access
privileges on the TYPE USAGE privilege being described to the user or role identified by the
value of GRANTEE.

3) The value of GRANTEE is the <authorization identifier> of some user or role, or ‘‘PUBLIC’’ to
indicate all users, to whom the user-defined type privilege being described is granted.

4) The value of PRIVILEGE_TYPE has the following meaning:

TYPE
USAGE

The user has TYPE USAGE privilege on this user-defined type.

5) The values of IS_GRANTABLE have the following meanings:

YES The privilege being described was granted WITH GRANT OPTION and is thus grantable

NO The privilege being described was not granted WITH GRANT OPTION and is thus not
grantable

Definition Schema 941

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.52 USER_DEFINED_TYPES base table

21.52 USER_DEFINED_TYPES base table

Function
The USER_DEFINED_TYPES table has one row for each user-defined type.

Definition
CREATE TABLE USER_DEFINED_TYPES (

USER_DEFINED_TYPE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
USER_DEFINED_TYPE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

USER_DEFINED_TYPE_CATEGORY INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_USER_DEFINED_TYPE_CATEGORY_NOT_NULL
NOT NULL

CONSTRAINT USER_DEFINED_TYPES_USER_DEFINED_TYPE_CATEGORY_CHECK
CHECK (USER_DEFINED_TYPES_CATEGORY IN

(’STRUCTURED’, ’DISTINCT’)),
SOURCE_DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

IS_INSTANTIABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_IS_INSTANTIABLE_NOT_NULL
NOT NULL

CONSTRAINT USER_DEFINED_TYPES_IS_INSTANTIABLE_CHECK
CHECK (IS_INSTANTIABLE IN

(’YES’, ’NO’)),
IS_FINAL INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_IS_FINAL_NOT_NULL
NOT NULL

CONSTRAINT USER_DEFINED_TYPES_IS_FINAL_CHECK
CHECK (IS_FINAL IN

(’YES’, ’NO’)),
ORDERING_FORM INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_ORDERING_FORM_NOT_NULL
NOT NULL

CONSTRAINT USER_DEFINED_TYPES_ORDERING_FORM_CHECK
CHECK (ORDERING_FORM IN

((’NONE’, ’FULL’, ’EQUALS’)),
ORDERING_CATEGORY INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_ORDERING_CATEGORY_CHECK

CHECK (ORDERING_CATEGORY IN
(’RELATIVE’, ’MAP’, ’STATE’)),

ORDERING_ROUTINE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDERING_ROUTINE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
ORDERING_ROUTINE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
REFERENCE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT USER_DEFINED_TYPES_REFERENCE_TYPE_CHECK
CHECK REFERENCE_TYPE IN
(’SYSTEM GENERATED’, ’USER GENERATED’, ’DERIVED’),

REF_DTD_IDENTIFIER INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT USER_DEFINED_TYPES_PRIMARY_KEY
PRIMARY KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

USER_DEFINED_TYPE_NAME),

CONSTRAINT USER_DEFINED_TYPES_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA)
REFERENCES SCHEMATA,

942 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.52 USER_DEFINED_TYPES base table

CONSTRAINT USER_DEFINED_TYPES_FOREIGN_KEY_ROUTINES
FOREIGN KEY (ORDERING_ROUTINE_CATALOG, ORDERING_ROUTINE_SCHEMA,

ORDERING_ROUTINE_NAME)
REFERENCES ROUTINES,

CONSTRAINT USER_DEFINED_TYPES_CHECK_SOURCE_TYPE
CHECK ((USER_DEFINED_TYPE_CATEGORY = ’STRUCTURED’

AND
SOURCE_DTD_IDENTIFIER IS NULL)

OR
(USER_DEFINED_TYPE_CATEGORY = ’DISTINCT’
AND

(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SOURCE_DTD_IDENTIFIER) IS NOT NULL

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SOURCE_DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR
WHERE DATA_TYPE NOT IN

(’ROW’, ’ARRAY’, ’REFERENCE’, ’USER-DEFINED’)))),

CONSTRAINT USER_DEFINED_TYPES_CHECK_USER_GENERATED_REFERENCE_TYPE
CHECK ((REFERENCE_TYPE <> ’USER GENERATED’

AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’,
REF_DTD_IDENTIFIER) NOT IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR))

OR
(REFERENCE_TYPE = ’USER GENERATED’
AND

(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, ’USER-DEFINED TYPE’,
REF_DTD_IDENTIFIER) IN
(SELECT OBJECT_CATALOG, OBJECT_SCHEMA,

OBJECT_NAME, OBJECT_TYPE, DTD_IDENTIFIER
FROM DATA_TYPE_DESCRIPTOR
WHERE DATA_TYPE IN

(’CHARACTER’, ’INTEGER’))))

)

Description

1) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA and
USER_DEFINED_TYPE_NAME are the qualified name of the user-defined type that is defined.

2) The values of USER_DEFINED_TYPE_CATEGORY have the following meanings:

STRUCTURED The user-defined type is a structured type.

DISTINCT The user-defined type is a distinct type.

3) If USER_DEFINED_TYPE_CATEGORY is ’STRUCTURED’, then the value of SOURCE_
DTD_IDENTIFIER is the null value; otherwise, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, and SOURCE_DTD_IDENTIFIER
are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and DTD_

Definition Schema 943

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.52 USER_DEFINED_TYPES base table

IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes the source
type of the distinct type.

4) The values of IS_INSTANTIABLE have the following meanings:

YES The user-defined type is instantiable.

NO The user-defined type is not instantiable.

5) The values of IS_FINAL have the following meanings:

YES The user-defined type cannot have subtypes.

NO The user-defined type can have subtypes.

6) The values of ORDERING_FORM have the following meanings:

NONE Two values of this type may not be compared.

FULL Two values of this type may be compared for equality or relative order.

EQUALS Two values of this type may be compared for equality only.

7) The values of ORDERING_CATEGORY have the following meanings:

RELATIVE Two values of this type can be compared with a relative routine.

MAP Two values of this type may be compared with a map routine.

STATE Two values of this type may be compared with a state routine.

8) The values of ORDER_ROUTINE_CATALOG, ORDER_ROUTINE_SCHEMA, and ORDER_
ROUTINE_NAME are the catalog name, unqualified schema name, and qualified identifier,
respectively, of the specific name of the SQL-invoked routine used for ordering the user-defined
type.

9) The values of REFERENCE_TYPE have the following meanings:

SYSTEM
GENERATED

REF values for tables of this structured type are system generated.

USER
GENERATED

REF values for tables of this structured type are user generated of the data type specified
by USER GENERATED TYPE.

DERIVED REF values for tables of this structured type are derived from the columns corresponding
to the specified attributes.

10) If the value of REFERENCE_TYPE is not ’USER GENERATED’, then the value of REF_
DTD_IDENTIFIER is the null value; otherwise, USER_DEFINED_TYPE_CATALOG, USER_
DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, and REF_DTD_IDENTIFIER
are the values of OBJECT_CATALOG, OBJECT_SCHEMA, OBJECT_NAME, and DTD_
IDENTIFIER, respectively, of the row in DATA_TYPE_DESCRIPTOR that describes the data
type of the user-generated REF values of the structured type.

944 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.53 USERS base table

21.53 USERS base table

Function
The USERS table has one row for each <authorization identifier> referenced in the Information
Schema. These are all those <authorization identifier>s that may grant privileges as well as those
that may create a schema, or currently own a schema created through a <schema definition>.

Definition
CREATE TABLE USERS (

USER_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT USERS_PRIMARY_KEY
PRIMARY KEY (USER_NAME),

CONSTRAINT USERS_CHECK
CHECK (USER_NAME NOT IN

(SELECT ROLE_NAME
FROM ROLES))

)

Description

1) The values of USER_NAME are <authorization identifier>s that are known.

Definition Schema 945

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.54 VIEW_COLUMN_USAGE base table

21.54 VIEW_COLUMN_USAGE base table

Function
The VIEW_COLUMN_USAGE table has one row for each column of a table that is explicitly or
implicitly referenced in the <query expression> of the view being described.

Definition
CREATE TABLE VIEW_COLUMN_USAGE (

VIEW_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
COLUMN_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT VIEW_COLUMN_USAGE_PRIMARY_KEY
PRIMARY KEY (VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME),

CONSTRAINT VIEW_COLUMN_USAGE_CHECK_REFERENCES_COLUMNS
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME FROM SCHEMATA)
OR

(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME
FROM COLUMNS)),

CONSTRAINT VIEW_COLUMN_USAGE_FOREIGN_KEY_VIEWS
FOREIGN KEY (VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME)
REFERENCES VIEWS

)

Description

1) The values of VIEW_CATALOG, VIEW_SCHEMA, and VIEW_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of the view being described.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME are
the catalog name, unqualified schema name, qualified identifier, and column name, respectively,
of a column of a table that is explicitly or implicitly referenced in the <query expression> of the
view being described.

946 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.55 VIEW_TABLE_USAGE base table

21.55 VIEW_TABLE_USAGE base table

Function
The VIEW_TABLE_USAGE table has one row for each table identified by a <table name> simply
contained in a <table reference> that is contained in the <query expression> of a view.

Definition
CREATE TABLE VIEW_TABLE_USAGE (

VIEW_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT VIEW_TABLE_USAGE_PRIMARY_KEY
PRIMARY KEY (VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEW_TABLE_USAGE_CHECK_REFERENCES_TABLES
CHECK (TABLE_CATALOG NOT IN

(SELECT CATALOG_NAME
FROM SCHEMATA)

OR
(TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES)),

CONSTRAINT VIEW_TABLE_USAGE_FOREIGN_KEY_VIEWS
FOREIGN KEY (VIEW_CATALOG, VIEW_SCHEMA, VIEW_NAME)
REFERENCES VIEWS

)

Description

1) The values of VIEW_CATALOG, VIEW_SCHEMA, and VIEW_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of the view being described.

2) The values of TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME are the catalog name,
unqualified schema name, and qualified identifier, respectively, of a table identified by a <table
name> simply contained in a <table reference> that is contained in the <query expression> of
the view being described.

Definition Schema 947

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
21.56 VIEWS base table

21.56 VIEWS base table

Function
The VIEWS table contains one row for each row in the TABLES table with a TABLE_TYPE of
’VIEW’. Each row describes the query expression that defines a view. The table effectively contains
a representation of the view descriptors.

Definition
CREATE TABLE VIEWS (

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,
CHECK_OPTION INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT CHECK_OPTION_NOT_NULL
NOT NULL

CONSTRAINT CHECK_OPTION_CHECK
CHECK (CHECK_OPTION IN

(’CASCADED’, ’LOCAL’, ’NONE’)),
IS_UPDATABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT IS_UPDATABLE_NOT_NULL
NOT NULL

CONSTRAINT IS_UPDATABLE_CHECK
CHECK (IS_UPDATABLE IN

(’YES’, ’NO’)),

IS_INSERTABLE_INTO INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT IS_INSERTABLE_INTO_NOT_NULL
NOT NULL

CONSTRAINT IS_INSERTABLE_INTO_CHECK
CHECK (IS_INSERTABLE_INTO IN

(’YES’, ’NO’)),

CONSTRAINT VIEWS_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEWS_IN_TABLES_CHECK
CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = ’VIEW’)),

CONSTRAINT VIEWS_IS_UPDATABLE_CHECK_OPTION_CHECK
CHECK ((IS_UPDATABLE, CHECK_OPTION) NOT IN

(VALUES (’NO’, ’CASCADED’), (’NO’, ’LOCAL’)))

)

Description

1) The values of TABLE_CATALOG and TABLE_SCHEMA are the catalog name and unqualified
schema name, respectively, of the schema in which the viewed table is defined.

2) The value of TABLE_NAME is the name of the viewed table.

3) Case:

a) If the character representation of the <query expression> contained in the correspond-
ing view descriptor can be represented without truncation, then the value of VIEW_
DEFINITION is that character representation.

948 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
21.56 VIEWS base table

b) Otherwise, the value of VIEW_DEFINITION is the null value.
NOTE 355 – Any implicit column references that were contained in the <query expression> associated
with the <view definition> are replaced by explicit column references in VIEW_DEFINITION.

4) The values of CHECK_OPTION have the following meanings:

CASCADED The corresponding view descriptor indicates that the view has the CHECK OPTION that is
to be applied as CASCADED.

LOCAL The corresponding view descriptor indicates that the view has the CHECK OPTION that is
to be applied as LOCAL.

NONE The corresponding view descriptor indicates that the view does not have the CHECK
OPTION.

5) The values of IS_UPDATABLE have the following meanings:

YES The view is updatable.

NO The view is not updatable.

6) The values of IS_INSERTABLE_INTO have the following meanings:

YES The view is insertable-into.

NO The view is not insertable-into.

Definition Schema 949

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

950 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

22 Status codes

22.1 SQLSTATE

The character string value returned in an SQLSTATE parameter comprises a 2-character class
value followed by a 3-character subclass value, each with an implementation-defined character set
that has a one-octet form-of-use and is restricted to <digit>s and <simple Latin upper case letter>s.
Table 27, ‘‘SQLSTATE class and subclass values’’, specifies the class value for each condition and
the subclass value or values for each class value.

Class values that begin with one of the <digit>s ’0’, ’1’, ’2’, ’3’, or ’4’ or one of the <simple Latin upper
case letter>s ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, or ’H’ are returned only for conditions defined in ISO/IEC
9075 or in any other International Standard. The range of such class values are called standard-
defined classes. Some such class codes are reserved for use by specific International Standards, as
specified elsewhere in this Clause. Subclass values associated with such classes that also begin
with one of those 13 characters are returned only for conditions defined in ISO/IEC 9075 or some
other International Standard. The range of such class values are called standard-defined classes.
Subclass values associated with such classes that begin with one of the <digit>s ’5’, ’6’, ’7’, ’8’,
or ’9’ or one of the <simple Latin upper case letter>s ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’,
’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, or ’Z’ are reserved for implementation-specified conditions and are called
implementation-defined subclasses.

Class values that begin with one of the <digit>s ’5’, ’6’, ’7’, ’8’, or ’9’ or one of the <simple Latin
upper case letter>s ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, or ’Z’ are re-
served for implementation-specified exception conditions and are called implementation-defined
classes. All subclass values except ’000’, which means no subclass, associated with such classes are
reserved for implementation-specified conditions and are called implementation-defined subclasses.
An implementation-defined completion condition shall be indicated by returning an implementation-
defined subclass in conjunction with one of the classes successful completion, warning, or no data.

If a subclass value is not specified for a condition, then either subclass ’000’ or an implementation-
defined subclass is returned.
NOTE 356 – One consequence of this is that an SQL-implementation may, but is not required by ISO/IEC
9075 to, provide subcodes for exception condition syntax error or access rule violation that distinguish between
the syntax error and access rule violation cases.

If multiple completion conditions: warning or multiple exception conditions, including implementation-
defined exception conditions, are raised, then it is implementation-dependent which of the corre-
sponding SQLSTATE values is returned in the SQLSTATE status parameter, provided that the
precedence rules in Subclause 4.26.1, ‘‘Status parameters’’, are obeyed. Any number of applica-
ble conditions values in addition to the one returned in the SQLSTATE status parameter, may be
returned in the diagnostics area.

An implementation-specified condition may duplicate, in whole or in part, a condition defined in
ISO/IEC 9075; however, if such a condition occurs as a result of executing a statement, then the
corresponding implementation-defined SQLSTATE value must not be returned in the SQLSTATE
parameter but may be returned in the diagnostics area.

Status codes 951

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
22.1 SQLSTATE

The ‘‘Category’’ column has the following meanings: ‘‘S’’ means that the class value given corre-
sponds to successful completion and is a completion condition; ‘‘W’’ means that the class value given
corresponds to a successful completion but with a warning and is a completion condition; ‘‘N’’ means
that the class value given corresponds to a no-data situation and is a completion condition; ‘‘X’’
means that the class value given corresponds to an exception condition.

Table 27—SQLSTATE class and subclass values

Category Condition Class Subcondition Subclass

X ambiguous cursor name 3C (no subclass) 000

X cardinality violation 21 (no subclass) 000

X connection exception 08 (no subclass) 000

connection does not exist 003

connection failure 006

connection name in use 002

SQL-client unable to establish
SQL-connection

001

SQL-server rejected establishment
of SQL-connection

004

transaction resolution unknown 007

X cursor sensitivity exception 36 (no subclass) 000

request failed 002

request rejected 001

X data exception 22 (no subclass) 000

array data, right truncation 02F

array element error 02E

character not in repertoire 021

datetime field overflow 008

division by zero 012

error in assignment 005

escape character conflict 00B

indicator overflow 022

interval field overflow 015

invalid character value for cast 018

invalid datetime format 007

invalid escape character 019

invalid escape octet 00D

invalid escape sequence 025

invalid indicator parameter value 010

invalid limit value 020

invalid parameter value 023

952 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
22.1 SQLSTATE

Table 27—SQLSTATE class and subclass values (Cont.)

Category Condition Class Subcondition Subclass

invalid regular expression 01B

invalid time zone displacement
value

009

invalid update value 014

invalid use of escape character 00C

most specific type mismatch 00G

null instance used in mutator
function

02D

null row not permitted in table 01C

null value in array target 00E

null value in reference target 00A

null value, no indicator parameter 002

null value not allowed 004

numeric value out of range 003

row already exists 028

string data, length mismatch 026

string data, right truncation 001

substring error 011

trim error 027

unterminated C string 024

zero-length character string 00F

X dependent privilege descriptors still
exist

2B (no subclass) 000

X external routine exception 38 (no subclass) 000

containing SQL not permitted 001

modifying SQL-data not permitted 002

prohibited SQL-statement at-
tempted

003

reading SQL-data not permitted 004

X external routine invocation excep-
tion

39 (no subclass) 000

invalid SQLSTATE returned 001

null value not allowed 004

X feature not supported 0A (no subclass) 000

multiple server transactions 001

X integrity constraint violation 23 (no subclass) 000

restrict violation 001

X invalid authorization specification 28 (no subclass) 000

Status codes 953

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
22.1 SQLSTATE

Table 27—SQLSTATE class and subclass values (Cont.)

Category Condition Class Subcondition Subclass

X invalid catalog name 3D (no subclass) 000

X invalid condition number 35 (no subclass) 000

X invalid connection name 2E (no subclass) 000

X invalid cursor name 34 (no subclass) 000

X invalid cursor state 24 (no subclass) 000

X invalid grantor 0L (no subclass) 000

X invalid role specification 0P (no subclass) 000

X invalid schema name 3F (no subclass) 000

X invalid SQL descriptor name 33 (no subclass) 000

X invalid SQL statement name 26 (no subclass) 000

X invalid SQL statement 30 (no subclass) 000

X invalid target specification value 31 (no subclass) 000

X invalid target type specification 0D (no subclass) 000

X invalid transaction initiation 0B (no subclass) 000

X invalid transaction state 25 (no subclass) 000

active SQL-transaction 001

branch transaction already active 002

held cursor requires same isolation
level

008

inappropriate access mode for
branch transaction

003

inappropriate isolation level for
branch transaction

004

no active SQL-transaction for
branch transaction

005

read-only SQL-transaction 006

schema and data statement mixing
not supported

007

X invalid transaction termination 2D (no subclass) 000

X locator exception 0F (no subclass) 000

invalid specification 001

N no data 02 (no subclass) 000

no additional dynamic result sets
returned

001

X prohibited statement encountered
during trigger execution

0W (no subclass) 000

X Remote Database Access HZ (See Table 28, ‘‘SQLSTATE class
codes for RDA’’, for the definition of
protocol subconditions and subclass
code values)

954 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
22.1 SQLSTATE

Table 27—SQLSTATE class and subclass values (Cont.)

Category Condition Class Subcondition Subclass

X savepoint exception 3B (no subclass) 000

invalid specification 001

too many 002

X SQL Multimedia, Part 1 H1 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 2 H2 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 3 H3 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 4 H4 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 5 H5 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 6 H6 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 7 H7 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 8 H8 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 9 H9 (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 10 HA (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 11 HB (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

Status codes 955

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
22.1 SQLSTATE

Table 27—SQLSTATE class and subclass values (Cont.)

Category Condition Class Subcondition Subclass

X SQL Multimedia, Part 12 HC (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 13 HD (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 14 HE (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL Multimedia, Part 15 HF (See Table 29, ‘‘SQLSTATE class
codes for SQL/MM’’, for the defini-
tion of subconditions and subclass
code values)

X SQL routine exception 2F (no subclass) 000

function executed no return state-
ment

005

modifying SQL-data not permitted 002

prohibited SQL-statement at-
tempted

003

reading SQL-data not permitted 004

X SQL statement not yet complete 03 (no subclass) 000

S successful completion 00 (no subclass) 000

X syntax error or access rule violation 42 (no subclass) 000

X transaction rollback 40 (no subclass) 000

integrity constraint violation 002

serialization failure 001

statement completion unknown 003

triggered action exception 004

X triggered action exception 09 (no subclass) 000

X triggered data change violation 27 (no subclass) 000

W warning 01 (no subclass) 000

additional result sets returned 00D

array data, right truncation 02F

attempt to return too many result
sets

00E

cursor operation conflict 001

default value too long for informa-
tion schema

00B

disconnect error 002

956 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
22.1 SQLSTATE

Table 27—SQLSTATE class and subclass values (Cont.)

Category Condition Class Subcondition Subclass

dynamic result sets returned 00C

external routine warning (the value
of xx to be chosen by the author of
the external routine)

Hxx

implicit zero-bit padding 008

null value eliminated in set function 003

privilege not granted 007

privilege not revoked 006

query expression too long for infor-
mation schema

00A

search condition too long for infor-
mation schema

009

statement too long for information
schema

005

string data, right truncation 004

X with check option violation 44 (no subclass) 000

Status codes 957

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
22.2 Remote Database Access SQLSTATE Subclasses

22.2 Remote Database Access SQLSTATE Subclasses

ISO/IEC 9075 reserves SQLSTATE class ’HZ’ for Remote Database Access errors, which may occur
when an SQL-client interacts with an SQL-server across a communications network using an RDA
Application Context. ISO/IEC 9579-1, ISO/IEC 9579-2, ISO 8649, and ISO/IEC 10026-2 define a
number of exception conditions that must be detected in a conforming ISO RDA implementation.
This Subclause defines SQLSTATE subclass codes for each such condition out of the set of codes
reserved for International Standards.

If an implementation using RDA reports a condition shown in Table 28, ‘‘SQLSTATE class codes
for RDA’’, for a given exception condition, then it shall use the SQLSTATE class code ’HZ’ and the
subclass codes shown, and shall set the values of CLASS_ORIGIN to ’ISO 9075’ and SUBCLASS_
ORIGIN as indicated in Table 28, ‘‘SQLSTATE class codes for RDA’’, when those exceptions are
retrieved by a <get diagnostics statement>.

An implementation using client-server communications other than RDA may report conditions
corresponding to the conditions shown in Table 28, ‘‘SQLSTATE class codes for RDA’’, using the
SQLSTATE class code ’HZ’ and the corresponding subclass codes shown. It may set the values of
CLASS_ORIGIN to ’ISO 9075’ and SUBCLASS_ORIGIN as indicated in Table 28, ‘‘SQLSTATE class
codes for RDA’’. Any other communications error shall be returned with a subclass code from the
implementation-defined range, with CLASS_ORIGIN set to ’ISO 9075’ and SUBCLASS_ORIGIN set
to an implementation-defined character string.

A Remote Database Access exception may also result in an SQL completion condition defined in
Table 27, ‘‘SQLSTATE class and subclass values’’ (such as ’40000’, transaction rollback); if such a
condition occurs, then the ’HZ’ class SQLSTATE shall not be returned in the SQLSTATE parameter,
but may be returned in the Diagnostics Area.

Table 28—SQLSTATE class codes for RDA

SQLSTATE
Class Subclass Origin

HZ ISO/IEC 9579

22.3 SQL Multimedia and Application Packages SQLSTATE
Subclasses

ISO/IEC 9075 reserves the SQLSTATE classes specified in Table 29, ‘‘SQLSTATE class codes for
SQL/MM’’, for conditions specified in the various parts of ISO/IEC 13249, SQL Multimedia and
Application Packages (SQL/MM).

If an SQL/MM implementation raises a condition using one of the class codes specified in Table 29,
‘‘SQLSTATE class codes for SQL/MM’’, then it shall set the value of CLASS_ORIGIN to ’ISO/IEC
13249’ and the value of SUBCLASS_ORIGIN as indicated in Table 29, ‘‘SQLSTATE class codes for
SQL/MM’’, when those conditions are retrieved by a <get diagnostics statement>.

958 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
22.3 SQL Multimedia and Application Packages SQLSTATE Subclasses

Table 29—SQLSTATE class codes for SQL/MM

SQLSTATE
Class SQL/MM Part Subclass Origin

H1 SQL/MM — Part 1: Framework ISO/IEC 13249-1

H2 SQL/MM — Part 2: Full-Text ISO/IEC 13249-2

H3 SQL/MM — Part 3: Spatial ISO/IEC 13249-3

H4 SQL/MM — Part 4: General Purpose
Facilities

ISO/IEC 13249-4

H5 SQL/MM — Part 5: Still Image ISO/IEC 13249-5

The following SQLSTATE class code values are reserved for future use by ISO/IEC 13249: ’H6’,
’H7’, ’H8’, ’H9’, ’HA’, ’HB’, ’HC’, ’HD’, ’HE’, and ’HF’.

Status codes 959

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

960 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

23 Conformance

23.1 General conformance requirements

General conformance requirements for SQL-implementations are specified in ISO/IEC 9075-1, in
Subclause 8.1, "Requirements for SQL-implementations".

This Part of ISO/IEC 9075 specifies conforming Core SQL language and conforming Core SQL-
implementations as the minimal conformance level for SQL. Additional features outside Core are
also specified. Core SQL language and the features outside Core are defined by the Conformance
Rules.

Conforming Core SQL language shall abide by the Format, associated Syntax Rules and Access
Rules, Definitions, and Descriptions, and shall abide by the restrictions imposed by all Conformance
Rules.

A conforming Core SQL-implementation shall process conforming Core SQL language according to
the associated General Rules, Definitions, and Descriptions.

A feature FEAT outside of Core SQL is defined by relaxing selected Conformance Rules, as noted
at the beginning of each Conformance Rule by the phrase ‘‘without Feature FEAT, ‘‘name of fea-
ture’’ . . . ’’. An application designates a set of SQL features that the application requires; the SQL
language of the application shall observe the restrictions of all Conformance Rules except those
explicitly relaxed for the required features. Conversely, conforming SQL-implementations shall
identify which SQL features the SQL-implementation supports. An SQL-implementation shall pro-
cess any application whose required features are a subset of the SQL-implementation’s supported
features.

A feature FEAT1 may imply another feature FEAT2. An SQL-implementation that claims to sup-
port FEAT1 shall also support each feature FEAT2 implied by FEAT1. Conversely, an application
need only designate that it requires FEAT1, and may assume that this includes each feature FEAT2
implied by FEAT1. The list of features that are implied by other features is shown in Table 30,
‘‘Implied feature relationships’’. Note that some features imply multiple other features.

Table 30—Implied feature relationships

Feature
ID Feature Description

Implied
Feature
ID Implied Feature Description

F711 ALTER domain F251 Domain support

F801 Full set function F441 Extended set function support

S024 Enhanced structured types S023 Basic structured types

S041 Basic reference types S023 Basic structured types

S041 Basic reference types S051 Create table of type

S043 Enhanced reference types S041 Basic reference types

S051 Create table of type S023 Basic structured types

Conformance 961

ISO/IEC 9075-2:1999 (E) ©ISO/IEC
23.1 General conformance requirements

Table 30—Implied feature relationships (Cont.)

Feature
ID Feature Description

Implied
Feature
ID Implied Feature Description

S081 Subtables S023 Basic structured types

S081 Subtables S051 Create table of type

S092 Arrays of user-defined types S091 Basic array support

S094 Arrays of reference types S091 Basic array support

S111 ONLY in query expressions S023 Basic structured types

S111 ONLY in query expressions S051 Create table of type

S231 Structured type locators S023 Basic structured types

T042 Extended LOB data type support T041 Basic LOB data type support

T131 Recursive query T121 WITH (excluding RECURSIVE) in
query expression

T212 Enhanced trigger capability T211 Basic trigger capability

T332 Extended roles T331 Basic roles

T511 Transaction counts F121 Basic diagnostics management

The Syntax Rules and General Rules may define one SQL syntax in terms of another. Such trans-
formations are presented to define the semantics of the transformed syntax, and are effectively
performed after checking the applicable Conformance Rules. Transformations may use SQL syn-
tax of one SQL feature to define another SQL feature. These transformations serve to define the
behavior of the syntax, and do not have any implications for the feature syntax that is permitted
or forbidden by the features so defined. A conforming SQL-implementation need only process the
untransformed syntax defined by the Conformance Rules that are applicable for the set of fea-
tures that the SQL-implementation claims to support, though with the semantics implied by the
transformation.

23.2 Claims of conformance

In addition to the requirements of ISO/IEC 9075-1, Subclause 8.1.5, "Claims of conformance", a
claim of conformance to this part of ISO/IEC 9075 shall state:

1) Whether or not the SQL-client module (<SQL-client module definition>) binding style is sup-
ported and, if so, which of the following programming languages are supported:

— Ada

— C

— COBOL

— Fortran

— MUMPS

— Pascal

962 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)
23.2 Claims of conformance

— PL/I

2) Which of the following may be specified for <language clause> in an <SQL-invoked routine>:

— ADA

— C

— COBOL

— FORTRAN

— MUMPS

— PASCAL

— PLI

— SQL

At least one of these shall be specified.

Conformance 963

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

964 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex A
(informative)

SQL Conformance Summary

The contents of this Annex summarizes all Conformance Rules, ordered by Feature ID and by
Subclause.

1) Specifications for Feature F032, ‘‘CASCADE drop behavior’’:

a) Subclause 11.20, ‘‘<drop table statement>’’:

i) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE
shall not be specified in <drop table statement>.

b) Subclause 11.22, ‘‘<drop view statement>’’:

i) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE
shall not be specified in <drop view statement>.

c) Subclause 11.48, ‘‘<drop data type statement>’’:

i) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE
shall not be specified in <drop data type statement>.

d) Subclause 11.51, ‘‘<drop routine statement>’’:

i) Without Feature F032, ‘‘CASCADE drop behavior’’, a <drop behavior> of CASCADE
shall not be specified in <drop routine statement>.

2) Specifications for Feature F033, ‘‘ALTER TABLE statement: DROP COLUMN clause’’:

a) Subclause 11.10, ‘‘<alter table statement>’’:

i) Without Feature F033, ‘‘ALTER TABLE statement: DROP COLUMN clause’’, conform-
ing SQL language shall not specify <drop column definition>.

b) Subclause 11.17, ‘‘<drop column definition>’’:

i) Without Feature F033, ‘‘ALTER TABLE statement: DROP COLUMN clause’’, conform-
ing SQL language shall not specify <drop column definition>.

SQL Conformance Summary 965

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

3) Specifications for Feature F034, ‘‘Extended REVOKE statement’’:

a) Subclause 12.6, ‘‘<revoke statement>’’:

i) Without Feature F034, ‘‘Extended REVOKE statement’’, there shall not be a privilege
descriptor PD that satisfies all the following conditions:

1) PD identifies the table, domain, collation, character set, translation or data type
identified by <object name> simply contained in <privileges>.

2) PD identifies the <grantee> identified by any <grantee> simply contained in <revoke
statement> and that <grantee> does not identify the owner of the SQL-schema that
is specified explicitly or implicitly in the <object name>.

3) PD identifies the action identified by the <action> simply contained in <privileges>.

4) PD indicates that the privilege is grantable.

ii) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not contain WITH
HIERARCHY OPTION.

iii) Without Feature F034, ‘‘Extended REVOKE statement’’, a <drop behavior> of CASCADE
shall not be specified in <revoke statement>.

iv) Without Feature F034, ‘‘Extended REVOKE statement’’, conforming SQL Core language
shall not specify GRANT OPTION FOR.

v) Without Feature F034, ‘‘Extended REVOKE statement’’, the current authorization
identifier shall identify the owner of the SQL-schema that is specified explicitly or
implicitly in the <object name>.

4) Specifications for Feature F052, ‘‘Intervals and datetime arithmetic’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <general literal> shall not
be an <interval literal>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <data type> shall not be
an <interval type>.

c) Subclause 6.17, ‘‘<numeric value function>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, and Feature F411, ‘‘Time
zone specification’’, a <numeric value function> shall not be an <extract expression> that
specifies a <time zone field>.

ii) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <numeric value function>
shall not be an <extract expression>.

d) Subclause 6.20, ‘‘<interval value function>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming Core SQL shall
contain no <interval value function>.

966 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

e) Subclause 6.23, ‘‘<value expression>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, a <value expression> shall
not be an <interval value expression>.

f) Subclause 6.28, ‘‘<datetime value expression>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, <datetime value expression>
shall not specify <plus sign> or <minus sign>.

g) Subclause 6.29, ‘‘<interval value expression>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language
shall not contain any <interval value expression>.

h) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language
shall not contain any <overlaps predicate>.

i) Subclause 8.12, ‘‘<overlaps predicate>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language
shall not contain any <overlaps predicate>.

j) Subclause 10.1, ‘‘<interval qualifier>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, conforming SQL language
shall not contain any <interval qualifier>.

5) Specifications for Feature F111, ‘‘Isolation levels other than SERIALIZABLE’’:

a) Subclause 16.1, ‘‘<start transaction statement>’’:

i) Without Feature F111, ‘‘Isolation levels other than SERIALIZABLE’’, an <isolation
level> shall not contain a <level of isolation> other than SERIALIZABLE.

b) Subclause 18.1, ‘‘<set session characteristics statement>’’:

i) Without Feature F111, ‘‘Isolation levels other than SERIALIZABLE’’, a <set ses-
sion characteristics statement> shall not contain a <level of isolation> other than
SERIALIZABLE.

6) Specifications for Feature F121, ‘‘Basic diagnostics management’’:

a) Subclause 16.1, ‘‘<start transaction statement>’’:

i) Without Feature F121, ‘‘Basic diagnostics management’’, conforming SQL language shall
not specify <diagnostics size>.

b) Subclause 19.1, ‘‘<get diagnostics statement>’’:

i) Without Feature F121, ‘‘Basic diagnostics management’’, and Feature T511, ‘‘Transaction
counts’’, conforming SQL language shall not specify a <statement information item
name> that is TRANSACTIONS_COMMITTED, TRANSACTIONS_ROLLED_BACK, or
TRANSACTION_ACTIVE.

SQL Conformance Summary 967

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

ii) Without Feature F121, ‘‘Basic diagnostics management’’, conforming SQL language shall
not contain any <get diagnostics statement>.

7) Specifications for Feature F171, ‘‘Multiple schemas per user’’:

a) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F171, ‘‘Multiple schemas per user’’, a <schema name clause> shall
specify AUTHORIZATION and shall not specify a <schema name>.

8) Specifications for Feature F191, ‘‘Referential delete actions’’:

a) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature F191, ‘‘Referential delete actions’’, a <column constraint> shall not
contain a <delete rule>.

b) Subclause 11.8, ‘‘<referential constraint definition>’’:

i) Without Feature F191, ‘‘Referential delete actions’’, a <referential triggered action> shall
not contain a <delete rule>.

9) Specifications for Feature F222, ‘‘INSERT statement: DEFAULT VALUES clause’’:

a) Subclause 14.8, ‘‘<insert statement>’’:

i) Without Feature F222, ‘‘INSERT statement: DEFAULT VALUES clause’’, the <insert
columns and source> shall not specify DEFAULT VALUES.

10) Specifications for Feature F231, ‘‘Privilege tables’’:

a) Subclause 20.16, ‘‘COLUMN_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_PRIVILEGES.

b) Subclause 20.21, ‘‘DATA_TYPE_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, Conforming SQL language shall not reference
INFORMATION_SCHEMA.DATA_TYPE_PRIVILEGES.

c) Subclause 20.36, ‘‘ROLE_COLUMN_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conform-
ing SQL language shall not reference INFORMATION_SCHEMA.ROLE_COLUMN_
GRANTS.

d) Subclause 20.37, ‘‘ROLE_ROUTINE_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conform-
ing SQL language shall not reference INFORMATION_SCHEMA.ROLE_ROUTINE_
GRANTS.

e) Subclause 20.38, ‘‘ROLE_TABLE_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_TABLE_GRANTS.

968 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

f) Subclause 20.41, ‘‘ROLE_UDT_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_UDT_GRANTS.

g) Subclause 20.43, ‘‘ROUTINE_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES.

h) Subclause 20.55, ‘‘TABLE_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLE_PRIVILEGES.

i) Subclause 20.63, ‘‘USAGE_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.USAGE_PRIVILEGES.

j) Subclause 20.64, ‘‘UDT_PRIVILEGES view’’:

i) Without Feature F231, ‘‘Privilege tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.UDT_PRIVILEGES.

k) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_ROUT_GRANTS.

11) Specifications for Feature F251, ‘‘Domain support’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain
any <domain name>.

b) Subclause 6.3, ‘‘<value specification> and <target specification>’’:

i) Without Feature F251, ‘‘Domain support’’, a <general value specification> shall not
specify VALUE.

c) Subclause 6.22, ‘‘<cast specification>’’:

i) Without Feature F251, ‘‘Domain support’’, <cast target> shall not be a <domain name>.

d) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature F251, ‘‘Domain support’’, in conforming SQL language, an <object
name> shall not specify DOMAIN.

e) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain
any <domain definition>.

SQL Conformance Summary 969

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

f) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature F251, ‘‘Domain support’’, a <column definition> shall not contain a
<domain name>.

g) Subclause 11.7, ‘‘<unique constraint definition>’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not specify
UNIQUE(VALUE).

h) Subclause 11.23, ‘‘<domain definition>’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain
any <domain definition>.

i) Subclause 11.29, ‘‘<drop domain statement>’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not contain a
<drop domain statement>.

j) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature F251, ‘‘Domain support’’, an <SQL schema definition statement> shall
not be an <alter domain statement> or a <drop domain statement>.

ii) Without Feature F251, ‘‘Domain support’’, an <SQL schema definition statement> shall
not be a <domain definition>.

k) Subclause 20.4, ‘‘CARDINAL_NUMBER domain’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CARDINAL_NUMBER.

l) Subclause 20.5, ‘‘CHARACTER_DATA domain’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CHARACTER_DATA.

m) Subclause 20.6, ‘‘SQL_IDENTIFIER domain’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_IDENTIFIER.

n) Subclause 20.7, ‘‘TIME_STAMP domain’’:

i) Without Feature F251, ‘‘Domain support’’, and Feature T011, ‘‘Timestamp in Information
Schema’’, conforming SQL language shall not reference INFORMATION_SCHEMA.TIME_
STAMP.

o) Subclause 20.24, ‘‘DOMAIN_CONSTRAINTS view’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS.

p) Subclause 20.26, ‘‘DOMAINS view’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS.

970 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

q) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F251, ‘‘Domain support’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS_S.

12) Specifications for Feature F271, ‘‘Compound character literals’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F271, ‘‘Compound character literals’’, conforming SQL language shall
contain exactly one repetition of <character representation> (that is, it shall contain
exactly one sequence of ‘‘<quote> <character representation>... <quote>’’).

13) Specifications for Feature F281, ‘‘LIKE enhancements’’:

a) Subclause 8.5, ‘‘<like predicate>’’:

i) Without Feature F281, ‘‘LIKE enhancements’’, the <character match value> shall be a
column reference.

ii) Without Feature F281, ‘‘LIKE enhancements’’, a <character pattern> shall be a <value
specification>.

iii) Without Feature F281, ‘‘LIKE enhancements’’, an <escape character> shall be a <value
specification>.

14) Specifications for Feature F291, ‘‘UNIQUE predicate’’:

a) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature F291, ‘‘UNIQUE predicate’’, conforming SQL language shall not contain
any <unique predicate>.

b) Subclause 8.10, ‘‘<unique predicate>’’:

i) Without Feature F291, ‘‘UNIQUE predicate’’ and Feature S024, ‘‘Enhanced structured
types’’, no column of the result of the <table subquery> shall be of structured type.

ii) Without Feature F291, ‘‘UNIQUE predicate’’, conforming SQL language shall not contain
any <unique predicate>.

15) Specifications for Feature F301, ‘‘CORRESPONDING in query expressions’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature F301, ‘‘CORRESPONDING in query expressions’’, a <query expression>
shall not specify CORRESPONDING.

16) Specifications for Feature F302, ‘‘INTERSECT table operator’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature F302, ‘‘INTERSECT table operator’’, a <query term> shall not specify
INTERSECT.

SQL Conformance Summary 971

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

17) Specifications for Feature F304, ‘‘EXCEPT ALL table operator’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature F304, ‘‘EXCEPT ALL table operator’’, a <query expression> shall not
specify EXCEPT ALL.

18) Specifications for Feature F321, ‘‘User authorization’’:

a) Subclause 6.3, ‘‘<value specification> and <target specification>’’:

i) Without Feature F321, ‘‘User authorization’’, a <general value specification> shall not
specify CURRENT_USER, SYSTEM_USER, or SESSION_USER.
NOTE 357 – Although CURRENT_USER and USER are semantically the same, in Core SQL,
CURRENT_USER must be specified as USER.

b) Subclause 11.5, ‘‘<default clause>’’:

i) Without Feature F321, ‘‘User authorization’’, a <general value specification> shall not
specify CURRENT_USER, SYSTEM_USER, or SESSION_USER.
NOTE 358 – Although CURRENT_USER and USER are semantically the same, in Core SQL,
CURRENT_USER must be specified as USER.

ii) Without Feature F321, ‘‘User authorization’’, a <default option> shall not be CURRENT_
USER, SESSION_USER, or SYSTEM_USER.

c) Subclause 18.2, ‘‘<set session user identifier statement>’’:

i) Without Feature F321, ‘‘User authorization’’, conforming SQL language shall not contain
any <set session user identifier statement>.

19) Specifications for Feature F341, ‘‘Usage tables’’:

a) Subclause 20.15, ‘‘COLUMN_DOMAIN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE.

b) Subclause 20.17, ‘‘COLUMN_UDT_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_UDT_USAGE.

c) Subclause 20.19, ‘‘CONSTRAINT_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE.

d) Subclause 20.20, ‘‘CONSTRAINT_TABLE_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE.

e) Subclause 20.25, ‘‘DOMAIN_UDT_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAIN_UDT_USAGE.

972 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

f) Subclause 20.30, ‘‘KEY_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.KEY_COLUMN_USAGE.

g) Subclause 20.40, ‘‘ROLE_USAGE_GRANTS view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_USAGE_GRANTS.

h) Subclause 20.42, ‘‘ROUTINE_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE.

i) Subclause 20.44, ‘‘ROUTINE_TABLE_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE.

j) Subclause 20.60, ‘‘TRIGGER_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference INFORMATION_SCHEMA.TRIGGER_
COLUMN_USAGE.

k) Subclause 20.61, ‘‘TRIGGER_TABLE_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference the INFORMATION_SCHEMA.TRIGGER_
TABLE_USAGE view.

l) Subclause 20.66, ‘‘VIEW_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE.

m) Subclause 20.67, ‘‘VIEW_TABLE_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.VIEW_TABLE_USAGE.

n) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUT_TABLE_USAGE.

ii) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONST_COL_USAGE.

iii) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COL_DOMAIN_USAGE.

iv) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONST_TABLE_USAGE.

SQL Conformance Summary 973

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

v) Without Feature F341, ‘‘Usage tables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_COL_USAGE.

vi) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference the INFORMATION_SCHEMA.TRIG_
TABLE_USAGE view.

vii) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, con-
forming SQL language shall not reference INFORMATION_SCHEMA.TRIG_UPDATE_
COLS

20) Specifications for Feature F381, ‘‘Extended schema manipulation’’:

a) Subclause 11.2, ‘‘<drop schema statement>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain a <drop schema statement>.

b) Subclause 11.10, ‘‘<alter table statement>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not specify <drop table constraint definition>.

ii) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not specify <alter column definition>.

iii) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not specify <add table constraint definition>.

c) Subclause 11.12, ‘‘<alter column definition>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain an <alter column definition>.

d) Subclause 11.13, ‘‘<set column default clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain a <set column default clause>.

e) Subclause 11.14, ‘‘<drop column default clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain a <drop column default clause>.

f) Subclause 11.15, ‘‘<add column scope clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced
reference types’’, conforming SQL language shall not contain any <add column scope
clause>.

g) Subclause 11.16, ‘‘<drop column scope clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced
reference types’’, conforming SQL language shall not contain any <drop column scope
clause>.

974 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

h) Subclause 11.18, ‘‘<add table constraint definition>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain an <add table constraint definition>.

i) Subclause 11.19, ‘‘<drop table constraint definition>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not contain a <drop table constraint definition>.

j) Subclause 11.50, ‘‘<alter routine statement>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, conforming SQL language
shall not specify <alter routine statement>.

k) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, an <SQL schema manipulation
statement> shall not be a <drop schema statement>.

21) Specifications for Feature F391, ‘‘Long identifiers’’:

a) Subclause 5.2, ‘‘<token> and <separator>’’:

i) Without Feature F391, ‘‘Long identifiers’’, the <delimited identifier body> of a <delimited
identifier> shall not comprise more than 18 <delimited identifier part>s.
NOTE 359 – Not every character set supported by a conforming SQL-implementation nec-
essarily contains every character associated with <identifier start> and <identifier part> that
is identified in the Syntax Rules of this Subclause. No conforming SQL-implementation shall
be required to support in <identifier start> or <identifier part> any character identified in the
Syntax Rules of this Subclause unless that character belongs to the character set in use for an
SQL-client module or in SQL-data.

ii) Without Feature F391, ‘‘Long identifiers’’, in a <regular identifier>, the number of
<underscore>s plus the number of <identifier part>s shall be less than 18.

b) Subclause 20.3, ‘‘INFORMATION_SCHEMA_CATALOG_NAME base table’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.INFORMATION_SCHEMA_CATALOG_NAME.

c) Subclause 20.8, ‘‘ADMINISTRABLE_ROLE_AUTHORIZATIONS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ADMINISTRABLE_ROLE_AUTHORIZATIONS.

d) Subclause 20.11, ‘‘ATTRIBUTES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ATTRIBUTES.

e) Subclause 20.12, ‘‘CHARACTER_SETS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CHARACTER_SETS.

SQL Conformance Summary 975

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

f) Subclause 20.14, ‘‘COLLATIONS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLLATIONS.

g) Subclause 20.15, ‘‘COLUMN_DOMAIN_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE.

h) Subclause 20.18, ‘‘COLUMNS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.COLUMNS.

i) Subclause 20.19, ‘‘CONSTRAINT_COLUMN_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE.

j) Subclause 20.20, ‘‘CONSTRAINT_TABLE_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE.

k) Subclause 20.26, ‘‘DOMAINS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DOMAINS.

l) Subclause 20.27, ‘‘ELEMENT_TYPES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ELEMENT_TYPES.

m) Subclause 20.29, ‘‘FIELDS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.FIELDS.

n) Subclause 20.31, ‘‘METHOD_SPECIFICATION_PARAMETERS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS.

o) Subclause 20.32, ‘‘METHOD_SPECIFICATIONS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.

p) Subclause 20.33, ‘‘PARAMETERS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.PARAMETERS.

976 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

q) Subclause 20.34, ‘‘REFERENCED_TYPES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.REFERENCED_TYPES.

r) Subclause 20.35, ‘‘REFERENTIAL_CONSTRAINTS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS.

s) Subclause 20.37, ‘‘ROLE_ROUTINE_GRANTS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS.

t) Subclause 20.39, ‘‘ROLE_TABLE_METHOD_GRANTS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROLE_TABLE_METHOD_GRANTS.

u) Subclause 20.42, ‘‘ROUTINE_COLUMN_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE.

v) Subclause 20.44, ‘‘ROUTINE_TABLE_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE.

w) Subclause 20.45, ‘‘ROUTINES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINES.

x) Subclause 20.46, ‘‘SCHEMATA view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SCHEMATA.

y) Subclause 20.48, ‘‘SQL_IMPLEMENTATION_INFO view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_IMPLEMENTAION_INFO.

z) Subclause 20.49, ‘‘SQL_LANGUAGES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_LANGUAGES.

aa) Subclause 20.52, ‘‘SQL_SIZING_PROFILES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.SQL_SIZING_PROFILE.

SQL Conformance Summary 977

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

bb) Subclause 20.54, ‘‘TABLE_METHOD_PRIVILEGES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLE_METHOD_PRIVILEGES.

cc) Subclause 20.56, ‘‘TABLES view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TABLES.

dd) Subclause 20.58, ‘‘TRANSLATIONS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRANSLATIONS.

ee) Subclause 20.59, ‘‘TRIGGERED_UPDATE_COLUMNS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS.

ff) Subclause 20.60, ‘‘TRIGGER_COLUMN_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_COLUMN_USAGE.

gg) Subclause 20.61, ‘‘TRIGGER_TABLE_USAGE view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERED_TABLE_USAGE.

hh) Subclause 20.62, ‘‘TRIGGERS view’’:

i) Without Feature F391, ‘‘Long identifiers’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TRIGGERS.

22) Specifications for Feature F401, ‘‘Extended joined table’’:

a) Subclause 7.7, ‘‘<joined table>’’:

i) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not
specify FULL.

ii) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not
specify NATURAL.

iii) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall not
specify UNION JOIN.

iv) Without Feature F401, ‘‘Extended joined table’’, conforming SQL language shall contain
no <cross join>.

23) Specifications for Feature F411, ‘‘Time zone specification’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F411, ‘‘Time zone specification’’, conforming Core SQL shall not specify
a <time zone interval>.

978 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F411, ‘‘Time zone specification’’, a <datetime data type> shall not
specify <with or without time zone>.

c) Subclause 6.17, ‘‘<numeric value function>’’:

i) Without Feature F052, ‘‘Intervals and datetime arithmetic’’, and Feature F411, ‘‘Time
zone specification’’, a <numeric value function> shall not be an <extract expression> that
specifies a <time zone field>.

d) Subclause 6.19, ‘‘<datetime value function>’’:

i) Without Feature F411, ‘‘Time zone specification’’, CURRENT_TIME and CURRENT_
TIMESTAMP shall not be specified.

e) Subclause 6.28, ‘‘<datetime value expression>’’:

i) Without Feature F411, ‘‘Time zone specification’’, <datetime factor> shall not specify
<time zone>.

f) Subclause 18.4, ‘‘<set local time zone statement>’’:

i) Without Feature F411, ‘‘Time zone specification’’, conforming SQL language shall not
contain any <set local time zone statement>.

24) Specifications for Feature F421, ‘‘National character’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F421, ‘‘National character’’, a <general literal> shall not be a <national
character string literal>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F421, ‘‘National character’’, a <national character string type> shall
not specify NATIONAL CHARACTER LARGE OBJECT, NCHAR LARGE OBJECT, or
NCLOB.

ii) Without Feature F421, ‘‘National character’’, a <data type> shall not be a <national
character string type>

c) Subclause 6.17, ‘‘<numeric value function>’’:

i) Without Feature F421, ‘‘National character’’, a <string value expression> simply con-
tained in a <length expression> shall not be of declared type NATIONAL CHARACTER
LARGE OBJECT.

d) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature F421, ‘‘National character’’, <trim source> shall not be of declared type
NATIONAL CHARACTER LARGE OBJECT.

ii) Without Feature F421, ‘‘National character’’, the <character value expression> simply
contained in <character substring function> shall not be of declared type NATIONAL
CHARACTER LARGE OBJECT.

SQL Conformance Summary 979

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

e) Subclause 6.21, ‘‘<case expression>’’:

i) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, the declared type of a <result> simply contained in a <case expression>
shall not be NATIONAL CHARACTER LARGE OBJECT.

f) Subclause 6.22, ‘‘<cast specification>’’:

i) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB
data type support’’, the declared type of <cast operand> shall not be NATIONAL
CHARACTER LARGE OBJECT.

g) Subclause 6.27, ‘‘<string value expression>’’:

i) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, neither operand of <concatenation> shall be of declared type NATIONAL
CHARACTER LARGE OBJECT.

h) Subclause 8.5, ‘‘<like predicate>’’:

i) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, a <character value expression> simply contained in a <like predicate>
shall not be of declared type NATIONAL CHARACTER LARGE OBJECT.

25) Specifications for Feature F431, ‘‘Read-only scrollable cursors’’:

a) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature F431, ‘‘Read-only scrollable cursors’’, a <declare cursor> shall not
specify <cursor scrollability>.

b) Subclause 14.3, ‘‘<fetch statement>’’:

i) Without Feature F431, ‘‘Read-only scrollable cursors’’, a <fetch statement> shall not
specify a <fetch orientation>.

26) Specifications for Feature F441, ‘‘Extended set function support’’:

a) Subclause 6.16, ‘‘<set function specification>’’:

i) Without Feature F441, ‘‘Extended set function support’’, if a <general set function>
specifies or implies ALL, then the <value expression> shall contain a column reference
that references a column of T.

ii) Without Feature F441, ‘‘Extended set function support’’, no column reference contained
in a <set function specification> shall reference a column derived from a <value expres-
sion> that generally contains a <set function specification> SFS2 without an intervening
<routine invocation>.

iii) Without Feature F441, ‘‘Extended set function support’’, if a <general set function>
specifies or implies ALL, then COUNT shall not be specified.

iv) Without Feature F441, ‘‘Extended set function support’’, if the <value expression>
contains a column reference that is an outer reference, then the <value expression>
shall be a column reference.

980 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) Subclause 7.8, ‘‘<where clause>’’:

i) Without Feature F441, ‘‘Extended set function support’’, a <value expression> directly
contained in the <search condition> shall not contain a <column reference> that refer-
ences a <derived column> that generally contains a <set function specification> without
an intervening <routine invocation>.

27) Specifications for Feature F451, ‘‘Character set definition’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, a <character string literal> shall not specify a <character set specification>.

b) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, conforming SQL language shall not contain any <character set name>.

c) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, a <data type> shall not specify CHARACTER SET.

d) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, in conforming SQL language, an <object name> shall not specify CHARACTER
SET.

e) Subclause 10.6, ‘‘<character set specification>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, conforming SQL language shall not contain a <character set specification>.

f) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall not
contain any <character set definition>.

ii) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, a <schema character set specification> shall not be specified.

g) Subclause 11.30, ‘‘<character set definition>’’:

i) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall not
specify any <character set definition>.

ii) Without Feature F451, ‘‘Character set definition’’, and Feature F691, ‘‘Collation and
translation’’, <collation source> shall specify DEFAULT.

h) Subclause 11.31, ‘‘<drop character set statement>’’:

i) Without Feature F451, ‘‘Character set definition’’, conforming SQL language shall con-
tain no <drop character set statement>.

SQL Conformance Summary 981

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

i) Subclause 13.2, ‘‘<module name clause>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, <module character set specification> shall not be specified.

j) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature F451, ‘‘Character set definition’’, an <SQL schema definition state-
ment> shall not be a <drop character set statement>.

ii) Without Feature F451, ‘‘Character set definition’’, an <SQL schema definition state-
ment> shall not be a <character set definition>.

28) Specifications for Feature F461, ‘‘Named character sets’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, conforming SQL language shall not contain any <character set name>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, a <data type> shall not specify CHARACTER SET.

c) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, in conforming SQL language, an <object name> shall not specify CHARACTER
SET.

d) Subclause 10.6, ‘‘<character set specification>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, conforming SQL language shall not contain a <character set specification>.

e) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, a <schema character set specification> shall not be specified.

f) Subclause 13.2, ‘‘<module name clause>’’:

i) Without Feature F451, ‘‘Character set definition’’, or Feature F461, ‘‘Named character
sets’’, <module character set specification> shall not be specified.

29) Specifications for Feature F491, ‘‘Constraint management’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall not
contain any <constraint name>.

b) Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’:

i) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall
contain no <constraint name definition>.

982 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

c) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall not
contain any <constraint name definition>.

d) Subclause 11.6, ‘‘<table constraint definition>’’:

i) Without Feature F491, ‘‘Constraint management’’, conforming SQL language shall
contain no <constraint name definition>.

30) Specifications for Feature F502, ‘‘Enhanced documentation tables’’:

a) Subclause 20.48, ‘‘SQL_IMPLEMENTATION_INFO view’’:

i) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language
shall not reference the INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
view.

b) Subclause 20.50, ‘‘SQL_PACKAGES view’’:

i) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language
shall not reference the INFORMATION_SCHEMA.SQL_PACKAGES view.

c) Subclause 20.52, ‘‘SQL_SIZING_PROFILES view’’:

i) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language
shall not reference the INFORMATION_SCHEMA.SQL_SIZING_PROFILES view.

d) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language
shall not reference the INFORMATION_SCHEMA.SQL_SIZING_PROFS view.

ii) Without Feature F502, ‘‘Enhanced documentation tables’’, conforming SQL language
shall not reference the INFORMATION_SCHEMA.SQL_IMPL_INFO view.

31) Specifications for Feature F511, ‘‘BIT data type’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F511, ‘‘BIT data type’’, a <general literal> shall not be a <bit string
literal> or a <hex string literal>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F511, ‘‘BIT data type’’, a <data type> shall not be a <bit string type>.

c) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature F511, ‘‘BIT data type’’, conforming SQL language shall contain no <bit
value function>.

d) Subclause 6.27, ‘‘<string value expression>’’:

i) Without Feature F511, ‘‘BIT data type’’, conforming SQL language shall contain no <bit
value expression>.

SQL Conformance Summary 983

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

32) Specifications for Feature F521, ‘‘Assertions’’:

a) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any
<assertion definition>.

b) Subclause 11.36, ‘‘<assertion definition>’’:

i) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any
<assertion definition>.

c) Subclause 11.37, ‘‘<drop assertion statement>’’:

i) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not contain any
<drop assertion statement>.

d) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature F521, ‘‘Assertions’’, an <SQL schema definition statement> shall not be
a <drop assertion statement>.

ii) Without Feature F521, ‘‘Assertions’’, an <SQL schema definition statement> shall not be
an <assertion definition>.

e) Subclause 20.10, ‘‘ASSERTIONS view’’:

i) Without Feature F521, ‘‘Assertions’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ASSERTIONS.

33) Specifications for Feature F531, ‘‘Temporary tables’’:

a) Subclause 11.3, ‘‘<table definition>’’:

i) Without Feature F531, ‘‘Temporary tables’’, conforming SQL language shall not specify
TEMPORARY and shall not reference any global or local temporary table.

b) Subclause 13.1, ‘‘<SQL-client module definition>’’:

i) Without Feature F531, ‘‘Temporary tables’’, an <SQL-client module definition> shall not
contain a <temporary table declaration>.

c) Subclause 14.11, ‘‘<temporary table declaration>’’:

i) Without Feature F531, ‘‘Temporary tables’’, conforming SQL language shall not contain
any <temporary table declaration>.

34) Specifications for Feature F555, ‘‘Enhanced seconds precision’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature F555, ‘‘Enhanced seconds precision’’, an <unsigned integer> that is a
<seconds fraction> that is contained in a <timestamp literal> shall not contain more
than 6 <digit>s. A <time literal> shall not contain a <seconds fraction>.

984 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature F555, ‘‘Enhanced seconds precision’’, a <time precision>, if specified,
shall specify 0 (zero).

ii) Without Feature F555, ‘‘Enhanced seconds precision’’, a <timestamp precision>, if speci-
fied, shall specify 0 (zero) or 6.

c) Subclause 6.19, ‘‘<datetime value function>’’:

i) Without Feature F555, ‘‘Enhanced seconds precision’’, if LOCALTIMESTAMP is speci-
fied, then <timestamp precision>, if specified, shall be either 0 (zero) or 6.

ii) Without Feature F555, ‘‘Enhanced seconds precision’’, if LOCALTIME is specified, then
<time precision>, if specified, shall be 0 (zero).

35) Specifications for Feature F561, ‘‘Full value expressions’’:

a) Subclause 6.16, ‘‘<set function specification>’’:

i) Without Feature F561, ‘‘Full value expressions’’, or Feature F801, ‘‘Full set function’’,
if a <general set function> specifies DISTINCT, then the <value expression> shall be a
column reference.

b) Subclause 8.4, ‘‘<in predicate>’’:

i) Without Feature F561, ‘‘Full value expressions’’, conforming SQL language shall not
contain a <row value expression> immediately contained in an <in value list> that is not
a <value specification>.

36) Specifications for Feature F571, ‘‘Truth value tests’’:

a) Subclause 6.30, ‘‘<boolean value expression>’’:

i) Without Feature F571, ‘‘Truth value tests’’, a <boolean test> shall not specify a <truth
value>.

37) Specifications for Feature F591, ‘‘Derived tables’’:

a) Subclause 7.6, ‘‘<table reference>’’:

i) Without Feature F591, ‘‘Derived tables’’, conforming SQL language shall not specify a
<derived table>.

38) Specifications for Feature F641, ‘‘Row and table constructors’’:

a) Subclause 7.1, ‘‘<row value constructor>’’:

i) Without Feature F641, ‘‘Row and table constructors’’, a <row value constructor> that
is not simply contained in a <table value constructor> shall not contain more than one
<row value constructor element>.

ii) Without Feature F641, ‘‘Row and table constructors’’, a <row value constructor> shall
not be a <row subquery>.

SQL Conformance Summary 985

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

b) Subclause 7.3, ‘‘<table value constructor>’’:

i) Without Feature F641, ‘‘Row and table constructors’’, the <row value expression list> of
a <table value constructor> shall contain exactly one <row value constructor> RVE. RVE
shall be of the form ‘‘(<row value constructor element list>)’’.

ii) Without Feature F641, ‘‘Row and table constructors’’, conforming SQL language shall
not contain any <table value constructor>.

39) Specifications for Feature F651, ‘‘Catalog name qualifiers’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F651, ‘‘Catalog name qualifiers’’, conforming SQL language shall not
contain any explicit <catalog name>.

40) Specifications for Feature F661, ‘‘Simple tables’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature F661, ‘‘Simple tables’’, a <simple table> shall not be a <table value
constructor> except in an <insert statement>.

ii) Without Feature F661, ‘‘Simple tables’’, conforming SQL language shall contain no
<explicit table>.

41) Specifications for Feature F671, ‘‘Subqueries in CHECK constraints’’:

a) Subclause 11.9, ‘‘<check constraint definition>’’:

i) Without Feature F671, ‘‘Subqueries in CHECK constraints’’, the <search condition>
contained in a <check constraint definition> shall not contain a <subquery>.

42) Specifications for Feature F691, ‘‘Collation and translation’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any explicit <collation name>, <translation name>, or <form-of-use conversion
name>.

b) Subclause 6.2, ‘‘<field definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, and Feature T051, ‘‘Row types’’, a
<field definition> shall not contain a <collate clause>.

c) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall
contain no <form-of-use conversion>.

ii) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall
contain no <character translation>.

d) Subclause 6.27, ‘‘<string value expression>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collate clause>.

986 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

e) Subclause 7.9, ‘‘<group by clause>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collate clause>.

f) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature F691, ‘‘Collation and translation’’, in conforming SQL language, an
<object name> shall not specify COLLATION or TRANSLATION.

g) Subclause 10.8, ‘‘<collate clause>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collate clause>.

h) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <translation definition>.

ii) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collation definition>.

i) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collate clause>.

j) Subclause 11.30, ‘‘<character set definition>’’:

i) Without Feature F451, ‘‘Character set definition’’, and Feature F691, ‘‘Collation and
translation’’, <collation source> shall specify DEFAULT.

k) Subclause 11.32, ‘‘<collation definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <collation definition>.

l) Subclause 11.33, ‘‘<drop collation statement>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
contain any <drop collation statement>.

m) Subclause 11.34, ‘‘<translation definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall
contain no <translation definition>.

n) Subclause 11.35, ‘‘<drop translation statement>’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall
contain no <drop translation statement>.

o) Subclause 11.41, ‘‘<attribute definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, and Feature S023, ‘‘Basic structured
types’’, an <attribute definition> shall not contain a <collate clause>.

SQL Conformance Summary 987

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

p) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature F691, ‘‘Collation and translation’’, an <SQL schema definition state-
ment> shall not be a <drop collation statement> or a <drop translation statement>

ii) Without Feature F691, ‘‘Collation and translation’’, an <SQL schema definition state-
ment> shall not be a <collation definition> or a <translation definition>.

q) Subclause 20.14, ‘‘COLLATIONS view’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.COLLATIONS.

r) Subclause 20.58, ‘‘TRANSLATIONS view’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRANSLATIONS.

s) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRANSLATIONS_S.

ii) Without Feature F691, ‘‘Collation and translation’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.COLLATIONS_S.

43) Specifications for Feature F701, ‘‘Referential update actions’’:

a) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature F701, ‘‘Referential update actions’’, a <column constraint> shall not
contain an <update rule>.

b) Subclause 11.8, ‘‘<referential constraint definition>’’:

i) Without Feature F701, ‘‘Referential update actions’’, a <referential triggered action>
shall not contain an <update rule>.

44) Specifications for Feature F711, ‘‘ALTER domain’’:

a) Subclause 11.24, ‘‘<alter domain statement>’’:

i) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no
<alter domain statement>.

b) Subclause 11.25, ‘‘<set domain default clause>’’:

i) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no
<set domain default clause>.

c) Subclause 11.26, ‘‘<drop domain default clause>’’:

i) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no
<drop domain default clause>.

988 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

d) Subclause 11.27, ‘‘<add domain constraint definition>’’:

i) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no
<add domain constraint definition>.

e) Subclause 11.28, ‘‘<drop domain constraint definition>’’:

i) Without Feature F711, ‘‘ALTER domain’’, conforming SQL language shall contain no
<drop domain constraint definition>.

45) Specifications for Feature F721, ‘‘Deferrable constraints’’:

a) Subclause 10.9, ‘‘<constraint name definition> and <constraint characteristics>’’:

i) Without Feature F721, ‘‘Deferrable constraints’’, conforming SQL language shall contain
no explicit <constraint characteristics>.
NOTE 360 – This means that INITIALLY IMMEDIATE NOT DEFERRABLE is implicit.

b) Subclause 16.3, ‘‘<set constraints mode statement>’’:

i) Without Feature F721, ‘‘Deferrable constraints’’, conforming SQL language shall not
contain any <set constraints mode statement>.

46) Specifications for Feature F731, ‘‘INSERT column privileges’’:

a) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature F731, ‘‘INSERT column privileges’’, an <action> that specifies INSERT
shall not contain a <privilege column list>.

