

Ioanis Nikolaidis
University of Alberta

Computing Science Department
<yannis@cs.ualberta.ca>

A SWiss Army Knife
for Wireless Sensor Networks

(Looking for)

mailto:yannis@cs.ualberta.ca

 November 14th, 2008 2

The Cast

• Ioanis Nikolaidis
• Pawel Gburzynski
• Mario Nascimento
• Eleni Stroulia
• Wlodek Olesinski
• Baljeet Malhotra
• Nicholas Boers
• Ashikur Rahman
• Benyamin Shimony

 November 14th, 2008 3

Motivation

• Distance between literature and practice.

• Questions about the proper development tools.

• Search for what might be useful abstractions.

• Ability to quickly move from idea to realization.

 November 14th, 2008 4

The Main Problem
• A significant part of the literature is implicitly

assuming high capability devices (even for
“elementary tasks” like routing).
– Will they work in “really small” platforms?

• Moore's Law can be interpreted in two ways. The
persistence on a single interpretation hinders our
appreciation of future possibilities.

• What is more “important”?
– 10 billion nodes at $10 a piece?
– 200 million nodes at $500 a piece?

• What is easier to “upgrade”?
– An electric shaver?
– Your most recent version of MS Windows?

 November 14th, 2008 5

Our Toys

Platform: DM2200

– RFM TR8100
– TI MSP430F148

• 48 KB Flash
• 2 KB RAM

– 916.5 MHz
• 916.3-916.7
• OOK on BPSK spreading
• 9.6 kbps

www.rfm.com

 November 14th, 2008 6

Disposable Computing

• Devices $20 or less can be thrown away after a
(possibly short) useful life, but still need code.

 November 14th, 2008 7

The Paradox
• Cheap devices require expensive development!

• One has to account for:
– Code development cost.
– Code reuse capabilities.

• Code production is the bottleneck to testing the
great ideas found in the literature.
– Simulation is a poor substitute.

• What helps development:
– Sufficiently high-level abstractions (but limited OS).
– A “natural” composition mechanism.

 November 14th, 2008 8

A Word about Standardization
• Claim: “Wireless Sensor Networks are not yet

successful because the protocols have only
recently been standardized, e.g., ZigBee.”

• What we should be asking is:
– “Does the developer spend more time because of

DL+PHY lack of standardization?”
– “Does the developer's work become significantly

more difficult when dealing with a proprietary
DL+PHY vs. a standard one?”

• Standardization at the higher layers is a struggle.
– Some brave efforts from the Open Geospatial

Consortium are reasons for hope, albeit “verbose”.

 November 14th, 2008 9

The TinyOS Story

• Admittedly the first serious attempt to provide an
open-source OS for wireless sensor networks.

• Currently, a source of frustration for many
developers. Value added products are not “free”.

• Model: event handlers and tasks
– Event handlers cannot be preempted.
– No task preemption as such (in “vanilla” TinyOS).
– Tasks executed in order posted (in “vanilla” TinyOS).
– No multi-threading as such.
– Dynamic memory allocation curtailed.
– “Wired” components useful but potentially hard to

track down how overall functionality composed.

 November 14th, 2008 10

The Essence of the Problem

code

data

stack

x
shared, ROM (flash)

needed anyway

gets in the way

 November 14th, 2008 11

The PicOS Alternative

• Protocol designers can (ought to be able to!)
describe protocols as finite state machines.

• A thread model allows for natural expression of
concurrency across “independent” strands of logic.

• PicOS: an OS tuned to small platforms:
– Implement concurrency as co-routines.
– Co-routines reduce the stack requirements.
– Express each process/thread as a FSM.
– Process preemption possible at state boundaries.
– Interrupts can preempt processes.
– Interrupts deliver “events” to processes/threads.

