Abductive Logic Programming by Nonground Rewrite Systems

Fangzhen Lin
Hong Kong University of Science and Technology, China

Jia-Huai You
University of Alberta, Canada
Abduction

The general problem of abduction is to show that an observation is explained by a reasoning process supported by hypotheses while satisfying stated constraints.

Logic programs with negation consisting of normal rules of the form:

\[A \leftarrow B_1, \ldots, B_k, \text{not } C_1, \ldots, \text{not } C_n \]

have been considered a suitable yet powerful formalism for abductive logic programming [Kakas et al. ’95].
Previous Work

• Under the (partial) stable model semantics: Programs are *ground* [Eshghi & Kowalski ’89; Kakas et al. ’00; Lin & You ’02]

• Under the completion semantics: Programs can be *nonground*; but with severe restrictions and formulations are complex
 – Using iff definitions as rewrite rules [Console et al. ’91; Fung & Kowalski ’97; Endreiss et al. ’04]
 – SLDNFA procedure [Denecker & De Schreye ’98]

• Reasons for the restrictions and complication: Queries may have **universal variables**; *Unsafe* computations can be avoided by *non-floundering queries or allowedness conditions*
Results of this paper

• Show a simple view of abduction in this context for the completion semantics.

• Under our formulation, the problem becomes one of solving quantified equations and disequations.

• Approach is sound for standard 2-valued logic and complete for 3-valued logic.

• No safety condition (what’s-so-ever) is necessary, since there is no notion of safe or unsafe computations.
Abductive programs

An abductive program is a triple $\langle T, IC, Ab \rangle$.

1. T is a finite set of iff definitions of the form

$$p(X_1, \ldots, X_n) \leftrightarrow D_1 \lor \cdots \lor D_m$$

We assume that such an iff definition is a completed definition of a predicate by normal program rules that define predicate p/n, whose logic formula is:

$$\forall \underline{X} \ p(\underline{X}) \leftrightarrow \bigvee_{i=1}^{m} \exists \underline{Y}_i [(\underline{X} = \underline{s}_i) \land \Phi_i)] \quad (1)$$

- each disjunct corresponds to a D_i above
- $\underline{X} = \underline{s}_i$ is the conjunction of equations representing unifiability
- \underline{Y}_i denotes the variables other than \underline{X} appearing in the disjunct
- Φ_i is the rule body with not replaced by \neg.
2. *IC* is a consistent finite set of constraints of the form

\[\bot \leftarrow A_1, \ldots, A_k, \neg B_1, \ldots, \neg B_m \]

where \(A_i \) and \(B_i \) are atoms and all variables are universally quantified.

A constraint can be written as a disjunction

\[\neg A_1 \lor \ldots \lor \neg A_k \lor B_1 \lor \ldots \lor B_m \]

3. \(Ab \) is a finite set of predicate symbols, called *abducibles*, which are different from \(= \) and any defined predicate symbol.

A query (or a goal) is a formula of form

\[\overline{\Theta} \Phi \]

where \(\overline{\Theta} \) is a tuple of quantifiers and \(\Phi \) a quantifier-free formula with negation appearing only in front of an atom.
Answers to a query

Given an abducible program \(\langle T, IC, Ab \rangle \) and a query \(G \), the initial query is a formula

\[
\forall \overline{X}. G \land IC
\]

where \(IC \) is the conjunction of all constraints, and \(\overline{X} \) the tuple of variables in \(IC \).

An answer to a query \(G \) is a pair \((\Delta, \sigma) \), where \(\Delta \) is a finite set of ground abducible atoms, and \(\sigma \) is a substitution of ground terms for variables in \(V(G) \), such that

\[
T \cup \text{comp}(\Delta) \cup \text{CET} \models G\sigma \land \forall \overline{X}IC. \tag{2}
\]

where CET is the Clark’s equality theory (essentially, all syntactically distinct ground terms are not equal, and functions are one-to-one).
Simple view

An initial query is rewritten to a formula of the form

$$
\overline{\Theta}(E \lor \Phi)
$$

where $\overline{\Theta}$ is a tuple of quantifiers, $E \lor \Phi$ is quantifier-free, and E contains only $=$ and abducibles.

Then, answers are extracted from $\overline{\Theta}E$. The process of answer extraction is essentially one of solving quantified equations and disequations.