47) Specifications for Feature F741, ‘‘Referential MATCH types’’:

a) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature F741, ‘‘Referential MATCH types’’, conforming SQL language shall not
contain a <match predicate>.

b) Subclause 8.11, ‘‘<match predicate>’’:

i) Without Feature F741, ‘‘Referential MATCH types’’, and Feature S024, ‘‘Enhanced
structured types’’, no subfield of the declared row type of the <row value expression>
shall be of a structured type and no column of the result of the <table subquery> shall
be of a structured type.

ii) Without Feature F741, ‘‘Referential MATCH types’’, conforming SQL language shall not
contain any <match predicate>.

c) Subclause 11.8, ‘‘<referential constraint definition>’’:

i) Without Feature F741, ‘‘Referential MATCH types’’, a <references specification> shall
not specify MATCH.

SQL Conformance Summary 989

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

48) Specifications for Feature F751, ‘‘View CHECK enhancements’’:

a) Subclause 11.21, ‘‘<view definition>’’:

i) Without Feature F751, ‘‘View CHECK enhancements’’, conforming SQL language shall
not contain any <levels clause>.

ii) Without Feature F751, ‘‘View CHECK enhancements’’, if CHECK OPTION is specified,
then the <view definition> shall not contain a <subquery>.

49) Specifications for Feature F761, ‘‘Session management’’:

a) Subclause 18.1, ‘‘<set session characteristics statement>’’:

i) Without Feature F761, ‘‘Session management’’, <set session characteristics statement>
shall not specify <transaction characteristics>.

50) Specifications for Feature F771, ‘‘Connection management’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not
contain any explicit <connection name>.

b) Subclause 17.1, ‘‘<connect statement>’’:

i) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not
contain any <connect statement>.

c) Subclause 17.2, ‘‘<set connection statement>’’:

i) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not
contain any <set connection statement>.

d) Subclause 17.3, ‘‘<disconnect statement>’’:

i) Without Feature F771, ‘‘Connection management’’, conforming SQL language shall not
contain any <disconnect statement>.

51) Specifications for Feature F781, ‘‘Self-referencing operations’’:

a) Subclause 14.7, ‘‘<delete statement: searched>’’:

i) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table
of T shall be an underlying table of any <query expression> generally contained in the
<search condition>.

b) Subclause 14.8, ‘‘<insert statement>’’:

i) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table
of T shall be generally contained in the <query expression> immediately contained in
the <insert columns and source> except as the <table or query name> or <correlation
name> of a column reference.

990 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

c) Subclause 14.10, ‘‘<update statement: searched>’’:

i) Without Feature F781, ‘‘Self-referencing operations’’, no leaf generally underlying table
of T shall be an underlying table of any <query expression> generally contained in
the <search condition> or in any <value expression> simply contained in a <row value
expression> immediately contained in any <set clause> contained in the <set clause
list>.

52) Specifications for Feature F791, ‘‘Insensitive cursors’’:

a) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature F791, ‘‘Insensitive cursors’’, or Feature T231, ‘‘SENSITIVE cursors’’, a
<declare cursor> shall not specify ASENSITIVE.

ii) Without Feature F791, ‘‘Insensitive cursors’’, a <declare cursor shall not specify
INSENSITIVE.

53) Specifications for Feature F801, ‘‘Full set function’’:

a) Subclause 7.11, ‘‘<query specification>’’:

i) Without Feature F801, ‘‘Full set function’’, the <set quantifier> DISTINCT shall not be
specified more than once in a <query specification>, excluding any <subquery> of that
<query specification>.

54) Specifications for Feature F821, ‘‘Local table references’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature F821, ‘‘Local table references’’, conforming SQL language shall not
specify MODULE in a <local or schema qualifier> or <local qualified name>.

b) Subclause 6.6, ‘‘<column reference>’’:

i) Without Feature F821, ‘‘Local table references’’, conforming SQL language shall not
specify MODULE.

55) Specifications for Feature F831, ‘‘Full cursor update’’:

a) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature F831, ‘‘Full cursor update’’, if an <updatability clause> of FOR
UPDATE with or without a <column name list> is specified, then <cursor scrollability>
shall not be specified.

ii) Without Feature F831, ‘‘Full cursor update’’, if an <updatability clause> of FOR
UPDATE with or without a <column name list> is specified, then ORDER BY shall
not be specified.

b) Subclause 14.9, ‘‘<update statement: positioned>’’:

i) Without Feature F831, ‘‘Full cursor update’’, CR shall not be an ordered cursor.

SQL Conformance Summary 991

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

56) Specifications for Feature S023, ‘‘Basic structured types’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
contain any <attribute name>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S023, ‘‘Basic structured types’’, <user-defined type name>, if specified,
shall not identify a structured type.

c) Subclause 6.11, ‘‘<method invocation>’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall contain
no <method invocation>.

d) Subclause 6.24, ‘‘<new specification>’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming Core SQL language shall
not contain any <new specification>.

e) Subclause 10.4, ‘‘<routine invocation>’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
specify a <generalized expression>.

f) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature S023, ‘‘Basic structured types’’, an <action> shall not specify UNDER
on an <object name> that specifies a <user-defined type name> that identifies a struc-
tured type.

g) Subclause 11.40, ‘‘<user-defined type definition>’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall contain
no <user-defined type definition> that specifies a <member list>.

h) Subclause 11.41, ‘‘<attribute definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, and Feature S023, ‘‘Basic structured
types’’, an <attribute definition> shall not contain a <collate clause>.

ii) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
contain any <attribute definition>.

i) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
specify <method specification designator>.

j) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature S023, ‘‘Basic structured types’’, an <SQL schema definition statement>
shall not be a <user-defined type definition> that specifies a <member list>.

992 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

k) Subclause 20.11, ‘‘ATTRIBUTES view’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.ATTRIBUTES.

l) Subclause 20.31, ‘‘METHOD_SPECIFICATION_PARAMETERS view’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS.

m) Subclause 20.32, ‘‘METHOD_SPECIFICATIONS view’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.

n) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.ATTRIBUTES_S.

ii) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.METHOD_SPEC_PARAMS.

iii) Without Feature S023, ‘‘Basic structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.METHOD_SPECS.

57) Specifications for Feature S024, ‘‘Enhanced structured types’’:

a) Subclause 6.12, ‘‘<static method invocation>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
contain any <static method invocation>.

b) Subclause 6.16, ‘‘<set function specification>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, in a <general set function>, if MAX
or MIN is specified, then the <value expression> shall not be of a structured type.

ii) Without Feature S024, ‘‘Enhanced structured types’’, the declared type of a <general set
function> shall not be structured type.

c) Subclause 7.9, ‘‘<group by clause>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <column reference> simply
contained in a <group by clause> shall not reference a column of a structured type.

d) Subclause 7.11, ‘‘<query specification>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, if any column in the result of a
<query specification> is of structured type, then DISTINCT shall not be specified or
implied.

e) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, if any column in the result of
a <query expression> is of structured type, then DISTINCT shall not be specified or
implied, and neither INTERSECT nor EXCEPT shall be specified.

SQL Conformance Summary 993

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

f) Subclause 8.2, ‘‘<comparison predicate>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared type of
a <row value expression> that is simply contained in a <comparison predicate> shall be
of a structured type.

g) Subclause 8.3, ‘‘<between predicate>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared type of
a <row value expression> that is simply contained in a <between predicate> shall be of
a structured type.

h) Subclause 8.4, ‘‘<in predicate>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared row type
of a <row value expression> or a <table subquery> that is simply contained in an <in
predicate> shall be of a structured type.

ii) Without Feature S024, ‘‘Enhanced structured types’’, no <value expression> simply
contained in an <in value list> shall be of a structured type.

i) Subclause 8.8, ‘‘<quantified comparison predicate>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, no subfield of the declared row type
of a <row value expression> shall be of a structured type.

j) Subclause 8.10, ‘‘<unique predicate>’’:

i) Without Feature F291, ‘‘UNIQUE predicate’’ and Feature S024, ‘‘Enhanced structured
types’’, no column of the result of the <table subquery> shall be of structured type.

k) Subclause 8.11, ‘‘<match predicate>’’:

i) Without Feature F741, ‘‘Referential MATCH types’’, and Feature S024, ‘‘Enhanced
structured types’’, no subfield of the declared row type of the <row value expression>
shall be of a structured type and no column of the result of the <table subquery> shall
be of a structured type.

l) Subclause 8.13, ‘‘<distinct predicate>’’:

i) Without Feature T151, ‘‘DISTINCT predicate’’, and Feature S024, ‘‘Enhanced structured
types’’, no subfield of the declared row type of either <row value expression> shall be of
a structured type.

m) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, an <action> shall not specify
USAGE on an <object name> that specifies a <user-defined type name> that identifies a
structured type.

ii) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
contain a <privilege method list>.

n) Subclause 10.7, ‘‘<specific routine designator>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
contain any <specific routine designator> that specifies METHOD.

994 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

o) Subclause 11.40, ‘‘<user-defined type definition>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <partial method specification>
shall not specify INSTANCE or STATIC.

ii) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
specify NO SQL in the <routine characteristics> of an <original method specification>.

iii) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
specify SELF AS RESULT.

iv) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
specify NOT INSTANTIABLE.

v) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
specify PARAMETER STYLE GENERAL in the <method characteristics> of an <original
method specification>.

p) Subclause 11.41, ‘‘<attribute definition>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, an <attribute definition> shall not
specify an <attribute default>.

ii) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL parameter declaration>
shall not specify RESULT.

iii) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL-invoked function> that
specifies a <method specification> shall not specify <hold or release>.

q) Subclause 11.42, ‘‘<alter type statement>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall
contain no <alter type statement>.

r) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL parameter declaration>
shall not specify RESULT.

ii) Without Feature S024, ‘‘Enhanced structured types’’, an <SQL-invoked function> that
specifies a <method specification designator> shall not specify <hold or release>.

s) Subclause 11.51, ‘‘<drop routine statement>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator> in a
<drop routine statement> shall not identify a method.

t) Subclause 12.2, ‘‘<grant privilege statement>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator>
contained in a <grant statement> shall not identify a method.

u) Subclause 12.6, ‘‘<revoke statement>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <specific routine designator>
contained in a <revoke statement> shall not identify a method.

SQL Conformance Summary 995

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

v) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, a <value expression> that is a
<sort key> shall not be of a structured type.

w) Subclause 14.8, ‘‘<insert statement>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, for each column C identified in the
explicit or implicit <insert column list>, if the declared type of C is a structured type
TY, then the declared type of the corresponding column of the <query expression> or
<contextually typed table value constructor> shall be TY.

x) Subclause 14.9, ‘‘<update statement: positioned>’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, if the declared type of the <update
target> UT in a <set clause> is a structured type TY, then the declared type of the
<update source> contained in the same <set clause> shall be TY.

ii) Without Feature S024, ‘‘Enhanced structured types’’, if the declared type of the last
<method name> LMN in a <set clause> is a structured type TY, then the declared type
of the <update source> contained in the same <set clause> shall be TY.

y) Subclause 20.23, ‘‘DIRECT_SUPERTYPES view’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.DIRECT_SUPERTYPES.

z) Subclause 20.39, ‘‘ROLE_TABLE_METHOD_GRANTS view’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, and Feature T331, ‘‘Basic roles’’,
conforming SQL language shall not reference INFORMATION_SCHEMA.ROLE_
TABLE_METHOD_GRANTS.

aa) Subclause 20.54, ‘‘TABLE_METHOD_PRIVILEGES view’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TABLE_METHOD_PRIVILEGES.

bb) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TABLE_METHOD_PRIVS.

58) Specifications for Feature S041, ‘‘Basic reference types’’:

a) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not
specify <reference type>.

b) Subclause 6.9, ‘‘<attribute or method reference>’’:

i) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall contain
no <attribute or method reference>.

996 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

c) Subclause 6.14, ‘‘<dereference operation>’’:

i) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not
contain any <dereference operation>.

d) Subclause 6.23, ‘‘<value expression>’’:

i) Without Feature S041, ‘‘Basic reference types’’, a <value expression> shall not be a
<reference value expression>.

e) Subclause 20.34, ‘‘REFERENCED_TYPES view’’:

i) Without Feature S041, ‘‘Basic reference types’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.REFERENCED_TYPES.

59) Specifications for Feature S043, ‘‘Enhanced reference types’’:

a) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify a <scope clause> that is not simply contained in a <data type> that is simply
contained in a <column definition>.

b) Subclause 6.2, ‘‘<field definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify REFERENCES ARE CHECKED.

c) Subclause 6.10, ‘‘<method reference>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall
contain no <method reference>.

d) Subclause 6.15, ‘‘<reference resolution>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
contain any <reference resolution>.

e) Subclause 6.22, ‘‘<cast specification>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, if the declared data type of <cast
operand> is a reference type, then <cast target> shall specify a <data type> that is a
reference type.

f) Subclause 11.3, ‘‘<table definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, a <column option list> shall not
contain a <scope clause>.

ii) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify <self-referencing column specification>.

g) Subclause 11.4, ‘‘<column definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify REFERENCES ARE CHECKED.

SQL Conformance Summary 997

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

h) Subclause 11.15, ‘‘<add column scope clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced
reference types’’, conforming SQL language shall not contain any <add column scope
clause>.

i) Subclause 11.16, ‘‘<drop column scope clause>’’:

i) Without Feature F381, ‘‘Extended schema manipulation’’, and Feature S043, ‘‘Enhanced
reference types’’, conforming SQL language shall not contain any <drop column scope
clause>.

j) Subclause 11.21, ‘‘<view definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify <referenceable view specification>.

k) Subclause 11.40, ‘‘<user-defined type definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify <reference type specification>.

l) Subclause 11.41, ‘‘<attribute definition>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify REFERENCES ARE CHECKED.

m) Subclause 14.8, ‘‘<insert statement>’’:

i) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify <override clause>.

60) Specifications for Feature S051, ‘‘Create table of type’’:

a) Subclause 11.3, ‘‘<table definition>’’:

i) Without Feature S051, ‘‘Create table of type’’, conforming SQL language shall not specify
‘‘OF <user-defined type>’’.

61) Specifications for Feature S071, ‘‘SQL paths in function and type name resolution’’:

a) Subclause 6.3, ‘‘<value specification> and <target specification>’’:

i) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, a <general
value specification> shall not specify CURRENT_PATH.

b) Subclause 10.3, ‘‘<path specification>’’:

i) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming
SQL language shall not contain any <path specification>.

c) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming
SQL language shall not contain any <schema path specification>.

998 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

d) Subclause 11.5, ‘‘<default clause>’’:

i) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, a <default
option> shall not specify CURRENT_PATH.

e) Subclause 13.1, ‘‘<SQL-client module definition>’’:

i) Without Feature S071, ‘‘SQL paths in function and type name resolution’’, conforming
SQL language shall not contain any <module path specification>.

62) Specifications for Feature S081, ‘‘Subtables’’:

a) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature S081, ‘‘Subtables’’, an <action> shall not specify UNDER on an <object
name> that specifies a <table name>.

b) Subclause 11.3, ‘‘<table definition>’’:

i) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not specify <sub-
table clause>.

c) Subclause 12.2, ‘‘<grant privilege statement>’’:

i) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not specify WITH
HIERARCHY OPTION.

d) Subclause 12.6, ‘‘<revoke statement>’’:

i) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not contain WITH
HIERARCHY OPTION.

e) Subclause 20.22, ‘‘DIRECT_SUPERTABLES view’’:

i) Without Feature S081, ‘‘Subtables’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.DIRECT_SUPERTABLES.

63) Specifications for Feature S091, ‘‘Basic array support’’:

a) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not specify
<collection type>.

b) Subclause 6.4, ‘‘<contextually typed value specification>’’:

i) Without Feature S091, ‘‘Basic array support’’, <empty specification> shall not be speci-
fied.

c) Subclause 6.13, ‘‘<element reference>’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not con-
tain any <element reference>.

d) Subclause 6.17, ‘‘<numeric value function>’’:

i) Without Feature S091, ‘‘Basic array support’’, a <numeric value function> shall not be a
<cardinality expression>.

SQL Conformance Summary 999

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

e) Subclause 6.23, ‘‘<value expression>’’:

i) Without Feature S091, ‘‘Basic array support’’, a <value expression> shall not specify a
<collection value expression>.

ii) Without Feature S091, ‘‘Basic array support’’, a <value expression primary> shall not be
a <collection value constructor>.

f) Subclause 6.31, ‘‘<array value expression>’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not con-
tain any <array value expression>.

g) Subclause 6.32, ‘‘<array value constructor>’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not con-
tain any <array value constructor>.

h) Subclause 7.1, ‘‘<row value constructor>’’:

i) Without Feature S091, ‘‘Basic array support’’, <empty specification> shall not be speci-
fied.

i) Subclause 7.6, ‘‘<table reference>’’:

i) Without Feature S091, ‘‘Basic array support’’, a <table reference> shall not contain a
<collection derived table>.

j) Subclause 14.9, ‘‘<update statement: positioned>’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not con-
tain any <update target> that immediately contains a <simple value specification>.

k) Subclause 20.27, ‘‘ELEMENT_TYPES view’’:

i) Without Feature S091, ‘‘Basic array support’’, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA.ELEMENT_TYPES.

64) Specifications for Feature S092, ‘‘Arrays of user-defined types’’:

a) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S092, ‘‘Arrays of user-defined types’’, the <data type> simply contained
in a <collection type> shall not be a <user-defined type>.

65) Specifications for Feature S094, ‘‘Arrays of reference types’’:

a) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature S094, ‘‘Arrays of reference types’’, the <data type> simply contained in
a <collection type> shall not be a <reference type>.

1000 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

66) Specifications for Feature S111, ‘‘ONLY in query expressions’’:

a) Subclause 7.6, ‘‘<table reference>’’:

i) Without Feature S111, ‘‘ONLY in query expressions’’, a <table reference> shall not
specify ONLY.

67) Specifications for Feature S151, ‘‘Type predicate’’:

a) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature S151, ‘‘Type predicate’’, conforming SQL language shall contain no
<type predicate>.

b) Subclause 8.14, ‘‘<type predicate>’’:

i) Without Feature S151, ‘‘Type predicate’’, conforming SQL language shall not contain a
<type predicate>.

68) Specifications for Feature S161, ‘‘Subtype treatment’’:

a) Subclause 6.23, ‘‘<value expression>’’:

i) Without Feature S161, ‘‘Subtype treatment’’, a <value expression primary> shall not be
a <subtype treatment>.

b) Subclause 6.25, ‘‘<subtype treatment>’’:

i) Without Feature S161, ‘‘Subtype treatment’’, conforming Core SQL Language shall
contain no <subtype treatment>.

69) Specifications for Feature S201, ‘‘SQL routines on arrays’’:

a) Subclause 10.4, ‘‘<routine invocation>’’:

i) Without Feature S201, ‘‘SQL routines on arrays’’, the declared type of an <SQL argu-
ment> shall not be an array type.

b) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature S201, ‘‘SQL routines on arrays’’, a <parameter type> shall not be an
array type.

ii) Without Feature S201, ‘‘SQL routines on arrays’’, a <returns data type> shall not be an
array type.

70) Specifications for Feature S211, ‘‘User-defined cast functions’’:

a) Subclause 11.52, ‘‘<user-defined cast definition>’’:

i) Without Feature S211, ‘‘User-defined cast functions’’, conforming SQL language shall
contain no <user-defined cast definition>.

b) Subclause 11.53, ‘‘<drop user-defined cast statement>’’:

i) Without Feature S211, ‘‘User-defined cast functions’’, conforming SQL language shall not
contain any <drop user-defined cast statement>.

SQL Conformance Summary 1001

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

71) Specifications for Feature S241, ‘‘Transform functions’’:

a) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature S241, ‘‘Transform functions’’, conforming Core SQL language shall not
specify <transform group specification>.

b) Subclause 11.56, ‘‘<transform definition>’’:

i) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not
contain any <transform definition>.

c) Subclause 11.57, ‘‘<drop transform statement>’’:

i) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not
contain any <drop transform statement>.

d) Subclause 13.1, ‘‘<SQL-client module definition>’’:

i) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not
contain <module transform group specification>.

e) Subclause 20.57, ‘‘TRANSFORMS view’’:

i) Without Feature S241, ‘‘Transform functions’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRANSFORMS.

72) Specifications for Feature S251, ‘‘User-defined orderings’’:

a) Subclause 11.54, ‘‘<user-defined ordering definition>’’:

i) Without Feature S251, ‘‘User-defined orderings’’, conforming Core SQL shall contain no
<user-defined ordering definition>.

b) Subclause 11.55, ‘‘<drop user-defined ordering statement>’’:

i) Without Feature S251, ‘‘User-defined orderings’’, conforming SQL language shall not
contain any <drop user-defined ordering statement>.

73) Specifications for Feature S261, ‘‘Specific type method’’:

a) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature S261, ‘‘Specific type method’’, conforming SQL language shall not
specify <specific type method>.

74) Specifications for Feature T011, ‘‘Timestamp in Information Schema’’:

a) Subclause 20.7, ‘‘TIME_STAMP domain’’:

i) Without Feature F251, ‘‘Domain support’’, and Feature T011, ‘‘Timestamp in Information
Schema’’, conforming SQL language shall not reference INFORMATION_SCHEMA.TIME_
STAMP.

1002 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) Subclause 20.32, ‘‘METHOD_SPECIFICATIONS view’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.CREATED
or INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.LAST_ALTERED.

c) Subclause 20.45, ‘‘ROUTINES view’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA.ROUTINES.CREATED or
INFORMATION_SCHEMA.ROUTINES.LAST_ALTERED.

d) Subclause 20.62, ‘‘TRIGGERS view’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic
trigger capability’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.TRIGGERS.TRIGGER_CREATED.

e) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL language
shall not reference INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.CREATED
or INFORMATION_SCHEMA.METHOD_SPECIFICATIONS.LAST_ALTERED.

ii) Without Feature T011, ‘‘Timestamp in Information Schema’’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA.ROUTINES_S.CREATED or
INFORMATION_SCHEMA.ROUTINES_S.LAST_ALTERED.

iii) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic
trigger capability’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.TRIGGERS.CREATED.

75) Specifications for Feature T031, ‘‘BOOLEAN data type’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature T031, ‘‘BOOLEAN data type’’, a <general literal> shall not be a
<boolean literal>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature T031, ‘‘BOOLEAN data type’’, a <predefined type> shall not be a
<boolean type>.

c) Subclause 6.16, ‘‘<set function specification>’’:

i) Without Feature T031, ‘‘BOOLEAN data type’’, conforming SQL language shall not
contain a <set function type> that specifies EVERY, ANY, or SOME.

d) Subclause 6.23, ‘‘<value expression>’’:

i) Without Feature T031, ‘‘BOOLEAN data type’’, a <value expression> shall not be a
<boolean value expression>.

SQL Conformance Summary 1003

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

e) Subclause 6.30, ‘‘<boolean value expression>’’:

i) Without Feature T031, ‘‘BOOLEAN data type’’, a <boolean primary> shall not specify a
<nonparenthesized value expression primary>.

76) Specifications for Feature T041, ‘‘Basic LOB data type support’’:

a) Subclause 5.3, ‘‘<literal>’’:

i) Without Feature T041, ‘‘Basic LOB data type support’’, conforming Core SQL language
shall not contain any <binary string literal>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature T041, ‘‘Basic LOB data type support’’, conforming SQL language shall
not specify LARGE OBJECT, BLOB, CLOB, or NCLOB.

77) Specifications for Feature T042, ‘‘Extended LOB data type support’’:

a) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of a
<character value function> shall not be CHARACTER LARGE OBJECT or NATIONAL
CHARACTER LARGE OBJECT.

ii) Without Feature T042, ‘‘Extended LOB data type support’’, conforming Core SQL lan-
guage shall not contain any <blob value function>.

b) Subclause 6.21, ‘‘<case expression>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of a <re-
sult> simply contained in a <case expression> shall not be BINARY LARGE OBJECT or
CHARACTER LARGE OBJECT.

ii) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, the declared type of a <result> simply contained in a <case expression>
shall not be NATIONAL CHARACTER LARGE OBJECT.

c) Subclause 6.22, ‘‘<cast specification>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, the declared type of <cast
operand> shall not be BINARY LARGE OBJECT or CHARACTER LARGE OBJECT.

ii) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB
data type support’’, the declared type of <cast operand> shall not be NATIONAL
CHARACTER LARGE OBJECT.

d) Subclause 6.27, ‘‘<string value expression>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, neither operand of <blob
concatenation> shall be of declared type BINARY LARGE OBJECT.

ii) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, neither operand of <concatenation> shall be of declared type NATIONAL
CHARACTER LARGE OBJECT. and LON-168)

1004 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

iii) Without Feature T042, ‘‘Extended LOB data type support’’, neither operand of <concate-
nation> shall be of declared type CHARACTER LARGE OBJECT.

e) Subclause 8.2, ‘‘<comparison predicate>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared
row type of a <row value expression> that is simply contained in a <comparison predi-
cate> shall be of declared type large object string.

f) Subclause 8.4, ‘‘<in predicate>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared
row type of a <row value expression> or a <table subquery> contained in an <in predi-
cate> shall be of declared type large object string.

g) Subclause 8.5, ‘‘<like predicate>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, a <character value expres-
sion> simply contained in a <like predicate> shall not be of declared type BINARY
LARGE OBJECT or CHARACTER LARGE OBJECT

ii) Without Feature F421, ‘‘National character’’, and Feature T042, ‘‘Extended LOB data
type support’’, a <character value expression> simply contained in a <like predicate>
shall not be of declared type NATIONAL CHARACTER LARGE OBJECT.

iii) Without Feature T042, ‘‘Extended LOB data type support’’, a <like predicate> shall not
be an <octet like predicate>.

h) Subclause 8.8, ‘‘<quantified comparison predicate>’’:

i) Without Feature T042, ‘‘Extended LOB data type support’’, no subfield of the declared
row type of a <row value expression> or a <table subquery> contained in a <quantified
comparison predicate> shall be of declared type large object string.

78) Specifications for Feature T051, ‘‘Row types’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any
<field name>.

b) Subclause 6.1, ‘‘<data type>’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not specify <row
type>.

c) Subclause 6.2, ‘‘<field definition>’’:

i) Without Feature F691, ‘‘Collation and translation’’, and Feature T051, ‘‘Row types’’, a
<field definition> shall not contain a <collate clause>.

ii) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any
<field definition>.

SQL Conformance Summary 1005

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

d) Subclause 6.8, ‘‘<field reference>’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall contain no <field
reference>.

e) Subclause 7.1, ‘‘<row value constructor>’’:

i) Without Feature T051, ‘‘Row types’’, ROW shall not be specified.

f) Subclause 7.2, ‘‘<row value expression>’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not contain any
<row value expression> or <contextually typed row value expression> that immediately
contains <row value special case>.

g) Subclause 7.11, ‘‘<query specification>’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not specify <all
fields reference>.

h) Subclause 20.29, ‘‘FIELDS view’’:

i) Without Feature T051, ‘‘Row types’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.FIELDS.

79) Specifications for Feature T111, ‘‘Updatable joins, unions, and columns’’:

a) Subclause 7.11, ‘‘<query specification>’’:

i) Without Feature T111, ‘‘Updatable joins, unions, and columns’’, a <query specification>
QS is not updatable if it is not simply updatable.

b) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature T111, ‘‘Updatable joins, unions, and columns’’, a <non-join query ex-
pression> that immediately contains UNION is not updatable.

80) Specifications for Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, conform-
ing SQL language shall not contain any <query name>.

b) Subclause 7.6, ‘‘<table reference>’’:

i) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, a <table
reference> shall not contain a <query name>.

c) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature T121, ‘‘WITH (excluding RECURSIVE) in query expression’’, a <query
expression> shall not specify a <with clause>.

1006 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

81) Specifications for Feature T131, ‘‘Recursive query’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature T131, ‘‘Recursive query’’, a <query expression> shall not specify
RECURSIVE.

b) Subclause 11.21, ‘‘<view definition>’’:

i) Without Feature T131, ‘‘Recursive query’’, conforming SQL language shall not specify
RECURSIVE.

82) Specifications for Feature T141, ‘‘SIMILAR predicate’’:

a) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature T141, ‘‘SIMILAR predicate’’, conforming SQL language shall contain no
<similar predicate>.

b) Subclause 8.6, ‘‘<similar predicate>’’:

i) Without Feature T141, ‘‘SIMILAR predicate’’, conforming SQL language shall contain no
<similar predicate>.

83) Specifications for Feature T151, ‘‘DISTINCT predicate’’:

a) Subclause 8.1, ‘‘<predicate>’’:

i) Without Feature T151, ‘‘DISTINCT predicate’’, conforming SQL language shall contain
no <distinct predicate>.

b) Subclause 8.13, ‘‘<distinct predicate>’’:

i) Without Feature T151, ‘‘DISTINCT predicate’’, and Feature S024, ‘‘Enhanced structured
types’’, no subfield of the declared row type of either <row value expression> shall be of
a structured type.

ii) Without Feature T151, ‘‘DISTINCT predicate’’, conforming SQL language shall not
specify any <distinct predicate>.

84) Specifications for Feature T171, ‘‘LIKE clause in table definition’’:

a) Subclause 11.3, ‘‘<table definition>’’:

i) Without Feature T171, ‘‘LIKE clause in table definition’’, a <table element> shall not be
a <like clause>.

85) Specifications for Feature T191, ‘‘Referential action RESTRICT’’:

a) Subclause 11.8, ‘‘<referential constraint definition>’’:

i) Without Feature T191, ‘‘Referential action RESTRICT’’, a <referential action> shall not
be RESTRICT.

SQL Conformance Summary 1007

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

86) Specifications for Feature T201, ‘‘Comparable data types for referential constraints’’:

a) Subclause 11.8, ‘‘<referential constraint definition>’’:

i) Without Feature T201, ‘‘Comparable data types for referential constraints’’, the data
type of each referencing column shall be the same as the data type of the corresponding
referenced column.

87) Specifications for Feature T211, ‘‘Basic trigger capability’’:

a) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature T211, ‘‘Basic trigger capability’’, an <action> shall not specify
TRIGGER.

b) Subclause 11.38, ‘‘<trigger definition>’’:

i) Without Feature T211, ‘‘Basic trigger capability’’, conforming Core SQL language shall
not contain a <trigger definition>.

c) Subclause 11.39, ‘‘<drop trigger statement>’’:

i) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not
contain <drop trigger statement>.

d) Subclause 20.59, ‘‘TRIGGERED_UPDATE_COLUMNS view’’:

i) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS.

e) Subclause 20.60, ‘‘TRIGGER_COLUMN_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference INFORMATION_SCHEMA.TRIGGER_
COLUMN_USAGE.

f) Subclause 20.61, ‘‘TRIGGER_TABLE_USAGE view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference the INFORMATION_SCHEMA.TRIGGER_
TABLE_USAGE view.

g) Subclause 20.62, ‘‘TRIGGERS view’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic
trigger capability’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.TRIGGERS.TRIGGER_CREATED.

ii) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRIGGERS.

h) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature T011, ‘‘Timestamp in Information Schema’’, and Feature T211, ‘‘Basic
trigger capability’’, conforming SQL language shall not reference INFORMATION_
SCHEMA.TRIGGERS.CREATED.

1008 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

ii) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’, con-
forming SQL language shall not reference INFORMATION_SCHEMA.TRIG_UPDATE_
COLS

iii) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRIGGERS_S.

iv) Without Feature F341, ‘‘Usage tables’’, and Feature T211, ‘‘Basic trigger capability’’,
conforming SQL language shall not reference the INFORMATION_SCHEMA.TRIG_
TABLE_USAGE view.

v) Without Feature T211, ‘‘Basic trigger capability’’, conforming SQL language shall not
reference INFORMATION_SCHEMA.TRIG_COLUMN_USAGE.

88) Specifications for Feature T212, ‘‘Enhanced trigger capability’’:

a) Subclause 11.38, ‘‘<trigger definition>’’:

i) Without Feature T212, ‘‘Enhanced trigger capability’’, a <trigger definition> shall not
specify or imply FOR EACH STATEMENT.

89) Specifications for Feature T231, ‘‘SENSITIVE cursors’’:

a) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature F791, ‘‘Insensitive cursors’’, or Feature T231, ‘‘SENSITIVE cursors’’, a
<declare cursor> shall not specify ASENSITIVE.

ii) Without Feature T231, ‘‘SENSITIVE cursors’’, a <declare cursor> shall not specify
SENSITIVE.

90) Specifications for Feature T241, ‘‘START TRANSACTION statement’’:

a) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature T241, ‘‘START TRANSACTION statement’’, an <SQL transaction
statement> shall not be a <start transaction statement>.

b) Subclause 16.1, ‘‘<start transaction statement>’’:

i) Without Feature T241, ‘‘START TRANSACTION statement’’, conforming SQL language
shall not contain any <start transaction statement>.

91) Specifications for Feature T251, ‘‘SET TRANSACTION statement: LOCAL option’’:

a) Subclause 16.2, ‘‘<set transaction statement>’’:

i) Without Feature T251, ‘‘SET TRANSACTION statement: LOCAL option’’, conforming
SQL language shall not specify LOCAL.

92) Specifications for Feature T261, ‘‘Chained transactions’’:

a) Subclause 16.6, ‘‘<commit statement>’’:

i) Without Feature T261, ‘‘Chained transactions’’, conforming SQL language shall not
specify CHAIN.

SQL Conformance Summary 1009

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

b) Subclause 16.7, ‘‘<rollback statement>’’:

i) Without Feature T261, ‘‘Chained transactions’’, conforming SQL language shall not
specify CHAIN.

93) Specifications for Feature T271, ‘‘Savepoints’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall not contain any
<savepoint name>.

b) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature T271, ‘‘Savepoints’’, an <SQL transaction statement> shall not be a
<savepoint statement> or <release savepoint statement>.

c) Subclause 16.4, ‘‘<savepoint statement>’’:

i) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall contain no <save-
point statement>.

d) Subclause 16.5, ‘‘<release savepoint statement>’’:

i) Without Feature T271, ‘‘Savepoints’’, conforming SQL language shall contain no <release
savepoint statement>.

e) Subclause 16.7, ‘‘<rollback statement>’’:

i) Without Feature T271, ‘‘Savepoints’’, a <rollback statement> shall contain no <savepoint
clause>.

94) Specifications for Feature T281, ‘‘SELECT privilege with column granularity’’:

a) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature T281, ‘‘SELECT privilege with column granularity’’, an <action> that
specifies SELECT shall not contain a <privilege column list>.

95) Specifications for Feature T301, ‘‘Functional dependencies’’:

a) Subclause 7.11, ‘‘<query specification>’’:

i) Without Feature T301, ‘‘Functional dependencies’’, if T is a grouped table, then in
each <value expression>, each <column reference> that references a column of T shall
reference a grouping column or be specified in a <set function specification>.

96) Specifications for Feature T312, ‘‘OVERLAY function’’:

a) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature T312, ‘‘OVERLAY function’’, conforming SQL language shall not specify
a <character overlay function> or a <blob overlay function>.

1010 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

97) Specifications for Feature T322, ‘‘Overloading of SQL-invoked functions and procedures’’:

a) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature T322, ‘‘Overloading of SQL-invoked functions and procedures’’, the
schema identified by the explicit or implicit schema name of the <schema qualified
routine name> shall not include a routine descriptor whose routine name is <schema
qualified routine name>.

98) Specifications for Feature T323, ‘‘Explicit security for external routines’’:

a) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature T323, ‘‘Explicit security for external routines’’, conforming SQL lan-
guage shall not specify <external security clause>.

99) Specifications for Feature T331, ‘‘Basic roles’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any
<role name>.

b) Subclause 11.1, ‘‘<schema definition>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any
<role definition>.

ii) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain any
<grant role statement>.

c) Subclause 12.3, ‘‘<role definition>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <role
definition>.

d) Subclause 12.4, ‘‘<grant role statement>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <grant
role statement>.

e) Subclause 12.5, ‘‘<drop role statement>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <drop
role statement>.

f) Subclause 12.6, ‘‘<revoke statement>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not contain <revoke
role statement>.

g) Subclause 13.5, ‘‘<SQL procedure statement>’’:

i) Without Feature T331, ‘‘Basic roles’’, an <SQL schema definition statement> shall not be
a <role definition> or a <grant role statement>.

ii) Without Feature T331, ‘‘Basic roles’’, an <SQL schema definition statement> shall not be
a <drop role statement>.

SQL Conformance Summary 1011

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

iii) Without Feature T331, ‘‘Basic roles’’, an <SQL session statement> shall not be a <set
role statement>.

h) Subclause 18.3, ‘‘<set role statement>’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall contain no <set
role statement>.

i) Subclause 20.8, ‘‘ADMINISTRABLE_ROLE_AUTHORIZATIONS view’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ADMINISTRABLE_ROLE_AUTHORIZATIONS.

j) Subclause 20.9, ‘‘APPLICABLE_ROLES view’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.APPLICABLE_ROLES.

k) Subclause 20.28, ‘‘ENABLED_ROLES view’’:

i) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ENABLED_ROLES.

l) Subclause 20.36, ‘‘ROLE_COLUMN_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conform-
ing SQL language shall not reference INFORMATION_SCHEMA.ROLE_COLUMN_
GRANTS.

m) Subclause 20.37, ‘‘ROLE_ROUTINE_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conform-
ing SQL language shall not reference INFORMATION_SCHEMA.ROLE_ROUTINE_
GRANTS.

n) Subclause 20.38, ‘‘ROLE_TABLE_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_TABLE_GRANTS.

o) Subclause 20.39, ‘‘ROLE_TABLE_METHOD_GRANTS view’’:

i) Without Feature S024, ‘‘Enhanced structured types’’, and Feature T331, ‘‘Basic roles’’,
conforming SQL language shall not reference INFORMATION_SCHEMA.ROLE_
TABLE_METHOD_GRANTS.

p) Subclause 20.40, ‘‘ROLE_USAGE_GRANTS view’’:

i) Without Feature F341, ‘‘Usage tables’’, and Feature T331, ‘‘Basic roles’’, conforming SQL
language shall not reference INFORMATION_SCHEMA.ROLE_USAGE_GRANTS.

q) Subclause 20.41, ‘‘ROLE_UDT_GRANTS view’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_UDT_GRANTS.

1012 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

r) Subclause 20.69, ‘‘Short name views’’:

i) Without Feature F231, ‘‘Privilege tables’’, and Feature T331, ‘‘Basic roles’’, conforming
SQL language shall not reference INFORMATION_SCHEMA.ROLE_ROUT_GRANTS.

ii) Without Feature T331, ‘‘Basic roles’’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ADMIN_ROLE_AUTHS.

100) Specifications for Feature T332, ‘‘Extended roles’’:

a) Subclause 6.3, ‘‘<value specification> and <target specification>’’:

i) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify
CURRENT_ROLE.

b) Subclause 10.5, ‘‘<privileges>’’:

i) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not contain a
<grantor>.

c) Subclause 11.5, ‘‘<default clause>’’:

i) Without Feature T332, ‘‘Extended roles’’, a <default option> shall not be CURRENT_
ROLE.

d) Subclause 12.3, ‘‘<role definition>’’:

i) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify
WITH ADMIN.

e) Subclause 12.4, ‘‘<grant role statement>’’:

i) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify
<grantor>.

f) Subclause 12.6, ‘‘<revoke statement>’’:

i) Without Feature T332, ‘‘Extended roles’’, conforming SQL language shall not specify
<grantor>.

101) Specifications for Feature T351, ‘‘Bracketed comments’’:

a) Subclause 5.2, ‘‘<token> and <separator>’’:

i) Without Feature T351, ‘‘Bracketed comments’’, conforming SQL language shall not
contain a <bracketed comment>.

102) Specifications for Feature T411, ‘‘UPDATE statement: SET ROW option’’:

a) Subclause 14.9, ‘‘<update statement: positioned>’’:

i) Without Feature T411, ‘‘UPDATE statement: SET ROW option’’, <update target> shall
not specify ROW.

SQL Conformance Summary 1013

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

103) Specifications for Feature T431, ‘‘CUBE and ROLLUP’’:

a) Subclause 6.16, ‘‘<set function specification>’’:

i) Without Feature T431, ‘‘CUBE and ROLLUP’’, conforming SQL language shall not
contain a <set function specification> that is a <grouping operation>.

b) Subclause 7.9, ‘‘<group by clause>’’:

i) Without Feature T431, ‘‘CUBE and ROLLUP’’, conforming SQL language shall not
specify ROLLUP or CUBE.

104) Specifications for Feature T441, ‘‘ABS and MOD functions’’:

a) Subclause 6.17, ‘‘<numeric value function>’’:

i) Without Feature T441, ‘‘ABS and MOD functions’’, conforming language shall not specify
ABS or MOD.

105) Specifications for Feature T461, ‘‘Symmetric <between predicate>’’:

a) Subclause 8.3, ‘‘<between predicate>’’:

i) Without Feature T461, ‘‘Symmetric <between predicate>’’, conforming SQL language
shall not specify SYMMETRIC or ASYMMETRIC.

106) Specifications for Feature T471, ‘‘Result sets return value’’:

a) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature T471, ‘‘Result sets return value’’, conforming Core SQL language shall
not specify <dynamic result sets characteristic>.

b) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature T471, ‘‘Result sets return value’’, a <declare cursor> shall not specify
<cursor returnability>.

107) Specifications for Feature T491, ‘‘LATERAL derived table’’:

a) Subclause 7.6, ‘‘<table reference>’’:

i) Without Feature T491, ‘‘LATERAL derived table’’, conforming SQL language shall not
specify a <lateral derived table>.

108) Specifications for Feature T501, ‘‘Enhanced EXISTS predicate’’:

a) Subclause 7.14, ‘‘<subquery>’’:

i) Without Feature T501, ‘‘Enhanced EXISTS predicate’’, if a <table subquery> is simply
contained in an <exists predicate>, then the <select list> of every <query specification>
directly contained in the <table subquery> shall comprise either an <asterisk> or a
single <derived column>.

1014 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

109) Specifications for Feature T511, ‘‘Transaction counts’’:

a) Subclause 19.1, ‘‘<get diagnostics statement>’’:

i) Without Feature F121, ‘‘Basic diagnostics management’’, and Feature T511, ‘‘Transaction
counts’’, conforming SQL language shall not specify a <statement information item
name> that is TRANSACTIONS_COMMITTED, TRANSACTIONS_ROLLED_BACK, or
TRANSACTION_ACTIVE.

110) Specifications for Feature T551, ‘‘Optional key words for default syntax’’:

a) Subclause 7.12, ‘‘<query expression>’’:

i) Without Feature T551, ‘‘Optional key words for default syntax’’, conforming SQL lan-
guage shall contain no explicit UNION DISTINCT, EXCEPT DISTINCT, or INTERSECT
DISTINCT.

b) Subclause 14.1, ‘‘<declare cursor>’’:

i) Without Feature T551, ‘‘Optional key words for default syntax’’, conforming SQL lan-
guage shall not specify WITHOUT HOLD.

111) Specifications for Feature T561, ‘‘Holdable locators’’:

a) Subclause 14.13, ‘‘<hold locator statement>’’:

i) Without Feature T561, ‘‘Holdable locators’’, conforming SQL language shall not contain
any <hold locator statement>.

112) Specifications for Feature T571, ‘‘Array-returning external SQL-invoked functions’’:

a) Subclause 11.40, ‘‘<user-defined type definition>’’:

i) Without Feature T571, ‘‘Array-returning external SQL-invoked functions’’, a <method
specification> shall not contain a <returns clause> that satisfies either of the following
conditions:

a) A <result cast from type> is specified that simply contains a <collection type> and
does not contain a <locator indication>.

b) A <result cast from type> is not specified and <returns data type> simply contains a
<collection type> and does not contain a <locator indication>.

ii) Without Feature S043, ‘‘Enhanced reference types’’, conforming SQL language shall not
specify <reference type specification>.

b) Subclause 11.49, ‘‘<SQL-invoked routine>’’:

i) Without Feature T571, ‘‘Array-returning external SQL-invoked functions’’, conform-
ing SQL language shall not specify an <SQL-invoked routine> that defines an array-
returning external function.

SQL Conformance Summary 1015

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

113) Specifications for Feature T581, ‘‘Regular expression substring function’’:

a) Subclause 6.18, ‘‘<string value function>’’:

i) Without Feature T581, ‘‘Regular expression substring function’’, a <string value func-
tion> shall not be a <regular expression substring function>.

114) Specifications for Feature T591, ‘‘UNIQUE constraints of possibly null columns’’:

a) Subclause 11.7, ‘‘<unique constraint definition>’’:

i) Without Feature T591, ‘‘UNIQUE constraints of possibly null columns’’, if UNIQUE
is specified, then the <column definition> for each column whose <column name> is
contained in the <unique column list> shall specify NOT NULL.

115) Specifications for Feature T601, ‘‘Local cursor references’’:

a) Subclause 5.4, ‘‘Names and identifiers’’:

i) Without Feature T601, ‘‘Local cursor references’’, a <cursor name> shall not specify
<local qualifier>.

1016 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex B
(informative)

Implementation-defined elements

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as
implementation-defined.

The term implementation-defined is used to identify characteristics that may differ between SQL-
implementations, but that shall be defined for each particular SQL-implementation.

1) Subclause 4.2.1, ‘‘Character strings and collating sequences’’: The specific character set as-
sociated with the subtype of character string represented by the <key word>s NATIONAL
CHARACTER is implementation-defined.

2) Subclause 4.5, ‘‘Numbers’’:

a) Whether truncation or rounding is performed when trailing digits are removed from a
numeric value is implementation-defined.

b) When an approximation is obtained by truncation or rounding and there are more than one
approximation, then it is implementation-defined which approximation is chosen.

c) It is implementation-defined which numeric values have approximations obtained by round-
ing or truncation for a given approximate numeric type.

d) The boundaries within which the normal rules of arithmetic apply are implementation-
defined.

3) Subclause 4.7.1, ‘‘Datetimes’’:

a) Whether an SQL-implementation supports leap seconds, and the consequences of such
support for date and interval arithmetic, are implementation-defined.

4) Subclause 4.10, ‘‘Reference types’’: In a host variable, a reference type is materialized as an
N-octet value, where N is implementation-defined.

5) Subclause 4.12, ‘‘Type conversions and mixing of data types’’: When converting between nu-
meric data types, if least significant digits are lost, then it is implementation-defined whether
rounding or truncation occurs.

6) Subclause 4.18, ‘‘Functional dependencies’’: An SQL-implementation may define additional
known functional dependencies.

Implementation-defined elements 1017

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

7) Subclause 4.21, ‘‘SQL-client modules’’:

a) The mechanisms by which SQL-client modules are created or destroyed are implementation-
defined.

b) The manner in which an association between an SQL-client module and an SQL-agent is
defined is implementation-defined.

c) Whether a compilation unit may invoke or transfer control to other compilation units,
written in the same or a different programming language is implementation-defined.

8) Subclause 4.29, ‘‘Cursors’’: If a sensitive or asensitive holdable cursor is held open for a subse-
quent SQL-transaction, then whether any significant changes made to SQL-data (by this or any
subsequent SQL-transaction in which the cursor is held open) will be visible through that cursor
in the subsequent SQL-transaction before that cursor is closed is implementation-defined.

9) Subclause 4.32, ‘‘SQL-transactions’’:

a) It is implementation-defined whether or not the execution of an SQL-data statement is
permitted to occur within the same SQL-transaction as the execution of an SQL-schema
statement. If it does occur, then the effect on any open cursor or deferred constraint is also
implementation-defined.

b) If an SQL-implementation detects unrecoverable errors and implicitly initiates the execution
of a <rollback statement>, an exception condition is raised with an implementation-defined
exception code.

10) Subclause 4.33, ‘‘SQL-connections’’: It is implementation-defined how an SQL-implementation
uses <SQL-server name> to determine the location, identity, and communication protocol re-
quired to access the SQL-server and initiate an SQL-session.

11) Subclause 4.34, ‘‘SQL-sessions’’:

a) When an SQL-session is initiated other than through the use of an explicit <connect state-
ment>, then an SQL-session associated with an implementation-defined SQL-server is
initiated. The default SQL-server is implementation-defined.

b) The mechanism and rules by which an SQL-implementation determines whether a call to
an <externally-invoked procedure> is the last call within the last active SQL-client module
is implementation-defined.

c) An SQL-session uses one or more implementation-defined schemas that contain the in-
stances of any global temporary tables, created local temporary tables, or declared local
temporary tables within the SQL-session.

d) When an SQL-session is initiated, there is an implementation-defined default time zone
used as the current default time zone displacement of the SQL-session.

e) When an SQL-session is initiated other than through the use of an explicit <connect state-
ment>, there is an implementation-defined initial value of the SQL-session user identifier.

12) Subclause 5.1, ‘‘<SQL terminal character>’’: The end-of-line indicator (<newline>) is implementation-
defined.

1018 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

13) Subclause 5.3, ‘‘<literal>’’: The <character set name> character set used to represent national
characters is implementation-defined.

14) Subclause 5.4, ‘‘Names and identifiers’’:

a) If a <schema name> contained in a <schema name clause> but not contained in an SQL-
client module does not contain a <catalog name>, then an implementation-defined <catalog
name> is implicit.

b) If a <schema name> contained in a <module authorization clause> does not contain a
<catalog name>, then an implementation-defined <catalog name> is implicit.

c) Those <identifier>s that are valid <authorization identifier>s are implementation-defined.

d) Those <identifier>s that are valid <catalog name>s are implementation-defined.

e) All <form-of-use conversion name>s are implementation-defined.

f) The <entry name> of an entry point to an SQL-invoked function defined as part of a user-
defined type is implementation-defined.

15) Subclause 6.1, ‘‘<data type>’’:

a) The <character set name> associated with NATIONAL CHARACTER is implementation-
defined.

b) If a <precision> is omitted, then an implementation-defined <precision> is implicit.

c) The decimal precision of a data type defined as DECIMAL for each value specified by
<precision> is implementation-defined.

d) The precision of a data type defined as INTEGER is implementation-defined, but has the
same radix as that for SMALLINT.

e) The precision of a data type defined as SMALLINT is implementation-defined, but has the
same radix as that for INTEGER.

f) The binary precision of a data type defined as FLOAT for each value specified by <precision>
is implementation-defined.

g) The precision of a data type defined as REAL is implementation-defined.

h) The precision of a data type defined as DOUBLE PRECISION is implementation-defined,
but greater than that for REAL.

i) For every <data type>, the limits of the <data type> are implementation-defined.

j) The maximum lengths for character string types, variable-length character string types, bit
string types, and variable-length bit string types are implementation-defined.

k) If CHARACTER SET is not specified for <character string type>, then the character set is
implementation-defined.

l) The character set named SQL_TEXT is an implementation-defined character set that con-
tains every character that is in <SQL language character> and all characters that are in
other character sets supported by the SQL-implementation.

Implementation-defined elements 1019

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

m) The character set named SQL_IDENTIFIER is an implementation-defined character set
that contains every character that is in <SQL language character> and all characters that
the SQL-implementation supports for use in <regular identifier>s, which is the same as the
repertoire that the SQL-implementation supports for use in <delimited identifier>s.

n) For the <exact numeric type>s DECIMAL and NUMERIC, the maximum values of <preci-
sion> and of <scale> are implementation-defined.

o) For the <approximate numeric type> FLOAT, the maximum value of <precision> is
implementation-defined.

p) For the <approximate numeric type>s FLOAT, REAL, and DOUBLE PRECISION, the
maximum and minimum values of the exponent are implementation-defined.

q) The maximum value of <time fractional seconds precision> is implementation-defined, but
shall not be less than 6.

r) The maximum values of <time precision> and <timestamp precision> for a <datetime type>
are the same implementation-defined value.

16) Subclause 6.3, ‘‘<value specification> and <target specification>’’:

a) Whether the character string of the <value specification>s CURRENT_USER, SESSION_
USER, and SYSTEM_USER is variable-length or fixed-length, and its maximum length if it
is variable-length or its length if it is fixed-length, are implementation-defined.

b) The value specified by SYSTEM_USER is an implementation-defined string that represents
the operating system user who executed the SQL-client module that contains the SQL-
statement whose execution caused the SYSTEM_USER <general value specification> to be
evaluated.

c) Whether the data type of CURRENT_PATH is fixed-length or variable-length, and its length
if it is fixed-length or its maximum length if it is variable-length, are implementation-
defined.

d) If a <target specification> or <simple target specification> is assigned a value that is a zero-
length character string, then it is implementation-defined whether an exception condition is
raised: data exception — zero-length character string.

17) Subclause 6.16, ‘‘<set function specification>’’:

a) The precision of the value derived from application of the COUNT function is implementation-
defined.

b) The precision of the value derived from application of the SUM function to a declared type
of exact numeric is implementation-defined.

c) The precision and scale of the value derived from application of the AVG function to a
declared type of exact numeric is implementation-defined.

d) The precision of the value derived from application of the SUM function or AVG function to
a data type of approximate numeric is implementation-defined.

18) Subclause 6.17, ‘‘<numeric value function>’’:

a) The precision of <position expression> is implementation-defined.

1020 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) The precision of <extract expression> is implementation-defined. If <primary datetime
field> specifies SECOND, then the scale is also implementation-defined.

c) The precision of <length expression> is implementation-defined.

19) Subclause 6.18, ‘‘<string value function>’’: The maximum length of <character translation> or
<form-of-use conversion> is implementation-defined.

20) Subclause 6.22, ‘‘<cast specification>’’: Whether to round or truncate when casting to exact
numeric, approximate numeric, datetime, or interval data types is implementation-defined.

21) Subclause 6.26, ‘‘<numeric value expression>’’:

a) When the declared type of both operands of the addition, subtraction, multiplication, or
division operator is exact numeric, the precision of the result is implementation-defined.

b) When the declared type of both operands of the division operator is exact numeric, the scale
of the result is implementation-defined.

c) When the declared type of either operand of an arithmetic operator is approximate numeric,
the precision of the result is implementation-defined.

d) Whether to round or truncate when performing division is implementation-defined.

22) Subclause 6.27, ‘‘<string value expression>’’:

a) If the result of the <character value expression> is a zero-length character string, then
it is implementation-defined whether an exception condition is raised: data exception —
zero-length character string.

23) Subclause 6.29, ‘‘<interval value expression>’’:

a) The difference of two values of type TIME (with or without time zone) is constrained to be
between �24:00:00 and +24:00:00 (excluding each end point); it is implementation-defined
which of two non-zero values in this range is the result, although the computation shall be
deterministic.

b) When an interval is produced from the difference of two datetimes, the choice of whether to
round or truncate is implementation-defined.

24) Subclause 7.11, ‘‘<query specification>’’:

a) An SQL-implementation may define additional implementation-defined rules for recognizing
known-not-null columns.

25) Subclause 9.1, ‘‘Retrieval assignment’’:

a) If a value V is approximate numeric and a target T is exact numeric, then whether
the approximation of V retrieved into T is obtained by rounding or by truncation is
implementation-defined.

b) If a value V is datetime with a greater precision than a target T, then it is implementation-
defined whether the approximation of V retrieved into T is obtained by rounding or trunca-
tion.

Implementation-defined elements 1021

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

c) If a value V is interval with a greater precision than a target T, then it is implementation-
defined whether the approximation of V retrieved into T is obtained by rounding or by
truncation.

26) Subclause 9.2, ‘‘Store assignment’’:

a) If a value V is approximate numeric and a target T is exact numeric, then whether the ap-
proximation of V stored into T is obtained by rounding or by truncation is implementation-
defined.

b) If a value V is datetime with a greater precision than a target T, then it is implementation-
defined whether the approximation of V stored into T is obtained by rounding or truncation.

c) If a value V is interval with a greater precision than a target T, then it is implementation-
defined whether the approximation of V stored into T is obtained by rounding or by trunca-
tion.

27) Subclause 9.3, ‘‘Data types of results of aggregations’’:

a) If all of the data types in DTS are exact numeric, then the result data type is exact numeric
with implementation-defined precision.

b) If any data type in DTS is approximate numeric, then each data type in DTS shall be
numeric and the result data type is approximate numeric with implementation-defined
precision.

28) Subclause 10.1, ‘‘<interval qualifier>’’:

a) The maximum value of <interval leading field precision> is implementation-defined, but
shall not be less than 2.

b) The maximum value of <interval fractional seconds precision> is implementation-defined,
but shall not be less than 2.

29) Subclause 10.4, ‘‘<routine invocation>’’:

a) If an SQL-invoked routine does not contain SQL, does not possibly read SQL-data, and does
not possibly modify SQL-data, then the SQL-session module of the new SQL-session context
RSC is set to be an implementation-defined module.

b) If Pi is an output SQL parameter, then CPVi is an implementation-defined value of type Ti.

c) If the syntax for invoking a built-in function is not defined in ISO/IEC 9075, then the result
of <routine invocation> is implementation-defined.

d) When a new SQL-session context RSC is created, the current default catalog name, current
default unqualified schema name, the current character set name substitution value, the
SQL-path of the current SQL-session, the current default time zone, and the contents of all
SQL dynamic descriptor areas are set to implementation-defined values.

e) If R is an external routine, then it is implementation-defined whether the identities of all
instances of created local temporary tables that are referenced in the <SQL-client module
definition> of P, declared local temporary tables that are defined by <temporary table
declaration>s that are contained in the <SQL-client module definition> of P, and the cursor
position of all open cursors that are defined by <declare cursor>s that are contained in the
<SQL-client module definition> of P are removed from RSC.

1022 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

f) After the completion of P, it is implementation-defined whether open cursors declared in
the <SQL-client module definition> of P are closed and destroyed, whether local temporary
tables associated with RCS are destroyed, and whether prepared statements prepared by P
are deallocated.

g) If R is an SQL-invoked procedure, then for each SQL parameter that is an output SQL
parameter or both an input and output SQL parameter whose corresponding argument
was not assigned a value, that corresponding argument is set to an implementation-defined
value of the appropriate type.

h) If the external security characteristic of an external SQL-invoked routine is IMPLEMENTATION
DEFINED, then the user identifier and role name in the first cell of the authorization stack
of the new SQL-session context are implementation-defined.

30) Subclause 10.6, ‘‘<character set specification>’’: The <standard character repertoire name>s,
<implementation-defined character repertoire name>s, <standard universal character form-of-
use name>s, and <implementation-defined universal character form-of-use name>s that are
supported are implementation-defined.

31) Subclause 11.1, ‘‘<schema definition>’’:

a) If <schema character set specification> is not specified, then a <schema character set spec-
ification> containing an implementation-defined <character set specification> is implicit.

b) If <schema path specification> is not specified, then a <schema path specification> contain-
ing an implementation-defined <schema name list> is implicit.

c) If AUTHORIZATION <authorization identifier> is not specified, then an <authorization
identifier> equal to the implementation-defined <authorization identifier> for the SQL-
session is implicit.

d) The privileges necessary to execute the <schema definition> are implementation-defined.

32) Subclause 11.32, ‘‘<collation definition>’’:

a) The <standard collation name>s and <implementation-defined collation name>s that are
supported are implementation-defined.

b) The collating sequence resulting from the specification of EXTERNAL in a <collation defini-
tion> may be implementation-defined.

33) Subclause 11.34, ‘‘<translation definition>’’: The <standard translation name>s and <implementation-
defined translation name>s that are supported are implementation-defined.

34) Subclause 12.3, ‘‘<role definition>’’: The Access Rules are implementation-defined.

35) Subclause 12.6, ‘‘<revoke statement>’’: When loss of the USAGE privilege on a character set
causes an SQL-client module to be determined to be a lost module, the impact on that SQL-
client module is implementation-defined.

36) Subclause 13.1, ‘‘<SQL-client module definition>’’:

a) If the explicit or implicit <schema name> does not specify a <catalog name>, then an
implementation-defined <catalog name> is implicit.

Implementation-defined elements 1023

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

b) If <module path specification> is not specified, then a <module path specification> contain-
ing an implementation-defined <schema name list> is implicit.

c) If a <module character set specification> is not specified, then a <module character set
specification> that specifies the implementation-defined character set that contains every
character that is in <SQL language character> is implicit.

37) Subclause 14.1, ‘‘<declare cursor>’’:

a) Whether null values shall be considered greater than or less than all non-null values in de-
termining the order of rows in a table associated with a <declare cursor> is implementation-
defined.

b) Whether an SQL-implementation is able to disallow significant changes that would not be
visible through a currently open cursor is implementation-defined.

38) Subclause 14.2, ‘‘<open statement>’’: The extent to which an SQL-implementation may disallow
independent changes that are not significant is implementation-defined.

39) Subclause 14.6, ‘‘<delete statement: positioned>’’:

a) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

b) If there is any sensitive cursor CR that is open in the SQL-transaction in which this state-
ment is being executed and CR has been held into a subsequent SQL-transaction, then
whether the change resulting from the successful execution of this statement is made visible
to CR is implementation-defined.

40) Subclause 14.7, ‘‘<delete statement: searched>’’:

a) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

b) If there is any sensitive cursor CR that is open in the SQL-transaction in which this state-
ment is being executed and CR has been held into a subsequent SQL-transaction, then
whether the change resulting from the successful execution of this statement is made visible
to CR is implementation-defined.

41) Subclause 14.8, ‘‘<insert statement>’’:

a) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

b) If there is any sensitive cursor CR that is open in the SQL-transaction in which this state-
ment is being executed and CR has been held into a subsequent SQL-transaction, then
whether the change resulting from the successful execution of this statement is made visible
to CR is implementation-defined.

42) Subclause 14.9, ‘‘<update statement: positioned>’’:

a) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

1024 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

b) If there is any sensitive cursor CR that is open in the SQL-transaction in which this state-
ment is being executed and CR has been held into a subsequent SQL-transaction, then
whether the change resulting from the successful execution of this statement is made visible
to CR is implementation-defined.

43) Subclause 14.10, ‘‘<update statement: searched>’’:

a) The extent to which an SQL-implementation may disallow independent changes that are not
significant is implementation-defined.

b) If there is any sensitive cursor CR that is open in the SQL-transaction in which this state-
ment is being executed and CR has been held into a subsequent SQL-transaction, then
whether the change resulting from the successful execution of this statement is made visible
to CR is implementation-defined.

44) Subclause 16.2, ‘‘<set transaction statement>’’: The isolation level that is set for a transaction
is an implementation-defined isolation level that will not exhibit any of the phenomena that
the explicit or implicit <level of isolation> would not exhibit, as specified in Table 10, ‘‘SQL-
transaction isolation levels and the three phenomena’’.

45) Subclause 16.4, ‘‘<savepoint statement>’’: The maximum number of savepoints per SQL-
transaction is implementation-defined.

46) Subclause 16.7, ‘‘<rollback statement>’’: The status of any open cursors in any SQL-client
module associated with the current SQL-transaction that were opened by that SQL-transaction
before the establishment of a savepoint to which a rollback is executed is implementation-
defined.

47) Subclause 17.1, ‘‘<connect statement>’’:

a) If <connection user name> is not specified, then an implementation-defined <connection user
name> for the SQL-connection is implicit.

b) The initial value of the current role name is the null value.

c) The restrictions on whether or not the <connection user name> must be identical to the
<module authorization identifier> for the SQL-client module that contains the <externally-
invoked procedure> that contains the <connect statement> are implementation-defined.

d) If DEFAULT is specified, then the method by which the default SQL-server is determined is
implementation-defined.

e) The method by which <SQL-server name> is used to determine the appropriate SQL-server
is implementation-defined.

48) Subclause 18.2, ‘‘<set session user identifier statement>’’: Whether or not the <authorization
identifier> for the SQL-session can be set to an <authorization identifier> other than the <au-
thorization identifier> of the SQL-session when the SQL-session is started is implementation-
defined, as are any restrictions pertaining to such changes.

49) Subclause 19.1, ‘‘<get diagnostics statement>’’:

a) The actual length of variable-length character items in the diagnostics area is implementation-
defined but not less than 128.

Implementation-defined elements 1025

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

b) The character string value set for CLASS_ORIGIN and SUBCLASS_ORIGIN for an
implementation-defined class code or subclass code is implementation-defined, but shall
not be ’ISO 9075’.

c) The value of MESSAGE_TEXT is an implementation-defined character string.

d) Negative values of COMMAND_FUNCTION_CODE are implementation-defined and indi-
cate implementation-defined SQL-statements.

50) Subclause 21.40, ‘‘TABLE_CONSTRAINTS base table’’: If the containing <table constraint
definition> or <add table constraint definition> does not specify a <constraint name definition>,
then the value of CONSTRAINT_NAME is implementation-defined.

51) Subclause 21.8, ‘‘CHARACTER_SETS base table’’: The values of FORM_OF_USE and
NUMBER_OF_CHARACTERS, in the row for the character set INFORMATION_SCHEMA.SQL_
TEXT, are implementation-defined.

52) Subclause 21.12, ‘‘COLLATIONS base table’’: The value of COLLATION_DEFINITION is
implementation-defined.

53) Subclause 21.37, ‘‘SQL_LANGUAGES base table’’: The value of SQL_LANGUAGE_IMPLEMENTATION
is implementation-defined. If the value of SQL_LANGUAGE_SOURCE is not ’ISO 9075’, then
the values of all other columns are implementation-defined.

54) Subclause 22.1, ‘‘SQLSTATE’’:

a) The character set associated with the class value and subclass value of the SQLSTATE
parameter is implementation-defined.

b) The values and meanings for classes and subclasses that begin with one of the <digit>s ’5’,
’6’, ’7’, ’8’, or ’9’ or one of the <simple Latin upper case letter>s ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, or ’Z’ are implementation-defined. The values and
meanings for all subclasses that are associated with implementation-defined class values
are implementation-defined.

55) Clause 23, ‘‘Conformance’’: The method of flagging nonconforming SQL language or processing
of conforming SQL language is implementation-defined, as is the list of additional <key word>s
that may be required by the SQL-implementation.

1026 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex C
(informative)

Implementation-dependent elements

This Annex references those places where this part of ISO/IEC 9075 states explicitly that the
actions of a conforming SQL-implementation are implementation-dependent.

The term implementation-dependent is used to identify characteristics that may differ between SQL-
implementations, but that are not necessarily specified for any particular SQL-implementation.

1) Subclause 4.11.2, ‘‘Collection comparison’’:

a) If the element type of a collection is a large object type or a user-defined type whose <or-
dering clause> does not specify ORDER FULL, then the element order is implementation
dependent.

2) Subclause 4.1, ‘‘Data types’’:

a) The physical representation of a value of a data type is implementation-dependent.

b) The null value or values for each data type is implementation-dependent.