 November 14th, 2008 12

The PicOS Solution

process process process process

RAM

shared stack

private data

20 bytes of RAM per process
64 bytes of (global) stack goes a long way

 November 14th, 2008 13

Multi-Threading and CoRoutines

State B0

State B1State B1

State B2State B2

State B3State B3

State A0

State A1

State A2

State A3

State A4

 November 14th, 2008 14

process (sniffer, sess_t)
 char c;
 entry (RC_TRY)
 data->packet = tcv_rnp (RC_TRY, efd);
 data->length = tcv_left (data->packet);
 entry (RC_PASS)
 if (data->user != US_READY) {
 wait (&data->user, RC_PASS);
 delay (1000, RC_LOCKED);
 release;
 }
 ...
 entry (RC_LOCKED)
 ...
 entry (RC_ENP)
 tcv_endp (data->packet);
 signal (&data->packet);
 proceed (RC_TRY);
endprocess (1)

 November 14th, 2008 15

Architecture

micro-controller

the kernel

pluggable transceiver interface (TCV)

application TARP MAC

radio

phy

radio

API plugs TCP/IP?

 November 14th, 2008 16

A Higher Level View

• Building the OS is fine, but what about some basic
abstractions to help the developer? Which ones?

• “Solution”: read current literature, find patterns
and translate them to a handful of abstractions.

• Some first attempts:
 The Emergence of Networking Abstractions and

Techniques in TinyOS, by Levis et al. (NSDI 2004).
 Logical Neighborhoods : A Programming Abstraction

for Wireless Sensor Networks, by Luca & Gian
(DCOSS 2006).

 November 14th, 2008 17

Prime Candidates for Abstraction

• Path (route)

• Neighborhood

• Spanning structure

• Region

• Duty cycle

• ...

 November 14th, 2008 18

Paths
• Useful for all the obvious reasons (getting from A

to B, without concerns of how to get there).
– Why do we then care so much about the “next hop”

and the maintenance of such information?
– Most of the literature will have you believe we

should. It need not be so.
– Moreover, there is no reason for the intermediate

nodes to even be identified as “next hop”!

• We should care about a “path” which is
customizable to fit arbitrary forwarding decisions.
– Trade node capabilities for routing performance.
– TARP: Tiny Ad-Hoc Routing Protocol

 November 14th, 2008 19

How to Route in Wireless Sensors

am I the
recipient?

consume

YES

NO
rule 1

drop

rule 2
drop

rule n
drop

too many
hops?

NO

The rules are driven by
caches. If no information
is available in the cache,
the rule fails (fail-safe).

rebroadcast

fail

fail

fail

YES

drop

 November 14th, 2008 20

D destination
S source
s session tag 4
n packet number 5
k version (retransmission count) 4
r hop number limit 5
hf hops so far 5
hb total # of hops on reverse path 5
m slack 3
opf optimal path flag 1

TARP Header Information

(example
length in bits)

P
ac

ke
t

“S
ig

na
tu

re
”

 November 14th, 2008 21

Expressiveness: Drop Duplicates

packet
signature in

cache?

NO

fail

entry
expired?

YES

YES NO drop

The cache replacement policy is
under the programmer's control.
(Example: expiration time
proportional to expected distance
to destination.)

Cache key/entries:
<D,S,s,n,k>

 November 14th, 2008 22

Expressiveness: Suboptimal Path Discard

S DK

Cache key:
<N>

Cache entries:
<N,hNK,CNK>

For each arriving packet from N,
hf, is stored as the hNK value.
(Since duplicates already discarded,
hNK tends to represent the shortest path
from N to K.)

 November 14th, 2008 23

SPD (cont'd)

S DK

Suppose a packet from S arrives with a
particular hb, node K checks whether

 hDK > hb – hf

if yes, then it is very likely that a better
path exists from S to D not going through K.
It looks like a good idea to drop the packet.

Except the paths may not be symmetric,
and we need to be able to recover from
node failures and/or mobility.

hb (from packet)

hf

(from packet)
hDK

(from cache)

 November 14th, 2008 24

Relaxing SPD

S DK

hb (from packet)

hf

(from packet)
hDK

(from cache)

hDK> m+hb - hf ?

YES
drop

Increment CNK every time
the rule is successful. When
it reaches a certain
threshold, it forcibly fails
and resets CNK.

 November 14th, 2008 25

Additional Considerations

• Short burst of activity (fuzzy ack) to act as an
implicit confirmation that the packet will not be
dropped. Not a proper frame, but akin to a “tone”.