Rewrite rules: iff definitions plus some logic equivalences and rules for unification.
In general,

$$\Theta(E \lor \Phi) \neq \Theta E \lor \Theta \Phi$$

But in some cases, e.g. when E and Φ do not share universal variables, we have

$$\Theta(E \lor \Phi) \equiv \Theta E \lor \Theta \Phi$$
Simplification rules

Let $\overline{\Theta} \Pi$ be a goal formula. Π can be rewritten according to the following rules (and their symmetric cases).

SR1. $F \lor \Phi \rightarrow \Phi$
SR2. $F \land \Phi \rightarrow F$

SR3. $T \land \Phi \rightarrow \Phi$
SR4. $T \lor \Phi \rightarrow T$

SR5. $(\Phi_1 \lor \Phi_2) \land \Phi_3 \rightarrow (\Phi_1 \land \Phi_3) \lor (\Phi_2 \land \Phi_3)$
Formulas for Unfolding

Unfolding a negative literal:

\[\neg p(t) \leftrightarrow \bigwedge_{i=1}^{m} \forall Y_i [t \neq s_i \lor \neg \Phi_i] \] \hspace{1cm} (i)

\[\leftrightarrow \bigwedge_{i=1}^{m} \forall Y_i [t \neq s_i \lor [t = s_i \land \neg \Phi_i]] \] \hspace{1cm} (ii)

\[\leftrightarrow \bigwedge_{i=1}^{m} \forall \overline{Y_i}^f [t \neq s_i] \lor \exists Z_i \forall R_i [(t = s_i \land \neg \Phi_i)\{\overline{Y_i}^f/Z_i\}] \] \hspace{1cm} (iii)

where \(\overline{Y_i}^f = V(s_i) \), which are renamed to \(Z_i \) in the second disjunct (by substitution \(\{\overline{Y_i}^f/Z_i\} \)) and become existentially quantified, and \(R_i = Y_i \setminus \overline{Y_i}^f \) are the remaining variables.
Example

Given

\[p(V) \leftrightarrow \exists X, Y, Z(V = s(X, Y) \land \neg q(Y, f(Z))), \]

for \(\neg p(f(X)) \), the formula (i) above is

\[\forall X_1, X_2, X_3(f(X) \neq s(X_1, X_2) \lor q(X_2, f(X_3))), \]

and the formula (iii) is

\[\forall X_1, X_2(f(X) \neq s(X_1, X_2)) \lor \\
 \exists Y_1, Y_2 \forall X_3(f(X) = s(Y_1, Y_2) \land q(Y_2, f(X_3))). \]
Correctness of unfolding

Lemma

Given a program P, a predicate p, and a completed definition in the form described above, let $p(\overline{t})$ be an atom such that $V(\overline{t}) \cap \overline{Y_i} = \emptyset$ for each i. Then, $\text{comp}(P) \cup \text{CET}$ entails

(a) $\forall \ p(\overline{t}) \leftrightarrow \bigvee_{i=1}^{m} \exists Y_i[(\overline{t} = \overline{s_i}) \land \Phi_i]$

(b) $\forall \neg p(\overline{t}) \leftrightarrow$ the formula in (iii) above.
Unfolding

Quantifiers can always be moved to the left of a goal.

Let $\Pi = \Theta \Phi$ be a goal formula.

If $p(\overline{t})$ occurs in Φ positively (i.e. not under \neg operator), then rewrite Π into the following goal formula

$$\Theta \exists Y_1 \cdots Y_m \Phi',$$

where Φ' is the result of replacing this occurrence of $p(\overline{t})$ by

$$\bigvee_{i=1}^{m} (\overline{t} = \overline{s}_i) \land \Phi_i.$$
Extract answers

Let $\langle T, IC, Ab \rangle$ be an abductive program and G a goal. Assume the initial query $\forall X. G \land IC$ has been rewritten to $\Theta(E \lor \Phi)$, where E only mentions $=$ and abducibles.

Let Δ be a finite set of ground abducible atoms.

1. Abduction

We abduce ΘE to ΘE_Δ by replacing any occurrence of $ab(\overline{t})$ in E by $\forall_i \overline{t} = \overline{s_i}$, and $\neg ab(\overline{t})$ by $\land_i \overline{t} \neq \overline{s_i}$, where $ab(s_i) \in \Delta$.

2. Extraction

Let σ be a substitution for variables in $V(G)$.