3) Subclause 4.16, ‘‘Tables’’:

a) Because global temporary table contents are distinct within SQL-sessions, and created local
temporary tables are distinct within SQL-client modules within SQL-sessions, the effective
<schema name> of the schema in which the global temporary table or the created local
temporary table is instantiated is an implementation-dependent <schema name> that may
be thought of as having been effectively derived from the <schema name> of the schema
in which the global temporary table or created local temporary table is defined and the
implementation-dependent SQL-session identifier associated with the SQL-session.

b) The effective <schema name> of the schema in which the created local temporary table
is instantiated may be thought of as being further qualified by a unique implementation-
dependent name associated with the SQL-client module in which the created local temporary
table is referenced.

4) Subclause 4.27, ‘‘Diagnostics area’’: The actual size of the diagnostics area is implementation-
dependent when the SQL-agent does not specify the size.

5) Subclause 4.27, ‘‘Diagnostics area’’: The ordering of the information about conditions placed
into the diagnostics area is implementation-dependent, except that the first condition in the
diagnostics area always corresponds to the condition corresponding to the SQLSTATE value.

Implementation-dependent elements 1027

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

6) Subclause 4.29, ‘‘Cursors’’:

a) If the <declare cursor> does not contain an <order by clause>, or contains an <order by
clause> that does not specify the order of the rows completely, then the rows of the table
have an order that is defined only to the extent that the <order by clause> specifies an order
and is otherwise implementation-dependent.

b) The effect on the position and state of an open cursor when an error occurs during the
execution of an SQL-statement that identifies the cursor is implementation-dependent.

c) If an asensitive cursor is open and a change is made to SQL-data from within the same
SQL-transaction other than through that cursor, then whether that change will be visible
through that cursor before it is closed is implementation-dependent.

7) Subclause 4.31, ‘‘Basic security model’’: The mapping of <authorization identifier>s to operating
system users is implementation-dependent.

8) Subclause 4.32, ‘‘SQL-transactions’’: The schema definitions that are implicitly read on behalf of
executing an SQL-statement are implementation-dependent.

9) Subclause 4.34, ‘‘SQL-sessions’’: A unique implementation-dependent SQL-session identifier is
associated with each SQL-session.

10) Subclause 4.36, ‘‘Client-server operation’’:

a) The <SQL-client module name> of the SQL-client module that is effectively materialized on
an SQL-server is implementation-dependent.

b) Diagnostic information is passed to the diagnostics area in the SQL-client is passed in an
implementation-dependent manner.

c) The effect on diagnostic information of incompatibilities between the character repertoires
supported by the SQL-client and SQL-server environments is implementation-dependent.

11) Subclause 6.16, ‘‘<set function specification>’’:

a) The maximum or minimum of a set of values of a user-defined type is implementation-
dependent if the comparison of at least two values of the set results in unknown .

12) Subclause 6.19, ‘‘<datetime value function>’’: The time of evaluation of the CURRENT_DATE,
CURRENT_TIME, and CURRENT_TIMESTAMP functions during the execution of an SQL-
statement is implementation-dependent.

13) Subclause 6.29, ‘‘<interval value expression>’’: The start datetime used for converting intervals
to scalars for subtraction purposes is implementation-dependent.

14) Subclause 7.1, ‘‘<row value constructor>’’: The names of the columns of a <row value con-
structor> that specifies a <row value constructor element list> are implementation-dependent.

15) Subclause 7.9, ‘‘<group by clause>’’:

a) If the declared type of a grouping column is a user-defined type and the comparison of that
column for two rows results in unknown , then the assignment of those rows to groups in
the result of the <group by clause> is implementation-dependent.

1028 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

16) Subclause 7.11, ‘‘<query specification>’’:

a) When a column is not named by an <as clause> and is not derived from a single column
reference, then the name of the column is implementation-dependent.

b) If a <simple table> is neither a <query specification> nor an <explicit table>, then the name
of each column of the <simple table> is implementation-dependent.

c) If a <non-join query term> is not a <non-join query primary> and the <column name> of the
corresponding columns of both tables participating in the <non-join query term> are not the
same, then the result column has an implementation-dependent <column name>.

d) If a <non-join query expression> is not a <non-join query term> and the <column name> of
the corresponding columns of both tables participating in the <non-join query expression >
are not the same, then the result column has an implementation-dependent <column name>.

17) Subclause 8.2, ‘‘<comparison predicate>’’: When the operations MAX, MIN, DISTINCT, and
references to a grouping column refer to a variable-length character string or a variable-length
bit string, the specific value selected from the set of equal values is implementation-dependent.

18) Subclause 9.3, ‘‘Data types of results of aggregations’’: The specific character set chosen for the
result is implementation-dependent, but shall be the character set of one of the data types in
DTS.

19) Subclause 10.4, ‘‘<routine invocation>’’:

a) Each SQL argument Ai in SAL is evaluated, in an implementation-dependent order, to
obtain a value Vi.

20) Subclause 11.3, ‘‘<table definition>’’: The <user-defined type name> of a user-defined type
specified in a <table definition> without specifying ‘‘OF NEW TYPE UDTN’’ is implementation-
dependent.

21) Subclause 11.6, ‘‘<table constraint definition>’’: The <constraint name> of a constraint that does
not specify a <constraint name definition> is implementation-dependent.

22) Subclause 11.8, ‘‘<referential constraint definition>’’: The specific value to use for cascading
among various values that are not distinct is implementation-dependent.

23) Subclause 11.23, ‘‘<domain definition>’’: The <constraint name> of a constraint that does not
specify a <constraint name definition> is implementation-dependent.

24) Subclause 11.32, ‘‘<collation definition>’’: The collation of characters for which a collation is not
otherwise specified is implementation-dependent.

25) Subclause 14.1, ‘‘<declare cursor>’’:

a) If a <declare cursor> does not contain an <order by clause>, then the ordering of rows in the
table associated with that <declare cursor> is implementation-dependent.

b) If a <declare cursor> contains an <order by clause> and a group of two or more rows in the
table associated with that <declare cursor> contain values that

Case:

i) are the same null value, or

Implementation-dependent elements 1029

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

ii) compare equal according to Subclause 8.2, ‘‘<comparison predicate>’’

in all columns specified in the <order by clause>, then the order in which rows in that group
are returned is implementation-dependent.

c) The relative ordering of two non-null values of a user-defined type UDT whose compari-
son as determined by the user-defined ordering of UDT is unknown is implementation-
dependent.

26) Subclause 14.3, ‘‘<fetch statement>’’:

a) The order of assignment to targets in the <fetch target list> of values returned by a <fetch
statement>, other than status parameters, is implementation-dependent.

b) If an error occurs during assignment of a value to a target during the execution of a <se-
lect statement: single row>, then the values of targets other than status parameters are
implementation-dependent.

c) If an exception condition occurs during the assignment of a value to a target, then the values
of all targets are implementation-dependent and CR remains positioned on the current row.

d) It is implementation-dependent whether CR remains positioned on the current row when an
exception condition is raised during the derivation of any <derived column>.

27) Subclause 14.5, ‘‘<select statement: single row>’’:

a) The order of assignment to targets in the <select target list> of values returned by a <select
statement: single row>, other than status parameters, is implementation-dependent.

b) If the cardinality of the <query expression> is greater than 1 (one), then it is implementation-
dependent whether or not values are assigned to the targets identified by the <select target
list>.

c) If an error occurs during assignment of a value to a target during the execution of a <se-
lect statement: single row>, then the values of targets other than status parameters are
implementation-dependent.

28) Subclause 14.8, ‘‘<insert statement>’’:

a) The generation of the value of a derived self-referencing column is implementation-
dependent.

29) Subclause 16.2, ‘‘<set transaction statement>’’: If <number of conditions> is not specified, then
an implementation-dependent value not less than 1 (one) is implicit.

30) Subclause 16.4, ‘‘<savepoint statement>’’: If <savepoint specifier> is specified as <simple tar-
get specification>, then S is set to an implementation-dependent value that is non-0 and dif-
ferent from all other values that have been used to identify savepoints within the current
SQL-transaction.

31) Subclause 17.3, ‘‘<disconnect statement>’’: If ALL is specified, then L is a list representing
every active SQL-connection that has been established by a <connect statement> by the cur-
rent SQL-agent and that has not yet been disconnected by a <disconnect statement>, in an
implementation-dependent order.

1030 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

32) Subclause 19.1, ‘‘<get diagnostics statement>’’:

a) The value of ROW_COUNT following the execution of an SQL-statement that does not
directly result in the execution of a <delete statement: searched>, an <insert statement>, or
an <update statement: searched> is implementation-dependent.

b) If <condition number> has a value other than 1 (one), then the association between <condi-
tion number> values and specific conditions raised during evaluation of the General Rules
for that SQL-statement is implementation-dependent.

33) Subclause 21.8, ‘‘CHARACTER_SETS base table’’: The value of DEFAULT_COLLATE_NAME
for default collations specifying the order of characters in a repertoire is implementation-
dependent.

Implementation-dependent elements 1031

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

1032 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex D
(informative)

Deprecated features

It is intended that the following features will be removed at a later date from a revised version of
this part of ISO/IEC 9075:

1) The ability to specify UNION JOIN in a <joined table> has been deprecated.

Deprecated features 1033

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

1034 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex E
(informative)

Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996

This edition of this part of ISO/IEC 9075 introduces some incompatibilities with the earlier version
of Database Language SQL as specified in ISO/IEC 9075:1992.

Except as specified in this Annex, features and capabilities of Database Language SQL are compati-
ble with ISO/IEC 9075:1992.

1) In ISO/IEC 9075:1992, Subclause 12.3, ‘‘<procedure>’’, a <parameter declaration list> had an al-
ternative ‘‘<parameter declaration> . . . ’’ (that is, a parameter list not surrounded by parenthe-
ses and with the individual component parameter declarations not separated by commas). This
option was listed in ISO/IEC 9075:1992, as a deprecated feature. In ISO/IEC 9075-2:1999, the
equivalent Subclause 11.49, ‘‘<SQL-invoked routine>’’, does not contain this option. SQL-client
modules that used this deprecated feature may be converted to conforming SQL by inserting a
comma between each pair of <parameter declaration>s and placing a left parenthesis before and
a right parenthesis after the entire parameter list.

2) In ISO/IEC 9075:1992, if one or more rows deleted or updated through some cursor C1 are later
updated or deleted through some other cursor C2, by a <delete statement: searched>, by an
<update statement: searched>, or by some <update rule> or <delete rule> of some <referential
constraint definition>, no exception condition is raised and no completion condition other than
successful completion is raised. In ISO/IEC 9075:1999, a completion condition is raised: warning
— cursor operation conflict.

3) In ISO/IEC 9075:1992, there were two <status parameter>s provided: SQLCODE and
SQLSTATE. In ISO/IEC 9075:1992, the SQLCODE <status parameter> was listed as a dep-
recated feature in deference to the SQLSTATE <status parameter>. In ISO/IEC 9075:1999, the
SQLCODE <status parameter> has been removed and ‘‘SQLCODE’’ has been removed from the
list of reserved words.

4) In ISO/IEC 9075:1992, it was permitted to omit the <semicolon> at the end of <module con-
tents>, but this was listed as a deprecated feature. In this edition of this part of ISO/IEC 9075,
the use of the <semicolon> at the end of <module contents> is mandatory.

5) In ISO/IEC 9075:1992, it was possible for applications to define new character sets, collations,
and translations from scratch. In ISO/IEC 9075:1999, those capabilities have been limited to
defining new character sets, collations, and translations that are identical to existing character
sets, collations, and translations, respectively, except for their names and other minor details.

6) In ISO/IEC 9075:1992, it was possible for applications to specify a character set to be associated
with an <identifier> using the notation ‘‘<introducer><character set specification>’’. In ISO/IEC
9075:1999, that capability has been removed.

Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996 1035

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

7) In ISO/IEC 9075:1992, it was permitted to have the <start field> and <end field> of an <interval
qualifier> be the same. In ISO/IEC 9075:1999, the <start field> must be more significant than
the <end field>. The case of identical <start field> and <end field> is equivalent in ISO/IEC
9075:1992 to an <interval qualifier> that is a <single datetime field>; this latter construct has
been retained in ISO/IEC 9075:1999.

8) In ISO/IEC 9075:1992, it was permitted to order a cursor by a column specified by an unsigned
integer that specified its ordinal position in the cursor. In ISO/IEC 9075:1999, that capability
has been eliminated.

9) In ISO/IEC 9075-4:1996, the character set for SQL parameter list entry (PN+FRN)+(N+1)+5
was SQL_TEXT. In ISO/IEC 9075-2:1999, the character set for that SQL parameter list entry is
the character set specified for SQLSTATE values.

10) In ISO/IEC 9075-4:1996, the Syntax Rules of Subclause 9.1, "<routine invocation>", would never
select a subject routine that was an SQL-invoked function if the SQL-invoked function had one
or more SQL parameters whose declared type was a character string type whose character set
was not the same as the character set of the corresponding SQL argument. In ISO/IEC 9075-
2:1999, the Syntax Rules of Subclause 10.4, ‘‘<routine invocation>’’, allow the selection of such a
subject routine and a syntax error would then be raised if the SQL argument is not assignable
to the SQL parameter.

11) In ISO/IEC 9075-4:1996, Subclause 19.2.4, "ROUTINES base table", the value of IS_
DETERMINISTIC indicated whether DETERMINISTIC was specified when the SQL-invoked
routine was defined, regardless of whether that routine was an external routine or an SQL
routine. In ISO/IEC 9075-2:1999, Subclause 21.33, ‘‘ROUTINES base table’’, the value of IS_
DETERMINISTIC is the null value if the routine is an SQL routine.

12) In ISO/IEC 9075:1992, if the value of a <character value expression> was a zero-length string
or if zero-length character string was assigned to a <target specification> or <simple target
specification>, there were no exception conditions permitted. In ISO/IEC 9075-2:1999, it is
implementation-defined whether in these circumstances an exception condition is raised: data
exception — zero-length character string.

13) In ISO/IEC 9075:1992, <schema definition>s without explicit <schema character set specifi-
cation>s were assumed to have associated with them ‘‘a <schema character set specification>
containing an implementation-defined <character set specification>’’. In ISO/IEC 9075-2:1999,
such a <schema definition> is assumed to have associated with it a <schema character set spec-
ification> that specifies an implementation-defined character set that contains at least every
character that is in <SQL language character>.

Similarly, in ISO/IEC 9075:1992, a <character string type> that is not contained in a <do-
main definition> or a <column definition> and for which CHARACTER SET is not specified
is assumed to be associated with an implementation-defined <character set specification>. In
ISO/IEC 9075-2:1999, such a <character string type> is assumed to be associated with an
implementation-defined <character set specification> that specifies an implementation-defined
character set that contains at least every character that is in <SQL language character>.

These comprise slight restrictions on the choice of character sets to be used in such cases.

14) A number of additional <reserved word>s have been added to the language. These <reserved
word>s are:

— ABS

— ACTION

1036 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

— AFTER

— AGGREGATE

— ALIAS

— ARRAY

— BEFORE

— BINARY

— BLOB

— BOOLEAN

— BREADTH

— CALL

— CARDINALITY

— CLOB

— COMPLETION

— CUBE

— CURRENT_PATH

— CYCLE

— DATA

— DEPTH

— DEREF

— DESTROY

— DICTIONARY

— EACH

— EQUALS

— EVERY

— FACTOR

— FREE

— GENERAL

— GROUPING

— HOLD

— HOST

Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996 1037

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

— IGNORE

— INITIALIZE

— ITERATE

— LESS

— LARGE

— LIMIT

— LOCATOR

— MAP

— MOD

— MODIFIES

— MODIFY

— NCLOB

— NEW

— NO

— NONE

— OBJECT

— OFF

— OLD

— OPERATION

— OPERATOR

— ORDINALITY

— OVERLAY

— PARAMETER

— PARAMETERS

— PATH

— PREORDER

— READS

— RECURSIVE

— REF

— REFERENCING

1038 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

— RELATIVE

— REPLACE

— RESULT

— RETURN

— RETURNS

— ROLLUP

— ROLE

— ROUTINE

— ROW

— SAVEPOINT

— SEARCH

— SENSITIVE

— SEQUENCE

— SESSION

— SETS

— SIMILAR

— SPACE

— SPECIFIC

— SPECIFICTYPE

— SQLEXCEPTION

— SQLWARNING

— START

— STATE

— STATIC

— STRUCTURE

— SUBLIST

— SYMBOL

— TERM

— TERMINATE

— THE

Incompatibilities with ISO/IEC 9075:1992 and ISO/IEC 9075-4:1996 1039

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

— TREAT

— TRIGGER

— TYPE

— UNDER

— VARIABLE

— WITHOUT

1040 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Annex F
(informative)

SQL feature and package taxonomy

This Annex describes a taxonomy of features and packages defined in this part of ISO/IEC 9075.

Table 31, ‘‘SQL/Foundation feature taxonomy and definition for Core SQL’’, contains a taxonomy
of the features of Core SQL language that are specified in this part of ISO/IEC 9075. Table 32,
‘‘SQL/Foundation feature taxonomy for features outside Core SQL’’, contains a taxonomy of the
features of the SQL language not in Core SQL that are specified in this part of ISO/IEC 9075.

In these tables, the first column contains a counter that may be used to quickly locate rows of the
table; these values otherwise have no use and are not stable — that is, they are subject to change
in future editions of or even Technical Corrigenda to ISO/IEC 9075 without notice.

The ‘‘Feature ID’’ column of Table 31, ‘‘SQL/Foundation feature taxonomy and definition for Core
SQL’’, and of Table 32, ‘‘SQL/Foundation feature taxonomy for features outside Core SQL’’, specifies
the formal identification of each feature and each subfeature contained in the table. The Feature ID
is stable and can be depended on to remain constant. A Feature ID value comprises either a letter
and three digits or a letter, three digits, a hyphen, and one or two additional digits. Feature ID
values containing a hyphen and additional digits indicate ‘‘subfeatures’’ that help to define complete
features, which are in turn indicated by Feature ID values without a hyphen. Only entire features
are used to specify the contents of Core SQL and various packages.

The ‘‘Feature Description’’ column of Table 31, ‘‘SQL/Foundation feature taxonomy and definition
for Core SQL’’, and of Table 32, ‘‘SQL/Foundation feature taxonomy for features outside Core SQL’’,
contains a brief description of the feature or subfeature associated with the Feature ID value.

Table 31, ‘‘SQL/Foundation feature taxonomy and definition for Core SQL’’, provides the only def-
inition of the features comprising the minimal conformance possibility for ISO/IEC 9075, called
Core SQL. The final column of this table, labeled ‘‘Implies’’, contains indications of specific language
elements supported in each feature, subject to the constraints of all Syntax Rules, Access Rules, and
Conformance Rules.

In Table 31, ‘‘SQL/Foundation feature taxonomy and definition for Core SQL’’, unless otherwise
stated, a feature or subfeature assumes the support of underlying elements of ISO/IEC 9075. For
example, feature E011, ‘‘Numeric data types’’, assumes the appropriate support in Subclause 9.1,
‘‘Retrieval assignment’’, and Subclause 9.2, ‘‘Store assignment’’. The set of subfeatures of a feature
is intended to itemize noteworthy special cases of the feature, without necessarily being exhaustive
of the feature. In addition, subfeatures of a feature are not necessarily mutually exclusive; in some
cases, one subfeature may contain another subfeature.

SQL feature and package taxonomy 1041

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL

Feature
ID Feature Name Feature Description

1 E011 Numeric data types Subclause 6.1, ‘‘<data type>’’, <numeric type>,
including numeric expressions, numeric lit-
erals, numeric comparisons, and numeric
assignments

2 E011-01 INTEGER and SMALLINT data
types (including all spellings)

— Subclause 5.2, ‘‘<token> and <separator>’’:
The <reserved word>s INT, INTEGER, and
SMALLINT
— Subclause 5.3, ‘‘<literal>’’: [<sign>] <un-
signed integer>
— Subclause 6.1, ‘‘<data type>’’: The INTEGER
and SMALLINT <exact numeric type>s
— Subclause 13.6, ‘‘Data type correspon-
dences’’: Type correspondences for INTEGER
and SMALLINT for all supported languages

3 E011-02 REAL, DOUBLE PRECISON,
and FLOAT data types

— Subclause 5.2, ‘‘<token> and <separa-
tor>’’: The <reserved word>s REAL, DOUBLE,
FLOAT, and PRECISION
— Subclause 5.3, ‘‘<literal>’’: [<sign>] <ap-
proximate numeric literal>
— Subclause 6.1, ‘‘<data type>’’: <approximate
numeric type>
— Subclause 13.6, ‘‘Data type correspondences’’:
Type correspondences for REAL, DOUBLE
PRECISION, and FLOAT for all supported
languages

4 E011-03 DECIMAL and NUMERIC data
types

— Subclause 5.2, ‘‘<token> and <separator>’’:
The <reserved word>s DEC, DECIMAL, and
NUMERIC
— Subclause 5.3, ‘‘<literal>’’: [<sign>] <ex-
act numeric literal>
— Subclause 6.1, ‘‘<data type>’’: The
DECIMAL and NUMERIC <exact numeric
type>s
— Subclause 13.6, ‘‘Data type correspondences’’:
Type correspondences for DECIMAL and
NUMERIC for all supported languages

5 E011-04 Arithmetic operators — Subclause 6.26, ‘‘<numeric value expres-
sion>’’: When the <numeric primary> is a
<value expression primary>

6 E011-05 Numeric comparison — Subclause 8.2, ‘‘<comparison predicate>’’:
For the numeric data types, without support
for <table subquery> and without support for
Feature F131, ‘‘Grouped operations’’

1042 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

7 E011-06 Implicit casting among the
numeric data types

— Subclause 8.2, ‘‘<comparison predicate>’’:
Values of any of the numeric data types can
be compared to each other; such values are
compared with respect to their algebraic values
— Subclause 9.1, ‘‘Retrieval assignment’’, and
Subclause 9.2, ‘‘Store assignment’’: Values of
one numeric type can be assigned to another
numeric type, subject to rounding, truncation,
and out of range conditions

8 E021 Character data types — Subclause 6.1, ‘‘<data type>’’: <character
string type>, including character expressions,
character literals, character comparisons,
character assignments, and other operations on
character data

9 E021-01 CHARACTER data type (includ-
ing all its spellings)

— Subclause 5.2, ‘‘<token> and <separa-
tor>’’: The <reserved word>s CHAR and
CHARACTER
— Subclause 6.1, ‘‘<data type>’’: The
CHARACTER <character string type>
— Subclause 6.27, ‘‘<string value expression>’’:
For values of type CHARACTER
— Subclause 13.6, ‘‘Data type correspondences’’:
Type correspondences for CHARACTER for all
supported languages

10 E021-02 CHARACTER VARYING data
type (including all its spellings)

— Subclause 5.2, ‘‘<token> and <separa-
tor>’’: The <reserved word>s VARCHAR and
VARYING
— Subclause 6.1, ‘‘<data type>’’: The
CHARACTER VARYING <character string
type>
— Subclause 6.27, ‘‘<string value expression>’’:
For values of type CHARACTER VARYING
— Subclause 13.6, ‘‘Data type correspondences’’:
Type correspondences for CHARACTER
VARYING for all supported languages

11 E021-03 Character literals — Subclause 5.3, ‘‘<literal>’’: <quote> [
<character representation>...]
<quote>

12 E021-04 CHARACTER_LENGTH func-
tion

— Subclause 6.17, ‘‘<numeric value function>’’:
The <char length expression>

13 E021-05 OCTET_LENGTH function — Subclause 6.17, ‘‘<numeric value function>’’:
The <octet length expression>

14 E021-06 SUBSTRING function — Subclause 6.18, ‘‘<string value function>’’:
The <character substring function>

15 E021-07 Character concatenation — Subclause 6.27, ‘‘<string value expression>’’:
The <concatenation> expression

SQL feature and package taxonomy 1043

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

16 E021-08 UPPER and LOWER functions — Subclause 6.18, ‘‘<string value function>’’:
The <fold> function

17 E021-09 TRIM function — Subclause 6.18, ‘‘<string value function>’’:
The <trim function>

18 E021-10 Implicit casting among the
character data types

— Subclause 8.2, ‘‘<comparison predi-
cate>’’: Values of either the CHARACTER
or CHARACTER VARYING data types can be
compared to each other
— Subclause 9.1, ‘‘Retrieval assignment’’, and
Subclause 9.2, ‘‘Store assignment’’: Values
of either the CHARACTER or CHARACTER
VARYING data type can be assigned to the
other type, subject to truncation conditions

19 E021-11 POSITION function — Subclause 6.17, ‘‘<numeric value function>’’:
The <position expression>

20 E011-12 Character comparison — Subclause 8.2, ‘‘<comparison predicate>’’:
For the CHARACTER and CHARACTER
VARYING data types, without support for
<table subquery> and without support for
Feature F131, ‘‘Grouped operations’’

21 E031 Identifiers — Subclause 5.2, ‘‘<token> and <separator>’’:
<regular identifier> and <delimited identifier>

22 E031-01 Delimited identifiers — Subclause 5.2, ‘‘<token> and <separator>’’:
<delimited identifier>

23 E031-02 Lower case identifiers — Subclause 5.2, ‘‘<token> and <separator>’’:
An alphabetic character in a <regular identi-
fier> can be either lower case or upper case
(meaning that non-delimited identifiers need
not comprise only upper case letters)

24 E031-03 Trailing underscore — Subclause 5.2, ‘‘<token> and <separator>’’:
The list <identifier part> in a <regular identi-
fier> can be an <underscore>

25 E051 Basic query specification — Subclause 7.11, ‘‘<query specification>’’:
When <table reference> is a <table or query
name> that is a <table name>, without the
support of Feature F131, ‘‘Grouped operations’’

26 E051-01 SELECT DISTINCT — Subclause 7.11, ‘‘<query specification>’’:
With a <set quantifier> of DISTINCT, but
without subfeatures E051-02 through E051-09

1044 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

27 E051-02 GROUP BY clause — Subclause 7.4, ‘‘<table expression>’’: <group
by clause>, but without subfeatures E051-03
through E051-09
— Subclause 7.9, ‘‘<group by clause>’’: With
the restrictions that the <group by clause>
must contain all non-aggregated columns in the
<select list> and that any column in the <group
by clause> must also appear in the <select list>

28 E051-04 GROUP BY can contain columns
not in <select list>

— Subclause 7.9, ‘‘<group by clause>’’: Without
the restriction that any column in the <group
by clause> must also appear in the <select list>

29 E051-05 Select list items can be renamed — Subclause 7.11, ‘‘<query specification>’’: <as
clause>

30 E051-06 HAVING clause — Subclause 7.4, ‘‘<table expression>’’: <having
clause>
— Subclause 7.10, ‘‘<having clause>’’

31 E051-07 Qualified * in select list — Subclause 7.11, ‘‘<query specification>’’:
<qualified asterisk>

32 E051-08 Correlation names in the FROM
clause

— Subclause 7.6, ‘‘<table reference>’’: [AS]
<correlation name>

33 E051-09 Rename columns in the FROM
clause

— Subclause 7.6, ‘‘<table reference>’’: [AS
] <correlation name> [<left paren>
<derived column list> <right paren>]

34 E061 Basic predicates and search
conditions

— Subclause 8.15, ‘‘<search condition>’’, and
Subclause 8.1, ‘‘<predicate>’’

35 E061-01 Comparison predicate — Subclause 8.2, ‘‘<comparison predicate>’’:
For supported data types, without support for
<table subquery>

36 E061-02 BETWEEN predicate — Subclause 8.3, ‘‘<between predicate>’’

37 E061-03 IN predicate with list of values — Subclause 8.4, ‘‘<in predicate>’’: Without
support for <table subquery>

38 E061-04 LIKE predicate — Subclause 8.5, ‘‘<like predicate>’’: Without [
ESCAPE <escape character>]

39 E061-05 LIKE predicate: ESCAPE clause — Subclause 8.5, ‘‘<like predicate>’’: With [
ESCAPE <escape character>]

40 E061-06 NULL predicate — Subclause 8.7, ‘‘<null predicate>’’: Without
Feature F481, ‘‘Expanded NULL predicate’’

41 E061-07 Quantified comparison predicate — Subclause 8.8, ‘‘<quantified comparison pred-
icate>’’: Without support for <table subquery>

42 E061-08 EXISTS predicate — Subclause 8.9, ‘‘<exists predicate>’’

SQL feature and package taxonomy 1045

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

43 E061-09 Subqueries in comparison predi-
cate

— Subclause 8.2, ‘‘<comparison predicate>’’:
For supported data types, with support for
<table subquery>

44 E061-11 Subqueries in IN predicate — Subclause 8.4, ‘‘<in predicate>’’: With sup-
port for <table subquery>

45 E061-12 Subqueries in quantified compar-
ison predicate

— Subclause 8.8, ‘‘<quantified comparison
predicate>’’: With support for <table subquery>

46 E061-13 Correlated subqueries — Subclause 8.1, ‘‘<predicate>’’: When a <cor-
relation name> can be used in a <table sub-
query> as a correlated reference to a column in
the outer query

47 E061-14 Search condition — Subclause 8.15, ‘‘<search condition>’’

48 E071 Basic query expressions — Subclause 7.12, ‘‘<query expression>’’

49 E071-01 UNION DISTINCT table opera-
tor

— Subclause 7.12, ‘‘<query expression>’’: With
support for UNION [DISTINCT]

50 E071-02 UNION ALL table operator — Subclause 7.12, ‘‘<query expression>’’: With
support for UNION ALL

51 E071-03 EXCEPT DISTINCT table opera-
tor

— Subclause 7.12, ‘‘<query expression>’’: With
support for EXCEPT [DISTINCT]

52 E071-05 Columns combined via table
operators need not have exactly
the same data type.

— Subclause 7.12, ‘‘<query expression>’’:
Columns combined via UNION and EXCEPT
need not have exactly the same data type

53 E071-06 Table operators in subqueries — Subclause 7.12, ‘‘<query expression>’’: <table
subquery>s can specify UNION and EXCEPT

54 E081 Basic Privileges — Subclause 10.5, ‘‘<privileges>’’

55 E081-01 SELECT privilege — Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of SELECT

56 E081-02 DELETE privilege — Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of DELETE

57 E081-03 INSERT privilege at the table
level

— Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of INSERT without <privilege column
list>

58 E081-04 UPDATE privilege at the table
level

— Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of UPDATE without <privilege column
list>

59 E081-05 UPDATE privilege at the column
level

— Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of UPDATE <left paren> <privilege
column list> <right paren>

60 E081-06 REFERENCES privilege at the
table level

— Subclause 10.5, ‘‘<privileges>’’: with <ac-
tion> of REFERENCES without <privilege
column list>

1046 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

61 E081-07 REFERENCES privilege at the
column level

— Subclause 10.5, ‘‘<privileges>’’: With <ac-
tion> of REFERENCES <left paren> <privi-
lege column list> <right paren>

62 E081-08 WITH GRANT OPTION — Subclause 12.2, ‘‘<grant privilege state-
ment>’’: WITH GRANT OPTION

63 E091 Set functions — Subclause 6.16, ‘‘<set function specification>’’

64 E091-01 AVG — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <computational operation> of
AVG

65 E091-02 COUNT — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <computational operation> of
COUNT

66 E091-03 MAX — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <computational operation> of
MAX

67 E091-04 MIN — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <computational operation> of
MIN

68 E091-05 SUM — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <computational operation> of
SUM

69 E091-06 ALL quantifier — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <set quantifier> of ALL

70 E091-07 DISTINCT quantifier — Subclause 6.16, ‘‘<set function specifica-
tion>’’: With <set quantifier> of DISTINCT

71 E101 Basic data manipulation — Clause 14, ‘‘Data manipulation’’: <insert
statement>, <delete statement: searched>, and
<update statement: searched>

72 E101-01 INSERT statement — Subclause 14.8, ‘‘<insert statement>’’: When
a <contextually typed table value construc-
tor> can consist of no more than a single
<contextually typed row value expression>

73 E101-03 Searched UPDATE statement — Subclause 14.10, ‘‘<update statement:
searched>’’: But without support either of
Feature E153, ‘‘Updatable tables with sub-
queries’’, or Feature F221, ‘‘Explicit defaults’’

74 E101-04 Searched DELETE statement — Subclause 14.7, ‘‘<delete statement:
searched>’’

75 E111 Single row SELECT state-
ment

— Subclause 14.5, ‘‘<select statement: single
row>’’: Without support of Feature F131,
‘‘Grouped operations’’

SQL feature and package taxonomy 1047

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

76 E121 Basic cursor support — Clause 14, ‘‘Data manipulation’’: <declare
cursor>, <open statement>, <fetch statement>,
<close statement>, <delete statement: posi-
tioned>, and <update statement: positioned>

77 E121-01 DECLARE CURSOR — Subclause 14.1, ‘‘<declare cursor>’’: When
each <value expression> in the <sort key> must
be a <column reference> and that <column
reference> must also be in the <select list>,
and <cursor holdability> is not specified

78 E121-02 ORDER BY columns need not be
in select list

— Subclause 14.1, ‘‘<declare cursor>’’: Extend
subfeature E121-01 so that <column reference>
need not also be in the <select list>

79 E121-03 Value expressions in ORDER BY
clause

— Subclause 14.1, ‘‘<declare cursor>’’: Extend
subfeature E121-01 so that the <value expres-
sion> in the <sort key> need not be a <column
reference>

80 E121-04 OPEN statement — Subclause 14.2, ‘‘<open statement>’’

81 E121-06 Positioned UPDATE statement — Subclause 14.9, ‘‘<update statement: posi-
tioned>’’: Without support of either Feature
E153, ‘‘Updateable tables with subqueries’’ or
Feature F221, ‘‘Explicit defaults’’

82 E121-07 Positioned DELETE statement — Subclause 14.6, ‘‘<delete statement: posi-
tioned>’’

83 E121-08 CLOSE statement — Subclause 14.4, ‘‘<close statement>’’

84 E121-10 FETCH statement: implicit
NEXT

— Subclause 14.3, ‘‘<fetch statement>’’

85 E121-17 WITH HOLD cursors — Subclause 14.1, ‘‘<declare cursor>’’: Where
the <value expression> in the <sort key> need
not be a <column reference> and need not be in
the <select list>, and <cursor holdability> may
be specified

86 E131 Null value support (nulls in
lieu of values)

— Subclause 4.15, ‘‘Columns, fields, and at-
tributes’’: Nullability characteristic
— Subclause 6.4, ‘‘<contextually typed value
specification>’’: <null specification>

87 E141 Basic integrity constraints — Subclause 11.6, ‘‘<table constraint defini-
tion>’’: As specified by the subfeatures of this
feature in this table

88 E141-01 NOT NULL constraints — Subclause 11.4, ‘‘<column definition>’’: With
<column constraint> of NOT NULL

1048 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

89 E141-02 UNIQUE constraints of NOT
NULL columns

— Subclause 11.4, ‘‘<column definition>’’: With
<unique specification> of UNIQUE for columns
specifies as NOT NULL
— Subclause 11.7, ‘‘<unique constraint def-
inition>’’: With <unique specification> of
UNIQUE

90 E141-03 PRIMARY KEY constraints — Subclause 11.4, ‘‘<column definition>’’: With
<unique specification> of PRIMARY KEY for
columns specified as NOT NULL
— Subclause 11.7, ‘‘<unique constraint def-
inition>’’: With <unique specification> of
PRIMARY KEY

91 E141-04 Basic FOREIGN KEY constraint
with the NO ACTION default
for both referential delete action
and referential update action.

— Subclause 11.4, ‘‘<column definition>’’: With
<column constraint> of <references specifica-
tion>
— Subclause 11.8, ‘‘<referential constraint def-
inition>’’: Where the columns in the <column
name list>, if specified, must be in the same
order as the names in the <unique column list>
of the applicable <unique constraint definition>
and the <data type>s of the matching columns
must be the same

92 E141-06 CHECK constraints — Subclause 11.4, ‘‘<column definition>’’: With
<column constraint> of <check constraint defi-
nition>
— Subclause 11.9, ‘‘<check constraint defini-
tion>’’

93 E141-07 Column defaults — Subclause 11.4, ‘‘<column definition>’’: With
<default clause>

94 E141-08 NOT NULL inferred on
PRIMARY KEY

— Subclause 11.4, ‘‘<column definition>’’, and
Subclause 11.7, ‘‘<unique constraint defini-
tion>’’: Remove the restriction in subfeatures
E141-02 and E141-03 that NOT NULL be
specified along with every PRIMARY KEY and
UNIQUE constraint
— Subclause 11.4, ‘‘<column definition>’’:
NOT NULL is implicit on PRIMARY KEY
constraints

95 E141-10 Names in a foreign key can be
specified in any order

— Subclause 11.4, ‘‘<column definition>’’,
and Subclause 11.8, ‘‘<referential constraint
definition>’’: Extend subfeature E141-04 so
that the columns in the <column name list>,
if specified, need not be in the same order as
the names in the <unique column list> of the
applicable <unique constraint definition>

96 E151 Transaction support — Clause 16, ‘‘Transaction management’’:
<commit statement> and <rollback statement>

SQL feature and package taxonomy 1049

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

97 E151-01 COMMIT statement — Subclause 16.6, ‘‘<commit statement>’’

98 E151-02 ROLLBACK statement — Subclause 16.7, ‘‘<rollback statement>’’

99 E152 Basic SET TRANSACTION
statement

— Subclause 16.2, ‘‘<set transaction state-
ment>’’

100 E152-01 SET TRANSACTION state-
ment: ISOLATION LEVEL
SERIALIZABLE clause

— Subclause 16.2, ‘‘<set transaction state-
ment>’’: With <transaction mode> of
ISOLATION LEVEL SERIALIZABLE clause

101 E152-02 SET TRANSACTION statement:
READ ONLY and READ WRITE
clauses

— Subclause 16.2, ‘‘<set transaction state-
ment>’’: with <transaction access mode> of
READ ONLY or READ WRITE

102 E153 Updatable queries with sub-
queries

— Subclause 7.12, ‘‘<query expression>’’: A
<query expression> is updatable even though
its <where clause> contains a <subquery>

103 E161 SQL comments using leading
double minus

— Subclause 5.2, ‘‘<token> and <separator>’’:
<simple comment>

104 E171 SQLSTATE support — Subclause 22.1, ‘‘SQLSTATE’’

105 E182 Module language — Clause 13, ‘‘SQL-client modules’’

NOTE 361 – An SQL-implementation is
required to supply at least one binding to a
standard host language using either module
language, embedded SQL, or both.

106 F021 Basic information schema — Subclause 20.2, ‘‘INFORMATION_SCHEMA
Schema’’: (Support of the COLUMNS,
TABLES, VIEWS, TABLE_CONSTRAINTS,
REFERENTIAL_CONSTRAINTS, and
CHECK_CONSTRAINTS views in the
INFORMATION_SCHEMA)

107 F021-01 COLUMNS view — Subclause 20.18, ‘‘COLUMNS view’’

108 F021-02 TABLES view — Subclause 20.56, ‘‘TABLES view’’

109 F021-03 VIEWS view — Subclause 20.68, ‘‘VIEWS view’’

110 F021-04 TABLE_CONSTRAINTS view — Subclause 20.53, ‘‘TABLE_CONSTRAINTS
view’’

111 F021-05 REFERENTIAL_CONSTRAINTS
view

— Subclause 20.35, ‘‘REFERENTIAL_
CONSTRAINTS view’’

112 F021-06 CHECK_CONSTRAINTS view — Subclause 20.13, ‘‘CHECK_CONSTRAINTS
view’’

113 F031 Basic schema manipulation — Clause 11, ‘‘Schema definition and manipu-
lation’’: Selected facilities as indicated by the
subfeatures of this Feature

114 F031-01 CREATE TABLE statement to
create persistent base tables

— Subclause 11.3, ‘‘<table definition>’’: Not in
the context of a <schema definition>

1050 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

115 F031-02 CREATE VIEW statement — Subclause 11.21, ‘‘<view definition>’’: Not
in the context of a <schema definition>, and
without support of Feature F081, ‘‘UNION and
EXCEPT in views’’

116 F031-03 GRANT statement — Subclause 12.1, ‘‘<grant statement>’’: Not in
the context of a <schema definition>

117 F031-04 ALTER TABLE statement: ADD
COLUMN clause

— Subclause 11.10, ‘‘<alter table statement>’’:
The <add column definition> clause
— Subclause 11.11, ‘‘<add column definition>’’

118 F031-13 DROP TABLE statement:
RESTRICT clause

— Subclause 11.17, ‘‘<drop column definition>’’:
With a <drop behavior of RESTRICT

119 F031-16 DROP VIEW statement:
RESTRICT clause

— Subclause 11.22, ‘‘<drop view statement>’’:
With a <drop behavior> of RESTRICT

120 F031-19 REVOKE statement: RESTRICT
clause

— Subclause 12.6, ‘‘<revoke statement>’’: With
a <drop behavior> of RESTRICT, only where
the use of this statement can be restricted to
the owner of the table being dropped

121 F041 Basic joined table — Subclause 7.7, ‘‘<joined table>’’

122 F041-01 Inner join (but not necessarily
the INNER keyword)

— Subclause 7.6, ‘‘<table reference>’’: The
<joined table> clause, but without support for
subfeatures F041-02 through F041-08

123 F041-02 INNER keyword — Subclause 7.7, ‘‘<joined table>’’: <join type>
of INNER

124 F041-03 LEFT OUTER JOIN — Subclause 7.7, ‘‘<joined table>’’: <outer join
type> of LEFT

125 F041-04 RIGHT OUTER JOIN — Subclause 7.7, ‘‘<joined table>’’: <outer join
type> of RIGHT

126 F041-05 Outer joins can be nested — Subclause 7.7, ‘‘<joined table>’’: Subfeature
F041-1 extended so that a <table reference>
within the <joined table> can itself be a <joined
table>

127 F041-07 The inner table in a left or right
outer join can also be used in an
inner join

— Subclause 7.7, ‘‘<joined table>’’: Subfeature
F041-1 extended so that a <table name> within
a nested <joined table> can be the same as a
<table name> in an outer <joined table>

128 F041-08 All comparison operators are
supported (rather than just =)

— Subclause 7.7, ‘‘<joined table>’’: Subfeature
F041-1 extended so that the <join condition> is
not limited to a <comparison predicate> with a
<comp op> of <equals operator>

129 F051 Basic date and time — Subclause 6.1, ‘‘<data type>’’: <datetime
type> including datetime literals, datetime
comparisons, and datetime conversions

SQL feature and package taxonomy 1051

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

130 F051-01 DATE data type (including
support of DATE literal)

— Subclause 5.3, ‘‘<literal>’’: The <date literal>
form of <datetime literal>
— Subclause 6.1, ‘‘<data type>’’: The DATE
<datetime type>
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: For values of type DATE

131 F051-02 TIME data type (including
support of TIME literal) with
fractional seconds precision of at
least 0.

— Subclause 5.3, ‘‘<literal>’’: The <time lit-
eral> form of <datetime literal>, where the
value of <unquoted time string> is simply
<time value> that does not include the optional
<time zone interval>
— Subclause 6.1, ‘‘<data type>’’: The TIME
<datetime type> without the <with or without
timezone> clause
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: For values of type TIME

132 F051-03 TIMESTAMP data type (includ-
ing support of TIMESTAMP
literal) with fractional seconds
precision of at least 0 and 6.

— Subclause 5.3, ‘‘<literal>’’: The <timestamp
literal> form of <datetime literal>, where the
value of <unquoted timestamp string> is simply
<time value> that does not include the optional
<time zone interval>
— Subclause 6.1, ‘‘<data type>’’: The
TIMESTAMP <datetime type> without the
<with or without timezone> clause
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: For values of type TIMESTAMP

133 F051-04 Comparison predicate on DATE,
TIME, and TIMESTAMP data
types

— Subclause 8.2, ‘‘<comparison predicate>’’:
For comparison between values of the following
types: DATE and DATE, TIME and TIME,
TIMESTAMP and TIMESTAMP, DATE and
TIMESTAMP, and TIME and TIMESTAMP

134 F051-05 Explicit CAST between datetime
types and character types

— Subclause 6.22, ‘‘<cast specification>’’: If
support for Feature F201, ‘‘CAST function’’ is
available, then CASTing between the follow-
ing types: from character string to DATE,
TIME, and TIMESTAMP; from DATE to
DATE, TIMESTAMP, and character string;
from TIME to TIME, TIMESTAMP, and charac-
ter string; from TIMESTAMP to DATE, TIME,
TIMESTAMP, and character string

135 F051-06 CURRENT_DATE — Subclause 6.19, ‘‘<datetime value function>’’:
The <current date value function>
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: When the value is a <current date
value function>

1052 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

136 F051-07 LOCALTIME — Subclause 6.19, ‘‘<datetime value function>’’:
The <current local time value function>
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: When the value is a <current local time
value function>
— Subclause 11.5, ‘‘<default clause>’’:
LOCALTIME option of <datetime value func-
tion>

137 F051-08 LOCALTIMESTAMP — Subclause 6.19, ‘‘<datetime value function>’’:
The <current local timestamp value function>
— Subclause 6.28, ‘‘<datetime value expres-
sion>’’: When the value is a <current local
timestamp value function>
— Subclause 11.5, ‘‘<default clause>’’:
LOCALTIMESTAMP option of <datetime value
function>

138 F081 UNION and EXCEPT in views — Subclause 11.21, ‘‘<view definition>’’: A
<query expression> in a <view definition>
may specify UNION DISTINCT, UNION ALL,
EXCEPT, and/or EXCEPT ALL

139 F131 Grouped operations — A grouped view is a view whose <query
expression> contains a <group by clause>

140 F131-01 WHERE, GROUP BY, and
HAVING clauses supported
in queries with grouped views

— Subclause 7.4, ‘‘<table expression>’’: Even
though a table in the <from clause> is a
grouped view, the <where clause>, <group by
clause>, and <having clause> may be specified

141 F131-02 Multiple tables supported in
queries with grouped views

— Subclause 7.5, ‘‘<from clause>’’: Even though
a table in the <from clause> is a grouped view,
the <from clause> may specify more than one
<table reference>

142 F131-03 Set functions supported in
queries with grouped views

— Subclause 7.11, ‘‘<query specification>’’:
Even though a table in the <from clause> is a
grouped view, the <select list> may specify a
<set function specification>

143 F131-04 Subqueries with GROUP BY and
HAVING clauses and grouped
views

— Subclause 7.14, ‘‘<subquery>’’: A <sub-
query> in a <comparison predicate> is allowed
to contain a <group by clause> and/or a <hav-
ing clause and/or it may identify a grouped
view

144 F131-05 Single row SELECT with
GROUP BY and HAVING
clauses and grouped views

— Subclause 14.5, ‘‘<select statement: single
row>’’: The table in a <from clause> can be a
grouped view
— Subclause 14.5, ‘‘<select statement: single
row>’’: The <table expression> may specify a
<group by clause and/or a <having clause

SQL feature and package taxonomy 1053

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

145 F181 Multiple module support

NOTE 362 – The ability to as-
sociate multiple host compilation
units with a single SQL-session
at one time.

— Subclause 13.1, ‘‘<SQL-client module defi-
nition>’’:An SQL-agent can be associated with
more than one <SQL-client module definition>

NOTE 363 – With this feature, it is possible
to compile <SQL-client module definition>s or
<embedded SQL host program>s separately
and rely on the SQL-implementation to ‘‘link’’
the together properly at execution time. To
ensure portability, applications should adhere
to the following limitations:

• Avoid linking modules having cursors with
the same <cursor name>.

• Avoid linking modules that prepare state-
ments using the same <SQL statement name>.

• Avoid linking modules that allocate descrip-
tors with the same <descriptor name>.

• Assume that the scope of an <embedded
exception declaration> is a single compilation
unit.

• Assume that an <embedded variable name>
can be referenced only in the same compilation
unit in which it is declared.

146 F201 CAST function

NOTE 364 – This means the
support of CAST, where relevant,
among all supported data types.

— Subclause 6.22, ‘‘<cast specification>’’: For
all supported data types
— Subclause 6.23, ‘‘<value expression>’’: <cast
specification>

147 F221 Explicit defaults — Subclause 6.4, ‘‘<contextually typed value
specification>’’: <default specification>

NOTE 365 – Including its use in UPDATE
and INSERT statements.

148 F261 CASE expression — Subclause 6.23, ‘‘<value expression>’’: <case
expression>

149 F261-01 Simple CASE — Subclause 6.21, ‘‘<case expression>’’: The
<simple case> variation

150 F261-02 Searched CASE — Subclause 6.21, ‘‘<case expression>’’: The
<searched case variation>

151 F261-03 NULLIF — Subclause 6.21, ‘‘<case expression>’’: The
NULLIF <case abbreviation

152 F261-04 COALESCE — Subclause 6.21, ‘‘<case expression>’’: The
COALESCE <case abbreviation

153 F311 Schema definition statement — Subclause 11.1, ‘‘<schema definition>’’

1054 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

154 F311-01 CREATE SCHEMA — Subclause 11.1, ‘‘<schema definition>’’:
Support for circular references in that <refer-
ential constraint definition>s in two different
<table definition>s may reference columns in
the other table

155 F311-02 CREATE TABLE for persistent
base tables

— Subclause 11.1, ‘‘<schema definition>’’: A
<schema element> that is a <table definition>
— Subclause 11.3, ‘‘<table definition>’’: In the
context of a <schema definition>

156 F311-03 CREATE VIEW — Subclause 11.1, ‘‘<schema definition>’’: A
<schema element> that is a <view definition>
— Subclause 11.21, ‘‘<view definition>’’: In
the context of a <schema definition> without
the WITH CHECK OPTION clause and with-
out support of Feature F081, ‘‘UNION and
EXCEPT in views’’

157 F311-04 CREATE VIEW: WITH CHECK
OPTION

— Subclause 11.21, ‘‘<view definition>’’: The
WITH CHECK OPTION clause, in the context
of a <schema definition>, but without support
of Feature F081, ‘‘UNION and EXCEPT in
views’’

158 F311-05 GRANT statement — Subclause 11.1, ‘‘<schema definition>’’: A
<schema element> that is a <grant statement>
— Subclause 12.1, ‘‘<grant statement>’’: In the
context of a <schema definition>

159 F471 Scalar subquery values — Subclause 6.23, ‘‘<value expression>’’: A
<value expression primary> can be a <scalar
subquery>

160 F481 Expanded NULL predicate — Subclause 8.7, ‘‘<null predicate>’’: The <row
value expression> can be something other than
a <column reference>

161 F501 Features and conformance
views

— Clause 20, ‘‘Information Schema’’: SQL_
FEATURES, SQL_SIZING, and SQL_
LANGUAGE views

162 F501-01 SQL_FEATURES view — Subclause 20.47, ‘‘SQL_FEATURES view’’

163 F501-02 SQL_SIZING view — Subclause 20.51, ‘‘SQL_SIZING view’’

164 F501-03 SQL_LANGUAGES view — Subclause 20.49, ‘‘SQL_LANGUAGES view’’

165 F812 Basic flagging — Part 1, Subclause 8.1.4, "SQL flagger": With
‘‘level of flagging’’ specified to be Core SQL
Flagging and ‘‘extent of checking’’ specified to
be Syntax Only

NOTE 366 – This form of flagging identifies
vendor extensions and other non-standard SQL
by checking syntax only without requiring
access to the catalog information.

SQL feature and package taxonomy 1055

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 31—SQL/Foundation feature taxonomy and definition for Core SQL (Cont.)

Feature
ID Feature Name Feature Description

166 S011 Distinct data types — Subclause 11.40, ‘‘<user-defined type defini-
tion>’’: When <representation> is <predefined
type>

167 S011-01 USER_DEFINED_TYPES view — Subclause 20.65, ‘‘USER_DEFINED_TYPES
view’’

168 T321 Basic SQL-invoked routines — Subclause 11.49, ‘‘<SQL-invoked routine>’’
— If Feature T041, ‘‘Basic LOB data type
support’’, is supported, then the <locator indica-
tion> clause must also be supported

NOTE 367 – ‘‘Routine’’ is the collective term
for functions, methods, and procedures.

This feature requires a conforming SQL-
implementation to support both user-defined
functions and user-defined procedures.

An SQL-implementation that conforms to
Core SQL must support at least one language
for writing routines; that language may be
SQL. If the language is SQL, then the basic
specification capability in Core SQL is the
ability to specify a one-statement routine.

Support for overloaded functions and proce-
dures is not part of Core SQL.

169 T321-01 User-defined functions with no
overloading

— Subclause 11.49, ‘‘<SQL-invoked routine>’’:
With <function specification>

170 T321-02 User-defined stored procedures
with no overloading

— Subclause 11.49, ‘‘<SQL-invoked routine>’’:
With <SQL-invoked procedure>

171 T321-03 Function invocation — Subclause 6.3, ‘‘<value specification> and
<target specification>’’: With a <value expres-
sion primary> that is a <routine invocation>
— Subclause 10.4, ‘‘<routine invocation>’’: For
user-defined functions

172 T321-04 CALL statement — Subclause 10.4, ‘‘<routine invocation>’’:
Used by <call statement>s
— Subclause 15.1, ‘‘<call statement>’’

173 T321-05 RETURN statement — Subclause 15.2, ‘‘<return statement>’’

174 T321-06 ROUTINES view — Subclause 20.45, ‘‘ROUTINES view’’

175 T321-07 PARAMETERS view — Subclause 20.33, ‘‘PARAMETERS view’’

Table 32, ‘‘SQL/Foundation feature taxonomy for features outside Core SQL’’, does not provide
definitions of the features not required for conformance to Core SQL; the definition of those features
is found in the Conformance Rules that are further summarized in Annex A, ‘‘SQL Conformance
Summary’’.

1056 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL

Feature
ID Feature Name

1 F032 CASCADE drop behavior

2 F033 ALTER TABLE statement: DROP COLUMN clause

3 F034 Extended REVOKE statement

4 F034-01 REVOKE statement performed by other than the owner of a schema object

5 F034-02 REVOKE statement: GRANT OPTION FOR clause

6 F034-03 REVOKE statement to revoke a privilege that the grantee has WITH GRANT
OPTION

7 F052 Intervals and datetime arithmetic

8 F111 Isolation levels other than SERIALIZABLE

9 F111-01 READ UNCOMMITTED isolation level

10 F111-02 READ COMMITTED isolation level

11 F111-03 REPEATABLE READ isolation level

12 F121 Basic diagnostics management

13 F121-01 GET DIAGNOSTICS statement

14 F121-02 SET TRANSACTION statement: DIAGNOSTICS SIZE clause

15 F171 Multiple schemas per user

16 F191 Referential delete actions

17 F222 INSERT statement: DEFAULT VALUES clause

18 F231 Privilege Tables

19 F231-01 TABLE_PRIVILEGES view

20 F231-02 COLUMN_PRIVILEGES view

21 F231-03 USAGE_PRIVILEGES view

22 F251 Domain support

23 F271 Compound character literals

24 F281 LIKE enhancements

25 F291 UNIQUE predicate

26 F301 CORRESPONDING in query expressions

27 F302 INTERSECT table operator

28 F302-01 INTERSECT DISTINCT table operator

29 F302-02 INTERSECT ALL table operator

30 F304 EXCEPT ALL table operator

31 F321 User authorization

32 F341 Usage tables

SQL feature and package taxonomy 1057

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

33 F361 Subprogram support

34 F381 Extended schema manipulation

35 F381-01 ALTER TABLE statement: ALTER COLUMN clause

36 F381-02 ALTER TABLE statement: ADD CONSTRAINT clause

37 F381-03 ALTER TABLE statement: DROP CONSTRAINT clause

38 F391 Long identifiers

39 F401 Extended joined table

40 F401-01 NATURAL JOIN

41 F401-02 FULL OUTER JOIN

42 F401-03 UNION JOIN

43 F401-04 CROSS JOIN

44 F411 Time zone specification

45 F421 National character

46 F431 Read-only scrollable cursors

47 F431-01 FETCH with explicit NEXT

48 F431-02 FETCH FIRST

49 F431-03 FETCH LAST

50 F431-04 FETCH PRIOR

51 F431-05 FETCH ABSOLUTE

52 F431-06 FETCH RELATIVE

53 F441 Extended set function support

54 F451 Character set definition

55 F461 Named character sets

56 F491 Constraint management

57 F502 Enhanced documentation tables

58 F502-01 SQL_SIZING_PROFILES view

59 F502-02 SQL_IMPLEMENTATION_INFO view

60 F502-03 SQL_PACKAGES view

61 F511 BIT data type

62 F521 Assertions

63 F531 Temporary tables

64 F555 Enhanced seconds precision

65 F561 Full value expressions

1058 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

66 F571 Truth value tests

67 F591 Derived tables

68 F611 Indicator data types

69 F641 Row and table constructors

70 F651 Catalog name qualifiers

71 F661 Simple tables

72 F671 Subqueries in CHECK

73 F691 Collation and translation

74 F701 Referential update actions

75 F711 ALTER domain

76 F721 Deferrable constraints

77 F731 INSERT column privileges

78 F741 Referential MATCH types

79 F751 View CHECK enhancements

80 F761 Session management

81 F771 Connection management

82 F781 Self-referencing operations

83 F791 Insensitive cursors

84 F801 Full set function

85 F813 Extended flagging — Part 1, Subclause 8.1.4, "SQL flagger": With ‘‘level of flag-
ging’’ specified to be Core SQL Flagging and ‘‘extent of checking’’ specified to be
Catalog Lookup

86 F811 Extended flagging

87 F821 Local table references

88 F831 Full cursor update

89 F831-01 Updateable scrollable cursors

90 F831-02 Updateable ordered cursors

91 S023 Basic structured types

92 S024 Enhanced structured types

93 S041 Basic reference types

94 S043 Enhanced reference types

95 S051 Create table of type

96 S071 SQL paths in function and type name resolution

97 S081 Subtables

SQL feature and package taxonomy 1059

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

98 S091 Basic array support

99 S091-01 Arrays of built-in data types

100 S091-02 Arrays of distinct types

101 S091-03 Array expressions

102 S092 Arrays of user-defined types

103 S094 Arrays of reference types

104 S111 ONLY in query expressions

105 S151 Type predicate

106 S161 Subtype treatment

107 S201 SQL routines on arrays

108 S201-01 Array parameters

109 S201-02 Array as result type of functions

110 S211 User-defined cast functions

111 S231 Structured type locators

112 S232 Array locators

113 S241 Transform functions

114 S251 User-defined orderings

115 S261 Specific type method

116 T011 Timestamp in Information Schema

117 T031 BOOLEAN data type

118 T041 Basic LOB data type support

119 T041-01 BLOB data type
— Subclause 5.2, ‘‘<token> and <separator>’’: The <reserved word>s BINARY,
BLOB, LARGE, and OBJECT
— Subclause 5.3, ‘‘<literal>’’: <binary string literal>
— Subclause 6.1, ‘‘<data type>’’: The BINARY LARGE OBJECT data type
— Subclause 6.27, ‘‘<string value expression>’’: For values of type BINARY LARGE
OBJECT
— Subclause 13.6, ‘‘Data type correspondences’’: Type correspondences for BINARY
LARGE OBJECT for all supported languages

1060 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

120 T041-02 CLOB data type
— Subclause 5.2, ‘‘<token> and <separator>’’: The <reserved word>s CHARACTER,
CLOB, LARGE, and OBJECT
— Subclause 6.1, ‘‘<data type>’’: The CHARACTER LARGE OBJECT data type
— Subclause 6.27, ‘‘<string value expression>’’: For values of type CHARACTER
LARGE OBJECT
— Subclause 13.6, ‘‘Data type correspondences’’: Type correspondences for
CHARACTER LARGE OBJECT for all supported languages
— The automatic casting among the character types supported by subfeature E021-
11 is extended to support the CHARACTER LARGE OBJECT type

121 T041-03 POSITION, LENGTH, LOWER, TRIM, UPPER, and SUBSTRING functions for LOB
data types
— Subclause 6.17, ‘‘<numeric value function>’’: The <position expression> for expres-
sions of type BINARY LARGE OBJECT and CHARACTER LARGE OBJECT
— Subclause 6.17, ‘‘<numeric value function>’’: The <char length function> for ex-
pressions of type CHARACTER LARGE OBJECT
— Subclause 6.17, ‘‘<numeric value function>’’: The <octet length function> for ex-
pressions of type BINARY LARGE OBJECT and CHARACTER LARGE OBJECT
— Subclause 6.18, ‘‘<string value function>’’: The <fold> function for expressions of
type CHARACTER LARGE OBJECT
— Subclause 6.18, ‘‘<string value function>’’: The <trim function> for expressions of
type CHARACTER LARGE OBJECT
— Subclause 6.18, ‘‘<string value function>’’: The <blob trim function>
— Subclause 6.18, ‘‘<string value function>’’: The <character substring function> for
expressions of type CHARACTER LARGE OBJECT
— Subclause 6.18, ‘‘<string value function>’’: The <blob substring function>

122 T041-04 Concatenation of LOB data types
— Subclause 6.27, ‘‘<string value expression>’’: The <concatenation> expression for
expressions of type CHARACTER LARGE OBJECT
— Subclause 6.27, ‘‘<string value expression>’’: The <blob concatenation> expression

123 T041-05 LOB locator: non-holdable
— Subclause 13.3, ‘‘<externally-invoked procedure>’’: <locator indication>
— Subclause 14.12, ‘‘<free locator statement>’’

124 T042 Extended LOB data type support

125 T051 Row types

126 T111 Updatable joins, unions, and columns

127 T121 WITH (excluding RECURSIVE) in query expression

128 T131 Recursive query

129 T141 SIMILAR predicate

130 T151 DISTINCT predicate

131 T171 LIKE clause in table definition

132 T191 Referential action RESTRICT

133 T201 Comparable data types for referential constraints

SQL feature and package taxonomy 1061

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

134 T211 Basic trigger capability

135 T211-01 Triggers activated on UPDATE, INSERT, or DELETE of one base table.

136 T211-02 BEFORE triggers

137 T211-03 AFTER triggers

138 T211-04 FOR EACH ROW triggers

139 T211-05 Ability to specify a search condition that must be true before the trigger is invoked.

140 T211-06 Support for run-time rules for the interaction of triggers and constraints.

141 T211-07 TRIGGER privilege

142 T211-08 Multiple triggers for the same the event are executed in the order in which they were
created in the catalog.

143 T212 Enhanced trigger capability

144 T231 SENSITIVE cursors

145 T241 START TRANSACTION statement

146 T251 SET TRANSACTION statement: LOCAL option

147 T261 Chained transactions

148 T271 Savepoints

149 T281 SELECT privilege with column granularity

150 T301 Functional Dependencies

151 T312 OVERLAY function

152 T322 Overloading of SQL-invoked functions and procedures

153 T323 Explicit security for external routines

154 T331 Basic roles

155 T332 Extended roles

156 T351 Bracketed SQL comments (/*...*/ comments)

157 T401 INSERT into a cursor

158 T411 UPDATE statement: SET ROW option

159 T431 CUBE and ROLLUP operations

160 T441 ABS and MOD functions

161 T461 Symmetric BETWEEN predicate

162 T471 Result sets return value

163 T491 LATERAL derived table

164 T501 Enhanced EXISTS predicate

165 T511 Transaction counts

1062 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Table 32—SQL/Foundation feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name

166 T541 Updatable table references

167 T551 Optional key words for default syntax

168 T561 Holdable locators

169 T571 Array-returning external SQL-invoked functions

170 T581 Regular expression substring function

171 T591 UNIQUE constraints of possibly null columns

172 T601 Local cursor references

SQL feature and package taxonomy 1063

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was
defined; index entries appearing in italics indicate a page where the BNF nonterminal was used in a Format;
and index entries appearing in roman type indicate a page where the word, phrase, or BNF nonterminal
was used in a heading, Function, Syntax Rule, Access Rule, General Rule, Leveling Rule, Table, or other
descriptive text.