• An instance of cross-layering. The “fuzzy ACK” is
sent upon network layer decision to forward the
packet. It essentially absolves the sender of the
responsibility of handling the packet.

tpacket packet

DIFS
SIFS

fuzzy ack

 November 14th, 2008 26

Additional Considerations (cont'd)

• Multiple paths with equal length but within range
of each other. Set opf flag when the SPD fails (non-
forcibly). If opf is set, the DD rule compares
against packet queued for transmission. If the
queued hf is not less than hf-1 of the received
duplicate, the packet is dropped.

 November 14th, 2008 27

TARP Performance

 November 14th, 2008 28

Spanning Structures

• (Mainly) Spanning Trees

• Features:
– All nodes reachable.

• Basic ingredient for data collection and reporting.
– Ordering via the parent/child relationship.
– Logical separation of “interior” and “leaf” nodes.
– Restricted forms possible.

• For example spanning within a geographic area.
– Spanning tree can be tuned to application needs.

• What is the most useful spanning tree?

 November 14th, 2008 29

Clusters and Spanning Structure

• Name the interior nodes cluster-heads and the leaf
nodes as cluster members.

• The vast majority of cluster-based logical
structures present in the literature provide also a
strategy for connecting the clusters.

• Translate the what is a “good spanning structure”
question to what is a “good clustering structure”.

• Hence, check out the (Connected) Dominating Set.

 November 14th, 2008 30

An example physical topology.

 November 14th, 2008 31

A Dominating Set.

 November 14th, 2008 32

A Connected Dominating Set.
(4 transmissions)

 November 14th, 2008 33

CDS Spanning Structures

• We are interested in the Minimum CDS (MCDS)
– It represents the minimum number of transmissions

to “get to all nodes.”
– An NP-hard problem (even on UDGs) with some

known approximations including distributed ones.

• MCDS has received attention already:
– Routing in mobile ad-hoc networks: OLSR
– Multicasting in mobile ad-hoc networks, etc.
– As the other side of the coin: “Leafy” Spanning Trees

• Is MCDS a useful “universal” spanning structure?

 November 14th, 2008 34

An Example: Top-k Query

• Collect (periodically) information from sensors
such that the top-k values can be determined.

• A Database Sensor Query Processing favorite.
– Easily expresses min-k, max, and min.

• The literature calls for a spanning structure
(root=sink) without caring about its characteristics.
– Usually what is used is a minimum spanning tree, or

a shortest path tree (SPT).
– We will compare against a Dominating Set Tree

(DST) constructed as approx.(MCDS)U{Root}

 November 14th, 2008 35

TAG

 TAG: A Tiny Aggregation Service for Ad-Hoc Sensor
Networks, by Madden, Franklin, Hellerstein, and
Hong (OSDI 2002)

• Intuitive algorithm: perform aggregation on the
way from the source to the sink.

• A non-filtering approach. One-shot execution.
Repeats in every round, exactly the same way.

• No particular attention to the spanning structure
used for the data collection.

 November 14th, 2008 36

Let A be the root/sink.
Collect the top-2 values at A.

 November 14th, 2008 37

An SPT spanning tree.
(8 messages)

 November 14th, 2008 38

TAG [Madden at al., 2002]
version of top-2 on SPT.
(17 message units)

 November 14th, 2008 39

TAG [Madden at al., 2002]
version of top-2 on CDS.
(13 message units)

 November 14th, 2008 40

TAGP = TAG + Pruning

• Provide a threshold value when requesting sensor
values. The top-k is guaranteed to be above the
threshold.

• A sensor need not respond (*) if its value is below

the provided threshold.

• Refine (raise) the threshold as you traverse toward
the sink.

 (*) really we need scheduling and/or short responses

 November 14th, 2008 41

(a) (b)

 November 14th, 2008 42

(c)

TAGP of top-2 on CDS.
(12 message units)

 November 14th, 2008 43

Filtering-Based Approaches

• Useful for amortizing cost across multiple rounds.

• Intuition: temporal locality, i.e., the set of sensors
that gave the top-k values will likely be the same
giving the top-k values in the next round.