(Δ, σ) is extracted as an answer to G if $CET \models \Theta E_\Delta \sigma$.
Soundness

Theorem (Soundness)
Let \(\langle T, IC, Ab \rangle \) be an abductive program and \(G \) a goal.

(1) Suppose rewriting from \(\forall X. G \land IC \) generates \(\overline{\Theta}(E \lor \Phi) \) such that \((\Delta, \sigma) \) is extracted as an answer to \(G \), based on \(E \). Then,
\[
T \cup \text{comp}(\Delta) \cup \text{CET} \models G\sigma \land \forall X IC.
\]

(2) If rewriting from \(\forall X. G \land IC \) generates \(F \), then \(T \cup \text{CET} \cup \forall X IC \models \neg \exists G \).
Completeness

Theorem (Completeness) Let \(\langle T, IC, Ab \rangle \) be an abductive program and \(G \) a goal. Suppose \((\Delta, \sigma) \) is an answer to \(G \) under 3-valued logic: \(T \cup \text{comp}(\Delta) \cup \text{CET} \models_3 G\sigma \land \forall XIC \). Then, there is a derivation from \(\forall X.G \land IC \) to a goal formula \(\Theta(E \lor \Phi) \), where \(E \) is not further reducible by any defined predicates, such that an answer \((\Delta', \sigma') \) can be extracted, based on \(E \), where \(\Delta' \) is a subset of \(\Delta \) and \(\sigma' \) is more general than \(\sigma \).

The difficulty for the 2-valued completion semantics is known to be caused by loops, e.g., with \(T = \{p \leftrightarrow \neg p\} \), any goal would follow in 2-valued logic.
Negation handled soundly: a side product

Example

Let $\langle T, \emptyset, \emptyset \rangle$ be an abductive program, where T is

\[
\{ p(X) \leftrightarrow \neg r(X, Y); \quad r(X, Y) \leftrightarrow X = a \land Y = b \}
\]

T is the completion of the normal program:

\[
p(X) \leftarrow \text{not } r(X, Y). \quad r(a, b).
\]

Clearly, $T \cup \text{CET} \models p(t)$, for any t in the language (including at least a and b). This can be shown using our rewrite system:

\[
p(V) \Rightarrow \exists Y \neg r(V, Y) \Rightarrow \exists Y (V \neq a \lor Y \neq b)
\]

On the other hand, we expect $\neg p(V)$ to be proved false.

\[
\neg p(V) \Rightarrow \forall Y r(V, Y) \Rightarrow \forall Y (V = a \land Y = b) \Rightarrow F
\]
Consider the faulty-lamp example. Suppose the abductive program is \(\langle T, \emptyset, \{\text{power_failure}, \text{empty}\} \rangle \), where \(T \) is

\[
\begin{align*}
\text{faulty_lamp} & \leftrightarrow \text{power_failure}(X) \land \neg \text{backup}(X) \\
\text{backup}(X) & \leftrightarrow \text{battery}(X, Y) \land \neg \text{empty}(Y) \\
\text{battery}(X, Y) & \leftrightarrow X = b \land Y = c
\end{align*}
\]

The abbreviations used below should be clear.

\[
\begin{align*}
fl & \Rightarrow [pf(X_{\exists 1}), \neg \text{backup}(X_{\exists 1})] \\
& \Rightarrow [pf(X_{\exists 1}), [\neg \text{batt}(X_{\exists 1}, X_{\forall 2}) \lor \text{emp}(X_{\forall 2})]] \\
& \Rightarrow [pf(X_{\exists 1}), [X_{\exists 1} \neq b \lor X_{\forall 2} \neq c \lor \text{emp}(X_{\forall 2})]] \\
& \Rightarrow [pf(X_{\exists 1}), X_{\exists 1} \neq b] \lor [pf(X_{\exists 1}), [X_{\forall 2} \neq c \lor \text{emp}(X_{\forall 2})]]
\end{align*}
\]

The first disjunct gives answer \((\{pf(t)\}, \emptyset) \), for any \(t \neq b \); for the second, we have \(\Delta = \{pf(t), \text{emp}(c)\} \), for any \(t \) in our language.
Future work

- The approach requires an efficient reasoner to reason about quantified equations and disequations.
- May further reduce the dependencies of disjuncts in a goal formula $\overline{\Theta(E \lor \Phi)}$.
- Rewrite strategies need to be addressed.