— A —
abandoned • 599, 600, 601, 602, 603, 604, 605, 607,

608, 609
ABS • 98, 160, 163, 177, 844, 1014, 1036, 1062
ABSOLUTE • 99, 659, 660, 661, 1058
<absolute value expression> • 24, 159, 160, 162
abstract character • 5
abstract character sequence • 5
access mode • 83, 85, 88, 362, 373, 637, 638, 639,

668, 671, 675, 680, 686, 715, 716, 717, 718,
724, 725, 726, 735, 954, 1050

ACTION • 99, 426, 427, 895, 1036
<action> • 79, 80, 374, 377, 378, 584, 586, 588, 589,

595, 596, 609, 610, 966, 989, 992, 994, 999,
1008, 1010, 1046, 1047

ACTION_CONDITION • 816, 833, 937
ACTION_ORDER • 816, 833, 937
ACTION_ORIENTATION • 816, 833, 937
ACTION_STATEMENT • 816, 833, 937
activated • 92, 176, 387, 388, 1062
activated by • 92, 387, 388
active • 64, 65, 68, 73, 77, 82, 86, 87, 88, 89, 91, 92,

284, 356, 357, 362, 444, 635, 637, 638, 716,
717, 718, 719, 723, 725, 726, 732, 736, 737,
745, 954, 1018, 1030

active completion condition • 68
active condition • 68
active SQL-connection • 86, 723, 1030
active SQL-transaction • 716, 717, 718, 719, 732,

736, 737, 954
<actual identifier> • 113, 751
Ada • 3, 368, 613, 615, 617, 619, 624, 625, 626, 627,

641, 917, 962
ADA • 98, 351, 352, 367, 368, 390, 391, 392, 555,

563, 615, 617, 619, 632, 889, 907, 916, 917,
963

ADD • 99, 444, 448, 453, 477, 480, 521, 525, 531,
622, 623, 1051, 1058

<add attribute definition> • 520, 521
<add column definition> • 442, 444, 1051
<add column scope clause> • 445, 448, 974, 998

<add domain constraint definition> • 474, 477, 989
additional parameter • 62
additional result sets returned • 663, 956
<add original method specification> • 520, 525
<add overriding method specification> • 520, 531
<add table constraint definition> • 425, 442, 443, 453,

480, 921, 974, 975, 1026
ADMIN • 81, 99, 377, 591, 592, 594, 595, 599, 607,

608, 756, 833, 897, 975, 1012, 1013
ADMINISTRABLE_ROLE_AUTHORIZATIONS • 756,

975, 1012
AFTER • 90, 92, 99, 388, 497, 937, 1037, 1062
AFTER trigger • 90, 92, 388, 1062
AGGREGATE • 99, 1037
ALIAS • 99, 1037
ALL • 46, 47, 99, 155, 158, 241, 242, 265, 268, 269,

273, 274, 275, 276, 278, 310, 374, 375, 457,
467, 470, 539, 579, 580, 589, 609, 696, 703,
706, 708, 711, 719, 723, 732, 743, 851, 853,
865, 882, 884, 886, 892, 921, 972, 980, 1030,
1037, 1046, 1047, 1053, 1056, 1057

<all> • 310
<all fields reference> • 258, 259, 260, 264, 1006
ALLOCATE • 99
<alphabetic character> • 96, 100, 101
ALTER • 99, 442, 443, 445, 450, 452, 455, 474, 475,

476, 477, 478, 480, 520, 562, 575, 608, 609,
610, 742, 783, 784, 799, 833, 834, 889, 890,
907, 909, 961, 965, 988, 989, 1003, 1051,
1057, 1058, 1059

<alter column action> • 445
<alter column definition> • 418, 442, 443, 445, 446,

447, 448, 449, 974
<alter domain action> • 474
<alter domain statement> • 74, 418, 440, 471, 474,

475, 476, 477, 478, 609, 633, 640, 742, 970,
988

<alternate underscore> • 96, 101
<alter routine behaviour> • 562
<alter routine characteristic> • 562
<alter routine characteristics> • 562, 563

Index 1065

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<alter routine statement> • 74, 562, 564, 633, 742,
975

ALTER TABLE • 455, 480, 608, 609, 742, 1051, 1057
<alter table action> • 442
<alter table statement> • 74, 412, 413, 414, 416, 422,

424, 425, 426, 440, 442, 444, 445, 450, 451,
453, 454, 455, 575, 608, 609, 610, 633, 742

<alter type action> • 520
<alter type statement> • 74, 520, 521, 522, 523, 525,

531, 535, 633, 742, 995
ambiguous cursor name • 952
<ampersand> • 18, 93, 94
anchor expression • 267, 272
anchor name • 267
AND • 24, 52, 54, 76, 86, 99, 134, 216, 217, 218,

295, 317, 424, 573, 723, 724, 725, 758, 760,
761, 762, 763, 764, 765, 766, 768, 769, 770,
772, 773, 774, 775, 776, 780, 782, 783, 786,
788, 790, 792, 793, 794, 795, 796, 797, 799,
800, 807, 808, 809, 810, 811, 812, 813, 814,
815, 816, 817, 819, 821, 822, 823, 849, 850,
865, 872, 889, 907, 916, 937, 943

ANY • 99, 155, 156, 157, 158, 296, 310, 872, 937,
1003

APD • 533, 535, 619
applicable from-sql function • 395, 396
applicable privileges • 81, 126, 127, 130, 142, 146,

153, 169, 184, 200, 236, 355, 376, 380, 384,
408, 409, 415, 416, 428, 441, 463, 464, 465,
466, 467, 472, 480, 481, 486, 490, 499, 512,
518, 520, 556, 557, 583, 584, 585, 586, 589,
600, 601, 602, 603, 604, 605, 607, 667, 670,
674, 675, 679, 686

applicable roles • 81, 376, 592, 596, 599, 607, 757,
791

applicable to-sql function • 397, 398, 551
APPLICABLE_ROLES • 756, 757, 1012
application program • 1
appropriate user-defined cast function • 39, 323, 328
approximate numeric • 12, 22, 23, 109, 111, 125, 156,

185, 186, 187, 189, 202, 203, 334, 393, 419,
504, 845, 1017, 1020, 1021, 1022, 1042

<approximate numeric literal> • 106, 109, 111, 187,
189, 1042

<approximate numeric type> • 23, 122, 125, 845,
1020, 1042

approximate numeric types • 12
ARD • 98, 160, 233, 620, 641, 754, 760, 768, 776,

777, 779, 782, 783, 786, 787, 799, 833, 853,
855, 865, 872, 873, 882, 884, 886, 892, 907,
913, 916, 918, 919, 937, 970, 1037

ARE • 99, 130, 131, 412, 413, 417, 517, 519, 615,
997, 998

array • 6, 7, 11, 12, 36, 37, 61, 69, 87, 123, 126, 129,
137, 151, 163, 185, 197, 198, 199, 219, 220,
221, 224, 236, 238, 246, 287, 288, 289, 318,
323, 326, 328, 331, 332, 334, 365, 366, 367,
369, 370, 371, 373, 390, 391, 392, 413, 415,
416, 424, 457, 470, 471, 507, 509, 518, 521,
523, 527, 537, 545, 546, 547, 550, 551, 552,
556, 557, 561, 613, 616, 617, 619, 626, 630,
632, 679, 681, 682, 685, 688, 692, 693, 777,
873, 881, 952, 953, 956, 962, 999, 1000, 1001,
1015, 1060

ARRAY • 11, 36, 99, 123, 136, 221, 280, 281, 367,
390, 620, 628, 641, 642, 645, 646, 647, 648,
649, 777, 833, 872, 873, 881, 943, 1037

<array concatenation> • 37, 219
array data, right truncation • 326, 332, 952, 956
<array element> • 221
array element error • 151, 391, 682, 688, 952
<array element list> • 221
array locator parameter • 613, 617, 630, 632
array-returning external function • 365, 366, 367, 369,

545, 546, 550, 551, 552
<array specification> • 123, 126, 413
array type • 11, 12, 36, 61, 69, 87, 126, 185, 219,

221, 246, 287, 288, 323, 326, 328, 331, 334,
369, 370, 371, 373, 415, 416, 424, 471, 507,
509, 518, 521, 523, 527, 537, 545, 546, 547,
556, 557, 561, 613, 616, 617, 626, 679, 685,
873, 881, 1001

<array value constructor> • 198, 219, 221, 1000
<array value expression 1> • 219
<array value expression 2> • 219
<array value expression> • 151, 197, 219, 220, 1000
<array value list constructor> • 221
AS • 69, 99, 136, 147, 175, 181, 183, 184, 185, 186,

191, 192, 193, 194, 201, 213, 214, 215, 232,
233, 239, 253, 254, 258, 265, 277, 282, 293,
354, 370, 459, 460, 465, 471, 481, 497, 502,
503, 505, 506, 507, 509, 512, 513, 515, 519,
525, 527, 528, 531, 539, 541, 547, 566, 567,
568, 628, 629, 631, 654, 712, 727, 735, 754,
755, 756, 757, 758, 760, 761, 762, 763, 764,
765, 766, 768, 769, 770, 771, 772, 773, 774,
775, 776, 777, 778, 779, 780, 782, 783, 786,
787, 788, 789, 790, 791, 792, 793, 794, 795,
796, 797, 799, 800, 801, 802, 803, 804, 805,
806, 807, 808, 809, 810, 811, 812, 813, 814,
815, 816, 817, 818, 819, 821, 822, 823, 833,
849, 851, 874, 877, 887, 892, 921, 995, 1045

ASC • 99, 651
<as clause> • 258, 261, 1029, 1045
asensitive • 72, 652, 1018, 1028
ASENSITIVE • 72, 98, 651, 652, 655, 991, 1009
assertion • 48, 50, 64, 74, 83, 118, 142, 399, 401,

402, 449, 450, 456, 469, 493, 494, 495, 496,
523, 524, 537, 538, 562, 563, 565, 569, 570,
574, 575, 601, 607, 608, 633, 640, 743, 746,
747, 758, 769, 770, 847, 849, 850, 851, 852,
857, 858, 859, 984

ASSERTION • 99, 402, 493, 495, 608, 849, 850

1066 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<assertion definition> • 74, 142, 399, 401, 493, 494,
633, 640, 743, 859, 984

ASSERTIONS • 758, 851, 852, 859, 984
assignable • 6, 24, 34, 35, 37, 38, 39, 323, 324, 328,

358, 359, 712, 1036
assignment • 6, 22, 24, 26, 33, 34, 35, 37, 38, 39,

69, 133, 254, 323, 328, 361, 661, 662, 666,
681, 682, 713, 749, 753, 864, 878, 880, 910,
920, 926, 945, 946, 947, 948, 952, 1028, 1030,
1042, 1043

ASSIGNMENT • 98, 512, 567, 568, 620
associated value • 28
associated with • 20, 28, 29, 30, 34, 36, 42, 45, 56,

59, 60, 62, 67, 68, 70, 72, 80, 82, 84, 87, 91,
92, 104, 117, 127, 136, 138, 139, 153, 161,
259, 275, 276, 361, 368, 370, 371, 379, 389,
396, 398, 409, 413, 452, 457, 469, 481, 550,
551, 552, 553, 554, 555, 557, 559, 579, 580,
601, 614, 617, 626, 636, 637, 638, 679, 680,
690, 723, 725, 726, 728, 730, 751, 859, 865,
878, 920, 949, 951, 975, 1017, 1018, 1019,
1023, 1025, 1026, 1027, 1029, 1035, 1036,
1041, 1054

<asterisk> • 15, 18, 57, 93, 94, 102, 155, 202, 203,
212, 258, 260, 284, 304, 305, 306, 307, 1014

<asterisked identifier> • 258, 259
<asterisked identifier chain> • 258, 259
ASYMMETRIC • 98, 295, 1014
AS_LOCATOR • 782, 786, 799, 833, 886, 887, 889,

890, 892, 907, 909
AT • 99, 209, 214, 215
atomic • 77, 82, 89, 284, 635, 723, 725, 726
ATOMIC • 98, 497
atomic execution context • 77, 284, 635, 723, 725,

726
atomic SQL-statement • 77
attempt to return too many result sets • 372, 956
attribute • 6, 7, 8, 11, 12, 30, 31, 32, 34, 40, 41, 45,

46, 114, 119, 140, 141, 143, 145, 152, 153,
197, 198, 199, 406, 407, 408, 414, 418, 420,
454, 457, 461, 463, 464, 470, 488, 502, 503,
505, 506, 513, 514, 517, 518, 519, 520, 521,
522, 523, 524, 537, 604, 675, 717, 759, 760,
853, 854, 867, 944, 975, 987, 992, 993, 995,
996

<attribute default> • 41, 517, 518, 519, 995
<attribute definition> • 418, 502, 505, 513, 517, 518,

519, 521, 522, 987, 992, 995
<attribute name> • 114, 119, 152, 406, 408, 414, 463,

464, 503, 505, 506, 517, 523, 992
<attribute or method reference> • 145, 197, 198, 199,

996
ATTRIBUTES • 17, 25, 27, 28, 29, 84, 127, 128, 218,

309, 352, 641, 642, 644, 646, 647, 648, 649,
741, 742, 759, 760, 771, 833, 853, 952, 958,
961, 975, 993, 1041, 1056

attribute value • 6
ATTRIBUTE_DEFAULT • 760, 833, 853, 854
ATTRIBUTE_NAME • 760, 833, 853, 854

AUTHORIZATION • 99, 399, 400, 401, 611, 621, 736,
744, 752, 756, 757, 778, 848, 896, 968, 975,
1012, 1023

<authorization identifier> • 59, 77, 78, 79, 80, 81, 82,
113, 117, 118, 130, 142, 146, 153, 169, 184,
200, 236, 355, 374, 376, 380, 384, 387, 388,
399, 400, 401, 402, 405, 410, 411, 412, 441,
442, 452, 456, 463, 469, 472, 474, 479, 481,
482, 483, 485, 487, 490, 491, 493, 495, 499,
501, 511, 517, 520, 538, 556, 557, 559, 560,
563, 566, 567, 568, 570, 572, 574, 577, 580,
591, 594, 600, 611, 618, 670, 674, 679, 686,
736, 862, 896, 901, 923, 925, 939, 941, 945,
1019, 1023, 1025, 1028

AVG • 98, 155, 156, 157, 1020, 1047

— B —
based on • 3, 12, 16, 21, 40, 41, 50, 64, 211, 292,

424, 452, 505, 521, 523, 537, 538, 626
base table • 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52,

59, 79, 83, 90, 141, 235, 236, 402, 404, 405,
408, 409, 410, 412, 424, 427, 440, 442, 448,
449, 451, 456, 457, 462, 470, 498, 521, 523,
668, 671, 676, 680, 682, 687, 689, 691, 694,
697, 699, 700, 702, 703, 704, 707, 708, 751,
753, 847, 848, 852, 853, 855, 857, 858, 859,
860, 862, 864, 867, 874, 876, 878, 880, 881,
882, 884, 886, 888, 891, 893, 894, 896, 898,
899, 901, 903, 905, 910, 911, 913, 914, 918,
919, 920, 922, 924, 926, 927, 928, 929, 931,
932, 934, 936, 938, 940, 942, 945, 946, 947,
948, 1036, 1050, 1055, 1062

<basic identifier chain> • 138, 140, 141, 143
basis • 64, 138, 139, 140, 141, 259, 260, 462, 463
basis length • 138, 139, 140, 259
basis table • 462, 463
BEFORE • 90, 92, 99, 140, 387, 497, 499, 937, 1037,

1062
BEFORE trigger • 90, 92, 387, 1062
BEGIN • 99, 497
be included in • 478, 523, 538, 563
BETWEEN • 98, 295, 1045, 1062
<between predicate> • 285, 295, 994, 1014
BINARY • 11, 20, 99, 121, 123, 124, 180, 196, 208,

303, 338, 344, 630, 632, 641, 642, 644, 646,
647, 648, 649, 872, 1004, 1005, 1037, 1060,
1061

binary large object • 69, 87, 124, 172, 369, 370, 371,
393, 507, 509, 527, 546, 547, 613, 616, 617,
630, 632, 692, 693

binary large object locator parameter • 617, 630, 632
<binary large object string type> • 121
<binary string literal> • 105, 108, 109, 112, 419, 1004,

1060
binary strings • 11, 21
binary string type • 11, 12, 323, 328
binding style • 917, 962
BIT • 11, 21, 38, 99, 112, 121, 122, 124, 129, 174,

208, 338, 344, 628, 630, 641, 642, 644, 646,
647, 648, 649, 844, 872, 983

Index 1067

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<bit> • 105, 108
<bit concatenation> • 22, 204, 206, 207
<bit factor> • 204, 206, 207
<bit length expression> • 159, 162
<bit primary> • 204, 206
<bit string literal> • 96, 101, 105, 108, 109, 110, 112,

419, 420, 983
bit string type • 11, 12, 124, 125, 129, 323, 328, 873,

983, 1019
<bit string type> • 121, 124, 125, 129, 983
bit string types • 11, 12, 1019
<bit substring function> • 22, 165, 168, 173
<bit value expression> • 160, 165, 168, 173, 204,

206, 207, 208, 983
<bit value function> • 164, 165, 168, 169, 173, 174,

983
BITVAR • 98, 344
BIT_LENGTH • 98, 159, 162, 187, 189, 190, 191, 844
BLOB • 99, 121, 123, 129, 344, 1004, 1037, 1060
<blob concatenation> • 21, 204, 205, 207, 208, 1004,

1061
<blob factor> • 204, 205, 207
<blob overlay function> • 21, 165, 168, 172, 174,

1010
<blob position expression> • 159, 161
<blob trim function> • 165, 168, 172, 173, 1061
<blob trim operands> • 165
<blob trim source> • 165, 168
<blob value expression> • 159, 161, 165, 168, 172,

204, 205, 207, 298, 299
<blob value function> • 164, 165, 168, 169, 172, 174,

1004
boolean • 24, 38, 40, 52, 105, 107, 112, 121, 122,

126, 129, 133, 134, 156, 188, 190, 195, 196,
197, 198, 199, 216, 217, 218, 285, 293, 322,
323, 326, 328, 331, 334, 419, 420, 985, 1003,
1004

Boolean • 15, 24, 182, 629, 632
BOOLEAN • 8, 11, 24, 99, 112, 122, 126, 129, 158,

199, 218, 340, 573, 619, 629, 631, 641, 642,
644, 646, 647, 648, 649, 872, 1003, 1004,
1037, 1060

<boolean factor> • 52, 216
<boolean literal> • 105, 107, 112, 419, 1003
<boolean primary> • 134, 216, 217, 218, 1004
<boolean term> • 52, 216
<boolean test> • 52, 134, 216, 217, 218, 985
<boolean type> • 121, 122, 129, 1003
<boolean value expression> • 24, 40, 52, 133, 197,

198, 199, 216, 218, 322, 1003
BOTH • 99, 164, 167, 168, 171, 191, 192, 193, 194,

195, 196, 727, 728, 736
<bracketed comment> • 97, 98, 102, 104, 1013
<bracketed comment contents> • 98, 102
<bracketed comment introducer> • 98, 102
<bracketed comment terminator> • 98
branch • 85, 86, 668, 671, 675, 680, 686, 717, 718,

724, 725, 726, 954
branch transaction • 85, 717, 718, 724, 725, 954

branch transaction already active • 718, 954
BREADTH • 99, 279, 280, 1037
built-in function • 67, 356, 357, 361, 835, 1022
built-in functions • 67, 835
BY • 99, 245, 256, 260, 266, 279, 512, 571, 588, 589,

592, 595, 651, 652, 655, 849, 851, 991, 1045,
1048, 1053

— C —
C • 4, 98, 351, 352, 367, 368, 390, 391, 392, 555,

627, 629, 630, 631, 632, 642, 889, 907, 916,
917, 953, 962, 963

CALL • 99, 711, 743, 1037, 1056
CALLED • 98, 508, 527, 543, 545
caller language • 617, 619, 627, 628, 629, 630, 631,

632
<call statement> • 62, 63, 75, 342, 354, 357, 358,

634, 711, 743, 1056
candidate basis • 139, 259
candidate key • 43, 50, 58, 262, 410, 462, 463
candidate new row • 681, 682, 688, 689, 708
candidate routines • 357, 358
canonical decomposition • 5
canonical equivalent • 5
cardinality • 6, 7, 23, 36, 37, 42, 91, 126, 137, 151,

157, 159, 160, 162, 163, 219, 224, 227, 258,
263, 283, 312, 326, 327, 331, 332, 334, 372,
390, 393, 665, 681, 688, 744, 873, 885, 952,
999, 1030

CARDINALITY • 98, 160, 233, 620, 760, 768, 776,
777, 779, 782, 783, 786, 787, 799, 833, 872,
873, 1037

<cardinality expression> • 23, 159, 160, 162, 163,
999

cardinality violation • 283, 665, 952
CARDINAL_NUMBER • 754, 853, 855, 865, 872,

882, 884, 886, 892, 907, 913, 918, 919, 937,
970

CASCADE • 99, 402, 403, 426, 429, 431, 433, 436,
449, 450, 451, 452, 454, 455, 456, 457, 458,
469, 470, 480, 484, 488, 491, 495, 538, 539,
540, 565, 566, 569, 570, 574, 575, 580, 607,
608, 609, 610, 691, 895, 965, 966, 1057

CASCADED • 43, 99, 459, 460, 461, 464, 703, 708,
948, 949

CASE • 99, 178, 179, 760, 768, 799, 823
<case abbreviation> • 178
<case expression> • 18, 178, 180, 197, 198, 199,

261, 333, 980, 1004, 1054
<case operand> • 178, 179
<case specification> • 178, 179, 180
CAST • 34, 38, 39, 99, 136, 175, 181, 183, 184, 185,

186, 191, 192, 193, 194, 213, 214, 215, 253,
261, 277, 293, 326, 331, 370, 503, 509, 512,
513, 519, 527, 539, 542, 547, 566, 567, 568,
569, 620, 628, 629, 631, 712, 799, 833, 907,
909, 1052, 1054

cast function • 39, 184, 185, 323, 328, 566, 567, 568,
569, 570, 909, 1001, 1060

<cast function> • 567

1068 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<cast operand> • 181, 184, 196, 980, 997, 1004
CAST operator • 38, 39
<cast option> • 502, 503, 505
<cast specification> • 26, 50, 181, 182, 183, 184,

185, 186, 196, 197, 198, 199, 463, 569, 1054
<cast target> • 181, 196, 569, 969, 997
<cast to distinct> • 503, 504
<cast to distinct identifier> • 503, 504
<cast to ref> • 502, 503, 505
<cast to ref identifier> • 503, 505
<cast to source> • 503, 504
<cast to source identifier> • 503, 504
<cast to type> • 502, 503, 506
<cast to type identifier> • 503, 506
catalog • 13, 59, 113, 117, 118, 119, 135, 172, 362,

400, 401, 402, 611, 612, 746, 747, 748, 749,
752, 753, 758, 759, 761, 762, 763, 764, 765,
766, 767, 769, 770, 772, 773, 774, 775, 776,
777, 779, 780, 783, 785, 787, 788, 789, 790,
791, 792, 793, 794, 795, 796, 797, 798, 800,
803, 807, 808, 809, 810, 811, 812, 813, 814,
815, 816, 817, 818, 819, 821, 822, 823, 848,
852, 854, 855, 856, 857, 858, 859, 860, 861,
863, 865, 872, 875, 878, 880, 885, 887, 889,
890, 892, 895, 899, 900, 902, 904, 907, 909,
910, 912, 921, 923, 925, 926, 927, 928, 930,
931, 933, 935, 937, 939, 944, 946, 947, 948,
954, 975, 986, 1019, 1022, 1023, 1050, 1055,
1062

CATALOG • 99
<catalog name> • 59, 113, 117, 118, 119, 135, 172,

400, 402, 611, 612, 746, 747, 748, 749, 986,
1019, 1023

CATALOG_NAME • 98, 621, 739, 741, 746, 747, 753,
758, 760, 761, 762, 763, 764, 765, 766, 768,
769, 770, 772, 773, 774, 775, 776, 780, 782,
783, 786, 788, 789, 790, 791, 792, 793, 794,
795, 796, 797, 799, 800, 807, 808, 809, 810,
811, 812, 813, 814, 815, 816, 817, 818, 819,
821, 822, 823, 833, 855, 857, 858, 860, 865,
872, 880, 895, 899, 903, 910, 921, 929, 934,
937, 946, 947, 975

CATEGORY • 819, 833, 853, 943, 944
CHAIN • 76, 86, 98, 723, 724, 725, 726, 1009, 1010
CHAR • 99, 121, 123, 344, 649, 1043

character • 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 24, 25, 32, 37, 38, 40,
41, 45, 59, 60, 62, 65, 67, 68, 69, 73, 74, 76,
79, 80, 83, 85, 86, 87, 88, 89, 92, 93, 95, 96,
97, 98, 100, 101, 102, 103, 104, 105, 108, 109,
110, 112, 114, 115, 117, 118, 120, 121, 123,
124, 127, 129, 130, 131, 133, 135, 140, 141,
143, 156, 160, 161, 162, 163, 164, 165, 166,
167, 168, 169, 170, 171, 172, 173, 174, 180,
182, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 198, 204, 205, 206, 207,
208, 239, 240, 246, 255, 256, 260, 266, 273,
280, 288, 292, 298, 299, 300, 301, 302, 303,
304, 305, 306, 307, 308, 323, 324, 325, 328,
329, 330, 333, 338, 362, 363, 368, 369, 370,
371, 374, 375, 378, 379, 380, 385, 386, 390,
391, 393, 399, 400, 401, 402, 403, 406, 409,
412, 413, 415, 416, 418, 419, 420, 421, 422,
441, 453, 455, 460, 464, 467, 471, 472, 477,
478, 480, 481, 482, 483, 484, 485, 486, 487,
488, 489, 490, 491, 493, 494, 495, 499, 503,
505, 507, 508, 509, 516, 517, 518, 525, 526,
527, 541, 542, 544, 545, 546, 547, 551, 552,
553, 561, 562, 563, 564, 583, 584, 597, 598,
601, 602, 603, 604, 605, 606, 607, 609, 610,
613, 615, 616, 617, 624, 625, 626, 627, 629,
630, 631, 632, 633, 634, 637, 640, 642, 644,
646, 647, 648, 654, 692, 693, 715, 716, 717,
727, 735, 736, 737, 741, 742, 743, 744, 745,
746, 748, 749, 751, 754, 755, 761, 763, 812,
845, 854, 855, 856, 859, 860, 861, 865, 866,
872, 873, 880, 908, 909, 910, 912, 916, 929,
930, 937, 939, 948, 951, 952, 953, 958, 966,
967, 971, 975, 979, 980, 981, 982, 986, 989,
990, 995, 1004, 1005, 1010, 1014, 1017, 1018,
1019, 1020, 1021, 1022, 1023, 1024, 1025,
1026, 1027, 1028, 1029, 1031, 1035, 1036,
1043, 1044, 1045, 1048, 1052, 1057, 1058,
1061

CHARACTER • 11, 13, 37, 39, 99, 121, 123, 124,
129, 130, 163, 174, 180, 196, 208, 303, 338,
344, 374, 378, 379, 399, 403, 413, 481, 483,
484, 629, 630, 631, 641, 642, 644, 646, 647,
648, 649, 743, 754, 755, 844, 872, 939, 979,
980, 981, 982, 1004, 1005, 1017, 1019, 1036,
1043, 1044, 1061

<character enumeration> • 304, 306, 307
<character factor> • 204, 205, 206
character large object • 69, 87, 182, 323, 325, 330,

333, 369, 370, 371, 507, 509, 527, 547, 613,
616, 617, 630, 632, 692, 693

character large object locator parameter • 617, 630,
632, 692, 693

<character like predicate> • 298, 299
<character match value> • 298, 299, 303, 304, 305,

971
character not in repertoire • 127, 952
<character pattern> • 298, 299, 303, 971
<character primary> • 204, 205, 206

Index 1069

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

character repertoire • 6, 8, 9, 13, 16, 18, 19, 20, 37,
92, 102, 108, 124, 127, 133, 160, 166, 167,
182, 205, 292, 301, 333, 380, 418, 481, 488,
1023, 1028

<character representation> • 105, 108, 109, 110, 112,
300, 301, 971, 1043

character set • 3, 5, 6, 13, 14, 15, 18, 19, 20, 25, 59,
60, 74, 79, 80, 95, 102, 103, 104, 108, 109,
112, 115, 117, 118, 120, 123, 124, 129, 130,
133, 162, 166, 167, 168, 171, 292, 305, 306,
307, 333, 362, 375, 378, 379, 380, 393, 400,
401, 402, 403, 413, 419, 471, 472, 481, 482,
483, 484, 485, 487, 488, 489, 490, 517, 551,
552, 553, 583, 584, 597, 598, 601, 602, 603,
604, 605, 606, 607, 609, 610, 615, 624, 625,
626, 629, 631, 640, 642, 644, 646, 743, 761,
855, 856, 860, 861, 910, 930, 939, 951, 966,
975, 981, 982, 1017, 1019, 1020, 1022, 1023,
1024, 1026, 1029, 1035, 1036, 1058

<character set definition> • 74, 379, 399, 401, 481,
482, 633, 640, 743, 981, 982

<character set name> • 59, 108, 114, 117, 118, 120,
123, 374, 375, 379, 403, 472, 481, 482, 483,
484, 489, 490, 583, 598, 624, 981, 982, 1019

<character set source> • 481
<character set specification> • 18, 102, 103, 105,

108, 109, 112, 115, 121, 124, 130, 379, 380,
399, 401, 413, 471, 481, 482, 485, 489, 517,
584, 609, 615, 981, 982, 1023, 1035, 1036

<character specifier> • 304, 305, 306, 307
<character string literal> • 97, 101, 103, 105, 108,

109, 110, 112, 114, 115, 418, 981
<character string type> • 121, 123, 124, 130, 413,

471, 517, 845, 1019, 1036, 1043
character string types • 11, 1019
<character substring function> • 14, 21, 22, 164, 165,

166, 169, 174, 979, 1061
<character translation> • 14, 15, 164, 165, 167, 169,

171, 174, 986, 1021
character type • 127, 393, 505, 624, 625, 626, 629,

644, 872, 1052, 1061
<character value expression> • 16, 160, 164, 166,

167, 169, 170, 171, 174, 204, 205, 206, 208,
298, 303, 304, 305, 306, 307, 979, 980, 1005,
1021, 1036

<character value function> • 164, 165, 169, 174, 1004
CHARACTER_DATA • 754, 852, 853, 859, 860, 862,

865, 872, 878, 880, 882, 886, 889, 892, 895,
896, 901, 907, 910, 911, 913, 916, 918, 919,
921, 924, 926, 928, 929, 937, 939, 940, 943,
948, 970

CHARACTER_LENGTH • 7, 98, 159, 190, 844, 1043
CHARACTER_MAXIMUM_LENGTH • 760, 768, 776,

777, 779, 782, 783, 786, 787, 799, 819, 833,
872, 873

CHARACTER_OCTET_LENGTH • 760, 768, 776,
777, 779, 782, 783, 786, 787, 799, 819, 833,
872, 873

CHARACTER_SETS • 761, 833, 855, 860, 929, 939,
975

CHARACTER_SET_CATALOG • 98, 760, 761, 763,
768, 776, 777, 779, 782, 783, 786, 787, 799,
800, 812, 819, 833, 855, 856, 860, 861, 910,
929, 930, 939

CHARACTER_SET_NAME • 98, 760, 761, 763, 768,
776, 777, 779, 782, 783, 786, 787, 799, 800,
812, 819, 833, 855, 856, 860, 861, 910, 929,
930, 939

CHARACTER_SET_SCHEMA • 98, 760, 761, 763,
768, 776, 777, 779, 782, 783, 786, 787, 799,
800, 812, 819, 833, 855, 856, 860, 861, 910,
929, 930, 939

CHARACTER_VALUE • 620, 802, 833, 913
<char length expression> • 159, 162
CHAR_LENGTH • 98, 159, 167, 844
CHAR_OCTET_LENGTH • 833
CHAR_SET_CAT • 833
CHAR_SET_NAME • 833
CHAR_SET_SCHEM • 833
CHECK • 43, 47, 98, 99, 130, 131, 412, 413, 414,

415, 417, 440, 441, 459, 460, 461, 464, 468,
493, 517, 519, 624, 676, 680, 687, 703, 708,
747, 753, 754, 760, 762, 769, 770, 823, 833,
849, 850, 851, 852, 853, 854, 855, 857, 858,
859, 860, 862, 865, 872, 874, 877, 878, 880,
881, 882, 884, 886, 889, 892, 893, 895, 896,
898, 899, 901, 903, 907, 911, 916, 921, 922,
924, 926, 928, 929, 931, 932, 934, 937, 939,
940, 943, 945, 946, 947, 948, 949, 986, 990,
997, 998, 1049, 1050, 1055, 1059

check constraint • 49, 50, 64, 196, 415, 423, 440,
441, 450, 456, 480, 762, 769, 770, 857, 858,
859, 921, 986, 1049

<check constraint definition> • 412, 415, 422, 423,
440, 441, 471, 480, 859, 986, 1049

CHECKED • 98, 130, 131, 412, 413, 417, 517, 519,
997, 998

CHECK_CLAUSE • 762, 859
CHECK_COLUMN_USAGE • 769, 857
CHECK_CONSTRAINTS • 762, 852, 857, 858, 859,

878, 921, 1050
CHECK_OPTION • 624, 823, 948, 949
CHECK_REFERENCES • 760, 833, 853, 854, 855,

857, 858, 860, 865, 872, 895, 899, 903, 929,
932, 934, 939, 946, 947

CHECK_TABLE_USAGE • 770, 858
CHECK_TIME • 852
<circumflex> • 15, 18, 19, 94, 95, 304, 305, 306, 307
CLASS • 98, 99, 620, 621, 622, 623, 624, 739, 740,

741, 742, 745, 958, 1026
CLASS_ORIGIN • 98, 99, 739, 740, 741, 742, 745,

958, 1026
CLOB • 99, 121, 123, 129, 344, 1004, 1037, 1061
CLOSE • 99, 368, 663, 723, 726, 743, 1048
close call • 391, 392
CLOSE CURSOR • 743
<close statement> • 71, 75, 76, 634, 663, 743, 1048
COALESCE • 8, 54, 98, 178, 179, 239, 242, 768,

1054

1070 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

COBOL • 3, 98, 351, 352, 367, 368, 390, 391, 392,
555, 563, 627, 628, 629, 630, 631, 632, 644,
889, 907, 916, 917, 962, 963

coded character • 3, 5
coded character set • 5
code value • 5, 954, 955, 956, 959
coercibility • 6, 16, 17, 38, 131, 133, 140, 141, 143,

156, 165, 166, 167, 182, 198, 205, 246, 266,
292, 299, 305, 333, 416, 460, 518, 654

Coercible • 16, 17, 18, 131, 133, 182, 292, 416, 518
COLLATE • 99, 384, 407, 761, 833, 855, 856, 1031
<collate clause> • 13, 16, 40, 41, 42, 130, 131, 204,

205, 208, 245, 246, 255, 384, 404, 406, 408,
412, 413, 416, 417, 471, 472, 481, 482, 517,
518, 519, 605, 651, 654, 986, 987, 992, 1005

collating sequence • 6, 13, 16, 17, 18, 19, 20, 38,
118, 131, 133, 140, 141, 143, 156, 165, 166,
167, 182, 198, 205, 246, 266, 288, 292, 299,
301, 305, 306, 308, 314, 333, 380, 384, 403,
416, 460, 485, 486, 487, 518, 654, 1023

collation • 6, 13, 14, 16, 19, 20, 38, 40, 41, 42, 59,
74, 79, 80, 103, 114, 117, 118, 119, 130, 131,
374, 375, 384, 399, 401, 402, 403, 407, 413,
416, 471, 472, 480, 481, 482, 483, 485, 486,
487, 488, 489, 491, 517, 518, 583, 584, 597,
598, 601, 602, 603, 605, 606, 607, 609, 610,
633, 640, 743, 763, 855, 860, 861, 872, 939,
966, 976, 981, 986, 987, 988, 1023, 1026,
1029, 1031, 1035

COLLATION • 99, 374, 403, 485, 487, 488, 584
<collation definition> • 74, 399, 401, 485, 486, 597,

633, 640, 743, 987, 988, 1023
<collation name> • 40, 41, 42, 114, 117, 118, 119,

131, 374, 375, 384, 403, 407, 472, 480, 481,
482, 485, 487, 488, 518, 583, 597, 598, 986

COLLATIONS • 760, 763, 768, 776, 777, 779, 782,
783, 786, 787, 799, 819, 833, 855, 860, 872,
939, 976, 988

COLLATION_CAT • 98, 760, 763, 768, 776, 777, 779,
782, 783, 786, 787, 799, 819, 833, 855, 860,
861, 872, 873, 939

COLLATION_CATALOG • 98, 760, 763, 768, 776,
777, 779, 782, 783, 786, 787, 799, 819, 833,
855, 860, 861, 872, 873, 939

COLLATION_DEFINITION • 763, 833, 860, 1026
COLLATION_DICTIONARY • 763, 833, 860
COLLATION_NAME • 98, 760, 763, 768, 776, 777,

779, 782, 783, 786, 787, 799, 819, 833, 855,
860, 861, 872, 873, 939

COLLATION_SCHEM • 98, 760, 763, 768, 776, 777,
779, 782, 783, 786, 787, 799, 819, 833, 855,
860, 861, 872, 873, 939

COLLATION_SCHEMA • 98, 760, 763, 768, 776, 777,
779, 782, 783, 786, 787, 799, 819, 833, 855,
860, 861, 872, 873, 939

COLLATION_TYPE • 763, 833, 860

collection • 6, 7, 11, 23, 36, 37, 38, 42, 55, 84, 117,
118, 121, 123, 126, 128, 129, 137, 156, 160,
161, 162, 181, 183, 184, 197, 198, 199, 224,
232, 234, 235, 236, 244, 258, 260, 265, 269,
276, 283, 333, 340, 393, 418, 419, 420, 421,
516, 545, 604, 606, 607, 674, 999, 1000, 1015,
1027

<collection derived table> • 55, 232, 234, 235, 236,
1000

<collection expression> • 258, 260
<collection subquery> • 198
collection type • 6, 7, 11, 36, 37, 38, 126, 128, 129,

156, 181, 183, 198, 340, 393, 419, 420, 516,
545, 604, 606, 607, 674, 999, 1000, 1015

<collection type> • 36, 121, 123, 126, 128, 129, 156,
516, 545, 999, 1000, 1015

<collection type constructor> • 36, 123, 128, 340
collection type descriptor • 36, 128, 604, 607
<collection value constructor> • 197, 198, 199, 1000
<collection value expression> • 160, 161, 162, 197,

198, 199, 232, 333, 1000
<colon> • 18, 93, 94, 106, 107, 114, 304, 306, 307,

308, 349

Index 1071

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

column • 7, 10, 11, 13, 16, 33, 35, 36, 40, 41, 42, 43,
44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 61, 62, 64, 72, 79, 80, 90, 91, 92, 113, 118,
124, 129, 132, 133, 134, 135, 138, 139, 140,
141, 142, 145, 152, 153, 155, 156, 157, 158,
166, 181, 197, 198, 199, 216, 217, 224, 229,
230, 231, 232, 233, 234, 235, 236, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266,
269, 270, 271, 272, 273, 274, 277, 278, 279,
280, 281, 283, 284, 288, 292, 303, 313, 315,
316, 322, 333, 367, 374, 375, 377, 378, 390,
391, 392, 401, 404, 405, 406, 407, 408, 409,
410, 411, 412, 413, 414, 415, 416, 417, 418,
420, 421, 422, 423, 424, 425, 426, 427, 428,
429, 430, 431, 432, 433, 434, 435, 436, 437,
438, 439, 441, 442, 443, 444, 445, 446, 447,
448, 449, 450, 451, 452, 453, 454, 455, 456,
457, 459, 460, 461, 462, 463, 464, 465, 466,
469, 470, 471, 472, 474, 476, 477, 478, 479,
480, 483, 488, 493, 494, 495, 497, 498, 500,
521, 523, 537, 555, 563, 574, 583, 584, 585,
586, 588, 589, 595, 596, 597, 598, 600, 601,
602, 603, 604, 605, 606, 607, 609, 610, 619,
627, 628, 651, 652, 653, 654, 655, 659, 660,
662, 665, 672, 673, 674, 675, 676, 677, 678,
679, 680, 681, 682, 684, 685, 686, 687, 688,
689, 690, 691, 694, 699, 701, 704, 706, 707,
747, 751, 764, 765, 766, 767, 768, 769, 780,
789, 795, 813, 814, 821, 850, 854, 857, 859,
862, 863, 864, 865, 866, 867, 872, 884, 885,
895, 896, 899, 900, 903, 910, 911, 912, 913,
916, 918, 919, 925, 927, 931, 932, 933, 935,
940, 944, 946, 949, 952, 965, 968, 970, 971,
972, 973, 974, 976, 977, 978, 980, 981, 985,
988, 989, 990, 991, 993, 994, 996, 997, 998,
1006, 1008, 1010, 1012, 1014, 1016, 1021,
1026, 1028, 1029, 1030, 1036, 1041, 1045,
1046, 1047, 1048, 1049, 1050, 1051, 1055,
1059, 1061, 1062, 1063

COLUMN • 99, 444, 445, 451, 609
<column constraint> • 405, 412, 415, 417, 968, 988,

1048, 1049
<column constraint definition> • 404, 406, 408, 412,

414, 415, 416
<column definition> • 124, 129, 401, 404, 406, 407,

408, 410, 412, 413, 415, 416, 417, 418, 424,
425, 444, 493, 690, 691, 970, 997, 1016, 1036

column list • 49, 90, 91, 232, 233, 234, 239, 266, 270,
271, 274, 279, 280, 375, 377, 378, 408, 422,
424, 425, 426, 427, 429, 430, 431, 432, 433,
434, 435, 436, 437, 438, 439, 451, 452, 460,
464, 465, 498, 500, 588, 595, 596, 597, 598,
600, 602, 603, 605, 606, 673, 674, 675, 676,
678, 684, 694, 699, 704, 707, 895, 899, 903,
931, 933, 935, 989, 996, 1010, 1016, 1045,
1046, 1047, 1049

<column name> • 45, 92, 113, 118, 141, 224, 232,
233, 234, 238, 239, 258, 261, 266, 270, 271,
272, 279, 280, 281, 375, 377, 404, 406, 408,
409, 412, 414, 424, 425, 427, 441, 444, 445,
446, 447, 448, 449, 451, 452, 459, 460, 463,
464, 465, 480, 498, 584, 597, 598, 600, 609,
610, 653, 654, 674, 675, 676, 677, 678, 679,
684, 747, 899, 931, 933, 1016, 1029

<column name list> • 79, 80, 232, 238, 265, 266,
374, 424, 426, 459, 497, 651, 652, 654, 655,
673, 679, 991, 1049

<column option list> • 404, 408, 411, 997
<column options> • 404, 406, 408
column privilege descriptor • 80, 377, 444, 596, 597,

598, 600
<column reference> • 92, 132, 133, 139, 141, 142,

155, 156, 158, 197, 198, 199, 216, 244, 245,
246, 252, 255, 256, 261, 264, 601, 602, 603,
605, 654, 659, 665, 857, 899, 932, 981, 993,
1010, 1048, 1055

Columns • 40, 1046
COLUMNS • 764, 766, 767, 768, 771, 776, 813, 833,

857, 862, 864, 865, 884, 899, 926, 931, 932,
946, 976, 978, 1008, 1050

COLUMN_DEFAULT • 768, 833, 865, 866
COLUMN_DOMAIN_USAGE • 764, 833, 972, 976
COLUMN_NAME • 98, 739, 741, 747, 764, 765, 766,

768, 769, 780, 789, 795, 810, 814, 821, 833,
849, 850, 857, 862, 863, 865, 884, 885, 899,
900, 926, 927, 932, 933, 946

COLUMN_PRIVILEGES • 765, 768, 789, 810, 862,
968, 1057

<comma> • 18, 93, 94, 122, 135, 160, 178, 221, 223,
227, 230, 232, 245, 258, 265, 279, 296, 320,
347, 353, 354, 374, 381, 404, 407, 459, 502,
503, 541, 543, 576, 588, 592, 595, 616, 651,
659, 665, 677, 692, 693, 715, 717, 719, 735,
739

COMMAND_FUNCTION • 98, 739, 741, 742, 748,
1026

COMMAND_FUNCTION_CODE • 98, 739, 741, 742,
1026

<comment> • 97, 102
<comment character> • 97, 98
COMMIT • 43, 83, 84, 85, 86, 98, 99, 404, 407, 410,

427, 440, 690, 715, 718, 723, 739, 741, 743,
745, 749, 967, 1015, 1050, 1057

<commit statement> • 48, 71, 73, 75, 76, 82, 84, 86,
87, 386, 614, 634, 655, 723, 732, 743, 1049

COMMITTED • 83, 84, 86, 98, 99, 715, 718, 739,
741, 745, 749, 967, 1015, 1057

common column name • 139, 239
comparable • 6, 13, 21, 22, 24, 26, 28, 29, 34, 35,

37, 38, 167, 179, 213, 239, 287, 293, 298, 305,
314, 316, 318, 333, 334, 427

comparison category • 33, 34, 287, 288, 290, 291,
572

comparison form • 33, 34, 156, 246, 259, 270, 287,
288, 571, 653, 654

1072 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

comparison function • 34, 287, 290, 291
<comparison predicate> • 15, 52, 61, 133, 285, 287,

288, 291, 294, 310, 574, 655, 994, 1005, 1051,
1053

comparison type • 33, 34, 61, 287, 574
compatibility decomposition • 5
compatibility equivalent • 5
compatible • 8, 9, 32, 35, 38, 39, 183, 184, 333, 360,

393, 462, 507, 510, 511, 521, 528, 529, 533,
535, 536, 543, 548, 549, 577, 712, 1035

compilation unit • 1, 60, 82, 1018, 1054
COMPLETION • 99, 623, 1037
completion condition • 68, 69, 70, 72, 82, 157, 187,

188, 189, 190, 191, 324, 325, 326, 365, 368,
372, 390, 391, 420, 421, 438, 441, 467, 494,
499, 589, 609, 638, 639, 661, 663, 666, 669,
672, 676, 680, 687, 689, 733, 739, 742, 951,
952, 958, 1035

<comp op> • 52, 287, 288, 289, 290, 291, 292, 310,
655, 1051

<computational operation> • 155, 1047
<concatenated grouping> • 245, 248, 249
<concatenation> • 204, 205, 206, 207, 208, 980,

1004, 1005, 1043, 1061
<concatenation operator> • 14, 97, 204, 219
concurrent SQL-transactions • 83, 84
condition • 24, 33, 37, 38, 40, 41, 48, 49, 50, 52, 53,

54, 55, 56, 61, 62, 68, 69, 70, 72, 77, 82, 83,
84, 87, 90, 127, 133, 134, 135, 141, 142, 151,
157, 162, 169, 170, 171, 172, 173, 178, 179,
180, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 201, 203, 207, 208, 211,
215, 216, 217, 227, 234, 235, 238, 239, 240,
241, 244, 254, 256, 257, 260, 261, 262, 267,
273, 283, 285, 300, 301, 302, 306, 322, 324,
325, 326, 329, 330, 331, 332, 360, 363, 364,
365, 366, 367, 368, 372, 375, 386, 389, 390,
391, 415, 420, 421, 423, 424, 431, 433, 436,
438, 440, 441, 444, 449, 450, 451, 456, 467,
469, 471, 472, 477, 479, 483, 487, 491, 493,
494, 495, 497, 499, 507, 510, 511, 516, 519,
521, 523, 524, 528, 532, 533, 535, 536, 537,
538, 545, 549, 562, 563, 565, 568, 569, 570,
574, 575, 583, 589, 596, 597, 598, 599, 600,
601, 602, 603, 604, 605, 606, 608, 609, 610,
618, 629, 635, 636, 637, 638, 639, 657, 658,
660, 661, 662, 663, 665, 666, 668, 669, 670,
671, 672, 675, 676, 680, 681, 682, 684, 685,
686, 687, 688, 689, 692, 693, 703, 708, 712,
715, 716, 717, 718, 721, 722, 723, 724, 725,
726, 727, 728, 730, 732, 733, 736, 737, 738,
739, 740, 741, 742, 744, 745, 746, 748, 749,
814, 857, 858, 859, 899, 903, 932, 933, 934,
935, 937, 951, 952, 954, 955, 956, 957, 958,
966, 981, 986, 990, 991, 1015, 1018, 1020,
1021, 1027, 1030, 1031, 1035, 1036, 1043,
1044, 1045, 1046, 1051, 1062

<condition information> • 739, 745
<condition information item> • 739, 740, 745

<condition information item name> • 739, 740, 741,
749

<condition number> • 739, 740, 745, 1031
CONDITION_NUMBER • 98, 621, 739, 741, 745
CONDITION_REFERENCE_NEW_TABLE • 816, 833,

937
CONDITION_REFERENCE_OLD_TABLE • 816, 833,

937
CONDITION_TIMING • 816, 833, 937
conforming SQL-implementation • 104, 961, 962, 975,

1027, 1056
Connect • 119, 727, 729, 731, 733, 990, 1059
CONNECT • 99, 637, 727
CONNECTION • 98, 99, 620, 621, 637, 730, 739,

741, 744, 748
connection does not exist • 637, 730, 732, 952
connection exception • 87, 637, 728, 730, 732, 952
connection failure • 87, 730, 952
<connection name> • 86, 114, 118, 119, 727, 728,

730, 732, 748, 990
connection name in use • 728, 952
<connection object> • 730, 732
<connection target> • 727
<connection user name> • 88, 115, 118, 727, 728,

1025
CONNECTION_NAME • 98, 620, 621, 739, 741, 748
<connector character> • 96, 101
<connect statement> • 75, 78, 86, 87, 88, 92, 634,

637, 727, 728, 729, 743, 990, 1018, 1025,
1030

considered as executed • 91, 389
CONSTRAINT • 99, 385, 454, 455, 478, 608, 609,

744, 753, 754, 852, 853, 855, 857, 858, 859,
860, 862, 865, 872, 878, 880, 881, 882, 884,
886, 889, 892, 893, 895, 896, 898, 899, 901,
903, 907, 910, 911, 913, 918, 919, 921, 922,
924, 926, 929, 931, 937, 939, 940, 943, 945,
946, 947, 948

<constraint characteristics> • 385, 386, 412, 415,
422, 471, 472, 480, 493, 989

<constraint check time> • 385
constraint mode • 48, 83, 85, 86, 88, 362, 373, 385,

386, 422, 494, 637, 638, 719
<constraint name> • 114, 118, 119, 385, 402, 414,

422, 450, 454, 455, 471, 472, 478, 479, 480,
493, 494, 495, 570, 575, 608, 609, 719, 851,
921, 982, 1029

<constraint name definition> • 385, 386, 412, 415,
417, 422, 423, 471, 472, 480, 982, 983, 1026,
1029

<constraint name list> • 479, 719
CONSTRAINTS • 99, 719, 723, 762, 769, 770, 774,

788, 807, 833, 849, 850, 851, 852, 857, 858,
859, 878, 884, 894, 895, 920, 921, 970, 977,
1050

constraint violation • 41, 196, 386, 431, 433, 436,
438, 723, 746, 749, 953, 956

Index 1073

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

CONSTRAINT_CATALOG • 98, 739, 741, 746, 747,
758, 762, 769, 770, 774, 780, 788, 807, 833,
849, 850, 851, 852, 857, 858, 859, 878, 884,
885, 895, 921

CONSTRAINT_COLUMN_USAGE • 769, 833, 972,
976

CONSTRAINT_NAME • 98, 739, 741, 746, 747, 758,
762, 769, 770, 774, 780, 788, 807, 833, 849,
850, 851, 852, 857, 858, 859, 878, 884, 885,
895, 921, 1026

CONSTRAINT_SCHEMA • 98, 739, 741, 746, 747,
758, 762, 769, 770, 774, 780, 788, 807, 833,
849, 850, 851, 852, 857, 858, 859, 878, 884,
885, 895, 921

CONSTRAINT_TABLE_USAGE • 770, 833, 972, 976
CONSTRAINT_TYPE • 769, 770, 807, 850, 884, 894,

895, 921
constructed • 11, 36, 39, 63, 200, 223, 227, 246, 251,

307, 308, 337, 548, 681, 688, 699
constructed types • 11, 39
CONSTRUCTOR • 99
constructor function • 6, 32, 33, 359, 513

contain • 3, 7, 9, 10, 13, 15, 16, 20, 21, 22, 24, 25,
26, 30, 31, 40, 41, 42, 45, 47, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70,
71, 72, 73, 78, 79, 80, 81, 87, 88, 89, 91, 92,
95, 101, 102, 103, 104, 108, 109, 110, 111,
112, 115, 116, 117, 119, 120, 123, 124, 126,
127, 129, 130, 131, 132, 133, 134, 135, 138,
139, 140, 141, 142, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 158,
160, 161, 162, 163, 165, 166, 168, 169, 170,
171, 172, 173, 174, 176, 177, 179, 180, 182,
183, 184, 185, 186, 187, 188, 189, 190, 196,
198, 199, 200, 201, 202, 203, 206, 208, 209,
210, 211, 212, 213, 215, 216, 217, 219, 220,
221, 223, 224, 226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 238, 239, 240, 241,
242, 243, 244, 246, 247, 248, 249, 250, 251,
252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 276, 277, 278, 279, 280,
281, 283, 284, 285, 286, 292, 294, 295, 297,
300, 302, 303, 306, 307, 308, 311, 313, 315,
317, 320, 321, 322, 324, 329, 340, 342, 343,
348, 350, 353, 354, 355, 356, 357, 358, 359,
360, 362, 363, 364, 367, 368, 376, 377, 378,
379, 380, 381, 383, 384, 385, 386, 387, 388,
389, 400, 401, 402, 403, 405, 406, 407, 408,
409, 411, 412, 413, 414, 415, 416, 417, 418,
419, 420, 421, 422, 423, 424, 425, 426, 427,
428, 429, 430, 431, 432, 433, 434, 435, 436,
437, 438, 439, 440, 441, 442, 444, 445, 446,
447, 448, 449, 450, 451, 452, 453, 454, 455,
456, 457, 459, 460, 461, 462, 463, 464, 465,
466, 468, 469, 470, 471, 472, 473, 474, 475,
476, 477, 478, 479, 480, 481, 482, 483, 484,
485, 486, 487, 488, 489, 490, 491, 492, 493,
494, 495, 496, 498, 499, 500, 501, 504, 505,
506, 507, 508, 509, 510, 511, 512, 514, 515,
516, 517, 518, 519, 520, 521, 522, 523, 524,
525, 526, 527, 528, 529, 531, 532, 533, 535,
538, 543, 544, 545, 546, 547, 548, 549, 550,
551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568,
569, 570, 572, 573, 574, 575, 576, 577, 578,
579, 581, 583, 584, 585, 586, 588, 590, 591,
592, 593, 594, 595, 596, 597, 598, 600, 601,
602, 603, 604, 605, 606, 608, 609, 610, 612,
613, 614, 615, 616, 617, 618, 619, 624, 625,
626, 629, 634, 635, 636, 638, 639, 642, 644,
646, 648, 652, 653, 654, 657, 659, 660, 661,
663, 665, 667, 668, 670, 671, 672, 674, 675,
676, 677, 678, 679, 680, 681, 682, 683, 684,
685, 686, 687, 688, 689, 690, 691, 692, 693,
694, 696, 698, 699, 701, 703, 704, 706, 707,
708, 711, 712, 716, 720, 721, 722, 726, 727,
728, 729, 731, 733, 735, 736, 737, 738, 740,
744, 745, 746, 747, 748, 749, 751, 752, 753,
754, 755, 848, 852, 853, 854, 857, 858, 859,
861, 862, 864, 865, 867, 872, 874, 876, 877,
878, 880, 881, 882, 883, 889, 890, 892, 893,
896, 899, 901, 903, 908, 912, 916, 919, 920,
922, 924, 926, 931, 932, 933, 934, 935, 936,
938, 940, 947, 948, 949, 953, 966, 967, 968,
969, 970, 971, 972, 974, 975, 978, 979, 980,
981, 982, 983, 984, 985, 986, 987, 988, 989,
990, 991, 992, 993, 994, 995, 996, 997, 998,
999, 1000, 1001, 1002, 1003, 1004, 1005,
1006, 1007, 1008, 1009, 1010, 1011, 1012,
1013, 1014, 1015, 1016, 1018, 1019, 1020,

1074 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

contained in • 31, 45, 47, 55, 56, 57, 59, 60, 64, 65,
68, 72, 81, 88, 89, 92, 95, 103, 109, 111, 112,
115, 116, 117, 124, 126, 127, 129, 130, 132,
133, 134, 138, 139, 141, 142, 144, 146, 147,
149, 153, 155, 156, 158, 160, 161, 163, 166,
169, 171, 172, 174, 176, 180, 183, 184, 185,
198, 199, 200, 201, 203, 206, 210, 211, 212,
213, 217, 221, 223, 224, 227, 229, 231, 232,
233, 234, 235, 236, 238, 239, 244, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255, 256,
258, 259, 260, 261, 262, 263, 266, 267, 268,
269, 270, 271, 272, 273, 274, 275, 279, 280,
283, 284, 294, 295, 297, 303, 307, 311, 320,
322, 342, 343, 353, 354, 355, 356, 357, 358,
359, 360, 362, 368, 379, 380, 384, 385, 387,
388, 389, 400, 402, 405, 406, 408, 409, 412,
413, 414, 415, 421, 422, 425, 427, 428, 440,
441, 442, 444, 448, 449, 451, 454, 456, 459,
460, 461, 462, 463, 464, 465, 466, 469, 471,
472, 474, 479, 480, 481, 482, 483, 485, 486,
487, 489, 490, 491, 493, 494, 495, 498, 499,
500, 501, 504, 505, 506, 507, 508, 510, 511,
512, 514, 515, 517, 520, 521, 523, 524, 525,
526, 527, 528, 529, 531, 532, 533, 535, 538,
543, 544, 545, 546, 547, 548, 549, 550, 551,
552, 553, 554, 555, 556, 557, 558, 559, 560,
561, 562, 563, 564, 565, 566, 569, 574, 576,
577, 579, 583, 584, 585, 586, 588, 590, 592,
595, 597, 598, 600, 601, 602, 603, 604, 605,
606, 610, 612, 613, 616, 617, 619, 634, 636,
638, 639, 642, 646, 648, 652, 653, 654, 657,
663, 667, 670, 672, 674, 675, 676, 677, 678,
679, 681, 682, 683, 684, 685, 686, 687, 688,
689, 690, 692, 693, 696, 698, 701, 703, 706,
707, 708, 711, 712, 728, 733, 738, 740, 744,
745, 747, 857, 858, 859, 889, 896, 899, 903,
908, 931, 932, 933, 934, 935, 947, 949, 966,
979, 980, 981, 984, 985, 986, 990, 991, 993,
994, 995, 996, 997, 1000, 1004, 1005, 1014,
1016, 1019, 1022, 1036, 1041

containing • 15, 16, 53, 54, 55, 56, 58, 59, 65, 70, 73,
78, 88, 89, 92, 102, 116, 131, 138, 142, 146,
147, 149, 153, 169, 172, 173, 184, 200, 224,
231, 236, 239, 241, 253, 255, 267, 273, 276,
279, 340, 355, 362, 363, 364, 367, 376, 380,
384, 385, 400, 405, 412, 413, 414, 416, 418,
422, 424, 425, 426, 438, 440, 441, 442, 444,
445, 446, 447, 448, 449, 451, 453, 454, 456,
459, 469, 471, 472, 474, 475, 476, 478, 479,
481, 483, 485, 487, 490, 491, 493, 495, 498,
499, 501, 504, 512, 521, 523, 525, 531, 535,
545, 548, 556, 557, 566, 612, 615, 616, 657,
680, 694, 699, 746, 748, 749, 854, 865, 883,
931, 953, 1023, 1024, 1026, 1036, 1041

containing schema • 59, 142, 146, 153, 169, 184,
200, 236, 355, 380, 384, 405, 441, 442, 456,
459, 469, 472, 474, 479, 481, 483, 485, 487,
490, 491, 493, 495, 499, 501, 512, 557, 566

containing SQL • 65, 88, 89, 362, 363, 364, 367, 657,
953

containing SQL not permitted • 363, 367, 953
contains • 10, 13, 20, 21, 22, 24, 25, 26, 30, 31, 40,

41, 42, 45, 54, 55, 56, 61, 64, 65, 66, 67, 70,
71, 78, 79, 91, 102, 104, 109, 110, 115, 116,
123, 124, 126, 127, 130, 131, 133, 134, 135,
140, 141, 147, 155, 156, 158, 183, 186, 187,
188, 189, 190, 196, 198, 203, 209, 210, 211,
212, 213, 216, 224, 226, 227, 229, 230, 231,
234, 235, 236, 239, 240, 242, 243, 244, 246,
247, 248, 249, 250, 252, 254, 256, 257, 260,
261, 263, 266, 267, 268, 269, 271, 272, 273,
274, 275, 276, 277, 278, 279, 280, 281, 300,
302, 306, 307, 329, 348, 353, 356, 357, 358,
359, 360, 363, 367, 381, 385, 389, 400, 403,
405, 407, 408, 409, 413, 415, 416, 419, 420,
421, 422, 429, 430, 431, 432, 433, 434, 435,
436, 437, 438, 439, 442, 449, 450, 451, 452,
454, 455, 457, 459, 460, 464, 470, 471, 472,
477, 481, 482, 484, 485, 488, 489, 491, 493,
495, 498, 504, 506, 507, 508, 509, 511, 515,
516, 517, 518, 525, 526, 527, 529, 531, 532,
543, 544, 545, 546, 547, 548, 550, 551, 552,
553, 554, 555, 557, 558, 559, 560, 567, 570,
572, 574, 575, 596, 608, 609, 612, 615, 617,
618, 629, 635, 636, 638, 652, 653, 654, 659,
660, 661, 665, 667, 670, 671, 672, 678, 679,
681, 682, 684, 685, 686, 687, 688, 690, 696,
701, 704, 706, 707, 727, 747, 751, 753, 754,
755, 852, 853, 861, 862, 864, 867, 872, 874,
876, 877, 878, 880, 881, 882, 890, 892, 893,
901, 908, 916, 920, 922, 924, 926, 936, 938,
940, 948, 975, 980, 981, 1000, 1006, 1015,
1019, 1020, 1024, 1025, 1028, 1029, 1036,
1041, 1050, 1053

CONTAINS • 98, 505, 508, 527, 543, 545, 549, 555,
558, 560, 564, 573, 889, 890, 907, 908

contaminated • 607, 610
<contextually typed row value constructor> • 223, 226
<contextually typed row value constructor element> •

223
<contextually typed row value constructor element

list> • 223
<contextually typed row value expression> • 226,

227, 674, 1006, 1047
<contextually typed row value expression list> • 227
<contextually typed table value constructor> • 227,

673, 674, 676, 996, 1047
<contextually typed value specification> • 136, 223,

674, 677
CONTINUE • 99
control character • 5, 20
control function • 5
CONVERT • 98, 164
Coördinated Universal Time • 6
<correlation name> • 54, 113, 117, 118, 138, 139,

232, 233, 234, 236, 259, 262, 280, 497, 654,
671, 676, 687, 990, 1045, 1046

CORRESPONDING • 99, 266, 270, 271, 277, 451,
467, 971, 1057

Index 1075

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<corresponding column list> • 266, 270, 271
corresponding fields • 38, 211, 287, 682
corresponding join columns • 54, 239, 240, 241, 242,

243
<corresponding spec> • 265, 266
corresponds to • 30, 35, 63, 70, 95, 126, 240, 242,

262, 367, 390, 391, 392, 406, 427, 429, 464,
536, 646, 679, 685, 745, 746, 747, 748, 749,
952, 1027

COUNT • 98, 99, 155, 156, 157, 158, 261, 739, 741,
744, 745, 753, 849, 851, 853, 865, 882, 884,
886, 892, 921, 980, 1020, 1031, 1047

counterpart • 51, 52, 53, 54, 55, 56, 57, 262, 421,
466, 586

CREATE • 99, 399, 404, 459, 460, 471, 481, 485,
489, 493, 497, 502, 512, 513, 541, 567, 571,
573, 576, 591, 743, 744, 752, 753, 754, 755,
756, 757, 758, 760, 761, 762, 763, 764, 765,
766, 768, 769, 770, 771, 772, 773, 774, 775,
776, 777, 778, 779, 780, 782, 783, 784, 786,
787, 788, 789, 790, 791, 792, 793, 794, 795,
796, 797, 799, 800, 801, 802, 803, 804, 805,
806, 807, 808, 809, 810, 811, 812, 813, 814,
815, 816, 817, 818, 819, 821, 822, 823, 833,
834, 844, 848, 849, 850, 851, 852, 853, 855,
857, 858, 859, 860, 862, 865, 872, 874, 877,
878, 880, 881, 882, 884, 886, 889, 890, 892,
893, 895, 896, 898, 899, 901, 903, 907, 909,
910, 911, 913, 916, 918, 919, 921, 922, 924,
926, 928, 929, 931, 932, 934, 937, 939, 940,
943, 945, 946, 947, 948, 1003, 1008, 1050,
1051, 1055

created by • 59, 78, 87
CROSS • 99, 238, 240, 1058
<cross join> • 238, 241, 243, 978
CUBE • 52, 56, 99, 158, 245, 255, 1014, 1037, 1062
<cube list> • 245, 246, 247, 248, 249, 250, 254
current • 3, 48, 63, 64, 65, 68, 71, 72, 76, 77, 78, 79,

80, 81, 82, 83, 84, 86, 87, 88, 89, 110, 127,
128, 134, 135, 142, 146, 153, 169, 175, 176,
184, 200, 210, 236, 355, 356, 357, 362, 363,
368, 373, 375, 376, 380, 384, 387, 388, 401,
429, 433, 452, 457, 464, 470, 480, 484, 488,
491, 557, 559, 560, 566, 584, 585, 586, 588,
591, 592, 595, 610, 613, 636, 637, 638, 639,
644, 655, 658, 661, 662, 667, 668, 669, 670,
671, 675, 679, 680, 681, 682, 686, 690, 691,
694, 695, 699, 700, 704, 705, 716, 717, 718,
719, 721, 722, 723, 724, 725, 726, 727, 728,
730, 731, 732, 733, 735, 736, 737, 738, 745,
756, 757, 778, 789, 790, 791, 792, 793, 794,
896, 945, 966, 1018, 1022, 1024, 1025, 1030,
1052, 1053

CURRENT • 99, 667, 677, 732
current authorization identifier • 78, 79, 363, 452, 457,

470, 480, 484, 488, 491, 566, 586, 691
<current date value function> • 175, 1052
<current local timestamp value function> • 175, 1053
<current local time value function> • 175, 1053

current privileges • 82, 127, 142, 146, 153, 169, 184,
200, 236, 355, 376, 380, 384, 464, 557, 667,
670, 675, 679, 686

current role name • 65, 78, 79, 81, 82, 88, 362, 376,
588, 591, 592, 595, 613, 690, 728, 736, 737,
1025

current SQL-session • 63, 65, 68, 78, 81, 82, 87, 88,
89, 135, 356, 357, 362, 363, 373, 376, 557,
559, 560, 637, 719, 728, 730, 735, 736, 737,
738, 778, 896

<current timestamp value function> • 175
<current time value function> • 175
current user identifier • 78, 79, 82, 88, 376, 584, 585,

586, 588, 591, 592, 595, 613, 690, 728, 736,
737

CURRENT_DATE • 27, 85, 99, 175, 176, 193, 194,
1028, 1052

CURRENT_PATH • 68, 99, 132, 133, 135, 418, 419,
420, 421, 440, 493, 657, 998, 999, 1020, 1037

CURRENT_ROLE • 78, 99, 132, 133, 135, 261, 374,
375, 418, 419, 420, 421, 440, 493, 588, 591,
592, 595, 635, 657, 778, 1013

CURRENT_TIME • 99, 175, 1028
CURRENT_TIMESTAMP • 99, 175, 176, 560, 755,

854, 866, 880, 890, 909, 937, 979, 1028
CURRENT_USER • 78, 85, 99, 132, 133, 134, 135,

261, 374, 375, 418, 419, 420, 421, 440, 493,
588, 591, 592, 595, 635, 657, 757, 758, 760,
761, 762, 763, 764, 765, 766, 768, 769, 770,
772, 773, 774, 775, 776, 780, 782, 783, 786,
788, 795, 796, 797, 799, 800, 807, 808, 809,
810, 812, 813, 814, 815, 816, 817, 818, 819,
821, 822, 823, 854, 866, 880, 972, 1020

CURSOR • 99, 651
<cursor holdability> • 651, 1048
<cursor name> • 114, 115, 118, 120, 372, 612, 651,

652, 657, 659, 663, 667, 677, 679, 1016, 1054
cursor operation conflict • 438, 669, 672, 680, 687,

746, 956, 1035
<cursor returnability> • 651, 655, 1014
<cursor scrollability> • 651, 655, 980, 991
<cursor sensitivity> • 651, 652
cursor sensitivity exception • 658, 668, 671, 675, 680,

686, 952
<cursor specification> • 72, 141, 235, 602, 603, 605,

606, 651, 652, 653, 654, 655, 657, 659, 663,
677, 678, 903, 934

CURSOR_NAME • 98, 620, 621, 739, 741, 746, 747
CYCLE • 99, 279, 1037
<cycle clause> • 279, 280, 281
<cycle column> • 279
<cycle column list> • 279, 280
<cycle mark column> • 279, 280
<cycle mark value> • 279, 280