• Strategy: opt for a costly re-evaluation only if there
has been a (significant?) change in values.

• Semantics: we insist that a top-k query means the
k highest values with the possibility that many
nodes might be in a tie for each of these k values.

 November 14th, 2008 44

Previous Filtering Approaches

 Top-k Monitoring in Wireless Sensor Networks, by
Wu, Xu, Tang, and Lee (IEEE Trans. KDE, 2007).
– Introduced the FILA protocol.
– Somewhat odd semantics:

• Tracks the sensors with the k highest values, but not
their values (only approximately). No ties supported.

 Energy-Efficient Monitoring of Extreme Values in
Sensor Networks, by Silberstein, Braynard, and
Yang (SIGMOD, 2006).
– Introduced ATA (Adaptive Threshold Algorithm).
– Defined for top-1, i.e., max (min) query only.

 November 14th, 2008 45

ATA for Top-k (ATAK)

• The sensors that are part of the top-k in the
current round must report in the next round if
their value changes.

• The sensors with values below the top-k values are
given a threshold (min of top-k values). They must
report if they cross the threshold.

• Broadcasts (along the spanning structure) at the
end of each round, inform all nodes of the new
threshold.

 November 14th, 2008 46

ATAK Technical Details

• We have enough information to recompute the
top-k values (and corresponding sensors with each
one of the top-k values) with some exceptions.

• Summary of exceptions:
– (New) ties in the top-k space result in k' (<k) values

“surviving” in the next round, forcing a one-shot top-
(k-k') query to be executed (over the non-top-k
values, facilitated by the spanning structure).

– If more nodes “vacated” the top-k space (say m)
than moved from non-top-k to top-k, we need find all
values (from non-top-k space) that are greater than
the (k-k')-th highest value from the set of m values
that “dipped” below the threshold (facilitated by the
spanning structure).

 November 14th, 2008 47

Message Overhead

ρ = radio range

 November 14th, 2008 48

Message Overhead (cont'd)

γ = prob of change δ =% of change

 November 14th, 2008 49

Message Overhead (cont'd)

 November 14th, 2008 50

Message Overhead (cont'd)

Intel dataset.

 November 14th, 2008 51

Energy Cost

Rc = Er/Et

 November 14th, 2008 52

Dealing with (Rare) Failures
• Node failures: no real options

– If non-leaf, then reconstruct tree.
• Link failures: exploit top-k semantics

– Opportunistically, attempt (locally) to determine if
the failure has distorted the result. If yes, using a
unicast (“shortcut”) alert the sink and send the
value(s) that were not seen.

• Opportunistic failure determination
– If we overheard the parent transmit an inconsistent

result, then alert sink.
– If the parent's transmission was not received, then

ask the neighbors if they heard the parent's
transmission. (Have at least 2-hop neighbor info.)

– What gets in the way: scheduling (not solved).

 November 14th, 2008 53

Application Error Rate and Energy Cost

α = (individual) link error rate
ε = Application error rate

(Fraction of rounds with incorrect top-k results.)

 November 14th, 2008 54

Lessons

• A spanning structure based on an underlying
“clustering” (like MCDS) introduces sensitivity to
the density and scale of the network that might
not be a good match for “naive” algorithms if the
cluster does not perform “aggressive” reduction of
data volume.

• A good use of an MCDS-based tree is when it is
known that the protocol has to employ broadcasts
for “state update” (like the threshold).

• But broadcasts should be used sparingly, so a
suggested match would be for algorithms where
broadcasts are “amortizable” over longer time
frames.

 November 14th, 2008 55

Instead of Conclusions: Pie-in-the-sky

• Provide (web) applications access to sensor data
by transforming sensors to “first class citizens” of
the cyber-infrastructure (à la SOA).

• Technical Issues: reliability, security, routing,
energy consumption, hostile deployment
environments, long-term maintenance.

• Challenges:
– abstractions (expressions of elementary

protocols) & interface layer to express
elementary sensor behaviors to make them
accessible to programmers, ...

– … and we did not even touch the need for multi-
tiered code distribution tools & architecture

 November 14th, 2008 56

Thanks

	A SWiss Army Knife for Wireless Sensor Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