— D —
Data • 3, 4, 11, 39, 69, 323, 333, 393, 641, 642, 644,

646, 647, 648, 649, 651, 954, 958, 1035
DATA • 99, 543, 555, 558, 560, 1037

1076 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

data exception • 127, 135, 151, 157, 162, 169, 171,
172, 173, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 203, 207, 208, 211,
215, 227, 300, 301, 302, 306, 324, 326, 329,
330, 331, 332, 364, 367, 391, 519, 618, 629,
681, 682, 688, 712, 738, 749, 952, 1020, 1021,
1036

data type • 6, 7, 8, 9, 11, 12, 13, 20, 21, 22, 24, 25,
26, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41,
42, 61, 62, 66, 68, 74, 88, 109, 110, 112, 118,
121, 124, 125, 126, 127, 128, 129, 130, 131,
136, 138, 140, 141, 143, 146, 158, 162, 174,
180, 181, 183, 185, 186, 188, 190, 191, 192,
193, 194, 195, 196, 199, 203, 208, 210, 213,
214, 218, 219, 221, 224, 230, 234, 240, 256,
260, 261, 263, 293, 294, 297, 303, 311, 316,
317, 333, 334, 335, 337, 338, 344, 347, 355,
357, 358, 359, 360, 361, 367, 369, 370, 371,
372, 381, 382, 390, 391, 392, 393, 395, 397,
403, 405, 406, 407, 409, 411, 413, 414, 415,
416, 418, 419, 420, 439, 442, 448, 449, 452,
462, 464, 471, 472, 479, 483, 487, 490, 504,
505, 507, 509, 510, 511, 512, 513, 514, 515,
516, 517, 518, 519, 520, 521, 523, 527, 529,
532, 533, 537, 538, 539, 540, 544, 545, 546,
547, 550, 551, 552, 553, 554, 555, 556, 558,
559, 560, 561, 563, 566, 567, 568, 569, 572,
576, 577, 579, 604, 606, 609, 610, 612, 616,
619, 624, 625, 626, 627, 628, 629, 630, 631,
636, 641, 642, 644, 646, 648, 649, 662, 673,
674, 677, 712, 736, 737, 740, 743, 771, 854,
865, 867, 872, 873, 880, 881, 883, 887, 892,
893, 944, 962, 965, 966, 979, 980, 981, 982,
983, 997, 1000, 1001, 1003, 1004, 1005, 1008,
1015, 1017, 1019, 1020, 1021, 1022, 1027,
1029, 1041, 1042, 1043, 1044, 1045, 1046,
1049, 1052, 1054, 1056, 1058, 1059, 1060,
1061

<data type> • 35, 36, 66, 68, 109, 118, 121, 123, 126,
128, 129, 130, 131, 147, 181, 182, 183, 196,
224, 234, 240, 261, 263, 357, 367, 369, 371,
381, 382, 390, 391, 392, 406, 407, 409, 411,
412, 413, 415, 416, 442, 464, 471, 472, 505,
509, 511, 517, 518, 527, 532, 541, 542, 544,
545, 547, 551, 552, 553, 555, 558, 560, 563,
567, 612, 616, 619, 625, 626, 636, 966, 979,
981, 982, 983, 997, 1000, 1019, 1049

<data type list> • 381, 382
data type names • 337
DATA_TYPE • 760, 768, 771, 776, 777, 779, 782,

783, 786, 787, 799, 819, 833, 853, 854, 865,
867, 872, 873, 880, 881, 882, 883, 886, 887,
889, 892, 893, 907, 943, 944, 968

DATA_TYPE_DESCRIPTOR • 760, 768, 776, 777,
779, 782, 783, 786, 787, 799, 819, 853, 854,
865, 867, 872, 880, 881, 882, 883, 886, 887,
889, 892, 893, 907, 943, 944

date • 3, 6, 11, 12, 23, 24, 25, 26, 27, 28, 29, 38, 39,
42, 43, 45, 47, 50, 58, 71, 72, 75, 76, 84, 90,
91, 92, 97, 103, 105, 106, 107, 109, 110, 111,
112, 121, 122, 126, 127, 128, 129, 139, 141,
159, 160, 161, 163, 175, 176, 177, 182, 188,
190, 191, 192, 193, 194, 195, 197, 198, 199,
209, 210, 211, 212, 213, 214, 215, 235, 256,
259, 262, 273, 286, 292, 293, 316, 317, 323,
326, 328, 331, 334, 347, 348, 349, 350, 354,
355, 356, 357, 358, 359, 362, 364, 365, 367,
368, 372, 393, 410, 417, 418, 419, 420, 421,
426, 427, 429, 433, 434, 435, 436, 437, 438,
439, 440, 462, 463, 493, 511, 532, 548, 555,
557, 602, 603, 605, 606, 634, 635, 639, 652,
655, 657, 669, 672, 675, 676, 677, 678, 679,
680, 681, 682, 683, 684, 685, 686, 687, 688,
689, 694, 701, 704, 705, 707, 708, 723, 744,
745, 751, 872, 895, 899, 903, 932, 933, 934,
952, 953, 966, 967, 979, 985, 988, 991, 996,
1000, 1013, 1017, 1020, 1021, 1022, 1024,
1025, 1028, 1031, 1033, 1035, 1036, 1047,
1048, 1049, 1051, 1052, 1053, 1057, 1059

DATE • 11, 12, 24, 26, 27, 38, 99, 106, 109, 122,
126, 127, 175, 191, 209, 340, 344, 641, 642,
644, 646, 647, 648, 649, 872, 1052

<date literal> • 106, 109, 1052
<date string> • 97, 106
datetime component • 110, 111
<datetime factor> • 209, 211, 979
datetime field overflow • 211, 326, 331, 952
<datetime literal> • 105, 106, 110, 111, 112, 419,

1052
<datetime primary> • 209, 210
datetimes • 11, 12, 24, 25, 29, 292, 293, 316, 1017,

1021
<datetime term> • 209, 210, 211, 212, 213, 214, 215
datetime type • 12, 25, 126, 127, 323, 328, 1020,

1051, 1052
<datetime type> • 25, 121, 122, 126, 127, 1020,

1051, 1052
datetime types • 12, 1052
<datetime value> • 107, 110, 191, 192, 193, 194, 195
<datetime value expression> • 159, 160, 161, 197,

198, 209, 210, 211, 212, 213, 214, 967
<datetime value function> • 175, 176, 209, 210, 418,

419, 421, 440, 493, 635, 657, 1053
datetime without time zone • 26
datetime with time zone • 26, 210, 326, 331
DATETIME_INTERVAL_CODE • 98
DATETIME_INTERVAL_PRECISION • 98
DATETIME_PRECISION • 760, 768, 776, 777, 779,

782, 783, 786, 787, 799, 819, 833, 872
<date value> • 106, 107
DAY • 25, 26, 28, 99, 110, 127, 210, 334, 340, 347,

844, 872
<days value> • 106, 107, 110
day-time • 25, 27, 28, 29, 38, 107, 110, 126, 213, 340
day-time interval • 25, 28, 29, 38, 126, 213, 340
<day-time interval> • 107

Index 1077

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<day-time literal> • 107, 110
DEALLOCATE • 99, 368
DEC • 99, 122, 123, 629, 631, 1042
DECIMAL • 11, 12, 22, 37, 99, 122, 123, 125, 338,

339, 340, 344, 641, 642, 644, 646, 647, 648,
649, 844, 872, 1019, 1020, 1042

<decimal digit character> • 96, 101
DECLARE • 99, 651, 690, 743, 1048
<declare cursor> • 60, 71, 72, 75, 77, 115, 362, 368,

611, 612, 651, 652, 655, 657, 659, 663, 668,
671, 675, 680, 686, 743, 980, 991, 1009, 1014,
1022, 1024, 1028, 1029, 1048

declared type • 7, 8, 11, 12, 15, 23, 29, 34, 35, 38,
39, 40, 41, 42, 45, 61, 62, 63, 64, 109, 110,
130, 131, 132, 133, 136, 144, 145, 147, 151,
152, 153, 156, 157, 160, 161, 163, 165, 166,
167, 168, 174, 175, 177, 179, 180, 181, 183,
184, 196, 198, 201, 202, 205, 206, 208, 209,
210, 212, 214, 215, 216, 219, 221, 224, 226,
234, 238, 240, 246, 252, 254, 259, 270, 271,
272, 273, 274, 277, 280, 283, 287, 288, 289,
290, 292, 294, 295, 297, 298, 303, 305, 310,
311, 316, 318, 323, 324, 325, 326, 328, 329,
330, 331, 336, 355, 358, 359, 360, 361, 367,
372, 381, 382, 411, 412, 413, 415, 416, 419,
424, 427, 442, 448, 449, 456, 463, 464, 469,
472, 509, 510, 511, 517, 518, 521, 522, 523,
528, 529, 532, 533, 535, 536, 537, 543, 544,
548, 549, 556, 557, 569, 572, 574, 577, 606,
616, 618, 627, 628, 653, 654, 659, 676, 678,
679, 683, 684, 685, 712, 715, 721, 722, 725,
736, 737, 738, 740, 979, 980, 994, 996, 1004,
1005, 1020, 1021, 1028, 1036

DEFAULT • 99, 136, 279, 399, 418, 426, 430, 432,
435, 437, 447, 476, 482, 488, 637, 673, 674,
676, 680, 727, 728, 730, 732, 755, 760, 761,
768, 776, 777, 779, 787, 800, 833, 853, 854,
855, 856, 865, 866, 880, 895, 910, 968, 981,
987, 1025, 1031, 1057

<default clause> • 40, 404, 406, 407, 408, 412, 416,
418, 420, 421, 446, 471, 472, 475, 479, 517,
1049

default collation • 6, 14, 16, 19, 130, 413, 471, 482,
488, 517, 609, 861, 1031

<default option> • 40, 41, 136, 407, 416, 418, 420,
421, 575, 854, 866, 880, 972, 999, 1013

<default specification> • 136, 137, 224, 1054
default SQL-connection • 87, 728, 730, 732
default SQL-session • 26, 87, 112, 637, 728
default value too long for information schema • 421,

956
DEFAULT_CHARACTER_SET_CATALOG • 800, 833,

910
DEFAULT_CHARACTER_SET_NAME • 800, 833,

910
DEFAULT_CHARACTER_SET_SCHEMA • 800, 833,

910
DEFAULT_COLLATE_CATALOG • 761, 833, 855, 856
DEFAULT_COLLATE_NAME • 761, 833, 855, 856,

1031

DEFAULT_COLLATE_SCHEMA • 761, 833, 855, 856
deferrable • 40, 48, 51, 52, 385, 422, 427, 494, 852,

879, 921
DEFERRABLE • 99, 385, 386, 422, 472, 493, 719,

758, 774, 807, 852, 878, 879, 921, 989
deferred • 48, 82, 86, 385, 422, 494, 663, 719, 852,

879, 921, 1018
DEFERRED • 99, 385, 719, 758, 774, 807, 852, 878,

879, 921
DEFINED • 65, 98, 99, 363, 542, 549, 561, 760, 766,

768, 771, 773, 775, 776, 777, 779, 782, 783,
786, 787, 794, 799, 810, 811, 818, 819, 833,
853, 872, 873, 877, 886, 887, 889, 907, 909,
926, 927, 928, 940, 942, 943, 944, 1023, 1056

DEFINER • 65, 98, 363, 542, 561, 907, 909
DEGREE • 849, 850
DELETE • 43, 79, 80, 90, 91, 99, 130, 374, 404, 407,

410, 412, 413, 426, 427, 429, 431, 438, 439,
440, 466, 497, 498, 517, 586, 603, 606, 667,
670, 690, 691, 694, 723, 743, 788, 833, 895,
924, 925, 937, 1046, 1047, 1048, 1062

<delete rule> • 417, 426, 427, 429, 430, 431, 432,
433, 438, 439, 895, 968, 1035

<delete statement: positioned> • 47, 71, 72, 75, 76,
438, 603, 606, 634, 655, 667, 669, 672, 680,
687, 743, 903, 935, 1048

<delete statement: searched> • 47, 75, 76, 141, 235,
602, 603, 605, 606, 634, 669, 670, 672, 680,
723, 743, 744, 745, 899, 903, 932, 934, 935,
1031, 1035

DELETE_RULE • 788, 833, 895
<delimited identifier> • 20, 97, 101, 102, 103, 104,

113, 135, 751, 755, 975, 1020, 1044
<delimited identifier body> • 97, 102, 103, 104, 751,

755, 975
<delimited identifier part> • 97, 102, 104, 975
<delimiter token> • 96, 97, 102
dependencies • 43, 50, 51, 52, 53, 54, 55, 56, 57, 58,

264, 410, 1010, 1017
dependent • 4, 30, 39, 41, 45, 48, 51, 61, 62, 64, 67,

69, 70, 71, 72, 77, 84, 87, 92, 157, 176, 215,
224, 253, 254, 255, 256, 261, 270, 271, 272,
292, 333, 334, 360, 361, 366, 368, 369, 414,
422, 436, 451, 454, 455, 460, 469, 472, 474,
480, 506, 512, 513, 524, 525, 531, 537, 538,
539, 546, 555, 559, 560, 562, 565, 569, 572,
596, 598, 599, 608, 613, 614, 616, 617, 632,
638, 654, 655, 661, 662, 665, 666, 668, 671,
675, 676, 680, 682, 686, 689, 690, 694, 716,
718, 721, 732, 745, 764, 766, 775, 795, 797,
814, 815, 821, 822, 872, 951, 953, 1024, 1025,
1027, 1028, 1029, 1030, 1031

dependent on • 39, 51, 61, 67, 256, 261, 454, 455,
474, 524, 537, 538, 539, 559, 560, 562, 565,
569, 596, 764, 766, 775

dependent privilege descriptors still exist • 608, 953
depend immediately • 266
depends on • 38, 48, 539, 598, 599
DEPTH • 99, 279, 280, 1037
DEREF • 99, 146, 153, 1037

1078 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<dereference operation> • 145, 152, 261, 449, 997
<dereference operator> • 35, 145, 146, 152
<derived column> • 166, 239, 240, 244, 246, 258,

260, 261, 262, 284, 653, 654, 662, 981, 1014,
1030

<derived column list> • 232, 233, 234, 1045
derived representation • 31, 35, 408, 462, 463, 506,

514, 675
<derived representation> • 35, 502, 506, 514
derived table • 41, 42, 43, 44, 55, 229, 232, 233, 234,

235, 236, 237, 262, 273, 421, 696, 701, 706,
707, 985, 1000, 1014, 1062

<derived table> • 55, 232, 233, 234, 235, 236, 237,
262, 273, 985

DESC • 99, 651, 655
describe • 1, 11, 12, 13, 14, 15, 16, 20, 21, 22, 24,

25, 30, 34, 35, 36, 40, 41, 42, 43, 48, 49, 50,
59, 65, 79, 80, 83, 89, 90, 131, 224, 234, 314,
356, 359, 401, 407, 409, 416, 422, 460, 464,
472, 478, 479, 488, 494, 506, 514, 518, 557,
559, 568, 601, 607, 703, 708, 781, 847, 852,
854, 855, 857, 858, 859, 860, 861, 862, 863,
865, 872, 873, 875, 877, 880, 881, 883, 885,
886, 887, 889, 890, 891, 892, 893, 895, 897,
899, 900, 901, 902, 904, 907, 908, 909, 910,
918, 919, 921, 923, 925, 927, 928, 930, 931,
932, 933, 935, 937, 939, 941, 944, 946, 947,
948, 1041

DESCRIBE • 99
Description • 753, 754, 755, 845, 848, 851, 852, 854,

855, 857, 858, 859, 860, 862, 865, 866, 872,
875, 877, 878, 880, 881, 883, 885, 887, 889,
892, 893, 895, 896, 898, 899, 901, 903, 907,
910, 911, 913, 916, 918, 919, 921, 923, 925,
926, 928, 930, 931, 932, 934, 937, 939, 940,
943, 945, 946, 947, 948, 961, 962, 1041, 1042

descriptor • 6, 9, 12, 13, 14, 15, 20, 21, 22, 24, 25,
30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43,
44, 48, 49, 50, 59, 61, 62, 65, 67, 79, 80, 81,
83, 90, 91, 116, 118, 126, 128, 131, 136, 145,
146, 147, 149, 152, 153, 171, 183, 184, 185,
200, 230, 231, 235, 239, 240, 246, 256, 261,
263, 269, 270, 271, 272, 273, 287, 320, 334,
337, 354, 356, 358, 359, 361, 362, 364, 367,
369, 370, 371, 372, 374, 376, 377, 379, 380,
384, 389, 395, 397, 401, 402, 403, 405, 406,
407, 409, 410, 411, 413, 414, 415, 416, 418,
420, 421, 422, 423, 424, 427, 428, 442, 444,
445, 446, 447, 448, 449, 450, 451, 452, 453,
454, 455, 456, 457, 460, 462, 464, 465, 466,
467, 469, 470, 471, 472, 474, 475, 476, 477,
478, 479, 480, 481, 482, 483, 484, 485, 486,
487, 488, 489, 490, 491, 492, 493, 494, 495,
498, 499, 500, 501, 504, 506, 507, 509, 510,
511, 513, 514, 515, 517, 518, 519, 520, 521,
522, 523, 524, 526, 527, 529, 531, 532, 533,
535, 536, 537, 538, 539, 543, 544, 546, 549,
557, 558, 559, 560, 561, 562, 563, 564, 565,
566, 567, 568, 569, 570, 571, 572, 573, 574,
575, 576, 577, 579, 580, 583, 584, 586, 587,
588, 589, 591, 592, 593, 594, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 607, 608,
609, 610, 654, 657, 667, 673, 674, 690, 691,
698, 699, 701, 703, 708, 737, 771, 852, 853,
855, 860, 862, 864, 865, 867, 872, 878, 880,
881, 882, 893, 896, 901, 920, 922, 924, 926,
929, 936, 938, 940, 948, 949, 953, 954, 966,
1011, 1022, 1054

DESCRIPTOR • 99, 621, 622, 756, 757, 760, 768,
776, 777, 778, 779, 782, 783, 786, 787, 799,
819, 853, 854, 865, 867, 872, 880, 881, 882,
883, 886, 887, 889, 892, 893, 896, 907, 943,
944

descriptor area • 362, 1022
<descriptor name> • 1054
DESTROY • 99, 1037
DESTRUCTOR • 99
determinant • 51
deterministic • 30, 31, 48, 53, 54, 55, 56, 64, 66, 179,

215, 227, 229, 239, 256, 260, 273, 440, 460,
461, 493, 503, 508, 515, 526, 527, 542, 544,
545, 549, 555, 560, 568, 572, 577, 634, 635,
665, 890, 1021

DETERMINISTIC • 99, 366, 505, 508, 512, 513, 527,
542, 545, 549, 555, 558, 573, 783, 799, 833,
889, 890, 907, 908, 1036

<deterministic characteristic> • 503, 508, 526, 527,
542, 544, 545

DIAGNOSTICS • 99, 715, 739, 1057
diagnostics area • 48, 70, 83, 85, 86, 89, 92, 102,

103, 115, 362, 368, 373, 389, 636, 638, 639,
716, 718, 724, 725, 726, 742, 745, 951, 1025,
1027, 1028

diagnostics area limit • 83, 86, 362, 373
<diagnostics size> • 715, 716, 717, 735, 967
DICTIONARY • 99, 763, 833, 860, 1037

Index 1079

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<digit> • 93, 97, 100, 102, 103, 106, 109, 112, 113,
123, 187, 189, 307, 308, 951, 984, 1026

DIRECT • 623, 772, 773, 874, 876, 877, 916, 917,
996, 999

<direct invocation> • 147
Direction • 101
directly based on • 12
directly contains • 10, 156, 260
directly dependent • 596, 599, 608
directly dependent on • 596
<direct SQL statement> • 65, 68, 89, 356, 357, 557,

917
direct subtable • 43, 45, 46, 405, 410, 461
direct subtype • 31, 32, 33, 45, 337, 405, 462, 506
direct supertable • 43, 46, 405, 406, 410, 457, 462,

467, 470, 586, 601, 772, 875
direct supertype • 32, 33, 337, 506, 513, 514, 571,

572, 605, 773, 877
DIRECT_SUPERTABLES • 772, 874, 999
DIRECT_SUPERTYPES • 773, 876, 877, 996
DISCONNECT • 99, 623, 732, 743
disconnect error • 733, 956
<disconnect object> • 732
<disconnect statement> • 75, 87, 634, 732, 733, 743,

990, 1030
DISPATCH • 98, 512, 513, 542, 573
<dispatch clause> • 541, 542, 545
distinct • 6, 7, 12, 14, 23, 24, 30, 31, 44, 241, 246,

247, 249, 250, 251, 252, 254, 285, 318, 319,
406, 424, 429, 433, 436, 438, 463, 465, 500,
503, 504, 512, 514, 572, 625, 655, 668, 682,
867, 943, 944, 994, 1007, 1027, 1029, 1060

DISTINCT • 16, 61, 67, 99, 155, 156, 157, 158, 259,
260, 262, 263, 264, 265, 269, 270, 275, 276,
277, 278, 285, 292, 318, 319, 503, 653, 760,
768, 774, 776, 777, 779, 787, 849, 943, 985,
991, 993, 994, 1007, 1015, 1029, 1044, 1046,
1047, 1053, 1057, 1061

<distinct predicate> • 285, 318, 319, 1007
distinct type • 30, 31, 246, 504, 512, 514, 572, 867,

943, 944, 1060
division by zero • 162, 203, 952
DML • 82
does not possibly contain SQL • 64, 364, 515, 529,

555, 556, 560, 890, 908
domain • 12, 40, 41, 48, 50, 59, 73, 74, 79, 80, 113,

118, 119, 124, 133, 181, 183, 184, 196, 230,
261, 374, 375, 399, 401, 402, 406, 407, 412,
413, 415, 416, 417, 418, 420, 421, 440, 441,
452, 471, 472, 473, 474, 475, 476, 477, 478,
479, 480, 483, 488, 504, 569, 570, 575, 583,
597, 598, 601, 602, 603, 604, 605, 606, 607,
609, 610, 633, 639, 640, 742, 743, 751, 754,
755, 764, 774, 775, 776, 854, 857, 858, 859,
865, 867, 872, 878, 879, 880, 910, 939, 961,
966, 969, 970, 972, 976, 988, 989, 1002, 1036,
1059

DOMAIN • 99, 374, 402, 471, 474, 479, 754, 755

domain constraint • 40, 48, 50, 118, 133, 196, 441,
471, 472, 477, 478, 479, 480, 583, 603, 607,
609, 755, 774, 857, 858, 859, 878, 879, 989

<domain constraint> • 40, 133, 196, 471, 472, 477,
755

<domain definition> • 73, 124, 399, 401, 418, 440,
471, 472, 473, 598, 633, 639, 743, 969, 970,
1036

<domain name> • 40, 113, 118, 119, 181, 183, 184,
196, 261, 374, 375, 402, 406, 412, 413, 415,
417, 421, 471, 472, 474, 475, 476, 477, 478,
479, 570, 575, 583, 598, 609, 865, 969, 970

DOMAINS • 764, 771, 775, 776, 833, 834, 851, 865,
878, 880, 939, 970, 971, 976

DOMAIN_CATALOG • 764, 768, 774, 775, 776, 833,
865, 878, 880, 939

DOMAIN_CONSTRAINTS • 774, 851, 859, 878, 970
DOMAIN_DEFAULT • 776, 777, 779, 787, 833, 880
DOMAIN_NAME • 764, 768, 774, 775, 776, 833, 865,

878, 880, 939
DOMAIN_SCHEMA • 764, 768, 774, 775, 776, 833,

865, 878, 880, 939
dormant • 86, 87, 88, 89, 636, 637, 728, 730, 732
dormant SQL-connection • 86, 87, 728
dormant SQL-session • 87, 728, 730
DOUBLE • 11, 12, 22, 27, 37, 99, 122, 125, 338, 339,

344, 620, 626, 641, 642, 644, 646, 647, 648,
649, 844, 872, 1019, 1020, 1042

<double colon> • 97, 149
<double quote> • 18, 93, 94, 97, 102, 103, 170, 751
<doublequote symbol> • 97, 103, 751
DROP • 99, 402, 403, 443, 447, 449, 450, 451, 452,

454, 455, 456, 457, 469, 470, 476, 478, 479,
483, 484, 487, 488, 491, 495, 501, 523, 535,
537, 538, 539, 565, 566, 569, 570, 574, 575,
579, 580, 594, 608, 609, 610, 691, 743, 965,
1051, 1057, 1058

<drop assertion statement> • 74, 402, 450, 495, 496,
570, 575, 608, 633, 640, 743, 984

<drop attribute definition> • 520, 523
<drop behavior> • 402, 449, 451, 454, 456, 458, 469,

470, 479, 487, 537, 540, 565, 566, 569, 574,
579, 595, 610, 965, 966, 1051

<drop character set statement> • 74, 403, 483, 484,
633, 640, 743, 981, 982

<drop collation statement> • 74, 403, 487, 488, 609,
633, 640, 743, 987, 988

<drop column default clause> • 445, 447, 974
<drop column definition> • 442, 443, 451, 452, 965
<drop column scope clause> • 445, 449, 450, 974,

998
<drop data type statement> • 61, 74, 403, 537, 540,

609, 634, 743, 965
<drop domain constraint definition> • 474, 478, 989
<drop domain default clause> • 474, 476, 988
<drop domain statement> • 73, 402, 479, 480, 570,

575, 609, 633, 640, 743, 970
<drop method specification> • 520, 535
<drop role statement> • 74, 403, 594, 633, 640, 743,

898, 1011

1080 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<drop routine statement> • 61, 74, 403, 449, 452,
455, 457, 470, 484, 488, 491, 495, 538, 565,
566, 570, 575, 580, 609, 633, 743, 965, 995

<drop schema statement> • 73, 402, 403, 633, 640,
743, 974, 975

<drop table constraint definition> • 442, 443, 454,
455, 974, 975

<drop table statement> • 73, 402, 456, 457, 458, 470,
570, 608, 633, 691, 743, 965

<drop transform statement> • 74, 539, 566, 579, 581,
634, 743, 928, 1002

<drop translation statement> • 74, 403, 491, 492,
633, 640, 743, 987, 988

<drop trigger statement> • 74, 403, 451, 495, 501,
570, 575, 608, 633, 743, 1008

<drop user-defined cast statement> • 539, 566, 569,
570, 633, 1001

<drop user-defined ordering statement> • 74, 574,
575, 634, 743, 1002

<drop view statement> • 74, 402, 449, 455, 457, 469,
470, 570, 575, 608, 633, 743, 965

duplicate • 7, 8, 157, 239, 263, 275, 276, 313, 319,
482, 587, 593, 951

duplicates • 7, 8, 275, 276, 319
dyadic • 7, 8, 17, 24, 202, 203, 205
DYNAMIC • 98, 99, 542, 545, 622, 623, 748, 799,

833, 907, 909
<dynamic result sets characteristic> • 542, 544, 545,

561, 562, 564, 1014
dynamic result sets returned • 372, 663, 954, 957
dynamic SQL argument list • 360
DYNAMIC_FUNCTION • 98, 748
DYNAMIC_FUNCTION_CODE • 98

— E —
EACH • 90, 92, 99, 389, 497, 498, 499, 500, 937,

1009, 1037, 1062
Editor’s Note • 669, 751, 1041
effective • 16, 18, 28, 29, 38, 44, 45, 46, 48, 63, 67,

71, 78, 83, 87, 89, 90, 92, 103, 110, 111, 112,
128, 136, 145, 154, 176, 198, 211, 212, 215,
234, 241, 242, 244, 257, 270, 292, 318, 324,
326, 328, 331, 353, 357, 359, 365, 366, 368,
372, 379, 386, 389, 400, 402, 403, 405, 407,
411, 421, 425, 428, 439, 441, 449, 450, 451,
452, 454, 455, 457, 467, 470, 472, 480, 481,
484, 488, 491, 494, 495, 513, 538, 539, 550,
551, 552, 553, 554, 555, 561, 563, 566, 570,
573, 575, 580, 584, 585, 586, 589, 594, 608,
609, 610, 612, 614, 637, 638, 654, 657, 658,
663, 672, 673, 675, 680, 687, 690, 691, 700,
701, 706, 707, 711, 716, 723, 728, 745, 852,
853, 862, 864, 867, 878, 880, 881, 882, 893,
901, 920, 922, 924, 926, 936, 938, 940, 948,
962, 1025, 1027, 1028

effectively • 16, 18, 28, 29, 38, 44, 45, 46, 48, 71, 78,
87, 89, 90, 92, 103, 111, 112, 128, 136, 145,
154, 176, 211, 212, 215, 244, 257, 292, 318,
324, 326, 328, 331, 353, 368, 379, 386, 389,
400, 402, 403, 405, 407, 411, 421, 425, 428,
439, 441, 449, 450, 451, 452, 455, 457, 467,
470, 472, 480, 481, 484, 488, 491, 494, 495,
513, 538, 539, 566, 570, 573, 575, 580, 584,
585, 586, 589, 594, 608, 609, 610, 612, 614,
637, 638, 654, 657, 658, 663, 672, 673, 675,
680, 687, 690, 691, 700, 701, 706, 707, 711,
723, 728, 745, 852, 853, 862, 864, 867, 878,
880, 881, 882, 893, 901, 920, 922, 924, 926,
936, 938, 940, 948, 962, 1025, 1027, 1028

effective returns data type • 357, 359, 372
effective SQL parameter list • 63, 67, 366, 550, 552,

553, 554, 555, 561, 563
ELEMENT • 620, 777, 833, 881, 976, 1000
element order • 37, 1027
<element reference> • 37, 151, 197, 198, 199, 261,

414, 999
elements • 3, 6, 7, 10, 36, 37, 40, 48, 93, 162, 185,

231, 246, 248, 249, 267, 274, 276, 288, 318,
326, 327, 331, 332, 340, 341, 347, 407, 429,
444, 532, 535, 536, 560, 642, 644, 646, 665,
1017, 1027, 1041

element type • 7, 12, 36, 37, 38, 42, 61, 126, 128,
136, 151, 183, 219, 324, 328, 334, 340, 393,
415, 416, 459, 518, 521, 523, 537, 545, 551,
556, 557, 606, 679, 681, 685, 688, 777, 881,
1027

<element type> • 183
<element value function> • 199
ELSE • 99, 178, 179
<else clause> • 178, 179, 180
embedded • 917, 1050, 1054
EMBEDDED • 916, 917
<embedded exception declaration> • 1054
<embedded SQL host program> • 917, 1054
<embedded variable name> • 1054
empty • 34, 42, 43, 45, 51, 52, 53, 55, 58, 64, 68, 71,

81, 82, 90, 91, 136, 137, 145, 146, 153, 157,
181, 183, 184, 224, 241, 263, 274, 275, 308,
310, 312, 337, 340, 355, 357, 360, 362, 376,
391, 406, 410, 419, 421, 429, 431, 438, 439,
448, 450, 500, 514, 537, 563, 575, 577, 660,
661, 666, 674, 676, 681, 682, 687, 689, 694,
699, 701, 704, 706, 707, 999, 1000

<empty specification> • 136, 137, 181, 184, 224, 419,
421, 674, 999, 1000

enabled authorization identifiers • 82, 376, 402, 408,
442, 456, 463, 472, 474, 479, 481, 483, 486,
487, 490, 491, 495, 499, 501, 520, 538, 556,
563, 566, 568, 572, 574, 577, 580, 594, 747

enabled privileges • 82, 376
enabled roles • 81, 82, 376, 778, 789, 790, 793, 794

Index 1081

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

ENABLED_ROLES • 758, 760, 761, 762, 763, 764,
766, 768, 769, 770, 772, 773, 774, 775, 776,
778, 780, 782, 783, 786, 788, 789, 790, 791,
792, 793, 794, 795, 797, 799, 800, 807, 810,
811, 812, 813, 814, 815, 816, 819, 821, 822,
823, 1012

END • 99, 178, 179, 281, 497, 768, 799, 823
END-EXEC • 99
<end field> • 126, 215, 334, 347, 348, 349, 1036
enduring characteristics • 88, 735
enduring transaction characteristics • 88, 637
EQUALS • 8, 31, 33, 99, 288, 571, 573, 574, 943,

944, 1037
<equals operator> • 15, 18, 52, 93, 94, 287, 291,

677, 739, 1051
<equals ordering form> • 571
EQUAL_KEY_DEGREES • 849
error in assignment • 952
ESCAPE • 99, 170, 298, 299, 300, 301, 304, 305,

306, 620, 621, 1045
<escape character> • 164, 166, 169, 298, 299, 300,

303, 304, 305, 306, 971, 1045
escape character conflict • 306, 952
<escaped character> • 304, 305, 306
<escape octet> • 298, 299, 301, 302
EVENT_MANIPULATION • 816, 833, 931, 932, 937
EVENT_OBJECT_CATALOG • 813, 816, 833, 931,

937
EVENT_OBJECT_COLUMN • 813, 833, 931
EVENT_OBJECT_SCHEMA • 813, 816, 833, 931,

937
EVENT_OBJECT_TABLE • 813, 816, 833, 931, 937
EVERY • 99, 155, 156, 157, 158, 1003, 1037
exact numeric • 12, 15, 21, 22, 23, 24, 26, 29, 109,

111, 125, 132, 151, 156, 160, 161, 162, 165,
182, 185, 186, 188, 195, 202, 203, 213, 214,
325, 331, 333, 338, 393, 419, 504, 505, 551,
552, 624, 659, 715, 721, 722, 725, 740, 741,
845, 1020, 1021, 1022, 1042

<exact numeric literal> • 106, 109, 111, 186, 188, 419
<exact numeric type> • 23, 122, 125, 624, 845, 1020,

1042
exact numeric types • 12, 338
EXCEPT • 16, 46, 47, 57, 99, 265, 268, 269, 270,

272, 273, 275, 276, 277, 278, 292, 703, 708,
926, 972, 993, 1015, 1046, 1051, 1053, 1055,
1057

exception • 37, 38, 41, 48, 68, 69, 70, 77, 82, 84, 87,
90, 101, 110, 127, 135, 151, 157, 162, 169,
171, 172, 173, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 201, 203, 207,
208, 211, 215, 227, 239, 240, 283, 300, 301,
302, 306, 324, 326, 329, 330, 331, 332, 363,
364, 365, 366, 367, 368, 375, 386, 389, 390,
391, 431, 433, 436, 438, 519, 608, 618, 629,
635, 636, 637, 638, 639, 657, 658, 660, 662,
663, 665, 666, 668, 671, 675, 680, 681, 682,
686, 688, 692, 693, 703, 708, 712, 716, 717,
718, 721, 722, 723, 724, 725, 726, 727, 728,
730, 732, 736, 737, 738, 739, 742, 745, 746,
748, 749, 951, 952, 953, 954, 955, 956, 958,
1018, 1020, 1021, 1030, 1035, 1036, 1054

EXCEPTION • 99, 100, 620, 621, 622, 623, 739,
1039

exception condition • 37, 38, 48, 68, 69, 70, 77, 82,
84, 87, 90, 135, 151, 157, 162, 171, 173, 185,
186, 187, 188, 189, 190, 191, 192, 193, 194,
195, 196, 201, 203, 207, 211, 215, 227, 283,
300, 301, 302, 306, 324, 326, 329, 330, 331,
332, 363, 364, 366, 367, 368, 375, 386, 389,
391, 431, 433, 436, 438, 519, 608, 618, 635,
636, 637, 638, 639, 658, 662, 665, 666, 668,
671, 675, 680, 681, 682, 686, 688, 703, 708,
712, 716, 717, 718, 721, 722, 723, 724, 725,
726, 727, 728, 730, 732, 736, 737, 738, 745,
746, 951, 958, 1020, 1030, 1035, 1036

exception data item • 365, 366, 368, 390, 391
excluded constraint list • 479, 480
exclusively specified • 320, 321
<exclusive user-defined type specification> • 320
EXEC • 99
executable routine • 355
EXECUTE • 80, 99, 184, 355, 374, 375, 465, 466,

490, 557, 566, 583, 584, 585, 586, 601, 602,
603, 605, 623, 844, 901, 902

<execute immediate statement> • 68, 356, 357
execute privilege descriptor • 80, 901
executing statement • 364, 618, 635
execution contexts • 89, 91
EXISTING • 98
<existing collation name> • 485
<existing translation name> • 171, 489
EXISTS • 98, 284, 312, 423, 425, 472, 703, 708, 760,

768, 799, 823, 849, 850, 874, 877, 926, 1014,
1045, 1062

<exists predicate> • 16, 258, 284, 285, 312, 1014
EXIT • 874
expandable • 268, 269, 279
Explicit • 16, 17, 18, 34, 38, 39, 205, 246, 561, 654,

1011, 1047, 1048, 1052, 1054, 1062
<explicit table> • 265, 266, 269, 277, 986, 1029
<exponent> • 106, 111
exposed • 54, 138, 139, 141, 233, 234, 236, 259,

262, 652, 667, 670, 671, 679, 685, 687
extended sort key columns • 653, 655
<extender character> • 96, 101

1082 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

EXTERNAL • 99, 542, 549, 561, 621, 799, 833, 907,
908, 1023

<external body reference> • 63, 542, 544
externally-invoked procedure • 45, 59, 60, 68, 70, 73,

79, 82, 85, 87, 92, 400, 612, 613, 614, 616,
617, 618, 619, 627, 628, 636, 637, 639, 652,
727, 728, 731, 732, 733, 1018, 1025

<externally-invoked procedure> • 45, 59, 60, 68, 70,
79, 82, 87, 92, 400, 611, 612, 613, 614, 616,
617, 618, 619, 627, 628, 636, 637, 639, 652,
727, 728, 731, 732, 733, 1018, 1025

external routine • 7, 34, 63, 64, 65, 66, 67, 69, 87,
118, 323, 361, 363, 364, 365, 366, 367, 368,
539, 545, 546, 547, 549, 550, 555, 557, 558,
559, 560, 561, 563, 564, 579, 580, 641, 745,
748, 908, 909, 953, 957, 1011, 1022, 1036,
1062

external routine authorization • 65, 67, 363, 560
external routine exception • 363, 364, 367, 368, 748,

953
external routine invocation exception • 366, 368, 748,

953
<external routine name> • 63, 66, 114, 118, 542, 550,

558, 559, 560, 562, 563, 564
external routine SQL-path • 65, 67, 560
<external security clause> • 542, 549, 561, 1011
EXTERNAL_LANGUAGE • 799, 833, 907, 908
EXTERNAL_NAME • 799, 833, 907, 908
EXTRACT • 98, 159, 161, 162
<extract expression> • 23, 29, 159, 160, 161, 163,

966, 979, 1021
<extract field> • 159, 160, 161
<extract source> • 159, 160, 161

— F —
<factor> • 202, 212, 213
FALSE • 99, 107, 112, 188, 190, 216, 218, 291, 629,

632
Feature F032 • 458, 470, 540, 566, 965
Feature F033 • 443, 452, 965
Feature F034 • 610, 966
Feature F052 • 112, 129, 163, 177, 199, 211, 215,

286, 317, 350, 966, 967, 979
Feature F081 • 1051, 1055
Feature F111 • 716, 735, 967
Feature F121 • 716, 749, 967, 968, 1015
Feature F131 • 1042, 1044
Feature F171 • 401, 968
Feature F191 • 417, 439, 968
Feature F201 • 1052
Feature F221 • 1047, 1048
Feature F222 • 676, 968
Feature F231 • 765, 771, 789, 790, 791, 794, 796,

809, 817, 818, 834, 968, 969, 1012, 1013
Feature F251 • 119, 135, 196, 378, 401, 417, 425,

473, 480, 639, 640, 754, 755, 774, 776, 834,
969, 970, 971, 1002

Feature F271 • 112, 971
Feature F281 • 303, 971
Feature F291 • 286, 313, 971, 994

Feature F301 • 277, 971
Feature F302 • 277, 971
Feature F321 • 135, 421, 736, 972
Feature F341 • 764, 766, 769, 770, 775, 780, 793,

795, 797, 814, 815, 821, 822, 833, 834, 972,
973, 974, 1008, 1009, 1012

Feature F381 • 403, 443, 445, 446, 447, 448, 450,
453, 455, 564, 640, 974, 975, 998

Feature F391 • 104, 751, 753, 756, 760, 761, 763,
764, 768, 769, 770, 776, 777, 779, 782, 784,
786, 787, 788, 790, 792, 795, 797, 799, 800,
802, 803, 806, 808, 810, 812, 813, 814, 815,
816, 824, 975, 976, 977, 978

Feature F401 • 243, 978
Feature F411 • 112, 129, 163, 176, 211, 738, 966,

978, 979
Feature F421 • 112, 129, 163, 174, 180, 196, 208,

303, 979, 980, 1004, 1005
Feature F431 • 655, 662, 980
Feature F441 • 158, 244, 980, 981
Feature F451 • 112, 120, 129, 378, 380, 401, 482,

484, 615, 640, 981, 982, 987
Feature F461 • 982
Feature F481 • 1045
Feature F491 • 119, 386, 417, 423, 982, 983
Feature F502 • 802, 804, 806, 834, 983
Feature F511 • 112, 129, 174, 208, 983
Feature F521 • 401, 494, 496, 640, 758, 984
Feature F531 • 411, 614, 691, 984
Feature F555 • 112, 129, 176, 984, 985
Feature F561 • 158, 297, 985
Feature F571 • 218, 985
Feature F641 • 224, 225, 228, 985, 986
Feature F651 • 119, 986
Feature F661 • 277, 986
Feature F671 • 441, 986
Feature F691 • 119, 131, 174, 208, 255, 378, 384,

401, 417, 486, 488, 490, 492, 519, 640, 763,
812, 833, 834, 986, 987, 988, 992, 1005

Feature F701 • 417, 439, 988
Feature F711 • 474, 475, 476, 477, 478, 988, 989
Feature F721 • 386, 720, 989
Feature F731 • 378, 989
Feature F741 • 286, 315, 439, 989, 994
Feature F751 • 468, 990
Feature F761 • 735, 990
Feature F771 • 119, 729, 731, 733, 990
Feature F781 • 672, 676, 689, 990, 991
Feature F791 • 655, 991, 1009
Feature F801 • 264, 991
Feature F821 • 119, 142, 991
Feature F831 • 655, 682, 991
feature not supported • 717, 727, 730, 953
Feature S023 • 119, 129, 148, 200, 373, 377, 515,

519, 561, 640, 760, 782, 784, 833, 834, 992,
993

Index 1083

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

Feature S024 • 150, 158, 255, 264, 278, 294, 295,
297, 311, 313, 319, 377, 378, 383, 515, 516,
519, 520, 561, 566, 590, 610, 656, 676, 683,
773, 792, 808, 834, 971, 993, 994, 995, 996,
1007, 1012

Feature S041 • 129, 145, 152, 199, 787, 996, 997
Feature S043 • 129, 131, 146, 154, 196, 411, 417,

448, 450, 468, 516, 519, 676, 974, 997, 998,
1015

Feature S051 • 411, 998
Feature S071 • 135, 353, 401, 421, 614, 998, 999
Feature S081 • 377, 411, 590, 610, 772, 966, 999
Feature S091 • 129, 137, 151, 163, 199, 220, 221,

224, 236, 682, 777, 999, 1000
Feature S092 • 129, 1000
Feature S094 • 129, 1000
Feature S111 • 236, 1001
Feature S151 • 285, 321, 1001
Feature S161 • 199, 201, 1001
Feature S201 • 373, 561, 1001
Feature S211 • 568, 570, 1001
Feature S241 • 561, 578, 581, 614, 811, 1002
Feature S251 • 573, 575, 1002
Feature S261 • 174, 1002
Feature T01 • 755, 784, 799, 816, 834, 970, 1002,

1003, 1008
Feature T011 • 755, 784, 799, 816, 834, 970, 1002,

1003, 1008
Feature T031 • 112, 129, 158, 199, 218, 1003, 1004
Feature T041 • 112, 129, 1004, 1056
Feature T042 • 174, 180, 196, 208, 294, 297, 303,

311, 980, 1004, 1005
Feature T051 • 119, 129, 131, 144, 224, 226, 264,

779, 1005, 1006
Feature T121 • 119, 236, 277, 1006
Feature T131 • 277, 468, 1007
Feature T141 • 285, 308, 1007
Feature T151 • 285, 319, 994, 1007
Feature T171 • 411, 1007
Feature T191 • 439, 1007
Feature T201 • 439, 1008
Feature T211 • 377, 500, 501, 813, 814, 815, 816,

834, 973, 974, 1003, 1008, 1009
Feature T212 • 500, 1009
Feature T231 • 655, 991, 1009
Feature T241 • 640, 716, 1009
Feature T251 • 718, 1009
Feature T261 • 724, 726, 1009, 1010
Feature T271 • 119, 640, 721, 722, 726, 1010
Feature T281 • 377, 1010
Feature T301 • 264, 1010
Feature T312 • 174, 1010
Feature T322 • 561, 1011
Feature T331 • 119, 401, 591, 593, 594, 610, 639,

640, 737, 756, 757, 778, 789, 790, 791, 793,
794, 833, 834, 968, 969, 973, 1011, 1012, 1013

Feature T332 • 135, 377, 421, 591, 593, 610, 1013
Feature T351 • 104, 1013
Feature T411 • 683, 1013
Feature T431 • 158, 255, 1014

Feature T441 • 163, 1014
Feature T461 • 295, 1014
Feature T471 • 561, 655, 1014
Feature T491 • 236, 1014
Feature T501 • 284, 1014
Feature T511 • 749, 967, 1015
Feature T551 • 277, 656, 1015
Feature T561 • 693, 1015
Feature T571 • 516, 561, 1015
Feature T581 • 174, 1016
Feature T591 • 425, 1016
Feature T601 • 120, 1016
FEATURE_ID • 801, 804, 911, 912
FEATURE_NAME • 801, 804, 911, 912
FEATURE_SUBFEATURE_PACKAGE_CODE • 911
FETCH • 99, 372, 659, 743, 1048, 1058
fetch call • 390, 391
<fetch orientation> • 659, 660, 661, 662, 980
<fetch statement> • 71, 72, 75, 76, 612, 634, 638,

655, 659, 662, 668, 680, 743, 980, 1030, 1048
<fetch target list> • 659, 661, 1030
<field definition> • 122, 128, 130, 131, 986, 1005
<field name> • 35, 114, 119, 130, 131, 144, 224, 234,

240, 263, 334, 411, 414, 442, 1005
field reference • 139, 144, 198, 199, 261, 1006
<field reference> • 139, 144, 197, 198, 199, 261,

1006
fields • 11, 25, 27, 28, 29, 35, 38, 40, 127, 128, 211,

212, 230, 258, 259, 260, 264, 287, 334, 348,
349, 462, 682, 704, 779, 882, 883, 976, 1006

final • 31, 33, 65, 368, 502, 514, 1041
FINAL • 98, 502, 504, 505, 819, 833, 943, 944
<finality> • 502
FIRST • 99, 279, 659, 660, 661, 1058
fixed-length • 7, 38, 109, 182, 186, 187, 189, 190,

205, 206, 207, 324, 325, 329, 330, 333, 338,
741, 1020

FLOAT • 11, 12, 22, 37, 99, 122, 125, 338, 339, 340,
344, 641, 642, 644, 646, 647, 648, 649, 844,
872, 1019, 1020, 1042

<fold> • 14, 164, 165, 166, 170, 171, 1044, 1061
FOR • 90, 92, 99, 164, 165, 167, 168, 188, 190, 381,

389, 485, 489, 497, 498, 499, 500, 512, 513,
539, 542, 543, 566, 571, 574, 576, 579, 595,
599, 600, 607, 608, 610, 628, 630, 651, 652,
654, 655, 679, 844, 937, 966, 991, 1009, 1057,
1062

FOREIGN • 99, 415, 426, 850, 852, 855, 857, 858,
860, 862, 865, 872, 874, 877, 878, 880, 881,
882, 884, 886, 889, 892, 893, 894, 895, 896,
899, 901, 903, 907, 910, 921, 922, 924, 926,
928, 929, 931, 932, 934, 937, 940, 943, 946,
947, 1049

form-of-use • 7, 13, 14, 19, 20, 114, 118, 119, 164,
165, 166, 167, 169, 171, 174, 187, 189, 951,
986, 1019, 1021, 1023

form-of-use conversion • 7, 14, 118, 119, 165, 166,
169, 171, 174, 986, 1019, 1021

<form-of-use conversion> • 14, 164, 165, 166, 169,
171, 174, 986, 1021

1084 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<form-of-use conversion name> • 114, 118, 119, 164,
166, 171, 986, 1019

FORM_OF_USE • 761, 833, 855, 1026
forsaken • 607
Fortran • 3, 368, 627, 630, 646, 917, 962
FORTRAN • 98, 351, 352, 367, 368, 390, 391, 392,

555, 563, 627, 628, 629, 630, 631, 632, 889,
907, 916, 917, 963

FOUND • 99
FREE • 99, 692, 743, 1037
<free locator statement> • 70, 75, 76, 634, 692, 743
FROM • 46, 47, 54, 56, 67, 99, 152, 154, 159, 161,

162, 164, 165, 167, 168, 188, 190, 191, 192,
193, 194, 195, 196, 230, 233, 239, 240, 241,
242, 243, 253, 254, 269, 271, 280, 281, 282,
318, 319, 372, 411, 414, 423, 424, 425, 428,
452, 457, 467, 470, 472, 480, 484, 485, 488,
489, 491, 502, 512, 539, 542, 566, 576, 594,
595, 628, 630, 653, 659, 667, 670, 699, 703,
708, 723, 727, 728, 736, 737, 745, 753, 756,
757, 758, 760, 761, 762, 763, 764, 765, 766,
768, 769, 770, 771, 772, 773, 774, 775, 776,
777, 778, 779, 780, 782, 783, 786, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
799, 800, 801, 802, 803, 804, 805, 806, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 821, 822, 823, 833, 844, 849,
850, 851, 853, 855, 857, 858, 859, 860, 862,
865, 872, 874, 877, 880, 881, 882, 884, 886,
887, 889, 892, 893, 895, 896, 898, 899, 901,
903, 907, 921, 922, 924, 926, 928, 929, 931,
932, 934, 937, 939, 940, 943, 945, 946, 947,
948, 1045

<from clause> • 46, 55, 229, 230, 231, 233, 244, 246,
254, 262, 263, 267, 279, 462, 696, 701, 706,
1053

<from collection clause> • 244
<from constructor> • 673
<from default> • 673
<from sql> • 576, 577, 578
from-sql function • 34, 67, 361, 395, 396, 550, 552,

553, 554, 557, 558, 576, 578, 579, 580, 928
<from sql function> • 576, 577
from-sql function associated with the i-th SQL

parameter • 550, 553, 554
<from subquery> • 673
FS • 61, 62, 67, 158, 361, 524, 538, 550, 552, 553,

554, 555, 558, 562, 565, 577, 578, 579, 580,
833, 834, 845, 980, 983

FULL • 31, 33, 49, 50, 99, 156, 238, 240, 241, 242,
243, 246, 259, 268, 270, 288, 314, 315, 426,
428, 429, 433, 434, 512, 514, 571, 573, 653,
654, 850, 895, 907, 926, 943, 944, 978, 1027

<full ordering form> • 571
fully updatable • 586
FUNCTION • 32, 98, 99, 381, 382, 512, 513, 541,

573, 623, 739, 741, 742, 748, 844, 907, 1026
functional dependency • 50, 51, 52, 53, 54, 55, 56,

57, 58, 454
function executed no return statement • 365, 956

<function specification> • 62, 541, 544, 549, 1056

— G —
G • 97, 98, 99, 123, 164, 172
GENERAL • 63, 99, 366, 369, 371, 516, 542, 554,

558, 559, 564, 889, 890, 907, 995, 1037
<generalized expression> • 147, 354, 357, 358, 359,

360, 373, 992
<generalized invocation> • 147
<general literal> • 105, 112, 966, 979, 983, 1003
generally contain • 158, 176, 179, 244, 274, 403, 440,

441, 460, 461, 471, 477, 493, 499, 569, 634,
635, 657, 670, 672, 676, 685, 689, 980, 981,
990, 991

generally include • 414, 457, 470, 483, 532, 536
generally underlying table • 44, 46, 269, 421, 668,

672, 673, 676, 680, 687, 689, 990, 991
<general set function> • 16, 61, 155, 156, 157, 158,

980, 985, 993
<general value specification> • 132, 135, 421, 472,

630, 969, 972, 998, 1020
GENERATED • 98, 404, 408, 410, 461, 464, 502,

926, 927, 943, 944
GET • 99, 481, 739
<get diagnostics statement> • 76, 634, 739, 741, 742,

745, 749, 958, 968
GLOBAL • 44, 47, 99, 404, 408, 409, 926, 927
<global or local> • 404
global temporary table • 42, 43, 44, 45, 87, 362, 373,

402, 404, 408, 409, 410, 427, 440, 1018, 1027
GO • 99
GOTO • 99
<grand total> • 245, 247, 249, 250, 252, 253
GRANT • 80, 99, 379, 467, 481, 513, 584, 585, 586,

588, 589, 592, 595, 598, 599, 600, 607, 610,
743, 751, 753, 754, 755, 756, 757, 758, 760,
761, 762, 763, 764, 765, 766, 768, 769, 770,
772, 773, 774, 775, 776, 777, 778, 779, 780,
782, 783, 786, 787, 788, 789, 790, 791, 792,
793, 794, 795, 796, 797, 799, 800, 801, 802,
803, 804, 805, 806, 807, 808, 809, 810, 811,
812, 813, 814, 815, 816, 817, 818, 819, 821,
822, 823, 833, 844, 863, 902, 923, 925, 939,
941, 966, 1047, 1051, 1057

GRANTED • 98, 588, 589, 592, 595, 624
GRANTEE • 539, 756, 757, 765, 778, 786, 789, 790,

791, 792, 793, 794, 796, 799, 808, 809, 810,
817, 818, 833, 862, 896, 901, 922, 923, 924,
925, 939, 940, 941

<grantee> • 374, 376, 588, 589, 590, 592, 593, 595,
596, 609, 610, 896, 966

GRANTOR • 621, 765, 789, 790, 791, 792, 793, 794,
796, 808, 809, 817, 818, 833, 862, 896, 901,
922, 923, 924, 925, 939, 940, 941

<grantor> • 374, 375, 377, 588, 591, 592, 593, 595,
610, 1013

<grant privilege statement> • 583, 588
<grant role statement> • 74, 81, 399, 401, 583, 592,

593, 633, 639, 743, 896, 897, 1011

Index 1085

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<grant statement> • 74, 80, 375, 379, 399, 411, 467,
481, 583, 584, 585, 586, 588, 589, 590, 633,
743, 940, 995, 1055

<greater than operator> • 18, 93, 94, 287, 288, 655
<greater than or equals operator> • 97, 287, 288
GROUP • 99, 245, 256, 260, 849, 851, 1045, 1053
<group by clause> • 16, 44, 56, 62, 229, 234, 245,

246, 247, 252, 254, 255, 256, 260, 261, 262,
460, 462, 524, 538, 562, 565, 993, 1028, 1045,
1053

group-by result • 158, 254
grouped view • 460, 1053
GROUPING • 56, 99, 155, 245, 246, 247, 248, 252,

1037
grouping column • 44, 56, 58, 62, 156, 246, 247, 248,

249, 250, 251, 253, 254, 255, 260, 264, 292,
454, 1010, 1028, 1029

<grouping column reference> • 245, 246, 247, 249,
250, 251, 253, 254

<grouping column reference list> • 56, 245, 246, 247,
248, 249, 250, 251, 253, 454

<grouping operation> • 155, 156, 158, 1014
<grouping set> • 245, 246, 247, 248, 249, 250, 252
<grouping set list> • 245, 246, 247, 252
<grouping sets list> • 245, 254
<grouping specification> • 245, 246, 248, 252, 254
<group name> • 508, 526, 543, 546, 550, 551, 552,

553, 554, 555, 566, 576, 577, 579, 612
<group specification> • 508, 526, 543, 546, 550, 551,

552, 553, 554, 555, 612
GROUP_NAME • 811, 928

— H —
handle • 308, 365
HAVING • 99, 256, 1045, 1053
<having clause> • 56, 156, 229, 234, 239, 244, 246,

256, 260, 262, 268, 460, 462, 1045, 1053
held cursor requires same isolation level • 717, 954
<hexit> • 105, 106, 108, 109, 419
<hex string literal> • 96, 101, 105, 108, 109, 110, 112,

419, 983
HIERARCHY • 79, 98, 153, 236, 410, 411, 465, 466,

467, 583, 584, 585, 587, 588, 589, 590, 595,
599, 600, 601, 602, 603, 604, 606, 607, 610,
670, 686, 791, 809, 924, 925, 966, 999

HOLD • 98, 651, 652, 655, 693, 743, 1037, 1048
holdable • 70, 71, 72, 614, 652, 655, 658, 668, 680,

693, 717, 723, 724, 1018, 1061
holdable cursor • 71, 72, 614, 652, 655, 658, 668,

680, 717, 723, 1018
holdable locator • 70, 724
<hold locator statement> • 70, 75, 76, 634, 693, 743,

1015
HOST • 99, 1037
host data type column • 367, 390, 391, 392, 555, 563
host language • 12, 34, 59, 68, 641, 644, 1050
<host parameter data type> • 612, 616
<host parameter declaration> • 68, 342, 612, 616,

617, 619, 636, 652
<host parameter declaration list> • 616

<host parameter declaration setup> • 612, 616
<host parameter name> • 114, 118, 132, 134, 166,

342, 493, 498, 548, 616, 617, 652, 660, 665,
666, 692, 693

<host parameter specification> • 132, 134, 166, 342,
358, 372

HOUR • 25, 26, 28, 88, 99, 100, 110, 127, 128, 159,
161, 210, 334, 347, 738, 844, 872

<hours value> • 106, 107, 110

— I —
identified • 14, 30, 34, 36, 40, 44, 53, 57, 59, 63, 65,

71, 80, 81, 87, 91, 92, 102, 104, 108, 116, 126,
127, 134, 139, 141, 145, 149, 152, 161, 166,
169, 171, 183, 184, 198, 200, 201, 230, 234,
235, 236, 238, 239, 252, 269, 320, 348, 349,
351, 356, 357, 358, 360, 361, 370, 371, 375,
376, 377, 379, 380, 381, 382, 384, 385, 387,
388, 395, 397, 400, 402, 405, 406, 408, 409,
410, 412, 413, 414, 415, 418, 422, 424, 425,
426, 427, 428, 440, 441, 442, 444, 445, 446,
447, 448, 449, 451, 453, 454, 456, 459, 460,
462, 463, 465, 466, 467, 469, 471, 472, 474,
475, 476, 477, 478, 479, 481, 482, 483, 485,
486, 487, 489, 490, 491, 493, 495, 498, 499,
501, 504, 507, 512, 513, 520, 521, 523, 525,
526, 531, 535, 537, 538, 543, 545, 546, 547,
550, 551, 552, 553, 554, 555, 556, 560, 561,
562, 563, 565, 566, 567, 569, 570, 571, 572,
574, 576, 577, 579, 583, 584, 585, 588, 589,
591, 592, 594, 595, 596, 597, 598, 599, 600,
601, 602, 603, 606, 607, 608, 609, 610, 616,
617, 654, 657, 660, 661, 663, 665, 666, 667,
668, 670, 671, 673, 674, 676, 678, 679, 680,
681, 682, 684, 685, 687, 688, 689, 692, 693,
694, 696, 697, 698, 699, 700, 701, 702, 704,
705, 706, 707, 719, 722, 728, 730, 732, 737,
744, 813, 857, 858, 862, 863, 872, 896, 899,
901, 902, 903, 911, 912, 913, 918, 919, 923,
925, 931, 932, 933, 934, 935, 939, 941, 947,
966, 975, 996, 1011, 1017, 1030

identified for deletion processing • 668, 671, 694
identified for insertion of source table • 676
identified for replacement processing • 682, 689, 704

1086 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

identifier • 20, 34, 45, 59, 60, 64, 65, 66, 67, 76, 77,
78, 79, 80, 81, 82, 86, 87, 88, 96, 97, 100,
101, 102, 103, 104, 113, 114, 115, 116, 117,
118, 119, 130, 134, 135, 138, 139, 140, 141,
142, 143, 145, 146, 147, 153, 169, 172, 184,
200, 232, 233, 234, 236, 258, 259, 304, 305,
306, 320, 344, 353, 354, 355, 360, 362, 363,
366, 374, 375, 376, 380, 384, 385, 387, 388,
399, 400, 401, 402, 405, 408, 410, 411, 412,
414, 441, 442, 452, 456, 457, 463, 469, 470,
472, 474, 479, 480, 481, 482, 483, 484, 485,
486, 487, 488, 490, 491, 493, 494, 495, 497,
499, 501, 503, 504, 505, 506, 510, 511, 512,
517, 520, 521, 525, 528, 531, 532, 535, 536,
538, 549, 550, 556, 557, 559, 560, 563, 566,
567, 568, 570, 572, 574, 576, 577, 580, 584,
585, 586, 588, 591, 592, 594, 595, 598, 600,
604, 607, 610, 611, 613, 618, 619, 624, 634,
670, 674, 679, 686, 690, 691, 721, 722, 726,
727, 728, 736, 737, 741, 742, 744, 746, 747,
748, 749, 751, 753, 755, 756, 760, 761, 763,
764, 768, 769, 770, 776, 777, 779, 782, 784,
786, 787, 788, 790, 792, 795, 797, 799, 800,
802, 803, 806, 808, 810, 812, 813, 814, 815,
816, 824, 852, 854, 855, 857, 858, 859, 860,
862, 863, 865, 872, 878, 885, 887, 889, 890,
892, 895, 896, 899, 900, 901, 902, 904, 907,
909, 910, 911, 912, 914, 921, 923, 925, 928,
930, 933, 935, 939, 941, 944, 945, 946, 947,
966, 970, 972, 975, 976, 977, 978, 1018, 1019,
1020, 1023, 1025, 1027, 1028, 1035, 1044,
1058

<identifier> • 20, 34, 59, 86, 113, 114, 117, 138, 139,
232, 233, 258, 259, 304, 305, 344, 414, 497,
503, 504, 506, 576, 721, 726, 728, 741, 748,
749, 751, 1019, 1035

<identifier body> • 96, 102, 103, 751, 755
<identifier chain> • 64, 138, 140
<identifier combining character> • 96, 101
<identifier ignorable character> • 96, 101
<identifier part> • 96, 102, 104, 975, 1044
<identifier start> • 96, 104, 975
identify • 10, 31, 55, 64, 70, 72, 86, 92, 103, 116,

126, 128, 129, 141, 152, 157, 160, 166, 167,
214, 238, 375, 381, 402, 406, 424, 427, 448,
454, 460, 461, 462, 498, 506, 566, 573, 589,
590, 607, 610, 613, 619, 627, 628, 652, 667,
670, 674, 677, 678, 679, 684, 696, 698, 701,
706, 707, 719, 721, 722, 730, 732, 742, 747,
911, 912, 913, 918, 919, 961, 966, 992, 995,
1017, 1027, 1030, 1053

IDENTITY • 99
<ideographic character> • 96, 101
IGNORE • 99, 1038

immediate • 48, 54, 55, 60, 61, 64, 68, 69, 82, 86,
89, 90, 102, 123, 126, 134, 138, 141, 142, 144,
147, 149, 160, 161, 162, 165, 166, 168, 169,
198, 199, 200, 202, 209, 210, 211, 212, 213,
217, 219, 221, 223, 224, 226, 227, 229, 230,
232, 233, 234, 235, 236, 239, 246, 248, 252,
256, 258, 259, 260, 261, 262, 263, 266, 267,
268, 269, 271, 272, 273, 274, 275, 278, 279,
280, 285, 297, 337, 342, 354, 355, 356, 357,
358, 359, 379, 385, 386, 400, 408, 413, 414,
422, 423, 425, 429, 444, 462, 465, 471, 472,
481, 485, 489, 494, 504, 506, 507, 511, 521,
523, 525, 527, 531, 532, 535, 543, 544, 547,
550, 552, 554, 560, 574, 576, 577, 579, 598,
602, 603, 605, 606, 612, 616, 636, 638, 639,
652, 653, 663, 667, 670, 676, 678, 679, 681,
682, 684, 685, 686, 687, 688, 689, 692, 693,
696, 701, 706, 707, 711, 712, 713, 719, 728,
738, 852, 879, 899, 903, 921, 932, 934, 935,
985, 990, 991, 1000, 1006

IMMEDIATE • 99, 385, 386, 422, 472, 493, 719, 723,
852, 989

immediately contain • 54, 55, 60, 61, 89, 123, 126,
134, 138, 141, 142, 144, 147, 149, 160, 161,
162, 165, 166, 168, 169, 198, 199, 200, 209,
210, 211, 212, 213, 217, 219, 221, 223, 224,
226, 227, 229, 230, 232, 233, 234, 235, 236,
239, 246, 248, 252, 256, 258, 259, 260, 261,
262, 263, 266, 267, 268, 269, 271, 272, 273,
274, 275, 278, 279, 280, 285, 297, 342, 354,
355, 356, 357, 358, 359, 400, 408, 414, 423,
425, 444, 462, 465, 471, 472, 485, 489, 504,
506, 507, 511, 521, 523, 525, 527, 531, 532,
535, 543, 544, 547, 550, 552, 554, 560, 574,
576, 577, 579, 598, 602, 603, 605, 606, 612,
616, 636, 638, 639, 652, 653, 663, 667, 670,
676, 678, 679, 681, 684, 685, 686, 687, 688,
689, 692, 693, 696, 701, 706, 707, 712, 728,
899, 903, 932, 934, 935, 985, 990, 991, 1006

impacted • 449, 450, 605, 607, 609
impacted dereference operation • 449, 450
IMPLEMENTATION • 65, 98, 363, 542, 549, 561,

802, 803, 833, 907, 909, 913, 916, 983, 1023,
1026, 1058

Index 1087

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

implementation-defined • 13, 19, 20, 23, 25, 26, 35,
37, 41, 50, 53, 57, 58, 59, 60, 63, 65, 67, 68,
72, 73, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92,
101, 103, 108, 117, 118, 119, 123, 124, 125,
128, 133, 135, 156, 160, 166, 167, 168, 173,
185, 186, 192, 193, 194, 195, 202, 203, 205,
206, 208, 214, 215, 219, 262, 305, 325, 326,
331, 333, 334, 338, 339, 348, 361, 362, 363,
365, 368, 371, 379, 380, 400, 471, 481, 499,
504, 508, 526, 546, 549, 551, 552, 553, 560,
591, 607, 609, 611, 612, 615, 617, 618, 619,
624, 626, 628, 629, 630, 631, 641, 642, 644,
646, 648, 649, 654, 655, 658, 668, 671, 675,
680, 686, 716, 718, 721, 724, 726, 727, 728,
736, 741, 742, 745, 746, 748, 754, 755, 845,
861, 873, 914, 916, 917, 921, 951, 958, 1017,
1018, 1019, 1020, 1021, 1022, 1023, 1024,
1025, 1026, 1036

<implementation-defined character set name> • 379,
380

implementation-defined classes • 951
implementation-defined exception code • 1018
implementation-defined subclasses • 951
implementation-dependent • 30, 41, 45, 48, 64, 69,

70, 71, 72, 77, 84, 87, 92, 157, 176, 215, 224,
253, 254, 255, 261, 270, 271, 272, 292, 333,
334, 360, 361, 366, 368, 369, 414, 422, 436,
460, 472, 480, 506, 512, 513, 525, 531, 546,
555, 572, 613, 614, 616, 617, 632, 638, 654,
655, 661, 662, 665, 666, 668, 671, 675, 676,
682, 689, 690, 694, 716, 718, 721, 732, 745,
872, 951, 1027, 1028, 1029, 1030, 1031

IMPLEMENTATION_INFO_ID • 802, 833, 913
IMPLEMENTATION_INFO_NAME • 802, 833, 913
Implicit • 16, 17, 18, 38, 140, 141, 143, 166, 167,

1043, 1044
implicitly invocable • 39, 568, 909
<implicitly typed value specification> • 136, 181, 418
implicit zero-bit padding • 187, 188, 189, 191, 325,

420, 749, 957
IN • 99, 159, 281, 296, 414, 507, 527, 532, 541, 547,

548, 756, 757, 758, 760, 761, 762, 763, 764,
765, 766, 768, 769, 770, 772, 773, 774, 775,
776, 777, 779, 780, 782, 783, 786, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
799, 800, 801, 807, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 819, 821, 822,
823, 844, 850, 852, 853, 855, 857, 858, 859,
860, 862, 865, 872, 874, 877, 878, 880, 881,
882, 884, 886, 887, 889, 892, 893, 895, 896,
898, 899, 901, 903, 907, 911, 916, 921, 922,
924, 926, 928, 929, 931, 932, 934, 937, 939,
940, 943, 945, 946, 947, 948, 1045, 1046

inappropriate access mode for branch transaction •
718, 954

inappropriate isolation level for branch transaction •
718, 954

include • 7, 12, 14, 15, 18, 19, 20, 25, 27, 29, 30, 31,
33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46,
47, 48, 49, 50, 59, 61, 62, 67, 68, 70, 81, 89,
90, 92, 100, 103, 115, 116, 118, 126, 127, 128,
130, 131, 136, 138, 139, 142, 145, 146, 147,
149, 152, 153, 169, 176, 183, 184, 200, 230,
235, 236, 259, 261, 287, 291, 320, 334, 337,
354, 355, 356, 358, 359, 364, 365, 367, 369,
372, 379, 380, 384, 386, 389, 395, 397, 401,
402, 403, 405, 406, 407, 408, 409, 410, 413,
414, 415, 416, 421, 422, 423, 424, 427, 428,
441, 442, 444, 447, 448, 449, 450, 451, 453,
455, 456, 457, 460, 461, 462, 463, 464, 465,
466, 467, 469, 470, 471, 472, 474, 478, 479,
480, 481, 482, 483, 485, 486, 487, 488, 489,
490, 491, 493, 494, 495, 498, 499, 500, 501,
504, 506, 507, 509, 510, 511, 512, 514, 515,
517, 518, 520, 521, 522, 523, 524, 526, 527,
529, 531, 532, 533, 534, 535, 536, 537, 538,
539, 544, 546, 548, 556, 557, 558, 559, 560,
561, 562, 563, 564, 565, 566, 567, 568, 569,
570, 571, 572, 573, 574, 575, 576, 577, 579,
580, 583, 584, 585, 586, 588, 589, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607,
609, 610, 667, 670, 673, 674, 675, 679, 686,
690, 698, 699, 701, 703, 707, 708, 747, 771,
865, 872, 910, 961, 1011, 1052

inclusively specified • 320
<inclusive user-defined type specification> • 320
independent • 4, 72, 598, 599, 668, 671, 675, 680,

686, 1024, 1025
independent node • 598, 599
Indicator • 69, 1059
INDICATOR • 99, 132, 620, 621
indicator overflow • 324, 952
indicator parameter • 68, 69, 132, 134, 261, 323, 324,

328, 329, 624, 952, 953
<indicator parameter> • 132, 134, 261
INFIX • 98
Information Schema • 1, 13, 80, 84, 102, 421, 441,

467, 494, 499, 691, 751, 752, 753, 755, 784,
799, 816, 834, 848, 945, 970, 1002, 1003,
1008, 1060

1088 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

INFORMATION_SCHEMA • 13, 67, 68, 117, 118, 119,
353, 356, 357, 379, 380, 483, 487, 624, 751,
752, 753, 754, 755, 756, 757, 758, 760, 761,
762, 763, 764, 765, 766, 768, 769, 770, 771,
772, 773, 774, 775, 776, 777, 778, 779, 780,
782, 783, 784, 786, 787, 788, 789, 790, 791,
792, 793, 794, 795, 796, 797, 799, 800, 802,
803, 804, 806, 807, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 819, 821, 822,
823, 833, 834, 844, 852, 853, 855, 856, 857,
858, 859, 860, 861, 862, 865, 872, 873, 874,
877, 878, 880, 881, 882, 884, 886, 889, 892,
893, 895, 896, 898, 899, 901, 903, 907, 910,
911, 913, 916, 918, 919, 921, 922, 924, 926,
928, 929, 931, 932, 934, 937, 939, 940, 943,
945, 946, 947, 948, 968, 969, 970, 971, 972,
973, 974, 975, 976, 977, 978, 983, 984, 988,
993, 996, 997, 999, 1000, 1002, 1003, 1006,
1008, 1009, 1012, 1013, 1026, 1050

INFORMATION_SCHEMA_CATALOG_NAME • 753,
758, 760, 761, 762, 763, 764, 765, 766, 768,
769, 770, 772, 773, 774, 775, 776, 780, 782,
783, 786, 788, 789, 790, 791, 792, 793, 794,
795, 796, 797, 799, 800, 807, 808, 809, 810,
811, 812, 813, 814, 815, 816, 817, 818, 819,
821, 822, 823, 833, 975

inherit • 30, 31, 46, 65, 406, 407, 409, 410, 506, 513,
514, 522, 523, 596

inherited attributes • 506, 513
inherited column • 46, 406, 409, 410
inherited columns • 46
inherited method • 30
<initial alphabetic character> • 96, 101
INITIALIZE • 99, 1038
INITIALLY • 99, 385, 386, 422, 472, 493, 758, 774,

807, 852, 878, 879, 921, 989
initially immediate • 386, 852, 879, 921
INITIALLY_DEFERRED • 758, 774, 807, 852, 878,

879, 921
INNER • 53, 54, 99, 238, 239, 240, 241, 1051
innermost • 138, 139, 158, 234, 253, 259
inner table • 1051
INOUT • 99, 541, 548, 551, 552, 553, 892
<in predicate> • 285, 296, 297, 994, 1005
<in predicate value> • 296
INPUT • 62, 99, 505, 508, 527, 543, 545
input parameter • 62, 626, 627, 628, 636, 638, 887,

892
input SQL parameter • 33, 62, 66, 342, 358, 361,

365, 370, 372, 548, 549
insensitive • 72, 652
INSENSITIVE • 71, 72, 98, 99, 651, 652, 655, 658,

668, 671, 675, 680, 686, 991
INSERT • 79, 80, 90, 91, 99, 374, 375, 377, 378,

410, 444, 452, 466, 497, 498, 586, 589, 596,
597, 602, 605, 673, 674, 675, 676, 691, 699,
743, 823, 862, 863, 924, 925, 937, 948, 949,
968, 989, 1046, 1047, 1054, 1057, 1059, 1062

<insert column list> • 602, 603, 605, 606, 673, 674,
675, 676, 899, 903, 933, 935, 996

<insert columns and source> • 274, 673, 674, 676,
968, 990

<insertion target> • 673
<insert statement> • 39, 47, 75, 76, 141, 235, 274,

277, 602, 603, 605, 606, 634, 673, 674, 675,
743, 744, 745, 899, 903, 933, 934, 935, 986,
1031, 1047

instance • 6, 10, 12, 42, 44, 62, 63, 64, 69, 85, 87,
88, 102, 133, 360, 362, 364, 367, 368, 373,
382, 472, 480, 519, 549, 953, 1018, 1022

INSTANCE • 98, 381, 382, 503, 506, 516, 525, 542,
907, 995

instance SQL-invoked methods • 62
INSTANTIABLE • 98, 502, 505, 513, 515, 819, 833,

943, 944, 995
<instantiable clause> • 502, 504, 505
INT • 99, 122, 1042
INTEGER • 11, 12, 22, 37, 99, 122, 123, 125, 293,

338, 339, 340, 344, 361, 550, 551, 552, 554,
572, 626, 641, 642, 644, 646, 647, 648, 649,
754, 802, 833, 844, 872, 913, 943, 1019, 1042

INTEGER_VALUE • 802, 833, 913
INTEGRITY • 621, 623, 803, 833, 916
integrity constraint violation • 196, 386, 431, 433, 436,

438, 723, 746, 749, 953, 956
interface • 4, 7, 30, 85
intermediate result table • 275, 276
INTERSECT • 16, 57, 58, 99, 265, 268, 269, 270,

273, 276, 277, 278, 292, 971, 993, 1015, 1057
INTERVAL • 11, 12, 25, 26, 27, 28, 88, 98, 99, 106,

110, 122, 128, 210, 211, 212, 213, 214, 293,
316, 317, 340, 344, 393, 620, 641, 642, 644,
646, 647, 648, 649, 738, 760, 768, 776, 777,
779, 782, 783, 786, 787, 799, 819, 833, 844,
872, 873

<interval absolute value function> • 177
<interval factor> • 212, 213
interval field overflow • 195, 215, 326, 331, 749, 952
<interval fractional seconds precision> • 28, 111, 128,

160, 347, 348, 349, 845, 1022
<interval leading field precision> • 28, 128, 214, 293,

347, 348, 349, 845, 1022
<interval literal> • 105, 106, 110, 111, 112, 419, 966
<interval primary> • 209, 210, 211, 212, 213
<interval qualifier> • 25, 28, 106, 110, 111, 122, 126,

128, 195, 212, 214, 215, 347, 348, 349, 350,
393, 419, 641, 873, 967, 1036

intervals • 11, 12, 24, 27, 28, 29, 38, 110, 126, 195,
293, 1028

<interval string> • 97, 101, 106, 107
<interval term 1> • 212, 213, 214
<interval term 2> • 212, 213
<interval term> • 209, 210, 211, 212, 213
interval type • 12, 25, 126, 129, 156, 323, 328, 340,

872, 966
<interval type> • 25, 121, 122, 126, 129, 966
<interval value expression 1> • 212, 213, 214
<interval value expression> • 159, 160, 161, 177,

197, 198, 199, 209, 210, 211, 212, 213, 214,
215, 738, 967

Index 1089

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<interval value function> • 177, 212, 213, 966
INTERVAL_PRECISION • 98, 760, 768, 776, 777,

779, 782, 783, 786, 787, 799, 819, 833, 872,
873

INTERVAL_TYPE • 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 819, 833, 872, 873

INTO • 99, 372, 659, 665, 673, 823, 948, 949
<introducer> • 105, 108, 109, 1035
in usage by • 471, 477
invalid • 17, 18, 70, 77, 87, 185, 186, 187, 188, 189,

190, 191, 192, 193, 194, 195, 196, 201, 211,
288, 300, 301, 302, 306, 329, 368, 375, 618,
635, 638, 639, 657, 660, 663, 668, 671, 675,
680, 686, 692, 693, 716, 717, 718, 721, 722,
723, 724, 725, 726, 727, 728, 732, 736, 737,
738, 745, 747, 749, 952, 953, 954, 955

invalid authorization specification • 618, 727, 728,
736, 953

invalid catalog name • 954
invalid character value for cast • 185, 186, 187, 188,

189, 190, 192, 193, 194, 196, 749, 952
invalid condition number • 716, 718, 745, 954
invalid connection name • 728, 954
invalid cursor name • 954
invalid cursor state • 657, 660, 663, 668, 680, 747,

954
invalid datetime format • 191, 192, 193, 194, 195, 952
invalid escape character • 300, 306, 952
invalid escape octet • 301, 952
invalid escape sequence • 300, 302, 952
invalid grantor • 375, 954
invalid indicator parameter value • 329, 952
invalid interval format • 195
invalid parameter value • 618, 952
invalid regular expression • 306, 953
invalid role specification • 737, 954
invalid schema name • 954
invalid specification • 692, 693, 721, 722, 726, 954,

955
invalid SQL descriptor name • 954
invalid SQL statement • 954
invalid SQL statement name • 954
invalid SQLSTATE returned • 368, 953
invalid target type specification • 201, 954
invalid time zone displacement value • 211, 738, 953
invalid transaction initiation • 77, 954
invalid transaction state • 635, 638, 639, 668, 671,

675, 680, 686, 716, 717, 718, 732, 736, 737,
954

invalid transaction termination • 723, 725, 954
invalid update value • 953
invalid use of escape character • 306, 953
<in value list> • 296, 297, 985, 994
invocable routine • 355, 356, 357
invocable routines • 357
INVOKER • 65, 98, 363, 542, 561, 907, 909
IPD • 589

IS • 99, 133, 134, 179, 216, 217, 218, 309, 318, 319,
320, 404, 415, 424, 502, 764, 766, 775, 786,
799, 850, 865, 872, 889, 907, 911, 916, 937,
943

is dependent on • 61, 67, 455, 474, 524, 538, 559,
560, 562, 565, 569

ISOLATION • 99, 622, 715, 1050
isolation level • 83, 84, 85, 86, 88, 362, 373, 637,

638, 715, 716, 717, 718, 724, 725, 735, 954,
967, 1025, 1057

<isolation level> • 715, 716, 717, 735, 967
IS_DEFERRABLE • 758, 774, 807, 852, 878, 879,

921
IS_DERIVED_REFERENCE_ATTRIBUTE • 853
IS_DETERMINISTIC • 783, 799, 833, 889, 890, 907,

908, 1036
IS_FINAL • 819, 833, 943, 944
IS_GRANTABLE • 756, 757, 765, 789, 790, 791, 792,

793, 794, 796, 808, 809, 817, 818, 833, 862,
863, 896, 897, 901, 902, 922, 923, 924, 925,
939, 940, 941

IS_IMPLICITLY_INVOCABLE • 799, 833, 907, 909
IS_INSTANTIABLE • 819, 833, 943, 944
IS_NULLABLE • 760, 768, 779, 833, 853, 854, 865,

866, 882, 883
IS_NULL_CALL • 783, 799, 833, 889, 907, 908
IS_RESULT • 782, 786, 833, 886, 887, 892
IS_SELF_REFERENCING • 768, 833, 865, 866
IS_STATIC • 783, 833, 889
IS_SUPPORTED • 801, 804, 911, 912
IS_UPDATABLE • 823, 948, 949
IS_USER_DEFINED_CAST • 799, 833, 907, 909
IS_VERIFIED_BY • 801, 804, 911, 912
ITEM • 263, 665
ITERATE • 99, 1038
iteration ignorable • 275
iterative routine • 61

— J —
JOIN • 99, 238, 240, 243, 757, 758, 760, 762, 764,

766, 768, 769, 770, 772, 774, 775, 776, 777,
778, 779, 780, 782, 783, 786, 787, 788, 795,
796, 797, 799, 807, 813, 814, 815, 816, 819,
821, 822, 850, 978

<join column list> • 238, 239
join columns • 54, 239, 240, 241, 242, 243
<join condition> • 53, 234, 238, 239, 241, 273, 1051
<joined table> • 16, 53, 55, 57, 139, 232, 234, 238,

239, 240, 243, 260, 265, 267, 270, 271, 273,
276, 1033, 1051

<join specification> • 53, 54, 238, 239
<join type> • 54, 238, 239, 268, 1051

— K —
K • 97, 98, 123

1090 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

KEY • 40, 49, 52, 98, 99, 406, 415, 422, 424, 425,
426, 427, 453, 741, 753, 769, 770, 780, 849,
850, 852, 853, 855, 857, 858, 859, 860, 862,
865, 872, 874, 877, 878, 880, 881, 882, 884,
886, 889, 892, 893, 894, 895, 896, 898, 899,
901, 903, 907, 910, 911, 913, 918, 919, 921,
922, 924, 926, 928, 929, 931, 932, 934, 937,
939, 940, 943, 945, 946, 947, 948, 973, 1049

<key word> • 11, 13, 96, 98, 100, 103, 115, 133, 216,
854, 866, 880, 1017, 1026

KEY_COLUMN_USAGE • 769, 780, 849, 850, 884,
973

KEY_DEGREE_GREATER_THAN_OR_EQUAL_TO_
1 • 850

KEY_MEMBER • 98
KEY_TYPE • 98
known functional dependencies • 51, 52, 53, 54, 55,

56, 57, 58, 1017
known functional dependency • 51, 52, 53, 54, 55,

56, 57, 454
known not nullable • 40, 41, 45, 54, 271, 272, 406,

409, 453, 455, 464, 477, 478, 494, 495, 854,
866, 883

— L —
LANGUAGE • 60, 99, 351, 505, 507, 508, 512, 513,

526, 527, 545, 783, 799, 803, 833, 889, 890,
907, 908, 914, 916, 917, 977, 1026, 1055

<language clause> • 30, 59, 60, 63, 351, 503, 507,
508, 514, 526, 542, 544, 545, 555, 558, 559,
562, 563, 564, 611, 613, 615, 616, 617, 963

<language name> • 31, 351, 514, 515, 529, 533, 558,
559, 564, 617, 889

LARGE • 11, 13, 20, 37, 99, 121, 123, 124, 129, 163,
174, 180, 196, 208, 303, 338, 344, 413, 630,
632, 641, 642, 644, 646, 647, 648, 649, 872,
979, 980, 1004, 1005, 1038, 1060, 1061

<large object length> • 121, 122, 123, 124
<large object length token> • 96, 97, 102, 122, 123
large object string • 11, 16, 124, 156, 238, 246, 287,

294, 297, 333, 424, 505, 1005
large object strings • 11, 16
LAST • 99, 659, 660, 661, 783, 784, 799, 833, 834,

889, 890, 907, 909, 1003, 1058
last element • 231
LATERAL • 99, 232, 233, 236, 1014, 1062
<lateral derived table> • 55, 232, 233, 234, 235, 236,

1014
LEADING • 99, 164, 172
leaf column • 181, 463
leaf generally underlying table • 44, 46, 668, 672,

673, 676, 680, 687, 689, 990, 991
leaf table • 46
leaf underlying table • 44, 460, 466, 586, 652, 667,

677, 703, 708
least significant • 25, 28, 29, 187, 189, 195, 213, 214,

293, 334, 347, 348, 629, 1017
LEFT • 99, 238, 240, 241, 268, 760, 768, 776, 777,

779, 782, 783, 786, 787, 799, 819
<left brace> • 18, 19, 94, 95

<left bracket> • 15, 18, 19, 93, 94, 304, 305, 306,
307, 308

<left bracket or trigraph> • 94, 123, 136, 151, 221,
677

<left bracket trigraph> • 94, 97
<left paren> • 15, 18, 93, 94, 121, 122, 133, 139,

147, 149, 153, 155, 159, 160, 164, 165, 175,
177, 178, 181, 197, 201, 212, 216, 217, 223,
232, 238, 245, 265, 266, 283, 296, 304, 305,
306, 307, 320, 347, 354, 374, 381, 404, 424,
426, 440, 459, 465, 493, 497, 502, 503, 541,
567, 569, 576, 616, 667, 673, 1045, 1046,
1047

LENGTH • 7, 98, 99, 100, 103, 159, 162, 167, 168,
187, 189, 190, 191, 621, 626, 630, 632, 641,
644, 646, 739, 741, 748, 760, 768, 776, 777,
779, 782, 783, 786, 787, 799, 819, 833, 844,
872, 873, 1043, 1061

<length> • 109, 121, 122, 123, 124, 125, 641
<length expression> • 15, 21, 22, 23, 159, 160, 163,

845, 979, 1021
length in positions • 25, 348, 349
LESS • 99, 1038
<less than operator> • 18, 93, 94, 287, 288, 291, 655
<less than or equals operator> • 97, 287, 288
LEVEL • 99, 715, 1050
<level of isolation> • 715, 716, 717, 718, 735, 967,

1025
<levels clause> • 459, 460, 468, 990
LIKE • 15, 99, 298, 299, 300, 301, 302, 303, 308,

405, 411, 971, 1007, 1045, 1057, 1061
<like clause> • 404, 405, 406, 408, 411, 1007
<like predicate> • 15, 21, 285, 298, 299, 301, 303,

980, 1005
LIMIT • 99, 620, 1038
linearly • 267, 268
linearly recursive • 267, 268
LIST • 36
<list of attributes> • 502, 503, 506, 514
<list value constructor> • 198
<list value expression> • 198
<literal> • 53, 55, 105, 132, 134, 185, 186, 188, 190,

191, 192, 193, 194, 195, 196, 258, 418, 419,
420, 653

LOB • 112, 129, 174, 180, 196, 208, 294, 297, 303,
311, 962, 980, 1004, 1005, 1060, 1061

LOCAL • 99, 209, 211, 214, 215, 404, 409, 459, 460,
690, 717, 718, 738, 926, 927, 948, 949, 1009,
1062

<local or schema qualified name> • 113, 115
<local or schema qualifier> • 113, 115, 119, 405, 690,

991
<local qualified name> • 114, 119, 991
<local qualifier> • 114, 115, 120, 1016
local temporary table • 42, 43, 44, 45, 87, 141, 362,

368, 375, 404, 408, 409, 410, 411, 427, 440,
442, 456, 460, 690, 691, 746, 927, 984, 1018,
1022, 1023, 1027

local time • 26, 29, 76, 88, 112, 738, 744, 979, 1053
LOCALTIME • 99, 175, 176, 985

Index 1091

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

LOCALTIMESTAMP • 99, 175, 176, 985, 1053
locator • 66, 67, 69, 70, 75, 76, 87, 89, 198, 323, 361,

369, 370, 371, 507, 508, 509, 510, 516, 526,
527, 529, 531, 532, 533, 541, 542, 545, 546,
547, 550, 551, 552, 554, 558, 559, 612, 613,
616, 617, 630, 632, 634, 692, 693, 724, 725,
726, 743, 954, 962, 1015, 1056, 1060, 1061,
1063

Locator • 69
LOCATOR • 69, 99, 503, 506, 509, 541, 692, 693,

743, 1038
locator exception • 692, 693, 954
<locator indication> • 66, 67, 507, 508, 509, 510, 516,

526, 527, 529, 531, 532, 541, 542, 545, 546,
547, 550, 551, 552, 554, 558, 559, 612, 616,
1015, 1056, 1061

<locator reference> • 692, 693
LOW • 14, 98, 164, 171, 305, 307, 620, 621, 844,

1044, 1061
LOWER • 14, 98, 164, 171, 305, 307, 844, 1044,

1061

— M —
M • 97, 98, 99, 123, 512, 539, 543, 566, 576, 579,

743, 744
<mantissa> • 106, 109, 111, 187, 189
MAP • 31, 34, 100, 287, 288, 290, 512, 571, 572,

573, 943, 944, 1038
<map category> • 571, 572
<map function specification> • 571, 572
marked modified privilege descriptor • 599
match • 15, 16, 49, 61, 64, 83, 285, 286, 298, 299,

303, 304, 305, 314, 315, 328, 330, 423, 426,
428, 429, 430, 431, 432, 433, 434, 435, 436,
437, 438, 574, 712, 895, 953, 971, 989, 994,
1049

MATCH • 49, 50, 100, 286, 314, 315, 426, 428, 439,
621, 788, 833, 889, 895, 907, 926, 989, 994,
1059

matching row • 83, 314, 428, 429, 430, 431, 432,
433, 434, 435, 436, 437, 438

<match predicate> • 61, 285, 286, 314, 315, 428,
574, 989

match type • 49, 423, 426, 434, 895
<match type> • 49, 423, 426, 434, 895
MATCH_OPTION • 788, 833, 895
MAX • 61, 98, 155, 156, 157, 158, 256, 260, 292,

340, 372, 760, 768, 776, 777, 779, 782, 783,
786, 787, 799, 819, 833, 851, 853, 865, 872,
873, 882, 884, 886, 892, 907, 909, 993, 1029,
1047

maximal supertable • 46
maximum cardinality • 36, 126, 219, 326, 327, 331,

332, 334, 393, 681, 688, 873
<maximum dynamic result sets> • 542, 543, 558,

563, 564, 909
MAX_DYNAMIC_RESULT_SETS • 799, 833, 907,

909
<member> • 502
<member list> • 502, 505, 506, 513, 515, 640, 992

<member name> • 381
message text item • 365, 366
MESSAGE_LENGTH • 98, 739, 741, 748
MESSAGE_OCTET_LENGTH • 98, 739, 741, 748
MESSAGE_TEXT • 98, 739, 741, 748, 1026
method • 1, 6, 7, 9, 30, 31, 32, 36, 62, 63, 64, 67,

79, 80, 114, 118, 139, 145, 146, 147, 148, 149,
150, 164, 165, 168, 169, 172, 174, 197, 198,
199, 200, 261, 290, 354, 355, 356, 357, 359,
360, 364, 365, 367, 369, 370, 371, 374, 375,
377, 378, 381, 382, 396, 398, 410, 449, 465,
466, 467, 483, 487, 502, 503, 504, 505, 506,
507, 509, 510, 511, 514, 515, 516, 519, 520,
523, 525, 526, 527, 528, 529, 531, 532, 533,
534, 535, 536, 538, 541, 542, 543, 544, 545,
546, 548, 549, 550, 551, 553, 554, 555, 557,
558, 559, 561, 563, 564, 565, 566, 572, 574,
577, 583, 584, 585, 588, 589, 590, 595, 596,
597, 601, 602, 603, 604, 605, 606, 610, 677,
678, 683, 684, 728, 781, 782, 783, 784, 792,
808, 867, 886, 887, 888, 889, 890, 907, 922,
923, 976, 978, 992, 993, 994, 995, 996, 997,
1002, 1003, 1015, 1025, 1026, 1056, 1060

METHOD • 98, 381, 382, 383, 503, 505, 512, 542,
771, 781, 782, 783, 784, 792, 808, 833, 834,
886, 888, 889, 907, 922, 976, 977, 978, 993,
994, 996, 1003, 1012

<method characteristic> • 503
<method characteristics> • 503, 507, 516, 525, 995
<method invocation> • 63, 139, 146, 147, 148, 197,

198, 199, 200, 261, 354, 523, 538, 563, 565,
601, 602, 603, 605, 992

<method name> • 30, 31, 32, 114, 118, 146, 147,
149, 465, 466, 503, 506, 507, 511, 514, 515,
525, 529, 533, 542, 543, 544, 583, 584, 585,
677, 678, 683, 684, 996

method of type • 30
<method reference> • 145, 146, 261, 449, 465, 466,

523, 538, 563, 565, 583, 601, 602, 603, 604,
605, 606, 997

<method selection> • 147, 148, 357
<method specification> • 30, 31, 62, 503, 506, 516,

519, 995, 1015
method specification descriptor • 31, 67, 483, 487,

507, 514, 526, 531, 533, 543, 546, 549
<method specification designator> • 62, 541, 542,

543, 544, 555, 557, 559, 561, 992, 995
<method specification list> • 30, 31, 502, 503, 506,

514, 515
METHOD_CATALOG • 782, 886
METHOD_LANGUAGE • 783, 833, 889
METHOD_NAME • 782, 833, 886, 889
METHOD_SCHEMA • 782, 886
METHOD_SPECIFICATIONS • 771, 781, 782, 783,

784, 833, 834, 886, 888, 889, 976, 993, 1003
METHOD_SPECIFICATION_IDENTIFIER • 782, 886
METHOD_SPECIFICATION_PARAMETERS • 771,

781, 782, 833, 886, 976, 993
MIN • 61, 98, 155, 156, 157, 158, 256, 260, 292, 993,

1029, 1047

1092 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

minimal common supertype • 33, 334, 335
Minimal common supertype • 335
<minus sign> • 15, 18, 93, 94, 98, 102, 106, 107,

202, 203, 209, 210, 211, 212, 213, 304, 305,
306, 349, 967

MINUTE • 25, 26, 28, 88, 100, 110, 127, 128, 159,
162, 210, 334, 347, 738, 844, 872

<minutes value> • 106, 107, 110
MOD • 98, 160, 163, 844, 1014, 1038, 1062
modified • 59, 65, 84, 442, 445, 474, 479, 488, 520,

522, 564, 598, 599, 607, 608, 609, 746, 896,
940

MODIFIES • 100, 543, 555, 558, 560, 564, 889, 890,
907, 908, 1038

MODIFY • 100, 621, 623, 1038
modifying SQL-data • 88, 89, 362, 364, 368, 953, 956
modifying SQL-data not permitted • 364, 368, 953,

956
module • 27, 44, 45, 59, 60, 65, 70, 71, 73, 78, 79,

82, 87, 92, 102, 104, 108, 109, 114, 115, 116,
117, 118, 130, 132, 134, 135, 141, 356, 357,
362, 363, 365, 368, 400, 408, 463, 472, 481,
482, 486, 490, 494, 498, 499, 512, 520, 556,
557, 560, 561, 604, 607, 611, 612, 613, 614,
615, 616, 617, 618, 619, 626, 636, 638, 652,
657, 690, 691, 723, 725, 726, 727, 728, 731,
908, 916, 962, 975, 982, 984, 999, 1002, 1018,
1019, 1020, 1022, 1023, 1024, 1025, 1027,
1028, 1035, 1050, 1054

MODULE • 45, 100, 113, 114, 115, 119, 141, 142,
615, 690, 691, 746, 747, 786, 799, 833, 907,
916, 917, 991

<module authorization clause> • 60, 78, 117, 611,
612, 1019

<module authorization identifier> • 60, 65, 78, 79,
400, 560, 604, 611, 613, 618, 727, 1025

<module character set specification> • 60, 102, 108,
604, 615, 982, 1024

<module contents> • 115, 611, 1035
<module name clause> • 611, 615
<module path specification> • 65, 560, 611, 612, 614,

999, 1024
MODULES • 907
<module transform group specification> • 611, 612,

614, 1002
MODULE_CATALOG • 786, 799, 833, 907
MODULE_NAME • 786, 799, 833, 907
MODULE_PRIVILEGES • 786, 799
MODULE_SCHEMA • 786, 799, 833, 907
<modulus expression> • 24, 159, 160, 161, 162
monadic • 7, 17, 24, 111, 166, 167, 203
MONTH • 25, 26, 27, 28, 100, 110, 126, 127, 128,

334, 347, 844, 872
<months value> • 106, 107, 110, 349
MORE • 98, 739, 741, 742
more recent atomic execution context • 77
most recent atomic execution context • 77, 726
most significant • 25, 28, 29, 214, 334, 347, 348

most specific type • 6, 7, 9, 24, 29, 32, 33, 34, 35,
42, 63, 64, 162, 172, 201, 203, 206, 207, 316,
317, 321, 360, 513, 712, 953

most specific type mismatch • 712, 953
<multiple group specification> • 508, 526, 543, 546,

612
multiple server transactions • 717, 727, 730, 953
<multiplier> • 96, 97, 102, 122, 123
MULTISET • 36
MUMPS • 4, 98, 351, 352, 367, 368, 390, 391, 392,

555, 563, 627, 628, 629, 631, 647, 889, 907,
916, 917, 962, 963

<mutated set clause> • 677, 678, 679, 684, 685
<mutated target> • 677, 678, 684
mutator function • 7, 32, 364, 367, 519, 521, 523,

558, 559, 953
mutually recursive • 267, 269

— N —
n-adic operator • 8
Name • 18, 112, 113, 120, 129, 378, 380, 401, 602,

605, 615, 981, 982, 1042, 1049, 1057, 1058
NAME • 67, 98, 99, 100, 542, 562, 615, 620, 621,

622, 628, 636, 638, 668, 671, 682, 689, 697,
698, 707, 708, 739, 740, 741, 742, 746, 747,
748, 749, 753, 756, 757, 758, 760, 761, 762,
763, 764, 765, 766, 768, 769, 770, 771, 772,
773, 774, 775, 776, 777, 778, 779, 780, 782,
783, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 799, 800, 801, 802, 804,
805, 806, 807, 808, 809, 810, 811, 812, 813,
814, 815, 816, 817, 818, 819, 821, 822, 823,
833, 849, 850, 851, 852, 853, 854, 855, 856,
857, 858, 859, 860, 861, 862, 863, 865, 872,
873, 874, 875, 877, 878, 880, 881, 882, 883,
884, 885, 886, 887, 889, 890, 892, 893, 895,
896, 898, 899, 900, 901, 902, 903, 904, 907,
908, 909, 910, 911, 912, 913, 918, 919, 921,
922, 923, 924, 925, 926, 927, 928, 929, 930,
931, 932, 933, 934, 935, 937, 939, 940, 943,
944, 945, 946, 947, 948, 975, 1026, 1031

<named columns join> • 53, 54, 238, 239, 241, 242
NAMES • 100, 615
NATIONAL • 13, 100, 121, 123, 129, 163, 174, 180,

196, 208, 303, 625, 979, 980, 1004, 1005,
1017, 1019

national character set • 18
<national character string literal> • 101, 105, 108,

112, 979
<national character string type> • 121, 129, 979
NATURAL • 53, 54, 100, 238, 239, 241, 242, 243,

451, 769, 978, 1058
<natural join> • 238, 239, 268
NCHAR • 100, 121, 123, 129, 619, 624, 625, 979
NCLOB • 100, 121, 123, 129, 979, 1004, 1038
NEW • 100, 200, 497, 498, 499, 1029, 1038
<new invocation> • 147, 200, 359
<newline> • 97, 98, 101, 102, 108, 1018
<new specification> • 197, 200, 992
new transition variable column reference • 140

Index 1093

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<new values correlation name> • 91, 140, 497, 498,
499

<new values table alias> • 91, 497, 498, 499
NEXT • 100, 372, 659, 660, 661, 1048, 1058
niladic • 6, 8
NO • 14, 38, 100, 130, 292, 380, 413, 426, 427, 485,

508, 516, 517, 526, 543, 545, 556, 558, 564,
651, 652, 723, 725, 860, 861, 895, 995, 1038,
1049

no active SQL-transaction for branch transaction •
717, 954

no additional dynamic result sets returned • 663, 954
No collating sequence • 16, 17, 18, 266, 460
no data • 68, 69, 334, 391, 638, 639, 661, 663, 666,

672, 676, 689, 951, 954
<non-cycle mark value> • 279, 280
non-deferrable • 48
<nondelimiter token> • 9, 96, 102
<nondoublequote character> • 97, 102
NONE • 31, 100, 571, 737, 889, 890, 895, 907, 908,

943, 944, 948, 949, 1038
<non-escaped character> • 304, 305, 306
<non-join query expression> • 265, 267, 268, 269,

270, 271, 272, 273, 275, 278, 653, 696, 701,
706, 1006, 1029

<non-join query primary> • 265, 270, 271, 273, 653,
696, 701, 706, 1029

<non-join query term> • 265, 268, 269, 270, 271, 275,
653, 1029

non-linearly recursive • 268
<nonparenthesized value expression primary> • 197,

216, 218, 1004
<nonquote character> • 98, 105, 108
non-recursive • 266, 267, 272, 274
non-recursive operand • 267, 272
<non-reserved word> • 98
<non-second primary datetime field> • 347, 349
no subclass • 951, 952, 953, 954, 955, 956, 957
NOT • 15, 24, 100, 130, 133, 134, 179, 216, 217,

218, 288, 289, 290, 295, 296, 298, 299, 304,
305, 309, 317, 320, 385, 386, 408, 412, 413,
415, 422, 423, 424, 425, 472, 493, 502, 505,
508, 515, 517, 527, 542, 545, 558, 764, 766,
775, 786, 799, 849, 850, 852, 853, 855, 857,
858, 860, 862, 865, 872, 874, 877, 878, 880,
882, 884, 886, 889, 892, 895, 898, 901, 907,
910, 911, 913, 916, 918, 919, 921, 922, 924,
926, 928, 929, 931, 934, 937, 939, 940, 943,
945, 946, 947, 948, 989, 995, 1016, 1048,
1049

not deferrable • 40, 385, 422, 494, 852, 879, 921
not distinct • 7, 319, 436, 655, 668, 682, 1029
<not equals operator> • 15, 97, 287, 288
not permitted • 88, 227, 363, 364, 367, 368, 953, 956
not recursively referred to • 272
not updatable • 42, 71, 235, 264, 269, 273, 652, 949,

1006

null • 6, 7, 15, 24, 32, 36, 40, 41, 42, 44, 45, 49, 50,
51, 52, 53, 54, 56, 62, 65, 66, 68, 69, 78, 81,
82, 105, 112, 126, 133, 134, 135, 136, 137,
144, 151, 157, 161, 162, 169, 170, 171, 172,
173, 177, 179, 184, 203, 206, 207, 210, 213,
216, 217, 220, 224, 227, 239, 240, 241, 261,
262, 271, 272, 283, 285, 289, 299, 300, 301,
306, 309, 313, 314, 315, 317, 319, 321, 323,
324, 328, 329, 332, 363, 364, 366, 367, 369,
370, 375, 376, 391, 406, 409, 416, 418, 421,
425, 428, 429, 430, 432, 433, 434, 435, 436,
437, 438, 453, 455, 464, 477, 478, 494, 495,
504, 508, 515, 519, 526, 527, 529, 534, 542,
543, 544, 545, 558, 560, 562, 563, 564, 588,
591, 592, 595, 613, 629, 631, 655, 681, 687,
688, 690, 712, 721, 728, 736, 737, 738, 854,
859, 865, 866, 873, 880, 883, 887, 889, 890,
892, 907, 908, 909, 910, 912, 913, 916, 917,
918, 919, 927, 943, 944, 949, 953, 957, 1016,
1021, 1024, 1025, 1027, 1029, 1030, 1036,
1045, 1048, 1055, 1063

NULL • 24, 62, 100, 133, 134, 136, 178, 179, 184,
216, 217, 253, 261, 309, 329, 408, 412, 415,
416, 424, 425, 426, 430, 431, 434, 437, 505,
508, 519, 527, 543, 545, 712, 760, 764, 766,
768, 775, 786, 799, 823, 850, 852, 853, 855,
860, 862, 865, 872, 878, 882, 884, 886, 889,
892, 895, 901, 907, 910, 911, 913, 916, 918,
919, 921, 922, 924, 926, 928, 929, 931, 937,
939, 940, 943, 948, 1016, 1045, 1048, 1049,
1055

nullability characteristic • 24, 40, 41, 45, 239, 240,
406, 409, 416, 453, 455, 464, 477, 478, 494,
495

NULLABLE • 98, 760, 768, 779, 833, 853, 854, 865,
866, 882, 883

<null-call clause> • 62, 504, 508, 542, 543, 544, 545,
562, 563, 564

null-call function • 62, 364, 367, 369, 558, 560, 564,
889

NULLIF • 98, 178, 179, 1054
null instance used in mutator function • 364, 367,

519, 953
<null predicate> • 15, 285, 309
null row not permitted in table • 227, 953
<null specification> • 136, 137, 224, 418, 712, 1048
null value • 7, 24, 32, 36, 40, 41, 42, 44, 49, 50, 62,

65, 69, 78, 81, 82, 105, 112, 126, 135, 137,
144, 151, 157, 161, 162, 169, 170, 171, 172,
173, 177, 179, 184, 203, 206, 207, 210, 213,
220, 224, 227, 241, 283, 289, 299, 300, 301,
306, 309, 314, 315, 317, 319, 321, 323, 324,
329, 363, 364, 366, 367, 369, 370, 375, 376,
391, 421, 430, 432, 433, 434, 435, 436, 437,
438, 515, 519, 529, 534, 564, 588, 591, 592,
595, 613, 655, 681, 687, 688, 690, 728, 736,
737, 859, 873, 887, 890, 892, 907, 908, 910,
912, 913, 917, 918, 919, 927, 943, 944, 949,
953, 957, 1024, 1025, 1027, 1029, 1030, 1036

1094 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

null value, no indicator parameter • 324, 953
null value eliminated in set function • 157, 957
null value in array target • 681, 688, 953
null value not allowed • 135, 366, 953
NUMBER • 98, 739
<number of conditions> • 715, 716, 717, 718, 1030
numbers • 12, 22, 23, 37, 58, 231, 1017
NUMBER_OF_CHARACTERS • 761, 833, 855, 1026
NUMERIC • 11, 12, 22, 37, 100, 122, 125, 338, 339,

340, 344, 621, 626, 641, 642, 644, 646, 647,
648, 649, 754, 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 819, 833, 844, 872, 1020,
1042

<numeric primary> • 202, 203, 1042
<numeric type> • 121, 122, 1042
numeric types • 12, 338
<numeric value expression> • 151, 160, 161, 162,

165, 197, 198, 202, 203
<numeric value expression dividend> • 160, 162
<numeric value expression divisor> • 160, 161, 162
<numeric value function> • 159, 161, 163, 202, 966,

979, 999
numeric value out of range • 157, 162, 185, 186, 203,

326, 331, 749, 953
NUMERIC_PRECISION • 754, 760, 768, 776, 777,

779, 782, 783, 786, 787, 799, 819, 833, 872
NUMERIC_PRECISION_RADIX • 754, 760, 768, 776,

777, 779, 782, 783, 786, 787, 799, 819, 833,
872

NUMERIC_SCALE • 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 819, 833, 872

— O —
object • 11, 15, 16, 30, 59, 65, 69, 73, 80, 87, 96, 97,

102, 121, 122, 123, 124, 156, 172, 182, 187,
188, 189, 238, 246, 273, 274, 287, 294, 297,
311, 323, 325, 330, 333, 369, 370, 371, 374,
375, 377, 378, 393, 402, 424, 438, 449, 451,
454, 456, 469, 505, 507, 509, 512, 527, 538,
546, 547, 565, 566, 569, 574, 584, 586, 588,
589, 595, 596, 598, 603, 606, 609, 610, 613,
616, 617, 630, 632, 652, 673, 674, 675, 676,
677, 678, 679, 680, 681, 682, 684, 685, 686,
687, 688, 689, 692, 693, 704, 706, 707, 730,
732, 751, 771, 793, 803, 817, 847, 872, 899,
914, 933, 939, 966, 969, 981, 982, 987, 992,
994, 999, 1005, 1027, 1057

OBJECT • 11, 13, 20, 37, 100, 121, 123, 124, 129,
163, 174, 180, 196, 208, 303, 338, 344, 413,
630, 632, 641, 642, 644, 646, 647, 648, 649,
760, 761, 763, 768, 771, 776, 777, 779, 782,
783, 786, 787, 793, 799, 812, 813, 816, 817,
819, 833, 853, 854, 865, 872, 873, 880, 881,
882, 883, 886, 887, 889, 892, 893, 907, 931,
937, 939, 943, 944, 979, 980, 1004, 1005,
1038, 1060, 1061

object column • 438, 603, 606, 652, 674, 675, 676,
678, 679, 680, 681, 682, 684, 685, 686, 687,
688, 689, 704, 706, 707, 899, 933

<object column> • 438, 603, 606, 652, 677, 678, 679,
680, 684, 685, 686, 687, 899, 933

<object name> • 374, 375, 377, 378, 588, 589, 595,
610, 966, 969, 981, 982, 987, 992, 994, 999

<object privileges> • 374, 375, 589
object row • 438, 680, 687, 689
OBJECT_CATALOG • 760, 761, 763, 768, 771, 776,

777, 779, 782, 783, 786, 787, 793, 799, 812,
813, 816, 817, 819, 833, 853, 854, 865, 872,
880, 881, 882, 883, 886, 887, 889, 892, 893,
907, 931, 937, 939, 943, 944

OBJECT_NAME • 760, 761, 763, 768, 771, 776, 777,
779, 782, 783, 786, 787, 793, 799, 812, 817,
819, 833, 853, 854, 865, 872, 880, 881, 882,
883, 886, 887, 889, 892, 893, 907, 939, 943,
944

OBJECT_SCHEMA • 760, 761, 763, 768, 771, 776,
777, 779, 782, 783, 786, 787, 793, 799, 812,
813, 816, 817, 819, 833, 853, 854, 865, 872,
873, 880, 881, 882, 883, 886, 887, 889, 892,
893, 907, 931, 937, 939, 943, 944

OBJECT_TYPE • 760, 761, 763, 768, 771, 776, 777,
779, 782, 783, 786, 787, 793, 799, 812, 817,
819, 833, 865, 872, 880, 881, 882, 883, 886,
889, 892, 893, 907, 939, 943

observer function • 6, 8, 32, 511, 513, 519, 521, 523,
524, 532

<octet length expression> • 159, 162
<octet like predicate> • 298, 299, 301, 303, 1005
<octet match value> • 298, 299
<octet pattern> • 298, 299
OCTET_LENGTH • 98, 99, 159, 162, 168, 739, 741,

748, 760, 768, 776, 777, 779, 782, 783, 786,
787, 799, 819, 833, 844, 872, 873, 1043

OF • 100, 320, 404, 406, 407, 408, 409, 411, 459,
463, 497, 651, 667, 677, 998, 1029

OFF • 100
OLD • 98, 100, 497, 498, 499, 651, 652, 655, 693,

743, 1037, 1038, 1048
<old or new values alias> • 497
<old or new values alias list> • 497, 498
<old values correlation name> • 91, 497, 498, 499
<old values table alias> • 91, 497, 498, 499
ON • 43, 54, 62, 100, 130, 238, 374, 379, 404, 407,

410, 411, 412, 413, 426, 427, 440, 452, 457,
467, 470, 480, 481, 484, 488, 491, 497, 505,
508, 517, 527, 539, 543, 545, 566, 584, 585,
586, 589, 690, 723, 753, 754, 755, 756, 757,
758, 760, 761, 762, 763, 764, 765, 766, 768,
769, 770, 772, 773, 774, 775, 776, 777, 778,
779, 780, 782, 783, 786, 787, 788, 789, 790,
791, 792, 793, 794, 795, 796, 797, 799, 800,
801, 802, 803, 804, 805, 806, 807, 808, 809,
810, 811, 812, 813, 814, 815, 816, 817, 818,
819, 821, 822, 823, 833, 844, 865, 892

ONLY • 46, 54, 100, 154, 232, 236, 320, 462, 465,
571, 622, 651, 652, 667, 668, 670, 671, 673,
678, 682, 686, 689, 697, 698, 707, 708, 715,
716, 718, 962, 1001, 1050, 1060

Index 1095

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<only spec> • 232, 234, 236
OPEN • 100, 657, 743, 1048
<open statement> • 71, 75, 76, 612, 634, 652, 657,

743
OPERATION • 100, 623, 1038
operative data type correspondences • 367, 390, 391,

392, 555, 563
operative data type correspondences table • 367,

392, 555, 563
Option • 277, 656, 1015, 1063
OPTION • 43, 47, 79, 80, 81, 100, 153, 236, 377,

410, 411, 459, 460, 461, 464, 465, 466, 467,
468, 513, 583, 584, 585, 586, 587, 588, 589,
590, 591, 592, 594, 595, 598, 599, 600, 601,
602, 603, 604, 606, 607, 608, 610, 670, 676,
680, 686, 687, 703, 708, 747, 751, 753, 754,
755, 756, 757, 758, 760, 761, 762, 763, 764,
765, 766, 768, 769, 770, 772, 773, 774, 775,
776, 777, 778, 779, 780, 782, 783, 786, 787,
788, 789, 790, 791, 792, 793, 794, 795, 796,
797, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815,
816, 817, 818, 819, 821, 822, 823, 833, 863,
895, 897, 902, 923, 925, 939, 941, 948, 949,
966, 990, 999, 1047, 1057

OPTIONS • 99, 404, 459
OR • 24, 52, 100, 134, 216, 217, 218, 288, 291, 295,

317, 758, 760, 761, 762, 763, 764, 765, 766,
768, 769, 770, 772, 773, 774, 775, 776, 780,
782, 783, 786, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 799, 800, 807, 808, 809,
810, 811, 812, 813, 814, 815, 816, 817, 818,
819, 821, 822, 823, 855, 857, 858, 860, 862,
865, 872, 880, 889, 895, 896, 899, 901, 903,
907, 911, 916, 921, 922, 924, 929, 934, 937,
939, 940, 943, 946, 947

order • 6, 8, 14, 16, 19, 21, 22, 25, 26, 31, 33, 34,
37, 40, 48, 58, 61, 62, 64, 65, 67, 70, 71, 72,
74, 78, 85, 90, 98, 135, 138, 147, 153, 169,
172, 173, 224, 230, 231, 239, 240, 242, 247,
249, 252, 259, 263, 270, 271, 279, 280, 334,
336, 347, 353, 358, 360, 372, 380, 387, 388,
389, 405, 408, 410, 411, 442, 514, 524, 538,
562, 565, 568, 571, 573, 574, 575, 619, 633,
634, 651, 652, 653, 654, 655, 660, 661, 663,
666, 678, 682, 684, 732, 743, 744, 751, 944,
965, 991, 1002, 1024, 1027, 1028, 1029, 1030,
1031, 1036, 1049, 1059, 1060, 1062

ORDER • 100, 512, 571, 651, 652, 655, 991, 1027
<order by clause> • 16, 71, 651, 652, 653, 654, 678,

1028, 1029, 1030
ordered cursor • 652, 678, 682, 991, 1059
<ordering category> • 571
<ordering form> • 571
<ordering specification> • 651
ORDERING_CATEGORY • 819, 833, 943, 944
ORDERING_FORM • 819, 833, 943, 944
ORDERING_ROUTINE_CATALOG • 819, 833, 943
ORDERING_ROUTINE_NAME • 819, 833, 943

ORDERING_ROUTINE_SCHEMA • 819, 833, 943
order of execution • 90, 387, 388
ORDINALITY • 55, 100, 232, 233, 1038
ORDINAL_POSITION • 99, 740, 741, 748, 749, 760,

768, 779, 780, 782, 786, 833, 853, 854, 865,
882, 883, 884, 885, 886, 887, 892

<ordinary grouping set> • 245, 247, 248, 249, 250,
251, 252, 253

originally-defined column • 46, 406, 409, 445, 463,
464

originally-defined columns • 46, 463
original method • 30, 31, 32, 396, 398, 504, 505, 507,

511, 514, 515, 516, 519, 525, 532, 533, 535,
889, 995

original method specification • 30, 31, 32, 504, 505,
507, 511, 514, 515, 516, 525, 532, 533, 995

<original method specification> • 30, 31, 32, 503,
504, 505, 507, 514, 516, 525, 995

OUT • 100, 541, 548, 550, 552, 554, 892
OUTER • 100, 238, 850, 1051, 1058
<outer join type> • 238, 1051
outermost • 234, 270
outer reference • 141, 155, 230, 231, 239, 244, 256,

257, 260, 672, 687
Outer reference • 155, 156, 239, 244, 256, 257, 672,

687
OUTPUT • 100
output parameter • 63, 358, 626, 627, 630, 636, 638,

892
output SQL parameter • 62, 66, 134, 135, 342, 358,

361, 365, 370, 372, 548, 549, 1022, 1023
overlaps • 29, 285, 286, 316, 317, 967
OVERLAPS • 29, 99, 316
<overlaps predicate> • 29, 285, 286, 316, 317, 967
OVERLAY • 14, 99, 164, 165, 174, 1010, 1038, 1062
overloaded • 1056
<override clause> • 673, 674, 676, 998
OVERRIDING • 99, 503, 506, 673, 676, 783, 833,

889
overriding method • 30, 31, 32, 63, 360, 396, 398,

510, 515, 531, 535, 563, 889
<overriding method specification> • 30, 31, 32, 503,

510, 515, 531
owned by • 59, 80, 583, 584, 586, 758, 762, 764,

766, 769, 770, 772, 773, 775, 788, 795, 797,
800, 807, 813, 815, 816, 821, 822

— P —
package • 133, 619, 620, 624, 625, 626, 627, 804,

911, 912, 983, 1041
PAD • 14, 38, 100, 292, 380, 485, 860, 861
<pad characteristic> • 485, 486
PAD_ATTRIBUTE • 763, 833, 860, 861

1096 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

parameter • 7, 8, 9, 11, 30, 31, 32, 33, 39, 61, 62, 63,
64, 66, 67, 68, 69, 70, 85, 87, 114, 118, 132,
134, 135, 138, 139, 140, 143, 166, 259, 261,
323, 324, 328, 329, 336, 341, 342, 343, 355,
358, 359, 360, 361, 365, 366, 367, 370, 371,
372, 381, 382, 390, 391, 392, 396, 456, 469,
483, 487, 488, 490, 493, 498, 503, 507, 508,
509, 510, 511, 512, 513, 514, 515, 519, 521,
522, 525, 526, 527, 528, 529, 531, 532, 533,
535, 536, 541, 542, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 561, 562, 563, 564, 567, 572,
577, 579, 580, 606, 612, 613, 616, 617, 618,
619, 624, 625, 626, 627, 628, 630, 632, 636,
638, 639, 652, 659, 660, 661, 662, 665, 666,
670, 674, 685, 692, 693, 712, 742, 746, 748,
749, 781, 785, 786, 867, 886, 887, 891, 892,
908, 951, 952, 953, 958, 976, 995, 1001, 1022,
1023, 1026, 1030, 1035, 1036, 1056, 1060

PARAMETER • 100, 261, 365, 366, 368, 369, 370,
371, 526, 542, 550, 554, 558, 564, 1038

<parameter mode> • 507, 527, 532, 541, 547, 548,
550, 551, 552, 553, 554, 748, 749

<parameter name> • 636
parameter passing style • 63, 558, 559, 564, 908
PARAMETERS • 100, 771, 781, 782, 785, 786, 833,

886, 891, 892, 976, 993, 1038, 1056
<parameter style> • 30, 31, 66, 508, 515, 529, 533,

542, 546, 559
<parameter style clause> • 503, 507, 508, 526, 542,

544, 545, 562, 563, 564
<parameter type> • 341, 507, 508, 526, 527, 532,

533, 541, 546, 547, 550, 551, 552, 553, 554,
555, 561, 1001

PARAMETER_MODE • 99, 740, 741, 748, 749, 782,
786, 833, 886, 887, 892

PARAMETER_NAME • 99, 740, 741, 748, 749, 782,
786, 833, 886, 887, 892

PARAMETER_ORDINAL_POSITION • 99, 740, 741,
748, 749

PARAMETER_POSITION • 886
PARAMETER_SPECIFIC_CATALOG • 99
PARAMETER_SPECIFIC_NAME • 99
PARAMETER_SPECIFIC_SCHEMA • 99
PARAMETER_STYLE • 783, 799, 833, 889, 890, 907,

908
<parenthesized boolean value expression> • 216
<parenthesized value expression> • 197
Part 1 • 3, 4, 6, 955, 956, 959, 1055, 1059
Part 10 • 955
Part 11 • 955
Part 12 • 956
Part 13 • 956
Part 14 • 956
Part 15 • 956
Part 2 • 4, 6, 338, 340, 341, 955, 959
Part 3 • 3, 955, 959
Part 4 • 3, 955, 959
Part 5 • 3, 955, 959
Part 6 • 955

Part 7 • 955
Part 8 • 955
Part 9 • 955
PARTIAL • 49, 50, 100, 314, 315, 426, 428, 431, 436,

895
partial identifier chain • 138, 259
partially updatable • 586
<partial method specification> • 503, 516, 525, 531,

995
participating datetime fields • 349
partition dependency graph • 274
part of • 1, 3, 5, 6, 7, 8, 10, 14, 18, 26, 30, 36, 39,

42, 45, 51, 55, 56, 57, 58, 59, 67, 68, 70, 73,
85, 86, 87, 111, 206, 300, 301, 302, 441, 644,
723, 725, 962, 1017, 1019, 1027, 1033, 1035,
1041

Pascal • 3, 4, 368, 628, 629, 630, 632, 648, 917, 962
PASCAL • 99, 351, 352, 367, 368, 390, 391, 392,

555, 563, 628, 629, 630, 631, 889, 907, 916,
917, 963

PATH • 100, 353, 1038
<path column> • 279, 280
<path specification> • 353, 399, 560, 611, 998
<percent> • 15, 18, 93, 94, 300, 301, 302, 304, 305,

306, 307
period • 18, 29, 93, 94, 106, 107, 109, 113, 114, 138,

139, 141, 144, 147, 165, 187, 189, 258, 260,
316, 349, 354, 414, 624, 677, 678, 685

<period> • 18, 93, 94, 106, 107, 109, 113, 114, 138,
139, 141, 144, 147, 165, 187, 189, 258, 260,
349, 354, 414, 624, 677, 678, 685

permitted • 17, 18, 33, 36, 42, 71, 82, 88, 89, 101,
109, 183, 223, 227, 288, 362, 363, 364, 367,
368, 655, 953, 956, 962, 1018, 1035, 1036

persistent • 42, 43, 44, 59, 73, 82, 83, 402, 404, 408,
409, 410, 427, 440, 691, 927, 1050, 1055

persistent base table • 42, 43, 44, 83, 402, 404, 409,
410, 427, 440, 691, 927, 1055

PL/I • 3, 368, 628, 649, 917, 963
PLACING • 164, 165
PLI • 99, 351, 352, 367, 368, 390, 391, 392, 555,

563, 623, 628, 629, 630, 631, 632, 756, 757,
799, 833, 889, 907, 909, 916, 917, 937, 963,
1012

<plus sign> • 15, 18, 93, 94, 106, 202, 203, 209, 210,
211, 212, 304, 305, 306, 307, 967

POSITION • 7, 99, 159, 396, 550, 740, 741, 748,
749, 760, 768, 779, 780, 782, 786, 833, 844,
853, 854, 865, 882, 883, 884, 885, 886, 887,
892, 1044, 1061

<position expression> • 15, 21, 22, 23, 159, 160, 845,
1020, 1044, 1061

possible scope tags • 138
possibly candidate routine • 354, 355
possibly contains SQL • 30, 31, 64, 66, 363, 367,

515, 529, 555, 560, 635, 890, 908
possibly modifies SQL-data • 64, 179, 274, 363, 364,

441, 493, 499, 549, 555, 560, 635, 670, 685,
890, 908

Index 1097

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

possibly modify SQL-data • 64, 364, 568, 572, 577,
1022

possibly non-deterministic • 48, 64, 66, 227, 229, 239,
256, 260, 273, 440, 460, 461, 493, 549, 555,
634, 635, 665

possibly nullable • 40, 41, 240, 241, 272, 455, 478,
495, 854, 866, 883

possibly read SQL-data • 64, 364, 568
possibly reads SQL-data • 64, 66, 363, 364, 367,

549, 555, 635, 890, 908
POSTFIX • 100
potentially recursive • 266, 267, 274
precede • 11, 19, 30, 33, 39, 63, 64, 68, 69, 116, 183,

234, 244, 336, 337, 338, 340, 341, 349, 355,
356, 358, 359, 360, 465, 548, 569, 612, 629,
655, 723, 951

precedes • 33, 39, 63, 116, 183, 356, 358, 359, 360,
569, 655

precision • 22, 23, 25, 26, 27, 28, 29, 109, 110, 111,
112, 122, 123, 124, 125, 126, 127, 128, 129,
156, 160, 175, 176, 188, 190, 191, 192, 193,
194, 195, 202, 203, 209, 210, 212, 213, 214,
293, 316, 333, 334, 338, 339, 347, 348, 349,
393, 504, 624, 626, 641, 845, 872, 873, 984,
985, 1019, 1020, 1021, 1022, 1052, 1058

PRECISION • 11, 12, 22, 37, 98, 100, 122, 125, 338,
339, 344, 620, 626, 641, 642, 644, 646, 647,
648, 649, 754, 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 819, 833, 844, 872, 873,
1019, 1020, 1042

<precision> • 122, 123, 124, 125, 626, 641, 1019,
1020

predefined • 11, 30, 31, 34, 39, 121, 129, 344, 502,
504, 505, 572, 577, 1003, 1056

predefined data types • 11, 39
<predefined type> • 121, 129, 344, 502, 504, 505,

1003, 1056
<predicate> • 24, 61, 133, 216, 217, 285, 300, 302,

524, 538, 562, 565, 574
preferred candidate key • 43, 58, 410
PREFIX • 100
PREORDER • 100, 1038
<preparable statement> • 65, 68, 89, 356, 357, 557
Prepare • 373
PREPARE • 100, 368
prepared • 68, 73, 83, 356, 357, 368, 1023
<prepare statement> • 68, 356, 357
PRESERVE • 43, 100, 404, 410, 440
PRIMARY • 40, 49, 52, 100, 406, 422, 424, 425, 427,

453, 753, 769, 770, 850, 852, 853, 855, 857,
858, 859, 860, 862, 865, 872, 874, 877, 878,
880, 881, 882, 884, 886, 889, 892, 893, 895,
896, 898, 899, 901, 903, 907, 910, 911, 913,
918, 919, 921, 922, 924, 926, 928, 929, 931,
932, 934, 937, 939, 940, 943, 945, 946, 947,
948, 1049

<primary datetime field> • 25, 26, 28, 29, 110, 111,
126, 127, 128, 159, 160, 161, 182, 191, 192,
193, 194, 195, 210, 211, 213, 214, 293, 316,
334, 347, 348, 419, 1021

primary effect • 46, 47
primary key • 43, 49, 52, 58, 410, 850, 885, 895, 921
primary key constraint • 52, 850, 921
PRIOR • 100, 659, 660, 661, 1058
private use • 5
private use plane • 5
privilege • 33, 46, 59, 65, 77, 78, 79, 80, 81, 82, 118,

126, 127, 130, 142, 146, 153, 169, 184, 200,
236, 328, 355, 374, 375, 376, 377, 378, 379,
380, 384, 400, 401, 408, 409, 410, 411, 415,
416, 428, 441, 444, 463, 464, 465, 466, 467,
472, 480, 481, 482, 486, 490, 499, 512, 513,
518, 520, 539, 556, 557, 583, 584, 585, 586,
587, 588, 589, 591, 593, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607,
608, 609, 610, 613, 667, 670, 674, 675, 679,
686, 691, 747, 751, 765, 789, 790, 791, 792,
793, 794, 796, 808, 809, 817, 818, 862, 863,
901, 902, 922, 923, 924, 925, 938, 939, 940,
941, 945, 953, 957, 966, 968, 969, 989, 994,
1010, 1023, 1046, 1047, 1057, 1059, 1062

PRIVILEGE • 100, 374, 375, 457, 470, 589, 609, 621,
624, 760, 761, 763, 765, 768, 771, 773, 776,
777, 779, 782, 783, 786, 787, 789, 790, 791,
792, 793, 794, 796, 799, 808, 809, 810, 811,
812, 817, 818, 819, 833, 862, 863, 901, 902,
922, 924, 925, 938, 939, 940, 941, 968, 969,
978, 996, 1057

<privilege column list> • 374, 375, 377, 378, 588,
595, 596, 989, 1010, 1046, 1047

privilege dependency graph • 598, 599
privilege descriptor • 79, 80, 81, 374, 376, 377, 379,

410, 411, 444, 465, 466, 467, 472, 481, 482,
486, 490, 513, 539, 557, 584, 586, 587, 588,
589, 593, 596, 597, 598, 599, 600, 607, 608,
609, 610, 691, 862, 901, 922, 924, 938, 940,
953, 966

<privilege method list> • 80, 374, 375, 377, 378, 588,
595, 596, 994

privilege not granted • 589, 957
privilege not revoked • 609, 957
PRIVILEGES • 100, 374, 375, 457, 470, 589, 609,

760, 761, 763, 765, 768, 771, 773, 776, 777,
779, 782, 783, 786, 787, 789, 790, 791, 792,
793, 794, 796, 799, 808, 809, 810, 811, 812,
817, 818, 819, 833, 862, 901, 922, 924, 938,
939, 940, 968, 969, 978, 996, 1057

<privileges> • 374, 375, 588, 589, 595, 596, 609,
610, 966

PRIVILEGE_TYPE • 765, 789, 790, 791, 793, 794,
796, 809, 817, 818, 833, 862, 863, 901, 902,
924, 925, 940, 941

PROCEDURE • 100, 381, 382, 541, 545, 616, 907
<procedure name> • 114, 616, 617, 619
prohibited SQL-statement attempted • 364, 367, 953,

956
proper subtables • 46
proper subtype • 8, 32, 33, 40, 201, 510, 511, 522,

535, 537, 577

1098 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

proper supertype • 9, 30, 32, 509, 511, 520, 532, 577
properties • 12, 46, 71
property • 14, 72, 100, 101
PUBLIC • 78, 81, 100, 117, 374, 376, 379, 411, 481,

596, 597, 598, 599, 737, 751, 753, 754, 755,
756, 757, 758, 760, 761, 762, 763, 764, 765,
766, 768, 769, 770, 772, 773, 774, 775, 776,
777, 778, 779, 780, 782, 783, 786, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
799, 800, 801, 802, 803, 804, 805, 806, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 821, 822, 823, 833, 844, 862,
896, 901, 923, 925, 939, 941

— Q —
<qualified asterisk> • 258, 1045
<qualified identifier> • 113, 114, 115, 116, 117, 141,

145, 147, 172, 200, 234, 353, 354, 355, 360,
366, 385, 493, 504, 505, 506, 510, 511, 521,
525, 528, 531, 532, 535, 536, 549, 550, 690,
746, 747

<qualified join> • 238, 239, 268
<quantified comparison predicate> • 15, 61, 285, 310,

311, 574, 1005
<quantifier> • 310
query • 1, 10, 16, 42, 43, 44, 46, 47, 48, 50, 54, 56,

57, 61, 64, 67, 77, 114, 117, 118, 119, 138,
139, 141, 152, 155, 156, 158, 197, 198, 199,
223, 224, 225, 232, 233, 234, 235, 236, 244,
246, 253, 256, 257, 258, 259, 260, 261, 262,
263, 264, 265, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 277, 278, 279, 283, 284,
296, 297, 310, 311, 312, 313, 314, 315, 333,
440, 441, 444, 449, 451, 454, 456, 459, 460,
461, 462, 464, 465, 467, 468, 469, 479, 483,
487, 491, 493, 523, 524, 537, 538, 562, 563,
565, 569, 570, 574, 575, 584, 586, 597, 598,
600, 602, 603, 605, 606, 635, 651, 652, 653,
654, 657, 665, 667, 670, 671, 672, 673, 674,
676, 679, 681, 685, 687, 689, 696, 698, 699,
701, 703, 706, 708, 865, 903, 934, 946, 947,
948, 949, 957, 962, 971, 972, 985, 986, 989,
990, 991, 993, 994, 996, 1001, 1005, 1006,
1007, 1014, 1029, 1030, 1042, 1044, 1045,
1046, 1050, 1053, 1055, 1057, 1060, 1061

<query expression> • 42, 43, 44, 46, 47, 48, 50, 54,
56, 57, 64, 67, 141, 232, 234, 235, 236, 253,
265, 266, 267, 269, 273, 274, 275, 277, 278,
279, 283, 333, 440, 444, 449, 451, 456, 459,
460, 461, 464, 465, 467, 469, 479, 483, 487,
491, 493, 523, 524, 537, 538, 562, 563, 565,
569, 570, 574, 575, 584, 586, 597, 600, 602,
603, 605, 606, 635, 651, 652, 657, 672, 673,
674, 676, 689, 696, 698, 699, 701, 703, 706,
708, 865, 903, 934, 946, 947, 948, 949, 971,
972, 990, 991, 993, 996, 1006, 1007, 1030,
1050, 1053

<query expression body> • 44, 118, 265, 266, 272,
273, 653

query expression too long for information schema •
467, 957

<query name> • 44, 57, 114, 118, 119, 232, 236, 253,
265, 266, 267, 274, 275, 279, 1006

query name dependency graph • 266, 267
query name in scope • 235, 266, 274
<query primary> • 57, 265, 270, 274
<query specification> • 16, 46, 48, 56, 117, 158, 234,

246, 258, 260, 261, 262, 263, 264, 265, 268,
269, 273, 275, 284, 440, 454, 460, 461, 462,
493, 635, 653, 665, 696, 701, 706, 991, 993,
1006, 1014, 1029

<query term> • 57, 265, 269, 271, 273, 277, 696,
706, 971

<question mark> • 18, 93, 94
<quote> • 18, 93, 94, 98, 103, 105, 106, 107, 108,

109, 112, 971, 1043
<quote symbol> • 103, 105, 109

— R —
READ • 83, 84, 86, 100, 651, 652, 715, 716, 718,

1050
reading SQL-data • 88, 89, 362, 363, 364, 367, 953,

956
reading SQL-data not permitted • 363, 364, 367, 953,

956
read-only • 83, 85, 86, 638, 639, 668, 671, 675, 680,

686, 716, 718, 954
read-only SQL-transaction • 668, 671, 675, 680, 686,

954
READS • 100, 543, 549, 555, 558, 560, 564, 889,

890, 907, 908, 1038
read-write • 83, 85, 86, 638, 716, 718
REAL • 11, 12, 22, 37, 100, 122, 125, 338, 339, 340,

344, 620, 626, 629, 631, 641, 642, 644, 646,
647, 648, 649, 844, 872, 1019, 1020, 1042

recursive • 51, 52, 133, 216, 266, 267, 268, 269, 272,
274, 275, 279, 280, 307, 460

RECURSIVE • 57, 100, 119, 233, 236, 265, 266, 277,
459, 460, 461, 468, 757, 778, 874, 877, 962,
1006, 1007, 1038, 1061

recursively referred to • 272
recursive query names in scope • 275
<recursive search order> • 279, 280
redundant duplicates • 8, 319
REF • 8, 11, 35, 36, 45, 100, 122, 404, 408, 409,

448, 449, 461, 462, 463, 464, 502, 503, 513,
539, 641, 642, 645, 646, 647, 648, 649, 675,
872, 873, 944, 1038

<ref cast option> • 502
referenceable table • 35, 43, 45, 126, 152, 406, 408,

409, 444, 448, 451, 454, 457, 462, 469, 601,
674, 872, 873

referenceable view • 460, 461, 467, 468, 586, 998
<referenceable view specification> • 459, 460, 461,

468, 998
<reference column list> • 426, 427, 451
referenced column • 49, 50, 423, 427, 428, 429, 433,

436, 439, 454, 895, 1008
referenced columns • 49, 423, 427, 428, 429, 454

Index 1099

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

referenced table • 46, 49, 50, 423, 426, 427, 428,
429, 433, 451, 454, 456

<referenced table and columns> • 49, 423, 426, 427,
451

referenced type • 8, 12, 31, 35, 36, 38, 122, 123,
126, 127, 128, 145, 152, 183, 288, 323, 328,
341, 415, 416, 448, 454, 457, 469, 514, 518,
521, 523, 537, 539, 556, 567, 606, 787, 893

<referenced type> • 122, 123, 126, 127, 128
referenced value • 8
<reference generation> • 404
<reference resolution> • 153, 154, 197, 198, 261,

449, 465, 466, 583, 584, 585, 601, 602, 603,
604, 606, 997

REFERENCES • 80, 100, 130, 131, 142, 374, 375,
377, 410, 412, 413, 417, 426, 428, 441, 444,
451, 452, 465, 466, 472, 517, 519, 583, 585,
589, 596, 597, 598, 600, 601, 603, 691, 760,
833, 852, 853, 854, 855, 857, 858, 860, 862,
863, 865, 872, 874, 877, 878, 880, 881, 882,
884, 886, 889, 892, 893, 895, 896, 899, 901,
903, 907, 910, 922, 924, 925, 926, 928, 929,
931, 932, 934, 937, 939, 940, 943, 946, 947,
997, 998, 1046, 1047

<reference scope check> • 130, 412, 413, 517
<references specification> • 412, 413, 415, 426, 439,

989, 1049
reference type • 8, 11, 12, 31, 35, 38, 41, 42, 126,

128, 129, 130, 131, 145, 146, 152, 154, 156,
183, 184, 185, 196, 198, 199, 288, 323, 326,
328, 331, 334, 341, 408, 409, 411, 413, 415,
416, 417, 418, 448, 449, 450, 454, 457, 461,
462, 464, 468, 469, 471, 504, 505, 514, 516,
517, 518, 519, 521, 523, 537, 539, 545, 556,
557, 567, 604, 606, 607, 675, 676, 787, 854,
867, 893, 961, 962, 974, 996, 997, 998, 1000,
1015, 1017, 1059, 1060

<reference type> • 121, 122, 126, 128, 129, 130, 413,
517, 567, 996, 1000

<reference type specification> • 502, 504, 505, 516,
998, 1015

<reference value expression> • 152, 153, 197, 198,
199, 449, 997

REFERENCE_GENERATION • 810, 833, 926, 927
REFERENCE_TYPE • 787, 819, 833, 893, 943, 944
REFERENCING • 100, 497, 498, 768, 810, 833, 865,

866, 926, 927, 1038
referencing column • 41, 43, 45, 49, 50, 152, 153,

407, 409, 410, 411, 413, 414, 416, 423, 426,
427, 428, 429, 430, 431, 432, 433, 434, 435,
436, 437, 438, 439, 445, 454, 464, 674, 675,
676, 850, 866, 884, 927, 997, 1008, 1030

referencing columns • 49, 423, 426, 427, 428, 429,
884

<referencing columns> • 49, 423, 426, 427
referencing table • 49, 50, 426, 427, 428, 433

referent • 16, 49, 64, 83, 84, 91, 138, 139, 140, 141,
259, 412, 422, 423, 426, 427, 428, 429, 433,
438, 439, 454, 456, 695, 700, 705, 746, 769,
770, 788, 850, 895, 968, 988, 1007, 1008,
1035, 1049, 1055, 1061

referential action • 84, 427, 433, 438, 439, 895, 1007
Referential action • 439, 1007, 1061
<referential action> • 412, 426, 427, 433, 438, 439,

895, 1007
referential constraint • 16, 49, 84, 91, 423, 426, 427,

428, 429, 454, 695, 700, 705, 746, 769, 770,
788, 850, 895, 1035, 1055, 1061

<referential constraint definition> • 16, 49, 422, 423,
426, 427, 428, 1035, 1055

<referential triggered action> • 426, 439, 968, 988
REFERENTIAL_CONSTRAINTS • 769, 770, 788,

833, 849, 894, 895, 921, 977, 1050
refinable • 138, 139
REF value • 8, 35, 36, 675, 944
<regular character set> • 304
<regular character set identifier> • 304, 305, 306
<regular expression> • 304, 306, 307
<regular expression substring function> • 164, 165,

166, 169, 170, 174, 1016
<regular factor> • 304
<regular identifier> • 20, 96, 100, 102, 103, 104, 113,

751, 755, 975, 1020, 1044
<regular primary> • 304
<regular term> • 304
<regular view specification> • 459, 464
RELATIVE • 31, 34, 100, 287, 288, 290, 571, 573,

659, 660, 661, 943, 944, 1039, 1058
<relative category> • 571, 572
<relative function specification> • 571, 572
<release savepoint statement> • 75, 83, 634, 640,

722, 743, 1010
REPEATABLE • 83, 84, 86, 99, 715, 718, 1057
repertoire • 5, 6, 8, 9, 13, 16, 18, 19, 20, 37, 92, 102,

108, 124, 127, 133, 160, 166, 167, 182, 186,
187, 188, 189, 190, 205, 292, 301, 333, 380,
418, 481, 488, 952, 1020, 1023, 1028, 1031

replacement set • 682, 689, 704, 706, 708, 709
<representation> • 502, 504, 1056
represented • 13, 20, 23, 35, 79, 81, 101, 111, 134,

203, 274, 289, 306, 421, 441, 467, 494, 499,
692, 751, 854, 859, 866, 880, 908, 910, 948,
1017

request failed • 668, 671, 675, 680, 686, 952
request rejected • 658, 952
REQUIRED_VALUE • 806, 833, 919
<reserved word> • 98, 99, 100, 103, 115, 1036, 1042,

1043, 1060, 1061
resource manager • 85
respective values • 7, 193, 194, 314, 318
RESTRICT • 100, 402, 416, 426, 431, 433, 436, 438,

439, 449, 451, 454, 456, 469, 479, 487, 523,
535, 537, 562, 565, 569, 574, 579, 607, 621,
895, 1007, 1051, 1061

restrict violation • 431, 433, 436, 438, 953

1100 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

RESULT • 8, 32, 100, 254, 503, 505, 506, 507, 509,
515, 519, 525, 527, 528, 531, 532, 541, 542,
545, 547, 557, 559, 561, 622, 623, 782, 786,
799, 833, 872, 886, 887, 892, 907, 909, 995,
1039

<result> • 178, 179, 180, 980, 1004
<result cast> • 66, 369, 370, 507, 508, 509, 510, 526,

527, 531, 542, 544, 545, 546, 547, 550, 558,
560

<result cast from type> • 30, 31, 509, 515, 516, 527,
529, 533, 542, 545, 546, 550, 556, 1015

result data item • 365, 369, 391
result data type • 8, 32, 33, 39, 62, 162, 203, 333,

334, 335, 357, 359, 361, 519, 567, 572, 577,
1022

<result expression> • 178, 179
result parameter • 66
result set • 66, 72, 372, 544, 545, 558, 561, 563, 564,

653, 663, 692, 693, 872, 909, 954, 956, 957,
1014

result set cursor • 72, 372, 653
RESULT SETS • 545
result SQL parameter • 7, 8, 9, 62, 359, 547, 712
Retrieval assignment • 323, 328
RETURN • 72, 100, 512, 513, 573, 651, 652, 653,

712, 743, 844, 1039
returned value • 21, 22, 365, 713
RETURNED_LENGTH • 99
RETURNED_OCTET_LENGTH • 99
RETURNED_SQLSTATE • 99, 740, 741, 745, 746,

747, 748, 749
RETURNS • 62, 100, 505, 512, 513, 542, 543, 573,

844, 1039
<returns clause> • 503, 508, 510, 516, 526, 529, 531,

533, 541, 542, 544, 545, 712, 1015
<returns data type> • 30, 31, 32, 66, 369, 370, 483,

487, 507, 509, 511, 515, 516, 527, 529, 532,
533, 542, 544, 546, 547, 550, 552, 553, 554,
555, 556, 558, 559, 561, 712, 1001, 1015

<return statement> • 76, 77, 365, 634, 712, 743
<return value> • 712
REVOKE • 100, 452, 457, 470, 480, 484, 488, 491,

539, 566, 594, 595, 610, 624, 743, 966, 1051,
1057

revoke destruction action • 600, 601, 602, 603, 604,
605

<revoke option extension> • 595
<revoke privilege statement> • 595, 607
<revoke role statement> • 594, 595, 596, 607, 608,

610, 896, 1011
<revoke statement> • 74, 375, 451, 452, 456, 457,

469, 470, 480, 484, 488, 491, 538, 539, 565,
566, 574, 595, 596, 599, 600, 607, 608, 609,
610, 633, 743, 940, 966, 995

RIGHT • 27, 53, 54, 100, 238, 240, 241, 268, 621,
624, 1051

<right arrow> • 97, 145
<right brace> • 18, 19, 94, 95
<right bracket> • 15, 18, 19, 93, 94, 304, 305, 306,

307, 308

<right bracket or trigraph> • 94, 123, 136, 151, 221,
677

<right bracket trigraph> • 94, 97
<right paren> • 15, 93, 94, 121, 122, 133, 139, 147,

149, 153, 155, 159, 160, 164, 165, 175, 177,
178, 181, 197, 201, 212, 216, 217, 223, 232,
238, 245, 265, 266, 283, 296, 304, 305, 306,
307, 320, 347, 354, 374, 381, 404, 424, 426,
440, 459, 465, 493, 497, 502, 503, 541, 567,
569, 576, 616, 667, 673, 1045, 1046, 1047

RM • 99, 512, 539, 543, 566, 576, 579, 743, 744
role • 65, 74, 76, 77, 78, 79, 80, 81, 82, 88, 113, 114,

119, 135, 166, 167, 362, 363, 375, 376, 377,
399, 401, 402, 403, 421, 583, 588, 591, 592,
593, 594, 595, 596, 599, 600, 607, 608, 610,
613, 633, 634, 639, 640, 690, 728, 736, 737,
743, 744, 756, 757, 778, 789, 790, 791, 792,
793, 794, 833, 834, 862, 896, 897, 898, 901,
923, 925, 939, 941, 954, 962, 968, 969, 973,
975, 977, 996, 1011, 1012, 1013, 1023, 1025,
1062

ROLE • 100, 403, 591, 594, 737, 743, 744, 1039
role authorization • 81, 376, 377, 583, 591, 592, 593,

594, 595, 596, 599, 600, 607, 608, 737, 756,
896

role authorization descriptor • 81, 376, 377, 591, 592,
593, 594, 596, 599, 600, 608, 737, 896

<role definition> • 74, 399, 401, 591, 633, 639, 744,
896, 897, 898, 1011

role dependency graph • 599
<role granted> • 592, 593, 896
<role name> • 77, 78, 80, 81, 113, 114, 119, 376,

591, 592, 593, 594, 595, 596, 599, 737, 896,
898, 1011

role privileges • 81, 82, 376
<role revoked> • 595, 596, 607
ROLES • 756, 757, 758, 760, 761, 762, 763, 764,

766, 768, 769, 770, 772, 773, 774, 775, 776,
778, 780, 782, 783, 786, 788, 789, 790, 791,
792, 793, 794, 795, 797, 799, 800, 807, 810,
811, 812, 813, 814, 815, 816, 819, 821, 822,
823, 862, 896, 898, 901, 922, 924, 939, 940,
945, 1012

<role specification> • 737
ROLE_AUTHORIZATION_DESCRIPTORS • 756,

757, 778, 896
ROLE_COLUMN_GRANTS • 789, 968, 1012
ROLE_NAME • 756, 757, 758, 760, 761, 762, 763,

764, 766, 768, 769, 770, 772, 773, 774, 775,
776, 778, 782, 783, 786, 788, 789, 790, 791,
792, 793, 794, 795, 797, 799, 800, 807, 810,
811, 812, 813, 814, 815, 816, 819, 821, 822,
823, 833, 862, 896, 898, 901, 922, 924, 939,
940, 945

ROLE_ROUTINE_GRANTS • 790, 833, 968, 977,
1012

ROLE_TABLE_GRANTS • 791, 968, 1012
ROLE_USAGE_GRANTS • 793, 973, 1012
ROLLBACK • 84, 85, 100, 623, 725, 744, 1050

Index 1101

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<rollback statement> • 48, 70, 71, 75, 76, 82, 83, 84,
85, 86, 614, 634, 725, 726, 732, 744, 1010,
1018, 1049

ROLLUP • 52, 56, 100, 158, 245, 255, 1014, 1039,
1062

<rollup list> • 245, 246, 247, 248, 249, 250, 254
ROUTINE • 67, 99, 100, 381, 382, 396, 398, 403,

449, 452, 455, 457, 470, 484, 488, 491, 495,
538, 550, 551, 566, 570, 575, 580, 609, 621,
623, 740, 741, 742, 743, 744, 748, 749, 771,
786, 790, 795, 796, 797, 798, 799, 819, 833,
834, 872, 889, 891, 892, 899, 901, 903, 905,
907, 908, 909, 922, 928, 943, 944, 968, 969,
973, 974, 977, 1003, 1012, 1036, 1039, 1056

routine authorization identifier • 64, 65, 66, 67, 363,
559, 560

<routine body> • 61, 63, 64, 65, 541, 542, 548, 557,
586, 605, 712, 908

<routine characteristic> • 542
<routine characteristics> • 516, 541, 542, 544, 995
routine descriptor • 59, 65, 356, 359, 362, 364, 367,

369, 370, 371, 402, 403, 449, 451, 452, 454,
455, 456, 457, 469, 470, 479, 483, 484, 487,
488, 490, 491, 495, 507, 510, 523, 524, 526,
531, 537, 538, 546, 557, 558, 559, 560, 561,
562, 563, 564, 565, 568, 569, 572, 574, 605,
607

routine execution context • 89, 356, 357, 362, 364
<routine invocation> • 59, 60, 63, 64, 65, 67, 68, 89,

146, 147, 148, 149, 150, 158, 176, 179, 197,
198, 199, 200, 227, 229, 244, 260, 261, 268,
274, 342, 354, 360, 361, 365, 372, 400, 440,
441, 465, 466, 493, 499, 523, 538, 557, 559,
560, 561, 565, 583, 584, 585, 586, 601, 602,
603, 605, 612, 635, 665, 670, 685, 711, 980,
981, 1022, 1036, 1056

<routine name> • 60, 63, 64, 65, 67, 68, 89, 138,
139, 200, 259, 290, 291, 354, 355, 356, 357,
360, 400, 528, 531, 532, 533, 535, 536, 549,
612, 748, 749

routine name text item • 365, 366
ROUTINES • 67, 771, 786, 795, 796, 797, 798, 799,

833, 834, 891, 899, 901, 903, 905, 907, 922,
928, 943, 977, 1003, 1036, 1056

routine SQL-path • 65, 66, 67, 89, 356, 357, 363,
559, 560, 561

<routine type> • 381, 382
ROUTINE_BODY • 799, 833, 889, 907, 908
ROUTINE_CAT • 99, 740, 741, 748, 749, 790, 795,

796, 797, 799, 819, 833, 907, 943, 944
ROUTINE_CATALOG • 99, 740, 741, 748, 749, 790,

795, 796, 797, 799, 819, 833, 907, 943, 944
ROUTINE_COLUMN_USAGE • 795, 833, 899, 973,

977
ROUTINE_DEFINITION • 799, 833, 907, 908
ROUTINE_NAME • 67, 99, 740, 741, 748, 749, 790,

795, 796, 797, 799, 819, 833, 907, 943, 944
ROUTINE_PRIVILEGES • 786, 790, 796, 799, 901,

969

ROUTINE_SCHEM • 99, 740, 741, 748, 749, 790,
795, 796, 797, 799, 819, 833, 907, 943, 944

ROUTINE_SCHEMA • 99, 740, 741, 748, 749, 790,
795, 796, 797, 799, 819, 833, 907, 943, 944

ROUTINE_TABLE_USAGE • 797, 833, 903, 973, 977
ROUTINE_TYPE • 799, 833, 907
row • 7, 8, 10, 11, 12, 19, 35, 38, 39, 40, 41, 42, 44,

45, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61,
71, 72, 75, 76, 83, 84, 85, 86, 89, 90, 91, 97,
100, 117, 121, 122, 124, 126, 128, 129, 130,
131, 133, 138, 140, 141, 142, 144, 145, 152,
156, 157, 197, 198, 216, 223, 224, 225, 226,
227, 228, 229, 230, 231, 233, 234, 235, 236,
240, 241, 242, 243, 244, 254, 256, 259, 260,
262, 263, 266, 275, 276, 277, 283, 287, 288,
289, 294, 295, 296, 297, 309, 310, 311, 313,
314, 315, 316, 317, 318, 319, 322, 323, 326,
328, 331, 334, 341, 367, 372, 389, 390, 391,
392, 393, 411, 413, 415, 418, 421, 426, 428,
429, 430, 431, 432, 433, 434, 435, 436, 437,
438, 439, 442, 457, 459, 461, 499, 518, 555,
556, 563, 574, 602, 603, 605, 606, 619, 627,
628, 634, 638, 654, 655, 658, 659, 660, 661,
662, 663, 665, 666, 667, 668, 669, 670, 671,
672, 673, 674, 675, 676, 677, 678, 679, 680,
681, 682, 684, 685, 686, 687, 688, 689, 694,
695, 696, 697, 698, 699, 700, 701, 704, 705,
706, 707, 708, 744, 852, 853, 854, 855, 856,
857, 858, 859, 860, 861, 862, 864, 865, 867,
873, 874, 876, 878, 880, 881, 882, 883, 884,
886, 887, 888, 889, 891, 892, 893, 894, 896,
898, 899, 901, 903, 905, 907, 910, 911, 912,
913, 914, 916, 918, 919, 920, 922, 924, 926,
928, 929, 931, 932, 934, 936, 938, 940, 942,
944, 945, 946, 947, 948, 953, 954, 985, 986,
989, 991, 994, 1000, 1005, 1006, 1007, 1024,
1026, 1028, 1029, 1030, 1035, 1041, 1045,
1046, 1047, 1050, 1053, 1055, 1056, 1062,
1063

ROW • 11, 90, 92, 100, 122, 223, 224, 280, 281, 389,
497, 498, 507, 527, 547, 641, 643, 645, 646,
647, 648, 649, 677, 678, 682, 683, 684, 689,
872, 1006, 1013, 1039, 1062

row-level trigger • 90, 91, 499
ROWS • 43, 100, 404, 407, 410, 427, 440, 690
<row subquery> • 46, 223, 224, 225, 283, 681, 687,

985
row type • 8, 11, 12, 35, 38, 40, 42, 45, 126, 128,

129, 130, 131, 138, 144, 156, 224, 227, 229,
230, 234, 256, 259, 260, 263, 275, 288, 294,
297, 310, 311, 314, 319, 323, 326, 328, 331,
334, 341, 393, 411, 413, 415, 418, 442, 461,
518, 556, 659, 662, 678, 684, 882, 883, 994,
1005, 1007

<row type> • 121, 122, 126, 128, 129, 130, 131, 413,
1005

<row type body> • 122
<row value constructor> • 46, 47, 52, 223, 224, 225,

226, 228, 314, 602, 603, 681, 687, 932, 934,
985, 986, 1028

1102 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<row value constructor element> • 52, 133, 216, 223,
224, 985

<row value constructor element list> • 223, 224, 228,
986, 1028

<row value expression 1> • 316
<row value expression 2> • 316, 317
<row value expression 3> • 318
<row value expression 4> • 318
<row value expression> • 52, 61, 142, 197, 198, 216,

223, 226, 227, 235, 287, 294, 295, 296, 297,
309, 310, 311, 314, 315, 316, 318, 319, 574,
605, 606, 678, 679, 680, 681, 684, 685, 687,
689, 899, 903, 985, 989, 991, 994, 1005, 1006,
1007, 1055

<row value expression list> • 227, 228, 986
<row value special case> • 226, 1006
ROW_COUNT • 99, 739, 741, 744, 745, 1031
rules of deduction • 51, 53

— S —
SAVEPOINT • 100, 622, 721, 722, 725, 743, 744,

1039
<savepoint clause> • 70, 725, 726, 1010
savepoint exception • 721, 722, 726, 955
<savepoint name> • 82, 114, 119, 721, 722, 726,

1010
<savepoint specifier> • 83, 721, 722, 725, 726, 1030
<savepoint statement> • 75, 82, 83, 634, 640, 721,

744, 1010
<scalar subquery> • 152, 197, 198, 199, 283, 1055
Scale • 624, 626
SCALE • 99, 760, 768, 776, 777, 779, 782, 783, 786,

787, 799, 819, 833, 872
<scale> • 122, 124, 125, 626, 641, 1020

schema • 8, 13, 30, 40, 44, 45, 59, 60, 61, 62, 63, 64,
65, 67, 68, 73, 74, 76, 77, 79, 80, 82, 83, 84,
85, 87, 90, 113, 114, 115, 116, 117, 118, 119,
126, 130, 135, 142, 146, 147, 149, 153, 169,
172, 183, 184, 200, 235, 236, 320, 353, 354,
355, 356, 357, 358, 359, 362, 364, 365, 366,
368, 379, 380, 381, 382, 384, 385, 387, 388,
399, 400, 401, 402, 403, 405, 406, 410, 413,
414, 415, 421, 422, 428, 441, 442, 443, 444,
445, 446, 447, 448, 450, 453, 455, 456, 459,
460, 462, 463, 465, 467, 469, 471, 472, 474,
479, 481, 482, 483, 485, 487, 489, 490, 491,
493, 494, 495, 498, 499, 501, 504, 506, 507,
512, 513, 517, 520, 521, 525, 526, 531, 535,
537, 538, 541, 543, 544, 545, 546, 548, 549,
556, 557, 559, 560, 561, 562, 563, 564, 565,
566, 567, 568, 569, 570, 572, 573, 574, 576,
577, 579, 586, 588, 600, 605, 607, 609, 610,
611, 612, 633, 634, 635, 638, 639, 640, 667,
670, 674, 679, 686, 690, 691, 723, 724, 725,
726, 743, 744, 746, 747, 748, 749, 751, 752,
771, 800, 847, 848, 851, 852, 854, 855, 857,
858, 859, 860, 863, 865, 872, 875, 878, 880,
885, 887, 889, 890, 892, 895, 899, 900, 902,
904, 907, 908, 909, 910, 921, 923, 925, 926,
927, 928, 930, 931, 933, 935, 937, 939, 944,
945, 946, 947, 948, 954, 956, 957, 966, 968,
969, 970, 974, 975, 977, 981, 982, 984, 987,
988, 991, 992, 998, 1011, 1018, 1019, 1022,
1023, 1024, 1027, 1028, 1036, 1050, 1051,
1054, 1055, 1057, 1058

SCHEMA • 13, 67, 68, 98, 99, 100, 116, 117, 118,
119, 353, 356, 357, 379, 380, 399, 402, 483,
487, 611, 622, 624, 739, 740, 741, 742, 743,
744, 746, 747, 748, 749, 751, 752, 753, 754,
755, 756, 757, 758, 760, 761, 762, 763, 764,
765, 766, 768, 769, 770, 771, 772, 773, 774,
775, 776, 777, 778, 779, 780, 782, 783, 784,
786, 787, 788, 789, 790, 791, 792, 793, 794,
795, 796, 797, 799, 800, 801, 802, 803, 804,
805, 806, 807, 808, 809, 810, 811, 812, 813,
814, 815, 816, 817, 818, 819, 821, 822, 823,
833, 834, 844, 847, 848, 849, 850, 851, 852,
853, 854, 855, 856, 857, 858, 859, 860, 861,
862, 863, 865, 872, 873, 874, 875, 877, 878,
880, 881, 882, 883, 884, 885, 886, 887, 889,
890, 892, 893, 895, 896, 898, 899, 900, 901,
902, 903, 904, 907, 908, 909, 910, 911, 913,
916, 918, 919, 921, 922, 923, 924, 925, 926,
927, 928, 929, 930, 931, 932, 933, 934, 935,
937, 939, 940, 943, 944, 945, 946, 947, 948,
968, 969, 970, 971, 972, 973, 974, 975, 976,
977, 978, 983, 984, 988, 993, 996, 997, 999,
1000, 1002, 1003, 1006, 1008, 1009, 1012,
1013, 1026, 1050, 1055

schema and data statement mixing not supported •
635, 954

<schema authorization identifier> • 79, 399, 400, 401
<schema character set or path> • 399

Index 1103

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<schema character set specification> • 130, 399, 400,
401, 413, 609, 981, 982, 1023, 1036

<schema definition> • 59, 68, 73, 79, 115, 116, 117,
153, 183, 235, 236, 356, 357, 379, 384, 385,
399, 400, 401, 405, 413, 415, 428, 459, 463,
471, 481, 485, 489, 493, 498, 504, 545, 556,
557, 588, 609, 633, 744, 847, 910, 945, 1023,
1036, 1050, 1051, 1055

<schema element> • 183, 235, 379, 384, 399, 415,
428, 588, 1055

<schema function> • 541
schema-level routine • 61, 543, 556, 557, 559, 560,

562, 565, 634, 908
<schema name> • 44, 45, 59, 60, 65, 67, 68, 113,

114, 115, 116, 117, 118, 119, 135, 147, 149,
200, 353, 354, 356, 357, 358, 359, 379, 380,
381, 385, 387, 388, 399, 400, 401, 402, 403,
405, 406, 410, 413, 422, 442, 456, 459, 462,
463, 469, 471, 472, 474, 479, 481, 483, 485,
487, 489, 490, 491, 493, 495, 498, 499, 501,
504, 506, 507, 512, 513, 525, 526, 531, 535,
538, 544, 545, 546, 556, 562, 563, 565, 566,
569, 570, 572, 573, 574, 611, 612, 690, 691,
746, 747, 748, 749, 851, 968, 1019, 1023,
1027

<schema name clause> • 117, 399, 400, 401, 968,
1019

<schema name list> • 135, 353, 400, 560, 612, 1023,
1024

<schema path specification> • 59, 399, 400, 401,
910, 998, 1023

<schema procedure> • 541
<schema qualified name> • 45, 59, 113, 114, 116,

117, 366
<schema qualified routine name> • 8, 61, 114, 118,

381, 382, 521, 541, 543, 545, 548, 549, 556,
557, 561, 1011

<schema qualified type name> • 114, 116
schema routine • 74, 543, 744
<schema routine> • 74, 399, 541, 543, 744
SCHEMATA • 758, 760, 762, 764, 766, 768, 769,

770, 772, 774, 775, 780, 788, 795, 797, 799,
800, 807, 813, 814, 815, 816, 821, 822, 823,
833, 852, 855, 857, 858, 860, 865, 872, 878,
880, 889, 892, 895, 899, 903, 907, 910, 921,
926, 929, 934, 937, 943, 946, 947, 977

SCHEMA_LEVEL_ROUTINE • 799, 833, 907, 908,
909

SCHEMA_NAME • 99, 622, 740, 741, 746, 747, 758,
760, 762, 764, 766, 768, 769, 770, 772, 774,
775, 780, 788, 795, 797, 799, 800, 807, 813,
814, 815, 816, 821, 822, 823, 833, 910

SCHEMA_OWNER • 758, 760, 761, 762, 763, 764,
766, 768, 769, 770, 772, 773, 774, 775, 776,
780, 782, 783, 786, 788, 795, 797, 799, 800,
807, 810, 811, 812, 813, 814, 815, 816, 819,
821, 822, 823, 833, 910

scope • 1, 35, 41, 44, 85, 91, 117, 118, 119, 123, 126,
128, 129, 130, 138, 139, 140, 141, 145, 146,
152, 153, 156, 183, 185, 233, 234, 235, 259,
262, 266, 274, 275, 334, 404, 406, 408, 409,
411, 412, 413, 414, 416, 442, 445, 448, 449,
450, 456, 457, 459, 463, 464, 465, 466, 469,
470, 498, 517, 520, 548, 583, 584, 585, 601,
602, 603, 604, 606, 652, 667, 670, 679, 685,
854, 974, 997, 998, 1054

Scope • 1, 117
SCOPE • 100, 123, 146, 153, 334, 409, 449, 464,

760, 768, 776, 777, 779, 782, 783, 786, 787,
799, 833, 872, 873

scope clause • 41, 123, 126, 128, 129, 130, 183, 233,
234, 262, 404, 406, 408, 409, 411, 413, 445,
448, 449, 450, 459, 463, 517, 854, 974, 997,
998

<scope clause> • 41, 123, 126, 128, 129, 130, 183,
404, 406, 408, 409, 411, 413, 448, 459, 463,
517, 854, 997

scoped table • 153, 465, 466, 583, 584, 585, 601,
602, 603, 604, 606

SCOPE_CATALOG • 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 833, 872, 873

SCOPE_NAME • 760, 768, 776, 777, 779, 782, 783,
786, 787, 799, 833, 872, 873

SCOPE_SCHEMA • 760, 768, 776, 777, 779, 782,
783, 786, 787, 799, 833, 872, 873

SCROLL • 100, 651, 652, 659
scrollability • 651, 652, 655, 980, 991
SEARCH • 100, 279, 624, 1039
<search clause> • 279, 280, 281
search condition • 24, 40, 49, 50, 52, 53, 54, 55, 56,

84, 141, 142, 179, 180, 235, 239, 241, 244,
254, 256, 257, 322, 389, 415, 423, 424, 440,
441, 444, 449, 450, 451, 456, 469, 471, 472,
477, 479, 483, 487, 491, 493, 494, 495, 523,
524, 537, 538, 562, 563, 565, 569, 570, 574,
575, 583, 598, 601, 602, 603, 604, 605, 606,
670, 671, 672, 685, 686, 687, 689, 744, 745,
814, 857, 858, 859, 899, 903, 932, 933, 934,
935, 937, 957, 981, 986, 990, 991, 1045, 1062

<search condition> • 24, 40, 49, 50, 52, 53, 54, 55,
56, 84, 141, 142, 178, 179, 180, 235, 238, 239,
241, 244, 254, 256, 257, 322, 389, 415, 423,
424, 440, 441, 444, 449, 450, 451, 456, 469,
471, 472, 477, 479, 483, 487, 491, 493, 494,
495, 497, 523, 524, 537, 538, 562, 563, 565,
569, 570, 574, 575, 583, 598, 601, 602, 603,
604, 605, 606, 670, 671, 672, 684, 685, 686,
687, 689, 744, 745, 857, 858, 859, 899, 903,
932, 933, 934, 935, 937, 981, 986, 990, 991

search condition too long for information schema •
441, 494, 957

<searched case> • 178, 179
<searched when clause> • 178, 179
<search or cycle clause> • 265, 269, 279
SECOND • 25, 26, 28, 100, 110, 127, 128, 160, 334,

347, 348, 349, 844, 872, 1021

1104 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

secondary effects • 46, 47
<seconds fraction> • 107, 110, 111, 112, 349, 984
<seconds integer value> • 107, 110, 349
<seconds value> • 106, 107, 110
SECTION • 100
SECURITY • 99, 542, 549, 561, 799, 833, 907, 909
SELECT • 46, 47, 54, 56, 67, 80, 100, 142, 152, 153,

154, 233, 236, 239, 240, 241, 242, 243, 246,
247, 248, 252, 253, 254, 258, 269, 271, 280,
281, 282, 374, 375, 377, 408, 410, 411, 414,
423, 424, 425, 428, 444, 451, 452, 465, 466,
467, 472, 583, 584, 585, 588, 589, 595, 596,
597, 598, 600, 601, 602, 603, 604, 605, 606,
653, 665, 670, 686, 691, 699, 703, 708, 744,
745, 751, 753, 756, 757, 758, 760, 761, 762,
763, 764, 765, 766, 768, 769, 770, 771, 772,
773, 774, 775, 776, 777, 778, 779, 780, 782,
783, 786, 787, 788, 789, 790, 791, 792, 793,
794, 795, 796, 797, 799, 800, 801, 802, 803,
804, 805, 806, 807, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 819, 821, 822,
823, 833, 849, 850, 851, 853, 855, 857, 858,
859, 860, 862, 863, 865, 872, 874, 877, 880,
881, 882, 884, 886, 889, 892, 893, 895, 896,
898, 899, 901, 903, 907, 921, 922, 924, 925,
926, 929, 931, 932, 934, 937, 939, 940, 943,
945, 946, 947, 948, 1010, 1044, 1046, 1047,
1053, 1062

<select list> • 16, 46, 54, 56, 57, 141, 155, 234, 235,
239, 240, 242, 244, 246, 258, 260, 261, 262,
268, 270, 271, 279, 284, 454, 463, 602, 603,
605, 606, 653, 654, 665, 699, 701, 707, 903,
934, 1014, 1045, 1048, 1053

<select statement: single row> • 39, 75, 76, 117, 141,
234, 235, 602, 603, 605, 606, 634, 638, 665,
744, 903, 934, 1030

<select sublist> • 166, 246, 253, 258, 259, 260, 463,
699

<select target list> • 665, 666, 1030
SELF • 31, 99, 503, 505, 506, 507, 509, 510, 511,

514, 515, 525, 527, 528, 531, 532, 768, 810,
833, 865, 866, 926, 927, 995

<self-referencing column name> • 404, 409, 464
<self-referencing column specification> • 404, 407,

409, 411, 459, 997
SELF_REFERENCING_COLUMN_NAME • 810, 926,

927
<semicolon> • 18, 93, 94, 497, 616, 1035
sensitive • 72, 103, 652, 655, 658, 668, 671, 675,

680, 686, 991, 1009, 1018, 1024, 1025, 1028,
1059

SENSITIVE • 72, 99, 651, 652, 655, 658, 1009, 1039
sensitivity • 72, 651, 652, 658, 668, 671, 675, 680,

686, 952
<separator> • 96, 97, 98, 101, 102, 105, 108, 109

sequence • 5, 6, 13, 14, 16, 17, 18, 19, 20, 21, 26,
32, 33, 35, 38, 46, 61, 63, 78, 82, 84, 87, 91,
101, 102, 108, 110, 112, 118, 123, 131, 133,
140, 141, 143, 156, 165, 166, 167, 176, 182,
198, 205, 224, 230, 234, 240, 246, 255, 258,
259, 260, 263, 266, 279, 280, 288, 292, 299,
300, 301, 302, 305, 306, 308, 314, 333, 334,
372, 380, 384, 403, 414, 416, 460, 485, 486,
487, 518, 624, 654, 674, 951, 952, 971, 1017,
1023

SEQUENCE • 100, 620, 1039
<sequence column> • 279, 280
serializable • 83, 84, 85
SERIALIZABLE • 83, 84, 85, 86, 99, 638, 715, 716,

718, 735, 967, 1050, 1057
serialization failure • 84, 956
SERVER_NAME • 99, 740, 741, 748
SESSION • 78, 100, 103, 132, 133, 134, 135, 418,

419, 420, 421, 440, 493, 635, 657, 735, 736,
744, 972, 1020, 1039

<session characteristic> • 88, 735
<session characteristic list> • 88, 735
SESSION_USER • 78, 100, 132, 133, 134, 135, 418,

419, 420, 421, 440, 493, 635, 657, 972, 1020
SET • 36, 39, 85, 86, 100, 121, 123, 129, 279, 374,

378, 379, 399, 403, 416, 426, 430, 431, 432,
434, 435, 437, 446, 475, 481, 483, 484, 637,
677, 683, 684, 717, 718, 719, 723, 730, 735,
736, 737, 738, 754, 755, 895, 939, 981, 982,
1009, 1013, 1019, 1036, 1050, 1057, 1062

<set clause> • 142, 235, 602, 603, 605, 606, 652,
677, 678, 679, 680, 681, 683, 684, 685, 687,
688, 689, 899, 903, 932, 934, 991, 996

<set clause list> • 677, 678, 679, 682, 684, 685, 689,
991

<set column default clause> • 445, 446, 974
<set connection statement> • 75, 86, 87, 92, 634,

637, 730, 731, 744, 990
<set constraints mode statement> • 48, 75, 386, 634,

637, 719, 720, 744, 989
<set domain default clause> • 474, 475, 988
<set function specification> • 10, 56, 61, 155, 156,

158, 197, 198, 199, 239, 244, 246, 256, 260,
261, 263, 264, 268, 440, 454, 524, 538, 562,
565, 653, 654, 678, 684, 980, 981, 1010, 1014,
1053

<set function type> • 61, 155, 156, 158, 1003
<set local time zone statement> • 76, 88, 634, 738,

744, 979
set of involved grantees • 590, 593
set of involved privilege descriptors • 589, 593
set of overriding methods • 63, 360, 563
set of subject types • 116
set of transitions • 91, 430, 431, 432, 433, 434, 435,

436, 437, 438, 439, 694, 699, 704
set operator • 269, 270, 271, 273, 276, 277
<set quantifier> • 16, 155, 258, 259, 260, 263, 264,

653, 665, 991, 1044, 1047
<set role statement> • 76, 78, 634, 640, 737, 744,

1012

Index 1105

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

SETS • 56, 100, 245, 246, 247, 248, 252, 542, 545,
622, 623, 761, 799, 833, 855, 860, 907, 909,
929, 939, 975, 1039

<set session characteristics statement> • 76, 83, 88,
634, 637, 735, 744, 967, 990

<set session user identifier statement> • 76, 78, 634,
736, 744, 972

<set time zone value> • 738
<set transaction statement> • 70, 75, 83, 634, 637,

638, 716, 717, 744

shall • 6, 19, 25, 46, 48, 49, 50, 52, 69, 70, 84, 86,
95, 101, 102, 103, 104, 108, 109, 110, 112,
115, 116, 117, 118, 119, 120, 123, 124, 125,
126, 127, 129, 130, 131, 132, 133, 135, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 150, 151, 152, 153, 154, 155, 156,
158, 160, 161, 163, 165, 166, 167, 168, 169,
170, 174, 176, 177, 179, 180, 181, 182, 183,
184, 188, 190, 196, 198, 199, 200, 201, 202,
205, 206, 208, 209, 210, 211, 212, 213, 215,
216, 218, 219, 220, 221, 223, 224, 225, 226,
227, 228, 230, 233, 234, 235, 236, 237, 238,
239, 243, 244, 246, 255, 256, 259, 260, 261,
264, 266, 267, 268, 269, 270, 271, 273, 274,
277, 278, 280, 281, 283, 284, 285, 286, 287,
288, 294, 295, 297, 298, 303, 305, 306, 308,
311, 313, 314, 315, 316, 317, 318, 319, 320,
321, 323, 328, 333, 334, 335, 338, 347, 348,
350, 353, 354, 355, 356, 357, 358, 359, 373,
375, 377, 378, 379, 380, 381, 382, 383, 384,
385, 386, 393, 400, 401, 402, 403, 405, 406,
407, 408, 409, 411, 412, 413, 415, 416, 417,
418, 419, 421, 422, 423, 424, 425, 427, 428,
439, 440, 441, 442, 443, 444, 445, 446, 447,
448, 449, 450, 451, 452, 453, 454, 455, 456,
458, 459, 460, 461, 462, 463, 464, 468, 469,
470, 471, 472, 473, 474, 475, 476, 477, 478,
479, 480, 481, 482, 483, 484, 485, 486, 487,
488, 489, 490, 491, 492, 493, 494, 495, 496,
498, 499, 500, 501, 504, 505, 506, 507, 508,
509, 510, 511, 512, 515, 516, 517, 518, 519,
520, 521, 523, 524, 525, 526, 527, 528, 531,
532, 533, 535, 536, 537, 538, 540, 543, 544,
545, 546, 547, 548, 549, 550, 551, 552, 553,
554, 555, 556, 557, 561, 562, 563, 564, 565,
566, 567, 568, 569, 570, 571, 572, 573, 574,
575, 576, 577, 578, 579, 580, 581, 588, 589,
590, 591, 592, 593, 594, 595, 607, 610, 611,
612, 613, 614, 615, 616, 617, 619, 624, 625,
626, 627, 628, 634, 639, 640, 652, 653, 654,
655, 656, 657, 659, 662, 665, 667, 668, 670,
671, 672, 673, 674, 675, 676, 677, 678, 679,
680, 682, 683, 684, 685, 686, 689, 690, 691,
692, 693, 711, 712, 715, 716, 717, 718, 719,
720, 721, 722, 724, 725, 726, 729, 731, 733,
735, 736, 737, 738, 740, 745, 749, 753, 754,
755, 756, 757, 758, 760, 761, 763, 764, 765,
766, 768, 769, 770, 771, 772, 773, 774, 775,
776, 777, 778, 779, 780, 782, 784, 786, 787,
788, 789, 790, 791, 792, 793, 794, 795, 796,
797, 799, 800, 802, 803, 804, 806, 808, 809,
810, 811, 812, 813, 814, 815, 816, 817, 818,
821, 822, 833, 834, 847, 912, 918, 919, 951,
958, 961, 962, 963, 965, 966, 967, 968, 969,
970, 971, 972, 973, 974, 975, 976, 977, 978,
979, 980, 981, 982, 983, 984, 985, 986, 987,
988, 989, 990, 991, 992, 993, 994, 995, 996,
997, 998, 999, 1000, 1001, 1002, 1003, 1004,
1005, 1006, 1007, 1008, 1009, 1010, 1011,
1012, 1013, 1014, 1015, 1016, 1017, 1020,
1021, 1022, 1024, 1026, 1029

1106 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<sign> • 106, 107, 111, 188, 190, 202, 212, 213,
1042

signature • 8, 32, 64, 519, 783, 784, 888, 889, 976,
993, 1003

<signed integer> • 106, 654
<signed numeric literal> • 105, 106, 111, 185, 186,

419
significant • 22, 23, 25, 28, 29, 37, 72, 185, 186, 187,

189, 195, 203, 210, 213, 214, 215, 293, 334,
347, 348, 349, 419, 629, 658, 668, 671, 675,
680, 686, 1017, 1018, 1024, 1025, 1036

SIMILAR • 15, 99, 170, 285, 304, 305, 306, 308,
1007, 1039, 1061

<similar pattern> • 304, 305, 306, 307
<similar predicate> • 15, 285, 304, 305, 308, 1007
SIMPLE • 3, 46, 47, 54, 56, 67, 99, 108, 133, 139,

145, 146, 147, 148, 149, 152, 153, 161, 162,
167, 168, 170, 172, 175, 179, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 200, 213, 214, 215, 216, 233, 238, 239,
240, 241, 242, 243, 246, 247, 248, 249, 251,
252, 253, 254, 260, 269, 271, 275, 277, 280,
281, 282, 288, 289, 290, 291, 292, 293, 296,
298, 299, 300, 301, 302, 305, 306, 308, 310,
314, 315, 317, 320, 326, 331, 334, 337, 338,
340, 341, 353, 368, 370, 371, 372, 379, 402,
403, 405, 411, 413, 414, 415, 423, 424, 425,
426, 428, 429, 433, 434, 449, 450, 451, 452,
455, 457, 460, 465, 467, 470, 472, 480, 481,
484, 488, 491, 495, 504, 505, 509, 510, 512,
513, 519, 527, 528, 538, 539, 547, 566, 570,
573, 575, 580, 584, 585, 586, 589, 594, 608,
609, 610, 624, 625, 626, 627, 628, 629, 630,
631, 637, 653, 673, 674, 678, 684, 685, 691,
699, 703, 708, 712, 723, 726, 727, 728, 736,
737, 745

<simple case> • 178, 179, 1054
<simple comment> • 97, 102, 1050
<simple comment introducer> • 97, 98, 102
<simple Latin letter> • 93, 113, 307, 308
<simple Latin lower case letter> • 93, 95, 103, 307
<simple Latin upper case letter> • 93, 95, 103, 307,

951, 1026
<simple table> • 57, 265, 269, 270, 273, 276, 277,

653, 986, 1029
simple table query • 653
<simple target specification> • 92, 132, 133, 135,

342, 343, 549, 721, 722, 725, 739, 740, 742,
745, 749, 1020, 1030, 1036

<simple value specification> • 86, 114, 115, 132, 135,
342, 343, 549, 659, 660, 677, 679, 681, 682,
685, 688, 715, 728, 740, 1000

<simple when clause> • 178

simply contain • 16, 40, 55, 56, 57, 66, 115, 126, 127,
129, 130, 133, 141, 142, 155, 161, 163, 165,
166, 172, 173, 174, 180, 201, 203, 206, 209,
210, 211, 212, 213, 216, 224, 231, 234, 235,
236, 246, 255, 258, 260, 262, 269, 273, 283,
284, 294, 297, 303, 342, 357, 358, 389, 406,
409, 413, 419, 461, 462, 471, 494, 507, 509,
516, 522, 525, 527, 545, 546, 547, 550, 551,
552, 554, 558, 602, 603, 605, 606, 610, 616,
635, 654, 657, 689, 696, 701, 706, 707, 858,
947, 966, 979, 980, 985, 991, 993, 994, 997,
1000, 1004, 1005, 1014, 1015

simply contained in • 55, 56, 57, 115, 126, 127, 129,
130, 141, 142, 155, 161, 163, 166, 174, 180,
201, 203, 206, 210, 211, 213, 224, 234, 235,
236, 246, 255, 258, 260, 269, 273, 283, 284,
294, 297, 303, 342, 357, 358, 389, 406, 409,
461, 494, 525, 527, 550, 552, 554, 602, 603,
605, 606, 610, 616, 657, 689, 696, 701, 706,
858, 947, 966, 979, 980, 985, 991, 993, 994,
997, 1000, 1004, 1005, 1014

simply containing • 16
simply underlying table • 44, 262, 273, 653, 667, 677
<single datetime field> • 126, 347, 348, 349, 1036
<single group specification> • 508, 526, 543, 546,

612
site • 6, 8, 23, 24, 34, 35, 36, 69, 126, 136, 421, 438,

678, 679, 684, 685
SIZE • 100, 715, 1057
SIZING_ID • 805, 806, 833, 918, 919
SIZING_NAME • 805, 806, 833, 918, 919
SMALLINT • 11, 12, 22, 37, 100, 122, 125, 338, 339,

344, 620, 624, 626, 641, 642, 644, 646, 647,
648, 649, 844, 872, 1019, 1042

<solidus> • 18, 93, 94, 102, 202, 203, 212
SOME • 100, 155, 156, 157, 158, 310, 1003
<some> • 310
<sort key> • 651, 653, 654, 656, 996, 1048
<sort specification> • 651, 652, 653, 654, 655
<sort specification list> • 141, 279, 280, 651, 653
sort table • 654
source • 6, 30, 37, 38, 39, 69, 85, 155, 159, 160, 161,

164, 165, 167, 168, 171, 173, 174, 183, 246,
256, 263, 274, 404, 481, 482, 489, 490, 503,
504, 512, 539, 566, 567, 568, 569, 598, 605,
619, 673, 674, 676, 677, 678, 679, 680, 683,
684, 685, 687, 699, 700, 702, 916, 930, 944,
968, 979, 981, 987, 990, 996

SOURCE • 99, 503, 676, 701, 702, 703, 707, 771,
803, 812, 819, 833, 859, 916, 917, 929, 930,
943, 1026

<source character set specification> • 489, 598
source data type • 39, 183, 539, 567, 568, 569
<source data type> • 567, 569
source type • 30, 246, 512
Source type • 183
SOURCE_CHARACTER_SET_CATALOG • 812, 833,

929, 930
SOURCE_CHARACTER_SET_NAME • 812, 833,

929, 930

Index 1107

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

SOURCE_CHARACTER_SET_SCHEMA • 812, 833,
929, 930

SPACE • 14, 38, 100, 380, 485, 860, 861, 1039
<space> • 13, 18, 37, 38, 86, 93, 94, 95, 101, 102,

107, 135, 171, 185, 186, 187, 188, 189, 206,
292, 301, 324, 329, 330, 420, 629, 631, 748

SPECIFIC • 100, 381, 403, 452, 455, 457, 470, 484,
488, 491, 495, 538, 542, 566, 570, 573, 575,
609, 844, 1039

specific name • 30, 34, 39, 63, 66, 67, 118, 361, 365,
366, 370, 371, 381, 395, 397, 403, 449, 452,
455, 457, 470, 484, 488, 491, 495, 506, 507,
514, 515, 523, 525, 526, 529, 531, 533, 535,
538, 544, 546, 557, 558, 559, 562, 565, 568,
569, 570, 572, 575, 577, 578, 579, 580, 609,
748, 749, 887, 889, 890, 892, 899, 902, 904,
907, 909, 923, 944

<specific name> • 30, 63, 66, 114, 118, 381, 403,
449, 452, 455, 457, 470, 484, 488, 491, 495,
503, 506, 507, 514, 515, 525, 526, 529, 531,
533, 538, 542, 544, 546, 557, 559, 562, 565,
571, 572, 580, 609, 748, 749

specific name text item • 365, 366
<specific routine designator> • 31, 374, 375, 377,

381, 382, 383, 489, 490, 535, 562, 565, 566,
567, 571, 572, 573, 576, 590, 610, 994, 995

SPECIFICTYPE • 100, 165, 573, 1039
<specific type method> • 164, 165, 168, 169, 172,

174, 1002
SPECIFIC_CATALOG • 99, 771, 782, 783, 786, 790,

792, 795, 796, 797, 799, 808, 811, 833, 886,
887, 889, 890, 892, 899, 901, 902, 903, 904,
907, 909, 922, 923, 928

SPECIFIC_NAME • 99, 740, 741, 748, 749, 771, 782,
783, 786, 790, 792, 795, 796, 797, 799, 808,
811, 833, 886, 887, 889, 890, 892, 899, 901,
902, 903, 904, 907, 909, 922, 923, 928

SPECIFIC_SCHEMA • 67, 99, 771, 782, 783, 786,
790, 792, 795, 796, 797, 799, 808, 811, 833,
886, 887, 889, 890, 892, 899, 901, 902, 903,
904, 907, 909, 922, 923, 928

specified by • 6, 9, 14, 19, 36, 38, 39, 46, 51, 56, 57,
60, 62, 68, 69, 70, 71, 79, 109, 110, 125, 127,
128, 130, 134, 135, 171, 214, 234, 254, 258,
266, 269, 305, 320, 342, 351, 380, 413, 420,
421, 442, 445, 446, 460, 464, 472, 474, 475,
490, 514, 517, 520, 543, 547, 584, 586, 613,
616, 617, 634, 637, 638, 652, 653, 655, 657,
659, 667, 674, 679, 680, 681, 687, 688, 690,
711, 716, 748, 749, 944, 1019, 1020, 1036,
1048

specified type • 320, 321

specify • 1, 7, 13, 20, 40, 41, 42, 47, 48, 63, 64, 65,
68, 69, 70, 71, 76, 79, 86, 90, 91, 110, 111,
112, 116, 117, 118, 119, 120, 124, 126, 128,
129, 130, 131, 135, 142, 160, 163, 174, 179,
196, 199, 203, 211, 218, 233, 236, 237, 243,
255, 261, 264, 266, 277, 278, 295, 319, 334,
347, 349, 373, 375, 377, 378, 381, 401, 406,
408, 409, 411, 413, 417, 418, 421, 425, 427,
439, 443, 451, 452, 463, 468, 471, 482, 500,
506, 507, 508, 510, 515, 516, 519, 525, 526,
527, 528, 531, 532, 545, 547, 555, 561, 563,
564, 588, 589, 590, 591, 592, 593, 595, 596,
598, 610, 611, 615, 625, 626, 652, 653, 655,
656, 659, 662, 667, 676, 678, 683, 716, 717,
718, 724, 726, 735, 749, 751, 755, 921, 965,
966, 967, 968, 969, 970, 971, 972, 974, 975,
978, 979, 980, 981, 982, 984, 985, 987, 989,
990, 991, 992, 994, 995, 996, 997, 998, 999,
1000, 1001, 1002, 1004, 1005, 1006, 1007,
1008, 1009, 1010, 1011, 1013, 1014, 1015,
1016, 1023, 1026, 1027, 1028, 1029, 1031,
1033, 1035, 1041, 1046, 1053, 1056, 1062

SQL • 8, 60, 63, 100, 261, 365, 368, 369, 370, 371,
505, 507, 508, 512, 513, 515, 516, 526, 527,
529, 542, 543, 545, 546, 549, 550, 555, 556,
558, 559, 560, 564, 573, 576, 611, 889, 890,
907, 908, 928, 963, 995

SQL-agent • 70, 83, 85, 87, 88, 89, 92, 613, 614,
617, 618, 619, 636, 637, 638, 717, 718, 719,
723, 725, 728, 730, 731, 732, 733, 1018, 1027,
1030, 1054

SQL argument • 8, 9, 63, 64, 145, 146, 147, 148,
149, 150, 171, 184, 268, 336, 342, 354, 355,
357, 358, 360, 361, 365, 366, 370, 371, 372,
373, 548, 1001, 1029, 1036

<SQL argument> • 147, 268, 342, 354, 355, 357,
358, 372, 373, 1001

<SQL argument list> • 64, 145, 146, 147, 149, 268,
336, 342, 354, 355, 357, 358, 548

SQL-client • 44, 45, 59, 60, 65, 70, 71, 73, 78, 79,
82, 86, 87, 92, 104, 109, 114, 115, 116, 117,
118, 130, 132, 134, 135, 141, 356, 357, 362,
368, 400, 408, 463, 472, 481, 482, 486, 490,
494, 498, 499, 512, 520, 556, 557, 560, 561,
604, 607, 611, 612, 613, 614, 615, 616, 617,
618, 619, 636, 638, 652, 657, 690, 691, 723,
725, 726, 727, 728, 731, 916, 952, 958, 962,
975, 984, 1018, 1019, 1020, 1022, 1023, 1025,
1027, 1028, 1035, 1054

SQL-client module • 44, 45, 59, 60, 65, 70, 71, 73,
78, 79, 82, 87, 92, 104, 109, 114, 115, 116,
117, 118, 130, 132, 134, 135, 141, 356, 357,
362, 368, 400, 408, 463, 472, 481, 482, 486,
490, 494, 498, 499, 512, 520, 556, 557, 560,
561, 604, 607, 611, 612, 613, 614, 615, 616,
617, 618, 619, 636, 638, 652, 657, 690, 691,
723, 725, 726, 727, 728, 731, 916, 962, 975,
984, 1018, 1019, 1020, 1022, 1023, 1025,
1027, 1028, 1035, 1054

1108 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

<SQL-client module definition> • 45, 60, 65, 78, 116,
132, 134, 356, 357, 362, 368, 512, 556, 557,
560, 561, 611, 612, 613, 614, 615, 616, 617,
618, 619, 636, 638, 916, 962, 984, 1022, 1023,
1054

<SQL-client module name> • 60, 92, 114, 118, 615,
619, 1028

SQL-client unable to establish SQL-connection • 728,
952

SQL-connection • 73, 75, 77, 86, 87, 119, 364, 367,
668, 671, 675, 680, 686, 718, 723, 727, 728,
730, 731, 732, 733, 952, 1025, 1030

<SQL connection statement> • 63, 92, 499, 549, 633,
634, 636, 637, 748

<SQL control statement> • 63, 77, 633, 634, 639
SQL-data • 1, 20, 46, 48, 50, 64, 66, 69, 72, 73, 75,

76, 77, 82, 83, 84, 85, 88, 89, 90, 91, 92, 104,
179, 274, 323, 328, 362, 363, 364, 367, 368,
440, 441, 493, 499, 503, 508, 515, 526, 527,
529, 534, 542, 544, 545, 549, 555, 556, 560,
562, 563, 564, 568, 572, 577, 635, 639, 661,
665, 666, 670, 685, 723, 724, 725, 726, 890,
908, 912, 953, 956, 975, 1018, 1022, 1028

<SQL-data access indication> • 503, 508, 526, 527,
542, 544, 545, 555, 556, 562, 563, 564

<SQL data change statement> • 499, 634, 635
<SQL data statement> • 633, 634, 635
SQL data type column • 367, 390, 391, 392, 555
<SQL diagnostics information> • 739
<SQL diagnostics statement> • 70, 92, 633, 634, 636,

639
SQL-environment • 34, 59, 78, 92, 376, 591, 615, 751
SQLEXCEPTION • 100, 1039
<SQL executable statement> • 633
SQL-implementation • 1, 20, 26, 41, 48, 51, 52, 53,

54, 55, 56, 63, 64, 69, 70, 73, 84, 85, 86, 87,
104, 133, 262, 369, 555, 619, 635, 658, 668,
671, 675, 680, 686, 717, 727, 730, 748, 751,
801, 802, 803, 804, 805, 847, 912, 913, 918,
951, 961, 962, 975, 1017, 1018, 1019, 1020,
1021, 1024, 1025, 1026, 1027, 1050, 1054,
1056

SQL indicator argument • 365, 366, 369, 370, 371,
391

SQL-invoked function • 6, 8, 9, 32, 33, 34, 39, 62, 64,
66, 67, 290, 355, 365, 369, 371, 372, 381, 382,
395, 397, 398, 490, 510, 511, 513, 516, 519,
528, 532, 535, 536, 543, 544, 545, 547, 548,
550, 555, 558, 559, 561, 572, 576, 577, 712,
907, 995, 1011, 1015, 1019, 1036, 1062, 1063

<SQL-invoked function> • 62, 519, 541, 543, 548,
561, 712, 995

SQL-invoked method • 30, 36, 62, 63, 64, 67, 118,
145, 147, 149, 354, 355, 360, 364, 367, 369,
370, 371, 381, 382, 511, 519, 528, 532, 535,
536, 543, 544, 548, 550, 551, 553, 554, 558,
559, 563, 572, 577, 887, 889, 890, 907

SQL-invoked procedure • 8, 62, 63, 64, 66, 72, 354,
365, 370, 381, 382, 543, 544, 548, 558, 563,
663, 711, 907, 909, 1023, 1056

<SQL-invoked procedure> • 62, 541, 543, 548, 1056
SQL-invoked regular function • 62, 64
SQL-invoked routine • 7, 8, 59, 61, 62, 63, 64, 65,

66, 67, 79, 80, 88, 89, 118, 140, 146, 171, 179,
227, 229, 260, 261, 274, 336, 353, 354, 355,
356, 357, 358, 359, 361, 362, 370, 372, 375,
381, 382, 402, 403, 440, 441, 449, 452, 455,
456, 457, 465, 466, 469, 470, 484, 488, 491,
493, 495, 499, 513, 521, 524, 537, 538, 539,
541, 543, 544, 545, 547, 548, 555, 556, 557,
558, 559, 560, 561, 562, 564, 565, 567, 568,
570, 572, 573, 575, 577, 583, 584, 585, 586,
596, 602, 609, 612, 634, 635, 659, 660, 661,
662, 665, 666, 670, 685, 711, 748, 749, 783,
785, 790, 795, 796, 797, 798, 867, 872, 887,
889, 890, 891, 892, 899, 901, 902, 903, 904,
905, 907, 908, 909, 928, 944, 963, 1015, 1022,
1023, 1036, 1056

<SQL-invoked routine> • 355, 513, 538, 541, 543,
544, 545, 547, 548, 555, 556, 557, 561, 573,
612, 633, 634, 909, 963, 1015

<SQL language character> • 18, 19, 20, 93, 102, 108,
124, 186, 187, 188, 189, 190, 400, 615, 1019,
1020, 1024, 1036

<SQL language identifier> • 113, 114, 115, 117
<SQL language identifier part> • 113, 115
<SQL language identifier start> • 113
SQL parameter • 7, 8, 9, 11, 30, 31, 32, 33, 39, 61,

62, 63, 64, 66, 67, 69, 85, 87, 118, 132, 134,
135, 138, 139, 140, 143, 259, 261, 328, 336,
342, 355, 358, 359, 360, 361, 365, 366, 370,
372, 381, 382, 396, 456, 469, 483, 487, 488,
493, 498, 507, 508, 509, 510, 511, 512, 513,
514, 515, 519, 521, 522, 525, 526, 527, 528,
529, 531, 532, 533, 535, 536, 543, 544, 545,
546, 547, 548, 549, 550, 551, 552, 553, 554,
555, 556, 557, 558, 559, 561, 563, 567, 572,
577, 579, 580, 606, 659, 660, 661, 662, 665,
666, 712, 749, 781, 785, 867, 887, 891, 892,
908, 995, 1022, 1023, 1036

<SQL parameter declaration> • 61, 63, 67, 483, 487,
488, 507, 508, 510, 511, 519, 526, 527, 528,
533, 541, 544, 545, 546, 547, 550, 552, 553,
554, 555, 559, 561, 995

<SQL parameter declaration list> • 30, 31, 32, 138,
139, 259, 382, 503, 507, 508, 514, 515, 525,
526, 531, 541, 542, 543, 545, 546, 547

SQL parameter name • 66, 118, 358, 372, 493, 507,
508, 511, 512, 513, 526, 527, 532, 544, 547,
548, 549, 659, 660, 661, 662, 665, 666, 749,
887, 892

<SQL parameter name> • 66, 114, 118, 358, 372,
493, 507, 508, 511, 512, 513, 526, 527, 532,
541, 544, 547, 548, 549, 659, 660, 661, 662,
665, 666, 749, 887, 892

SQL parameter reference • 139, 140, 143, 498
<SQL parameter reference> • 132, 139, 143, 498

Index 1109

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

SQL parameters • 8, 11, 62, 63, 64, 66, 132, 328,
355, 358, 359, 360, 510, 521, 528, 529, 532,
535, 536, 543, 547, 548, 549, 550, 551, 552,
557, 572, 662, 781, 785, 1036

SQL-path • 59, 60, 65, 66, 67, 68, 89, 116, 135, 147,
148, 149, 354, 356, 357, 362, 363, 400, 401,
557, 559, 560, 561, 612, 908, 1022

<SQL procedure statement> • 63, 65, 68, 70, 92,
141, 176, 342, 364, 367, 389, 429, 449, 497,
542, 549, 557, 586, 616, 617, 618, 633, 634,
635

SQL routine • 8, 60, 63, 64, 65, 66, 89, 261, 362,
363, 364, 365, 373, 402, 403, 449, 451, 452,
454, 455, 456, 457, 469, 470, 479, 483, 484,
487, 488, 491, 495, 523, 524, 537, 538, 545,
547, 549, 557, 558, 559, 561, 562, 563, 565,
569, 570, 574, 575, 605, 606, 712, 713, 748,
899, 903, 908, 956, 1001, 1036, 1060

<SQL routine body> • 364, 365, 449, 451, 452, 454,
455, 456, 457, 469, 470, 479, 483, 484, 487,
488, 491, 495, 523, 524, 537, 538, 542, 549,
558, 559, 562, 563, 565, 569, 570, 574, 575,
605, 606, 712, 713, 899, 903

SQL routine exception • 363, 364, 365, 748, 956
SQL-schema • 59, 61, 65, 68, 73, 76, 79, 82, 364,

368, 401, 406, 462, 465, 504, 517, 545, 610,
635, 751, 966, 1018

<SQL schema definition statement> • 633, 639, 640,
970, 982, 984, 988, 992, 1011

<SQL schema manipulation statement> • 633, 640,
975

<SQL schema statement> • 59, 63, 126, 142, 146,
169, 184, 200, 236, 355, 380, 384, 421, 444,
463, 499, 549, 557, 633, 635, 638, 639, 667,
670, 674, 679, 686, 751

SQL-server • 85, 86, 87, 92, 114, 118, 365, 717, 727,
728, 730, 731, 748, 908, 927, 952, 958, 1018,
1025, 1028

SQL-server module • 365
<SQL-server name> • 86, 114, 118, 727, 728, 748,

1018, 1025
SQL-server rejected establishment of SQL-

connection • 728, 952
SQL-session • 26, 44, 45, 63, 64, 65, 68, 69, 70, 71,

73, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88,
89, 92, 110, 112, 128, 134, 135, 176, 191, 210,
356, 357, 362, 363, 373, 376, 400, 557, 559,
560, 614, 618, 635, 636, 637, 638, 690, 691,
719, 727, 728, 730, 731, 732, 735, 736, 737,
738, 748, 778, 896, 1018, 1022, 1023, 1025,
1027, 1028, 1054

SQL-session module • 363
<SQL session statement> • 499, 633, 634, 640, 1012
SQL-session user identifier • 78, 362, 728, 736, 1018
<SQL special character> • 18, 93, 97

SQLSTATE • 63, 68, 69, 70, 99, 100, 368, 386, 551,
616, 617, 619, 620, 621, 622, 623, 624, 625,
627, 628, 641, 642, 644, 646, 647, 648, 649,
740, 741, 742, 745, 746, 747, 748, 749, 951,
952, 953, 958, 959, 1026, 1027, 1035, 1036,
1050

SQLSTATE host parameter • 68, 617, 627, 628
SQL-statement • 48, 59, 63, 64, 70, 72, 73, 76, 77,

78, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 135,
224, 261, 270, 271, 272, 364, 367, 368, 372,
386, 400, 429, 436, 438, 439, 457, 497, 512,
513, 614, 633, 637, 638, 668, 671, 675, 680,
686, 718, 727, 730, 742, 744, 745, 746, 751,
953, 956, 1020, 1026, 1028, 1031

<SQL statement name> • 368, 1054
<SQL terminal character> • 93
SQL-transaction • 48, 70, 71, 72, 73, 75, 76, 77, 82,

83, 84, 85, 86, 87, 119, 364, 367, 368, 635,
637, 638, 639, 655, 658, 668, 671, 675, 680,
686, 715, 716, 717, 718, 719, 721, 722, 723,
724, 725, 726, 727, 730, 732, 736, 737, 745,
954, 1018, 1024, 1025, 1028, 1030

<SQL transaction statement> • 63, 499, 549, 633,
634, 636, 640, 1009, 1010

SQL-update operation • 91, 92, 694, 704
SQLWARNING • 100, 1039
SQL_CHAR • 18, 19, 20, 379
SQL_DATA_ACCESS • 783, 799, 833, 889, 890, 907,

908
SQL_FEATURES • 801, 804, 911, 1055
SQL_IDENTIFIER • 20, 103, 115, 124, 133, 168, 379,

419, 753, 755, 852, 853, 855, 856, 857, 858,
859, 860, 861, 862, 865, 872, 874, 877, 878,
880, 881, 882, 884, 886, 889, 892, 893, 895,
896, 898, 899, 901, 903, 907, 910, 921, 922,
924, 926, 928, 929, 931, 932, 934, 937, 939,
940, 943, 945, 946, 947, 948, 970, 1020

SQL_IMPLEMENTATION_INFO • 802, 833, 913, 983,
1058

SQL_LANGUAGES • 803, 833, 914, 916, 977, 1055
SQL_LANGUAGE_BINDING_STYLE • 803, 833, 916,

917
SQL_LANGUAGE_CONFORMANCE • 803, 833, 916
SQL_LANGUAGE_IMPLEMENTATION • 803, 833,

916, 1026
SQL_LANGUAGE_INTEGRITY • 803, 833, 916
SQL_LANGUAGE_PROGRAMMING_LANGUAGE •

803, 833, 916, 917
SQL_LANGUAGE_SOURCE • 803, 833, 916, 917,

1026
SQL_LANGUAGE_YEAR • 803, 833, 916
SQL_PACKAGES • 804, 983, 1058
SQL_PATH • 799, 800, 833, 907, 908, 910
SQL_SIZING • 805, 806, 833, 834, 918, 919, 977,

983, 1055, 1058
SQL_SIZING_PROFILES • 806, 833, 919, 983, 1058
SQL_TEXT • 20, 25, 124, 301, 379, 551, 552, 553,

754, 855, 856, 861, 1019, 1026, 1036
<standard character set name> • 379, 380
standard-defined classes • 951

1110 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

START • 100, 640, 715, 716, 744, 844, 1009, 1039,
1062

<start field> • 126, 215, 334, 347, 348, 349, 1036
<start position> • 164, 165, 167, 168, 169, 172, 173
<start transaction statement> • 75, 76, 83, 634, 637,

640, 715, 716, 744, 1009
STATE • 8, 31, 34, 63, 68, 69, 70, 90, 99, 100, 287,

288, 291, 368, 386, 387, 388, 389, 497, 498,
499, 500, 551, 571, 573, 616, 617, 619, 620,
621, 622, 623, 624, 625, 627, 628, 641, 642,
644, 646, 647, 648, 649, 694, 695, 699, 700,
705, 740, 741, 742, 745, 746, 747, 748, 749,
816, 833, 937, 943, 944, 951, 952, 953, 958,
959, 1009, 1026, 1027, 1035, 1036, 1039,
1050

<state category> • 571, 572, 573
state changes • 91, 92, 429, 430, 431, 432, 433, 434,

435, 436, 437, 438, 694, 699, 704
STATE function • 8
STATEMENT • 90, 100, 497, 498, 499, 500, 621, 622,

623, 624, 816, 833, 937, 1009
statement completion unknown • 87, 956
statement execution context • 89
<statement information> • 739
<statement information item> • 739, 740, 742
<statement information item name> • 739, 740, 741,

749, 967, 1015
statement-level trigger • 90, 91, 499
statement too long for information schema • 499, 957
STATIC • 30, 31, 67, 100, 354, 356, 364, 367, 369,

381, 382, 503, 506, 509, 510, 512, 513, 514,
516, 525, 528, 529, 531, 532, 542, 543, 559,
573, 783, 833, 889, 907, 995, 1039

static method • 63, 149, 150, 198, 199, 354, 356,
357, 359, 506, 509, 510, 511, 523, 525, 528,
538, 563, 565, 601, 602, 603, 605, 889, 993

<static method invocation> • 63, 149, 150, 197, 198,
199, 354, 523, 538, 563, 565, 601, 602, 603,
605, 993

<static method selection> • 149, 356, 357, 359
static SQL argument list • 146, 148, 149, 184, 355,

357, 360, 361, 370, 371
static SQL-invoked method • 62, 149, 354, 382, 543,

548, 907
static SQL-invoked methods • 62
status parameter • 68, 69, 342, 617, 639, 951, 1030,

1035
<status parameter> • 342, 616, 617, 1035
Store assignment • 328
stratum • 267, 268, 272, 274
string data, length mismatch • 330, 953
string data, right truncation • 186, 187, 188, 189, 190,

191, 207, 324, 325, 329, 330, 749, 953, 957
<string length> • 164, 165, 167, 168, 169, 172, 173
<string position expression> • 159, 160, 161
strings • 6, 7, 9, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23,

38, 93, 109, 124, 170, 205, 288, 292, 300, 301,
302, 307, 308, 625, 626, 631

string types • 11, 12, 1019

<string value expression> • 159, 160, 161, 162, 163,
169, 173, 197, 198, 204, 206, 979

<string value function> • 164, 165, 169, 174, 204,
205, 1016

STRUCTURE • 100, 853, 943, 1039
structured type • 6, 7, 8, 12, 30, 31, 32, 33, 35, 40,

41, 42, 45, 46, 62, 80, 119, 126, 129, 138, 148,
150, 153, 158, 200, 201, 255, 259, 264, 278,
294, 295, 297, 311, 313, 315, 319, 373, 375,
377, 378, 383, 405, 406, 409, 410, 448, 454,
457, 461, 462, 467, 469, 504, 505, 506, 513,
514, 515, 516, 517, 519, 520, 521, 523, 537,
561, 566, 577, 588, 589, 590, 595, 596, 601,
610, 640, 641, 656, 676, 683, 760, 773, 782,
784, 792, 808, 833, 834, 867, 872, 923, 927,
943, 944, 961, 962, 971, 987, 989, 992, 993,
994, 995, 996, 1007, 1012, 1059

STYLE • 99, 261, 365, 366, 368, 369, 370, 371, 508,
516, 526, 542, 546, 550, 554, 558, 559, 564,
783, 799, 803, 833, 889, 890, 907, 908, 916,
917, 995

subarray • 37
SUBCLASS_ORIGIN • 99, 740, 742, 745, 958, 1026
subfield • 8, 294, 295, 297, 311, 315, 319, 415, 518,

556, 989, 994, 1005, 1007
subject parameter • 62, 63, 64, 360, 548
subject routine • 63, 64, 65, 67, 68, 146, 148, 149,

150, 176, 179, 184, 185, 227, 229, 260, 261,
274, 336, 342, 356, 357, 358, 359, 360, 361,
370, 371, 372, 440, 441, 465, 466, 493, 523,
538, 548, 557, 559, 560, 563, 565, 583, 584,
585, 601, 602, 603, 604, 605, 606, 665, 670,
685, 711, 1036

subject table • 90, 91, 92, 429, 430, 431, 432, 433,
434, 435, 436, 437, 438, 439, 452, 498, 499,
602, 667, 670, 674, 677, 684, 694, 695, 699,
700, 704

SUBLIST • 99, 1039
<subquery> • 10, 77, 117, 155, 156, 224, 235, 244,

256, 257, 258, 261, 264, 267, 283, 284, 440,
441, 460, 468, 635, 654, 672, 687, 986, 990,
991, 1050, 1053

subrow • 46, 47, 236, 428, 438, 457, 671, 686, 687,
694, 704

SUBSTRING • 14, 99, 164, 165, 167, 168, 188, 190,
621, 628, 630, 844, 1043, 1061

substring error • 169, 172, 173, 953
subtable • 43, 45, 46, 47, 49, 153, 236, 404, 405,

406, 407, 408, 410, 411, 429, 433, 456, 457,
461, 462, 463, 469, 470, 589, 595, 596, 668,
671, 682, 686, 687, 689, 694, 697, 704, 705,
707, 874, 875, 999

<subtable clause> • 45, 404, 405, 407, 408, 410, 411,
999

subtable family • 46, 406, 433, 461, 462

Index 1111

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

subtype • 6, 8, 9, 11, 30, 31, 32, 33, 34, 35, 36, 40,
45, 62, 147, 197, 198, 199, 201, 320, 321, 323,
328, 334, 335, 337, 355, 356, 357, 359, 360,
405, 462, 502, 504, 505, 506, 510, 511, 512,
521, 522, 523, 525, 528, 529, 531, 532, 535,
537, 549, 568, 577, 619, 620, 624, 625, 626,
876, 877, 944, 1001, 1017

<subtype clause> • 32, 337, 502, 504, 505, 506, 512
subtype family • 6, 33, 34, 320, 334, 335
<subtype operand> • 201
<subtype treatment> • 197, 198, 199, 201, 1001
<subview clause> • 459, 461, 462, 463, 467
SUB_FEATURE_ID • 801, 911, 912
SUB_FEATURE_NAME • 801, 911, 912
successful completion • 68, 69, 365, 390, 391, 639,

951, 952, 956, 1035
SUM • 99, 155, 156, 157, 1020, 1047
superrow • 46, 47, 49, 428, 438, 457, 694, 704
supertable • 43, 45, 46, 47, 49, 153, 236, 405, 406,

408, 410, 411, 429, 453, 457, 462, 465, 466,
467, 470, 583, 584, 585, 586, 601, 602, 603,
604, 606, 670, 686, 694, 699, 700, 704, 705,
772, 874, 875

<supertable clause> • 405
<supertable name> • 405, 408
SUPERTABLE_NAME • 772, 874, 875
supertype • 7, 8, 9, 11, 30, 32, 33, 35, 36, 147, 149,

201, 288, 334, 335, 337, 354, 395, 397, 502,
506, 509, 511, 513, 514, 520, 521, 522, 523,
525, 528, 529, 531, 532, 537, 549, 568, 571,
572, 577, 605, 607, 773, 876, 877, 996

<supertype name> • 502, 506
SUPERTYPE_CATALOG • 773, 877
SUPERTYPE_NAME • 773, 877
SUPERTYPE_SCHEMA • 773, 877
SUPPORTED_VALUE • 805, 918
surrogate pair • 5
SYMMETRIC • 98, 99, 295, 1014
syntax error or access rule violation • 747, 951, 956
SYSTEM • 99
_SYSTEM • 80, 379, 410, 411, 452, 457, 465, 466,

467, 470, 472, 480, 482, 484, 486, 488, 490,
491, 513, 557, 566, 584, 585, 586, 591, 597,
598, 599, 691

system-defined representation • 31, 35, 408
<system-generated representation> • 502, 505
SYSTEM_USER • 100, 132, 133, 135, 261, 418, 419,

420, 421, 440, 493, 635, 657, 972, 1020

— T —

table • 11, 16, 17, 18, 19, 25, 35, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 71, 72, 73, 74, 75, 77, 79,
80, 81, 83, 84, 85, 87, 88, 90, 91, 92, 113, 115,
117, 118, 119, 123, 126, 134, 138, 139, 140,
141, 142, 146, 152, 153, 155, 156, 157, 162,
181, 198, 203, 218, 224, 225, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238,
239, 240, 241, 243, 244, 245, 246, 254, 256,
258, 259, 260, 261, 262, 263, 264, 265, 266,
267, 268, 269, 270, 271, 272, 273, 274, 275,
276, 277, 278, 279, 283, 284, 288, 296, 297,
310, 311, 312, 313, 314, 315, 322, 334, 355,
362, 367, 368, 373, 374, 375, 377, 390, 391,
392, 399, 402, 404, 405, 406, 407, 408, 409,
410, 411, 412, 413, 414, 415, 416, 421, 422,
423, 424, 425, 426, 427, 428, 429, 430, 431,
432, 433, 434, 435, 436, 437, 438, 439, 440,
441, 442, 443, 444, 445, 448, 449, 450, 451,
452, 453, 454, 455, 456, 457, 458, 459, 460,
461, 462, 463, 464, 465, 466, 467, 469, 470,
472, 478, 479, 480, 482, 486, 490, 493, 497,
498, 499, 513, 521, 523, 537, 555, 557, 563,
570, 574, 575, 583, 584, 585, 586, 588, 589,
590, 592, 595, 596, 597, 598, 599, 600, 601,
602, 603, 604, 605, 606, 607, 608, 609, 610,
611, 614, 619, 633, 641, 652, 653, 654, 655,
657, 659, 660, 661, 665, 667, 668, 670, 671,
672, 673, 674, 675, 676, 677, 678, 679, 680,
681, 682, 684, 685, 686, 687, 689, 690, 691,
694, 695, 696, 697, 698, 699, 700, 701, 702,
703, 704, 705, 706, 707, 708, 723, 742, 743,
744, 746, 747, 751, 752, 753, 764, 765, 766,
767, 769, 770, 771, 772, 775, 780, 789, 790,
791, 792, 793, 794, 795, 796, 797, 802, 804,
806, 807, 808, 809, 810, 814, 815, 817, 818,
821, 822, 823, 833, 834, 847, 848, 852, 853,
855, 856, 857, 858, 859, 860, 861, 862, 863,
864, 865, 867, 872, 873, 874, 875, 876, 877,
878, 880, 881, 882, 883, 884, 885, 886, 887,
888, 889, 891, 892, 893, 894, 895, 896, 897,
898, 899, 901, 902, 903, 904, 905, 907, 910,
911, 913, 914, 916, 918, 919, 920, 921, 922,
923, 924, 925, 926, 927, 928, 929, 930, 931,
932, 933, 934, 935, 936, 937, 938, 939, 940,
941, 942, 943, 944, 945, 946, 947, 948, 949,
953, 961, 962, 965, 966, 968, 969, 971, 972,
973, 974, 975, 976, 977, 978, 983, 984, 985,
986, 989, 990, 991, 994, 996, 998, 999, 1000,
1001, 1005, 1006, 1007, 1008, 1009, 1010,
1012, 1013, 1014, 1018, 1022, 1023, 1024,
1026, 1027, 1028, 1029, 1031, 1033, 1036,
1041, 1042, 1044, 1045, 1046, 1047, 1048,
1050, 1051, 1053, 1055, 1056, 1057, 1058,
1059, 1061, 1062, 1063

1112 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

TABLE • 100, 266, 269, 275, 281, 374, 402, 404, 442,
452, 455, 456, 457, 470, 480, 497, 498, 499,
570, 608, 609, 690, 691, 742, 743, 744, 753,
756, 757, 758, 760, 761, 762, 763, 764, 765,
766, 768, 769, 770, 772, 773, 774, 775, 776,
777, 778, 779, 780, 782, 783, 786, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
799, 800, 801, 802, 803, 804, 805, 806, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 821, 822, 823, 833, 852, 853,
855, 857, 858, 859, 860, 862, 865, 872, 874,
877, 878, 880, 881, 882, 884, 886, 889, 892,
893, 895, 896, 898, 899, 901, 903, 907, 910,
911, 913, 916, 918, 919, 921, 922, 924, 926,
927, 928, 929, 931, 932, 934, 937, 939, 940,
943, 945, 946, 947, 948, 1050, 1051, 1057

table/method privilege descriptor • 80, 410, 589, 922
<table commit action> • 404, 690
table constraint • 43, 45, 48, 49, 83, 118, 405, 406,

408, 409, 410, 415, 416, 422, 423, 425, 427,
443, 451, 453, 454, 455, 480, 601, 607, 608,
746, 747, 807, 920, 921, 974, 975, 1026

<table constraint> • 422, 423, 480, 747
<table constraint definition> • 404, 406, 408, 410,

415, 416, 422, 453, 480, 921, 1026
<table contents source> • 404
<table definition> • 42, 44, 45, 73, 115, 399, 404, 405,

408, 409, 411, 412, 413, 414, 416, 422, 424,
425, 426, 440, 444, 633, 744, 847, 1029, 1055

<table element> • 404, 407, 408, 411, 1007
<table element list> • 404, 406, 407, 690
<table expression> • 56, 141, 156, 229, 235, 256,

258, 260, 261, 262, 263, 267, 268, 279, 602,
603, 605, 606, 653, 665, 696, 701, 706, 903,
934, 1053

<table name> • 45, 59, 113, 115, 118, 123, 126, 138,
232, 235, 236, 262, 266, 269, 374, 375, 377,
402, 404, 405, 406, 408, 409, 410, 413, 414,
422, 424, 425, 426, 428, 441, 442, 444, 448,
449, 450, 451, 453, 454, 455, 456, 457, 459,
460, 462, 463, 464, 465, 469, 470, 478, 497,
498, 499, 570, 575, 584, 586, 596, 597, 598,
603, 606, 608, 609, 610, 652, 667, 670, 673,
675, 677, 679, 684, 687, 690, 723, 744, 746,
858, 903, 932, 933, 934, 935, 937, 947, 999,
1044, 1051

<table or query name> • 44, 54, 138, 139, 141, 232,
233, 234, 235, 236, 259, 262, 266, 273, 462,
652, 654, 667, 670, 671, 676, 679, 685, 687,
990, 1044

<table primary> • 232, 238, 268
table privilege descriptor • 80, 374, 377, 444, 596,

597
<table reference> • 46, 53, 54, 55, 139, 141, 156,

224, 230, 231, 232, 233, 234, 235, 236, 238,
261, 262, 263, 267, 268, 270, 271, 272, 274,
279, 440, 460, 462, 465, 584, 597, 598, 600,
602, 605, 667, 671, 678, 679, 687, 696, 701,
706, 707, 858, 903, 932, 934, 947, 1000, 1001,
1006, 1044, 1051, 1053

<table reference list> • 55, 230, 231, 267
Tables • 42, 641, 1057
TABLES • 772, 810, 823, 833, 858, 865, 874, 901,

903, 921, 922, 924, 926, 934, 937, 947, 948,
978, 999, 1050

<table scope> • 404, 408
<table subquery> • 61, 232, 235, 268, 283, 284, 296,

297, 310, 311, 312, 313, 314, 315, 574, 971,
989, 994, 1005, 1014, 1042, 1044, 1045, 1046

<table value constructor> • 53, 224, 227, 228, 265,
270, 273, 274, 277, 296, 699, 985, 986

TABLE_CAT • 764, 765, 766, 768, 769, 770, 771,
772, 780, 789, 791, 792, 795, 797, 807, 808,
809, 810, 814, 815, 818, 821, 822, 823, 833,
857, 858, 862, 863, 865, 874, 875, 884, 885,
899, 900, 903, 904, 921, 922, 923, 924, 925,
926, 932, 933, 934, 935, 937, 946, 947, 948

TABLE_CATALOG • 764, 765, 766, 768, 769, 770,
771, 772, 780, 789, 791, 792, 795, 797, 807,
808, 809, 810, 814, 815, 818, 821, 822, 823,
833, 857, 858, 862, 863, 865, 874, 875, 884,
885, 899, 900, 903, 904, 921, 922, 923, 924,
925, 926, 932, 933, 934, 935, 937, 946, 947,
948

TABLE_CONSTRAINTS • 769, 770, 807, 850, 851,
859, 884, 894, 895, 920, 921, 1050

TABLE_METHOD_PRIVILEGES • 792, 808, 833,
922, 978, 996

TABLE_NAME • 99, 740, 742, 746, 747, 764, 765,
766, 768, 769, 770, 771, 772, 780, 789, 791,
792, 795, 797, 807, 808, 809, 810, 814, 815,
821, 822, 823, 833, 857, 858, 862, 863, 865,
874, 875, 884, 885, 899, 900, 903, 904, 921,
922, 923, 924, 925, 926, 932, 933, 934, 935,
937, 946, 947, 948

TABLE_PRIVILEGES • 791, 809, 810, 924, 969, 1057
TABLE_SCHEM • 764, 765, 766, 768, 769, 770, 771,

772, 780, 789, 791, 792, 795, 797, 807, 808,
809, 810, 814, 815, 821, 822, 823, 833, 857,
858, 862, 863, 865, 874, 875, 884, 885, 899,
900, 903, 904, 921, 922, 923, 924, 925, 926,
932, 933, 934, 935, 937, 946, 947, 948

TABLE_SCHEMA • 764, 765, 766, 768, 769, 770,
771, 772, 780, 789, 791, 792, 795, 797, 807,
808, 809, 810, 814, 815, 821, 822, 823, 833,
857, 858, 862, 863, 865, 874, 875, 884, 885,
899, 900, 903, 904, 921, 922, 923, 924, 925,
926, 932, 933, 934, 935, 937, 946, 947, 948

TABLE_TYPE • 810, 833, 921, 926, 927, 948
target • 6, 23, 24, 37, 38, 39, 69, 92, 132, 133, 134,

135, 167, 181, 183, 196, 201, 323, 324, 328,
342, 343, 354, 358, 361, 372, 440, 459, 489,
490, 539, 549, 566, 567, 568, 569, 598, 638,
657, 659, 660, 661, 662, 665, 666, 667, 668,
670, 671, 673, 677, 678, 679, 681, 682, 683,
684, 685, 686, 687, 688, 689, 699, 721, 722,
725, 727, 739, 740, 742, 745, 749, 930, 953,
954, 969, 996, 997, 1000, 1013, 1020, 1021,
1022, 1030, 1036

Index 1113

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

<target character set specification> • 489, 598
target data type • 39, 183, 539, 567, 568, 569
<target data type> • 201, 567, 569
<target specification> • 92, 132, 133, 134, 135, 342,

343, 354, 358, 372, 440, 459, 549, 657, 659,
660, 661, 665, 666, 1020, 1036

<target table> • 667, 668, 670, 671, 673, 677, 678,
679, 682, 684, 686, 687, 689

TARGET_CHARACTER_SET_CATALOG • 812, 833,
929, 930

TARGET_CHARACTER_SET_NAME • 812, 833,
929, 930

TARGET_CHARACTER_SET_SCHEMA • 812, 833,
929, 930

temporary • 42, 43, 44, 45, 60, 75, 77, 87, 88, 115,
141, 362, 368, 373, 375, 402, 404, 408, 409,
410, 411, 412, 416, 427, 440, 442, 456, 460,
493, 611, 614, 668, 671, 675, 680, 686, 690,
691, 703, 708, 723, 746, 747, 927, 984, 1018,
1022, 1023, 1027

TEMPORARY • 42, 44, 100, 404, 407, 408, 410, 411,
690, 926, 927, 984

temporary table • 42, 43, 44, 45, 60, 75, 77, 87, 88,
115, 141, 362, 368, 373, 375, 402, 404, 408,
409, 410, 411, 412, 416, 427, 440, 442, 456,
460, 493, 614, 668, 671, 675, 680, 686, 690,
691, 703, 708, 723, 746, 927, 984, 1018, 1022,
1023, 1027

<temporary table declaration> • 45, 60, 75, 77, 87,
115, 362, 412, 416, 440, 611, 614, 690, 691,
984, 1022

<term> • 202, 212, 213
TERMINATE • 100, 621, 1039
THAN • 100, 850, 853, 865, 882, 884, 886, 892
THE • 1039
THEN • 100, 178, 179, 281, 760, 768, 799, 823
TIME • 11, 12, 24, 25, 26, 27, 38, 100, 106, 110, 122,

125, 126, 127, 128, 160, 175, 191, 192, 193,
194, 195, 209, 211, 214, 215, 260, 340, 344,
641, 642, 644, 646, 647, 648, 649, 738, 872,
1021, 1052

<time fractional seconds precision> • 25, 26, 122,
126, 127, 160, 393, 641, 1020

<time interval> • 107
<time literal> • 106, 110, 111, 112, 984, 1052
<time precision> • 122, 125, 127, 129, 175, 176, 191,

192, 194, 985, 1020
TIMESTAMP • 11, 12, 24, 25, 26, 27, 38, 100, 106,

110, 122, 126, 127, 160, 175, 191, 192, 193,
194, 195, 209, 214, 215, 260, 340, 344, 641,
642, 644, 646, 647, 648, 649, 755, 872, 1052

<timestamp literal> • 106, 110, 111, 112, 984, 1052
<timestamp precision> • 122, 125, 127, 129, 175,

176, 193, 985, 1020
<timestamp string> • 97, 101, 106
timestamp types • 12
<time string> • 97, 106
time types • 12, 1052
<time value> • 106, 107, 111, 1052
<time zone> • 209, 210, 211, 979

time zone displacement • 25, 26, 88, 110, 111, 112,
128, 176, 191, 192, 193, 194, 210, 211, 256,
273, 738, 953, 1018

<time zone field> • 159, 160, 163, 966, 979
<time zone interval> • 106, 107, 110, 111, 112, 978,

1052
<time zone specifier> • 209, 210, 211
TIMEZONE_HOUR • 25, 100, 127, 159, 161
TIMEZONE_MINUTE • 25, 100, 127, 159
TIME_STAMP • 755, 889, 907, 937, 970, 1002
TO • 26, 88, 100, 170, 195, 210, 214, 279, 293, 304,

305, 306, 308, 326, 331, 334, 347, 379, 411,
467, 481, 489, 512, 576, 584, 585, 586, 588,
589, 592, 637, 725, 727, 738, 753, 754, 755,
756, 757, 758, 760, 761, 762, 763, 764, 765,
766, 768, 769, 770, 772, 773, 774, 775, 776,
777, 778, 779, 780, 782, 783, 786, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
799, 800, 801, 802, 803, 804, 805, 806, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 821, 822, 823, 833, 844, 872,
928

<token> • 96, 101, 102
too many • 372, 721, 955, 956
<to sql> • 576, 577
to-sql function • 34, 67, 370, 371, 397, 398, 551, 552,

553, 554, 555, 557, 558, 559, 576, 579, 580,
928

<to sql function> • 576, 577
to-sql function associated with i-th SQL parameter •

552
TRAILING • 100, 164, 172, 173
transaction • 48, 63, 69, 70, 71, 72, 73, 75, 76, 77,

82, 83, 84, 85, 86, 87, 88, 89, 119, 362, 364,
367, 368, 373, 386, 499, 549, 633, 634, 635,
636, 637, 638, 639, 640, 655, 658, 668, 671,
675, 680, 686, 715, 716, 717, 718, 719, 721,
722, 723, 724, 725, 726, 727, 730, 732, 735,
736, 737, 744, 745, 746, 952, 953, 954, 956,
958, 990, 1009, 1010, 1018, 1024, 1025, 1028,
1030, 1050, 1062

TRANSACTION • 85, 86, 99, 100, 620, 621, 622,
623, 640, 715, 716, 717, 718, 739, 741, 744,
745, 749, 967, 1009, 1015, 1050, 1057, 1062

<transaction access mode> • 715, 717, 718, 735,
1050

<transaction characteristics> • 717, 735, 990
transaction-initiating • 76, 77, 82, 85, 637, 638, 718,

727, 730
<transaction mode> • 715, 717, 1050
transaction resolution unknown • 87, 952
transaction rollback • 69, 84, 386, 723, 724, 746, 956,

958
transaction state • 63, 70, 73, 75, 76, 83, 364, 367,

499, 549, 635, 636, 637, 638, 639, 640, 668,
671, 675, 680, 686, 715, 716, 717, 718, 732,
736, 737, 744, 954, 1009, 1010

TRANSACTIONS_COMMITTED • 99, 739, 741, 745,
749, 967, 1015

1114 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

TRANSACTIONS_ROLLED_BACK • 99, 739, 741,
745, 749, 967, 1015

TRANSACTION_ACTIVE • 99, 739, 741, 745, 749,
967, 1015

TRANSFORM • 99, 512, 539, 543, 566, 576, 579,
743, 744

<transform definition> • 34, 74, 576, 578, 633, 744,
928, 1002

transform descriptor • 31, 34, 395, 397, 514, 537,
563, 566, 579

<transform element> • 576
<transform element list> • 576
transform functions • 34, 576, 579
<transform group> • 576
transform group descriptors • 34, 577, 579
<transform group element> • 579
transform groups • 34, 537
<transform group specification> • 30, 504, 508, 515,

526, 529, 533, 542, 543, 544, 545, 546, 561,
611, 1002

transforms • 34, 579, 811, 928, 1002
Transforms • 34
TRANSFORMS • 99, 576, 579, 811, 928, 1002
<transforms to be dropped> • 579
TRANSFORM_TYPE • 811, 928
transient • 73
TRANSLATE • 99, 164
translation • 9, 13, 14, 15, 37, 59, 74, 79, 80, 114,

117, 118, 119, 131, 164, 165, 167, 169, 171,
174, 208, 255, 374, 375, 378, 384, 399, 401,
402, 403, 417, 472, 482, 483, 486, 488, 489,
490, 491, 492, 519, 583, 584, 597, 598, 601,
602, 603, 606, 610, 633, 640, 743, 744, 763,
812, 833, 834, 929, 930, 939, 966, 978, 981,
986, 987, 988, 992, 1005, 1021, 1023, 1035,
1059

TRANSLATION • 100, 374, 378, 403, 489, 491, 584,
743, 744, 812, 833, 834, 929, 930, 939, 978,
987, 988

<translation definition> • 74, 399, 401, 489, 490, 584,
598, 633, 640, 744, 987, 988

<translation name> • 14, 114, 117, 118, 119, 164,
167, 169, 171, 374, 375, 403, 472, 489, 490,
491, 583, 598, 986

<translation routine> • 489, 490
TRANSLATIONS • 812, 833, 834, 929, 939, 978, 988
<translation source> • 489, 490
TRANSLATION_CATALOG • 812, 833, 929, 930, 939
TRANSLATION_DEFINITION • 929, 930
TRANSLATION_NAME • 812, 833, 929, 930, 939
TRANSLATION_SCHEMA • 812, 833, 929, 930, 939
TREAT • 100, 201, 1040

trigger • 42, 49, 64, 74, 79, 85, 89, 90, 91, 92, 114,
117, 118, 140, 141, 176, 377, 387, 388, 389,
399, 402, 403, 423, 426, 429, 430, 431, 432,
433, 434, 435, 436, 437, 438, 439, 444, 449,
451, 452, 456, 457, 469, 487, 491, 495, 497,
498, 499, 500, 501, 523, 524, 537, 538, 563,
565, 566, 569, 570, 574, 575, 602, 603, 608,
633, 636, 663, 670, 672, 674, 675, 685, 687,
694, 695, 699, 700, 704, 705, 723, 743, 744,
746, 813, 814, 815, 816, 834, 931, 932, 933,
934, 935, 936, 937, 954, 956, 962, 968, 973,
974, 978, 988, 1003, 1008, 1009, 1062

TRIGGER • 80, 99, 100, 374, 375, 377, 387, 388,
389, 403, 410, 451, 495, 497, 499, 501, 570,
575, 602, 608, 623, 740, 742, 743, 744, 746,
813, 814, 815, 816, 833, 834, 924, 925, 931,
932, 933, 934, 935, 936, 937, 973, 978, 1003,
1008, 1009, 1040, 1062

trigger action exception • 389
trigger action time • 90, 140, 499, 937
<trigger action time> • 140, 497, 499, 937
<trigger column list> • 497, 498, 500, 931
<trigger definition> • 74, 90, 91, 117, 140, 141, 399,

497, 498, 499, 500, 633, 744, 932, 933, 934,
935, 1008, 1009

triggered action • 49, 90, 91, 92, 176, 389, 423, 439,
444, 449, 451, 487, 491, 495, 498, 499, 500,
524, 538, 563, 565, 566, 574, 575, 663, 672,
687, 723, 746, 932, 933, 934, 935, 937, 956,
968, 988

<triggered action> • 91, 92, 176, 444, 495, 497, 498,
499, 500, 672, 687, 932, 933, 934, 935, 937

triggered action column set • 90, 451, 500
triggered action exception • 723, 746, 956
triggered data change violation • 436, 438, 746, 956
<triggered SQL statement> • 90, 387, 388, 389, 497,

499, 602, 603, 670, 674, 675, 685, 723, 932,
933, 934, 935

TRIGGERED_UPDATE_COLUMNS • 813, 833, 931,
978, 1008

trigger event • 90, 91, 92, 429, 430, 431, 432, 433,
434, 435, 436, 437, 438, 439, 452, 498, 499,
694, 699, 704, 813, 931, 932, 937

<trigger event> • 497, 498, 499, 937
trigger execution contexts • 89, 91
<trigger name> • 114, 118, 403, 495, 497, 498, 499,

501, 570, 575, 608, 746
TRIGGERS • 816, 833, 834, 931, 932, 934, 936, 937,

978, 1003, 1008, 1009
TRIGGER_CATALOG • 99, 740, 742, 746, 813, 814,

815, 816, 833, 931, 932, 933, 934, 935, 937
TRIGGER_COLUMN_USAGE • 814, 833, 932, 973,

1008
TRIGGER_CREATED • 816, 1003, 1008
TRIGGER_NAME • 99, 740, 742, 746, 813, 814, 815,

816, 833, 931, 932, 933, 934, 935, 937
TRIGGER_SCHEMA • 99, 740, 742, 746, 813, 814,

815, 816, 833, 931, 932, 933, 934, 935, 937
TRIGGER_TABLE_USAGE • 815, 833, 934, 973,

1008

Index 1115

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

TRIM • 99, 164, 165, 167, 168, 191, 192, 193, 194,
195, 196, 621, 727, 728, 736, 737, 1044, 1061

<trim character> • 21, 164, 167, 171
trim error • 171, 173, 953
<trim function> • 14, 21, 164, 165, 167, 169, 171,

172, 1044, 1061
<trim octet> • 165, 168, 173
<trim operands> • 164
<trim source> • 164, 167, 168, 171, 173, 174, 979
<trim specification> • 164, 165, 167, 168, 171, 173
TRUE • 100, 107, 112, 188, 190, 216, 218, 281, 291,

573, 632, 670
<truth value> • 134, 216, 217, 218, 985

type • 4, 6, 7, 8, 9, 11, 12, 13, 15, 20, 21, 22, 23, 24,
25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 44, 45, 46, 49, 54, 59, 60,
61, 62, 63, 64, 66, 67, 68, 69, 74, 79, 80, 87,
88, 109, 110, 112, 114, 115, 116, 118, 119, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 135, 136, 138, 140, 141, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 172,
174, 175, 177, 179, 180, 181, 182, 183, 184,
185, 186, 188, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 205,
206, 207, 208, 209, 210, 212, 213, 214, 215,
216, 218, 219, 221, 223, 224, 226, 227, 229,
230, 234, 238, 239, 240, 246, 252, 254, 255,
256, 259, 260, 261, 263, 264, 268, 270, 271,
272, 273, 274, 275, 277, 278, 280, 283, 285,
286, 287, 288, 289, 290, 291, 292, 293, 294,
295, 297, 298, 303, 305, 310, 311, 313, 314,
315, 316, 317, 318, 319, 320, 321, 323, 324,
325, 326, 328, 329, 330, 331, 333, 334, 335,
336, 337, 338, 340, 341, 344, 345, 347, 348,
353, 354, 355, 356, 357, 358, 359, 360, 361,
365, 366, 367, 369, 370, 371, 372, 373, 374,
375, 377, 378, 381, 382, 383, 390, 391, 392,
393, 394, 395, 396, 397, 398, 399, 401, 402,
403, 404, 405, 406, 407, 408, 409, 410, 411,
412, 413, 414, 415, 416, 417, 418, 419, 420,
421, 423, 424, 426, 427, 434, 439, 441, 442,
448, 449, 450, 452, 454, 456, 457, 459, 461,
462, 463, 464, 467, 468, 469, 470, 471, 472,
473, 479, 483, 487, 490, 502, 503, 504, 505,
506, 507, 508, 509, 510, 511, 512, 513, 514,
515, 516, 517, 518, 519, 520, 521, 522, 523,
524, 525, 526, 527, 528, 529, 531, 532, 533,
535, 536, 537, 538, 539, 540, 541, 542, 543,
544, 545, 546, 547, 548, 549, 550, 551, 552,
553, 554, 555, 556, 557, 558, 559, 560, 561,
562, 563, 565, 566, 567, 568, 569, 571, 572,
573, 574, 576, 577, 579, 588, 589, 590, 595,
596, 597, 601, 603, 604, 605, 606, 607, 609,
610, 612, 613, 614, 616, 617, 618, 619, 620,
624, 625, 626, 627, 628, 629, 630, 631, 632,
633, 634, 636, 640, 641, 642, 644, 645, 646,
647, 648, 649, 653, 654, 656, 659, 662, 667,
673, 674, 675, 676, 677, 678, 679, 681, 683,
684, 685, 688, 712, 715, 721, 722, 725, 736,
737, 738, 740, 742, 743, 744, 759, 760, 766,
771, 773, 775, 777, 779, 782, 784, 787, 792,
794, 808, 811, 818, 819, 833, 834, 845, 854,
865, 867, 872, 873, 876, 877, 880, 881, 882,
883, 887, 889, 890, 892, 893, 895, 907, 909,
913, 923, 927, 928, 939, 940, 941, 942, 943,
944, 953, 954, 961, 962, 965, 966, 970, 971,
974, 976, 977, 979, 980, 981, 982, 983, 985,
986, 987, 989, 992, 993, 994, 995, 996, 997,
998, 999, 1000, 1001, 1002, 1003, 1004, 1005,
1006, 1007, 1008, 1012, 1015, 1017, 1019,
1020, 1021, 1022, 1023, 1027, 1028, 1029,
1030, 1036, 1041, 1042, 1043, 1044, 1045,
1046, 1047, 1049, 1051, 1052, 1054, 1056,
1058, 1059, 1060, 1061

1116 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

Type • 29, 37, 44, 182, 285, 321, 337, 344, 625, 641,
642, 644, 646, 647, 648, 649, 741, 1001, 1042,
1043, 1060, 1061

TYPE • 99, 374, 403, 502, 537, 543, 609, 742, 743,
744, 940, 941, 1029, 1040

type designators • 11
typed table • 35, 45, 227, 234, 667, 674, 676, 996,

1047
<type list> • 320
type of the method • 62, 889
type precedence list • 11, 30, 33, 39, 64, 183, 336,

337, 340, 341, 355, 360, 548, 569
type precedence lists • 11, 30, 64
<type predicate> • 285, 320, 321, 1001
type-preserving function • 7, 9, 32, 62, 66, 359, 547,

558, 559, 887, 892
types • 4, 6, 11, 12, 24, 26, 29, 30, 32, 33, 34, 35, 36,

37, 38, 39, 40, 44, 64, 116, 119, 126, 127, 129,
131, 144, 145, 146, 148, 150, 152, 154, 158,
166, 179, 183, 190, 196, 199, 200, 207, 219,
221, 224, 226, 227, 255, 264, 271, 272, 278,
283, 286, 287, 288, 289, 290, 291, 292, 294,
295, 297, 298, 305, 310, 311, 313, 315, 316,
317, 318, 319, 320, 323, 328, 333, 334, 337,
338, 340, 341, 355, 373, 377, 378, 383, 393,
395, 397, 402, 411, 417, 439, 448, 450, 468,
505, 512, 515, 516, 519, 520, 521, 523, 532,
537, 538, 561, 566, 568, 571, 572, 590, 607,
610, 619, 624, 631, 640, 641, 656, 662, 676,
683, 759, 760, 773, 775, 777, 779, 782, 784,
787, 792, 794, 808, 811, 818, 819, 833, 834,
876, 877, 881, 893, 944, 961, 962, 971, 974,
976, 977, 986, 987, 989, 992, 993, 994, 995,
996, 997, 998, 1000, 1005, 1006, 1007, 1008,
1012, 1015, 1017, 1019, 1021, 1022, 1027,
1029, 1041, 1042, 1043, 1044, 1045, 1046,
1052, 1054, 1056, 1059, 1060, 1061

TYPE_NAME • 99, 760, 766, 768, 771, 773, 775,
776, 777, 779, 782, 783, 786, 787, 794, 799,
810, 811, 818, 819, 833, 853, 872, 873, 877,
887, 889, 907, 926, 927, 928, 940, 943, 944

— U —
UDT_CAT • 760, 766, 768, 773, 775, 776, 777, 779,

782, 783, 786, 787, 794, 799, 811, 818, 833,
853, 854

UDT_CATALOG • 760, 766, 768, 773, 775, 776, 777,
779, 782, 783, 786, 787, 794, 799, 811, 818,
833, 853, 854

UDT_NAME • 760, 766, 768, 773, 775, 776, 777,
779, 782, 783, 786, 787, 794, 799, 811, 818,
833, 853, 854

UDT_SCHEM • 760, 766, 768, 773, 775, 776, 777,
779, 782, 783, 786, 787, 794, 799, 811, 818,
833, 853, 854

UDT_SCHEMA • 760, 766, 768, 773, 775, 776, 777,
779, 782, 783, 786, 787, 794, 799, 811, 818,
833, 853, 854

UNCOMMITTED • 83, 84, 86, 99, 715, 718, 1057

UNDER • 33, 100, 374, 375, 377, 405, 502, 512, 513,
605, 992, 999, 1040

underlying columns • 269, 273, 461, 463, 465, 584,
706

underlying table • 42, 44, 46, 47, 262, 269, 273, 421,
460, 465, 466, 586, 597, 652, 653, 667, 668,
672, 673, 676, 677, 680, 687, 689, 703, 708,
990, 991

under privilege descriptor • 80, 597
<underscore> • 15, 18, 94, 95, 96, 100, 103, 104,

105, 113, 115, 300, 301, 302, 304, 305, 306,
307, 624, 975, 1044

UNION • 16, 47, 51, 57, 100, 154, 233, 238, 240,
241, 242, 243, 254, 265, 267, 269, 270, 273,
275, 276, 277, 278, 292, 467, 696, 706, 757,
769, 770, 771, 778, 810, 851, 859, 874, 877,
921, 939, 978, 1006, 1015, 1033, 1046, 1051,
1053, 1055, 1058

<union join> • 238, 241
UNIQUE • 45, 49, 100, 286, 313, 314, 315, 422, 424,

425, 769, 770, 788, 833, 849, 850, 851, 853,
865, 882, 884, 895, 921, 970, 971, 994, 1016,
1049, 1057, 1063

unique column • 40, 49, 408, 409, 422, 424, 425,
427, 454, 850, 1016, 1049

<unique column list> • 49, 408, 422, 424, 425, 427,
1016, 1049

unique columns • 49, 422, 424, 427, 454
unique constraint • 16, 40, 46, 49, 51, 52, 406, 408,

409, 422, 424, 425, 427, 454, 769, 849, 884,
921, 1049

<unique constraint definition> • 16, 408, 422, 424,
425, 427, 1049

unique matching row • 429, 431, 432, 433, 436, 437,
438

<unique predicate> • 61, 285, 286, 313, 574, 971
<unique specification> • 412, 415, 424, 1049
UNIQUE_CONSTRAINT_CATALOG • 769, 770, 788,

833, 849, 895
UNIQUE_CONSTRAINT_NAME • 769, 770, 788, 833,

849, 851, 895
UNIQUE_CONSTRAINT_SCHEMA • 769, 770, 788,

833, 849, 895
UNKNOWN • 100, 107, 112, 216, 218, 620, 623
UNNAMED • 99
UNNEST • 100, 232
<unqualified schema name> • 113, 116, 117, 135,

172, 400, 746, 747, 748, 749, 751
<unquoted date string> • 106, 107, 191
<unquoted interval string> • 107, 188, 190, 195
<unquoted timestamp string> • 106, 107, 1052
<unquoted time string> • 106, 107, 192, 193, 194,

1052
<unsigned integer> • 106, 107, 111, 112, 122, 123,

126, 187, 189, 347, 543, 984
<unsigned literal> • 105, 132
<unsigned numeric literal> • 96, 105, 106
<unsigned value specification> • 132, 133, 134, 139,

197, 198, 199

Index 1117

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

unsupported • 599
unterminated C string • 629, 953
<updatability clause> • 651, 652, 654, 655, 679, 991
updatable • 42, 43, 46, 47, 71, 235, 262, 263, 264,

269, 273, 278, 460, 463, 466, 586, 597, 652,
667, 670, 674, 678, 684, 949, 1006, 1050

updatable column • 235, 262, 263, 273, 463, 674,
678, 684

updatable cursor • 71, 667, 678
updatable derived table • 235
updatable table • 42, 46, 47, 652, 670, 674, 684
UPDATE • 79, 80, 90, 91, 100, 374, 375, 377, 410,

426, 430, 431, 432, 433, 434, 435, 436, 437,
438, 444, 452, 466, 497, 586, 589, 596, 597,
603, 606, 651, 652, 654, 655, 677, 679, 683,
684, 686, 691, 704, 744, 788, 813, 833, 834,
862, 863, 895, 924, 925, 931, 932, 933, 937,
974, 978, 991, 1008, 1009, 1013, 1046, 1047,
1048, 1054, 1062

<update rule> • 417, 426, 427, 433, 434, 435, 436,
437, 438, 439, 895, 988, 1035

<update source> • 677, 678, 679, 680, 683, 684, 685,
687, 996

<update statement: positioned> • 39, 47, 71, 72, 75,
76, 438, 603, 606, 634, 652, 655, 669, 672,
677, 679, 680, 687, 744, 899, 933

<update statement: searched> • 47, 75, 76, 141,
235, 438, 602, 603, 605, 606, 634, 669, 680,
684, 685, 686, 744, 745, 899, 903, 932, 933,
934, 1031, 1035, 1047

<update target> • 677, 678, 679, 681, 682, 683, 684,
685, 688, 689, 996, 1000, 1013

update value • 680, 681, 682, 687, 688, 953
UPDATE_RULE • 788, 833, 895
UPPER • 99, 164, 171, 305
USAGE • 80, 100, 126, 127, 130, 169, 184, 200,

374, 375, 377, 379, 380, 384, 409, 415, 416,
463, 472, 480, 481, 482, 484, 486, 488, 490,
491, 513, 518, 556, 557, 583, 584, 598, 601,
602, 603, 604, 605, 606, 644, 751, 754, 755,
761, 763, 764, 766, 769, 770, 775, 776, 780,
793, 795, 797, 812, 814, 815, 817, 821, 822,
833, 834, 849, 850, 857, 858, 884, 899, 903,
932, 934, 938, 939, 940, 941, 946, 947, 969,
972, 973, 974, 976, 977, 978, 994, 1008, 1009,
1012, 1023, 1057

usage privilege descriptor • 80, 597, 938
USAGE_PRIVILEGES • 761, 763, 776, 793, 812,

817, 938, 939, 969, 1057

USER • 78, 85, 99, 100, 132, 133, 134, 135, 261,
374, 375, 404, 408, 410, 418, 419, 420, 421,
440, 461, 464, 493, 588, 591, 592, 595, 635,
657, 673, 727, 757, 758, 760, 761, 762, 763,
764, 765, 766, 768, 769, 770, 771, 772, 773,
774, 775, 776, 777, 779, 780, 782, 783, 786,
787, 788, 794, 795, 796, 797, 799, 800, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 821, 822, 823, 833, 853, 854,
862, 866, 872, 873, 877, 880, 886, 887, 889,
896, 898, 901, 907, 909, 910, 922, 924, 926,
927, 928, 939, 940, 942, 943, 944, 945, 972,
1020, 1056

user-defined • 6, 7, 9, 11, 30, 31, 32, 33, 34, 35, 38,
39, 42, 59, 60, 61, 62, 67, 68, 69, 74, 79, 80,
87, 114, 115, 116, 118, 119, 121, 123, 126,
127, 128, 129, 130, 147, 149, 156, 157, 165,
172, 183, 184, 185, 197, 198, 200, 201, 246,
254, 256, 259, 260, 270, 287, 290, 291, 320,
321, 323, 326, 328, 331, 337, 354, 355, 356,
357, 358, 359, 360, 361, 369, 370, 371, 374,
375, 377, 379, 380, 381, 382, 393, 395, 396,
397, 398, 399, 402, 403, 404, 406, 407, 408,
409, 410, 411, 413, 415, 416, 418, 420, 459,
461, 462, 463, 467, 471, 483, 502, 504, 505,
506, 507, 508, 509, 510, 511, 512, 513, 514,
515, 518, 520, 521, 522, 523, 524, 525, 526,
527, 531, 532, 535, 537, 538, 539, 542, 543,
545, 546, 547, 548, 550, 551, 552, 554, 556,
557, 559, 560, 562, 563, 565, 566, 567, 568,
569, 570, 571, 572, 573, 574, 575, 576, 579,
597, 603, 604, 605, 606, 607, 609, 612, 613,
616, 617, 630, 632, 633, 634, 640, 641, 642,
645, 646, 647, 648, 649, 653, 654, 673, 678,
684, 743, 744, 759, 766, 773, 775, 794, 811,
818, 819, 854, 867, 872, 873, 877, 887, 889,
907, 909, 928, 940, 941, 942, 943, 944, 962,
992, 994, 998, 1000, 1001, 1002, 1019, 1027,
1028, 1029, 1030, 1056, 1060

<user-defined cast definition> • 39, 567, 568, 633,
1001

<user-defined character set name> • 379, 380
<user-defined ordering definition> • 74, 571, 573,

633, 744, 1002
user-defined representation • 31, 35, 408, 461, 462,

505, 513, 514
<user-defined representation> • 35, 502, 505, 513,

514

1118 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

user-defined type • 6, 7, 9, 11, 30, 31, 32, 33, 34, 35,
38, 39, 42, 59, 60, 61, 62, 67, 68, 69, 74, 79,
80, 87, 115, 116, 118, 119, 126, 127, 128, 129,
130, 147, 149, 156, 157, 172, 183, 184, 198,
200, 201, 246, 256, 260, 287, 290, 291, 320,
321, 323, 326, 328, 331, 337, 354, 356, 357,
358, 359, 360, 361, 369, 370, 371, 375, 377,
381, 382, 393, 395, 396, 397, 398, 402, 403,
406, 407, 408, 409, 410, 411, 413, 415, 416,
420, 461, 463, 467, 471, 483, 502, 504, 506,
507, 508, 510, 511, 512, 514, 515, 518, 520,
521, 522, 523, 524, 525, 526, 527, 531, 532,
535, 537, 538, 543, 545, 546, 547, 548, 550,
551, 552, 554, 556, 557, 559, 560, 562, 565,
566, 567, 568, 571, 572, 573, 574, 576, 579,
597, 603, 604, 605, 606, 607, 609, 612, 613,
616, 617, 630, 632, 640, 641, 642, 645, 646,
647, 648, 649, 653, 654, 673, 678, 684, 744,
759, 773, 775, 794, 811, 818, 819, 854, 872,
873, 877, 887, 889, 907, 928, 940, 941, 943,
944, 962, 992, 994, 998, 1000, 1019, 1027,
1028, 1029, 1030, 1060

<user-defined type> • 60, 115, 121, 123, 129, 149,
201, 320, 354, 357, 358, 381, 382, 404, 406,
407, 409, 410, 411, 459, 461, 463, 467, 502,
508, 526, 542, 543, 546, 550, 554, 567, 568,
571, 574, 576, 579, 612, 998, 1000

<user-defined type body> • 337, 502, 504
<user-defined type definition> • 32, 33, 35, 42, 61,

62, 74, 399, 502, 504, 512, 515, 521, 522, 633,
640, 744, 877, 992

user-defined type locator parameter • 617, 630, 632
<user-defined type name> • 30, 60, 68, 114, 115, 119,

123, 126, 127, 128, 129, 147, 149, 172, 201,
320, 357, 358, 360, 374, 375, 377, 403, 406,
408, 409, 413, 461, 502, 504, 508, 512, 520,
521, 523, 525, 526, 531, 532, 535, 537, 546,
547, 551, 552, 566, 576, 579, 609, 612, 992,
994, 1029

user-defined types • 11, 34, 38, 39, 129, 287, 290,
291, 402, 571, 572, 607, 759, 775, 794, 811,
818, 819, 962, 1000, 1060

<user-defined type specification> • 320
<user-defined type value expression> • 165, 172,

197, 198, 320, 321
user identifier • 64, 65, 76, 77, 78, 79, 80, 81, 82, 88,

119, 134, 362, 363, 375, 376, 400, 584, 585,
586, 588, 591, 592, 595, 613, 690, 727, 728,
736, 737, 744, 972, 1018, 1023

<user identifier> • 77, 78, 80, 81, 88, 113, 114, 119,
376, 613, 727, 736

user privileges • 81, 82, 376
USERS • 862, 896, 898, 901, 910, 922, 924, 939,

940, 945
USER_DEFINED_TYPES • 771, 819, 833, 853, 872,

877, 889, 907, 926, 928, 940, 942, 943, 1056

USER_DEFINED_TYPE_CATALOG • 99, 760, 766,
768, 771, 773, 775, 776, 777, 779, 782, 783,
786, 787, 794, 799, 810, 811, 818, 819, 833,
853, 872, 873, 877, 887, 889, 907, 926, 927,
928, 940, 943, 944

USER_DEFINED_TYPE_NAME • 99, 760, 766, 768,
771, 773, 775, 776, 777, 779, 782, 783, 786,
787, 794, 799, 810, 811, 818, 819, 833, 853,
872, 873, 877, 887, 889, 907, 926, 927, 928,
940, 943, 944

USER_DEFINED_TYPE_PRIVILEGES • 760, 773,
782, 783, 794, 811, 818, 819, 940

USER_DEFINED_TYPE_SCHEMA • 99, 760, 766,
768, 771, 773, 775, 776, 777, 779, 782, 783,
786, 787, 794, 799, 810, 811, 818, 819, 833,
853, 872, 873, 877, 887, 889, 907, 926, 927,
928, 940, 943, 944

USER_NAME • 862, 896, 898, 901, 922, 924, 939,
940, 945

USING • 100, 164, 238, 279, 502, 776, 777, 779,
787, 795, 796, 797, 850

— V —
valid • 3, 17, 18, 29, 40, 48, 70, 77, 87, 89, 117, 181,

185, 186, 187, 188, 189, 190, 191, 192, 193,
194, 195, 196, 201, 211, 288, 300, 301, 302,
306, 329, 337, 338, 368, 375, 509, 527, 547,
615, 618, 619, 624, 635, 638, 639, 657, 660,
663, 665, 668, 671, 675, 680, 686, 692, 693,
716, 717, 718, 721, 722, 723, 724, 725, 726,
727, 728, 732, 736, 737, 738, 745, 747, 749,
755, 916, 952, 953, 954, 955, 1019

Value • 12, 28, 35, 37, 38, 1043, 1044, 1048
VALUE • 40, 50, 100, 132, 133, 134, 135, 183, 216,

217, 424, 425, 472, 480, 673, 676, 754, 969,
970

<value expression> • 11, 46, 51, 56, 57, 62, 133, 139,
142, 155, 156, 157, 158, 166, 176, 178, 179,
181, 183, 184, 185, 197, 198, 199, 201, 217,
221, 223, 226, 235, 239, 244, 254, 258, 259,
260, 261, 263, 264, 268, 279, 288, 289, 293,
297, 310, 354, 357, 358, 359, 512, 513, 549,
569, 602, 603, 605, 606, 651, 653, 654, 656,
677, 678, 684, 689, 701, 707, 712, 899, 903,
932, 934, 967, 980, 981, 985, 991, 993, 994,
996, 997, 1000, 1003, 1010, 1048

<value expression primary> • 133, 139, 144, 145,
146, 147, 197, 198, 199, 202, 204, 205, 209,
210, 212, 213, 216, 217, 219, 258, 259, 260,
449, 465, 466, 583, 584, 585, 601, 602, 603,
604, 606, 1000, 1001, 1042, 1055, 1056

VALUES • 46, 47, 100, 227, 233, 280, 296, 673, 674,
676, 778, 852, 878, 921, 948, 968, 1057

<value specification> • 132, 133, 134, 166, 226, 297,
303, 342, 343, 440, 493, 549, 657, 670, 674,
685, 736, 737, 971, 985, 1020

VARCHAR • 100, 121, 123, 344, 1043
VARIABLE • 100, 1040

Index 1119

ISO/IEC 9075-2:1999 (E) ©ISO/IEC

variable-length • 7, 9, 166, 167, 168, 182, 187, 188,
189, 191, 205, 206, 207, 324, 325, 329, 330,
333, 338, 631, 741, 742, 754, 755, 1019, 1020,
1025, 1029

VARYING • 11, 13, 21, 37, 38, 100, 121, 122, 123,
124, 125, 130, 338, 344, 413, 625, 626, 628,
629, 631, 641, 642, 644, 646, 647, 648, 649,
754, 755, 844, 872, 1043, 1044

<vertical bar> • 15, 18, 19, 94, 95, 304, 305, 306, 307
view • 42, 43, 44, 45, 46, 47, 59, 64, 74, 79, 83, 115,

141, 235, 236, 338, 340, 341, 360, 361, 362,
363, 364, 365, 367, 368, 372, 373, 399, 402,
444, 449, 451, 454, 455, 456, 457, 459, 460,
461, 462, 463, 464, 465, 467, 468, 469, 470,
479, 483, 487, 491, 523, 524, 537, 538, 548,
555, 557, 559, 560, 562, 563, 565, 569, 570,
574, 575, 584, 586, 597, 598, 600, 601, 607,
608, 633, 668, 671, 673, 676, 680, 682, 687,
689, 691, 697, 698, 702, 703, 707, 708, 713,
743, 744, 747, 751, 756, 757, 758, 759, 760,
761, 762, 763, 764, 765, 766, 767, 768, 769,
770, 771, 772, 773, 774, 775, 776, 777, 778,
779, 780, 781, 782, 783, 784, 785, 787, 788,
789, 790, 791, 792, 793, 794, 795, 796, 797,
798, 800, 801, 802, 803, 804, 805, 806, 807,
808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 820, 821, 822, 823, 824, 833,
834, 865, 926, 927, 946, 947, 948, 949, 965,
968, 969, 970, 971, 972, 973, 974, 975, 976,
977, 978, 983, 984, 988, 990, 993, 996, 997,
998, 999, 1000, 1002, 1003, 1006, 1007, 1008,
1009, 1012, 1013, 1050, 1051, 1053, 1055,
1056, 1057, 1058

VIEW • 100, 402, 449, 455, 457, 459, 460, 469, 470,
570, 575, 608, 668, 671, 682, 689, 697, 698,
707, 708, 743, 744, 756, 757, 758, 760, 761,
762, 763, 764, 765, 766, 768, 769, 770, 771,
772, 773, 774, 775, 776, 777, 778, 779, 780,
782, 783, 786, 787, 788, 789, 790, 791, 792,
793, 794, 795, 796, 797, 799, 800, 801, 802,
803, 804, 805, 806, 807, 808, 809, 810, 811,
812, 813, 814, 815, 816, 817, 818, 819, 821,
822, 823, 833, 921, 926, 927, 946, 947, 948,
949, 973, 1050, 1051, 1055

<view column list> • 459, 460, 464, 465, 597, 598,
600

<view column option> • 459, 463
view definition • 42, 45, 47, 74, 115, 141, 235, 236,

459, 460, 461, 463, 468, 597, 598, 600, 744,
949, 990, 1053, 1055

<view definition> • 42, 45, 47, 74, 115, 141, 235, 236,
399, 459, 460, 461, 463, 468, 597, 598, 600,
633, 744, 949, 990, 1053, 1055

viewed table • 42, 83, 141, 235, 459, 460, 469, 668,
671, 676, 682, 689, 697, 698, 702, 703, 707,
708, 751, 821, 822, 823, 927, 948

<view element> • 459
<view element list> • 459, 463
VIEWS • 823, 921, 926, 946, 947, 948, 1050

<view specification> • 459
VIEW_CATALOG • 821, 822, 946, 947
VIEW_COLUMN_USAGE • 821, 946, 973
VIEW_DEFINITION • 823, 948, 949
VIEW_NAME • 821, 822, 946, 947
VIEW_SCHEMA • 821, 822, 946, 947
VIEW_TABLE_USAGE • 822, 947, 973
visible • 72, 78, 85, 658, 668, 671, 675, 680, 686,

1018, 1024, 1025, 1028

— W —
warning • 38, 68, 69, 82, 157, 187, 188, 189, 190,

191, 324, 325, 326, 368, 372, 390, 391, 420,
421, 438, 441, 467, 494, 499, 589, 609, 639,
663, 669, 672, 680, 687, 733, 746, 748, 749,
951, 952, 956, 957, 1035

WHEN • 100, 179, 497, 760, 768, 799, 823
WHENEVER • 100
<when operand> • 178, 179
WHERE • 56, 67, 100, 152, 154, 233, 244, 282, 423,

425, 472, 667, 670, 677, 684, 743, 744, 745,
756, 757, 758, 760, 761, 762, 763, 764, 765,
766, 768, 769, 770, 772, 773, 774, 775, 776,
777, 779, 780, 782, 783, 786, 787, 788, 789,
790, 791, 792, 793, 794, 795, 796, 797, 799,
800, 801, 804, 807, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 819, 821, 822,
823, 849, 850, 853, 874, 877, 881, 882, 884,
893, 895, 921, 926, 931, 932, 943, 948, 1053

<where clause> • 55, 56, 229, 234, 244, 246, 254,
267, 1050, 1053

white space • 9, 101
<white space> • 97, 101
WITH • 12, 24, 25, 26, 27, 38, 47, 55, 72, 79, 80, 81,

100, 110, 119, 122, 126, 127, 128, 153, 160,
175, 191, 192, 193, 194, 195, 209, 214, 215,
232, 233, 236, 254, 260, 265, 277, 377, 404,
410, 411, 459, 460, 461, 464, 465, 466, 467,
503, 512, 513, 567, 571, 576, 583, 584, 585,
586, 587, 588, 589, 590, 591, 592, 594, 595,
598, 599, 600, 601, 602, 603, 604, 606, 607,
610, 651, 652, 653, 655, 670, 676, 680, 686,
687, 703, 708, 747, 751, 753, 754, 755, 756,
757, 758, 760, 761, 762, 763, 764, 765, 766,
768, 769, 770, 772, 773, 774, 775, 776, 777,
778, 779, 780, 782, 783, 786, 787, 788, 789,
790, 791, 792, 793, 794, 795, 796, 797, 799,
800, 801, 802, 803, 804, 805, 806, 807, 808,
809, 810, 811, 812, 813, 814, 815, 816, 817,
818, 819, 821, 822, 823, 833, 863, 872, 874,
877, 897, 902, 923, 925, 939, 941, 962, 966,
999, 1006, 1013, 1047, 1048, 1057, 1061

with check option violation • 703, 708, 747, 957
<with clause> • 57, 265, 266, 274, 277, 1006
<with column list> • 265, 266, 274, 279
with grant option • 588, 589
<with list> • 57, 265, 266, 267, 274
<with list element> • 44, 265, 266, 267, 269, 274, 279
<with or without time zone> • 122, 125, 129, 979

1120 Foundation (SQL/Foundation)

©ISO/IEC ISO/IEC 9075-2:1999 (E)

WITHOUT • 12, 24, 25, 26, 27, 38, 100, 110, 122,
125, 126, 175, 191, 192, 193, 194, 209, 214,
215, 651, 652, 656, 1015, 1040

without an intervening • 10, 158, 176, 262, 269, 273,
354, 980

WITH_HIERARCHY • 791, 809, 924, 925
WORK • 100, 723, 725, 743, 744
working table • 275
WRITE • 100, 715, 716, 718, 1050

— Y —
YEAR • 25, 26, 27, 28, 100, 110, 126, 127, 334, 340,

347, 803, 833, 844, 872, 916
year-month • 25, 27, 28, 38, 107, 110, 126, 210, 213,

340, 349

year-month interval • 27, 28, 38, 126, 210, 213, 340,
349

<year-month literal> • 107, 110, 349
<years value> • 106, 107, 110, 349
YES • 756, 852, 853, 854, 862, 863, 865, 866, 878,

879, 882, 883, 886, 887, 889, 890, 892, 896,
897, 901, 902, 907, 908, 909, 911, 912, 916,
921, 922, 923, 924, 925, 939, 940, 941, 943,
944, 948, 949

— Z —
ZONE • 12, 24, 25, 26, 27, 38, 100, 110, 122, 125,

126, 127, 128, 160, 175, 191, 192, 193, 194,
195, 209, 211, 214, 215, 260, 738, 744, 872

Index 1121

