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Motivation

• Distance between literature and practice.

• Questions about the proper development tools.

• Search for what might be useful abstractions.

• Ability to quickly move from idea to realization.
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The Main Problem
• A significant part of the literature is implicitly 

assuming high capability devices (even for 
“elementary tasks” like routing).
– Will they work in “really small” platforms? 

• Moore's Law can be interpreted in two ways. The 
persistence on a single interpretation hinders our 
appreciation of future possibilities.

• What is more “important”?
– 10 billion nodes at $10 a piece? 
– 200 million nodes at $500 a piece?

• What is easier to “upgrade”?
– An electric shaver?
– Your most recent version of MS Windows?
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Our Toys

Platform: DM2200 

– RFM TR8100
– TI MSP430F148

• 48 KB Flash
• 2 KB RAM

– 916.5 MHz 
• 916.3-916.7
• OOK on BPSK spreading
• 9.6 kbps

www.rfm.com
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Disposable Computing

• Devices $20 or less can be thrown away after a 
(possibly short) useful life, but still need code.
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The Paradox
• Cheap devices require expensive development!

• One has to account for:
– Code development cost.
– Code reuse capabilities.

• Code production is the bottleneck to testing the 
great ideas found in the literature. 
– Simulation is a poor substitute. 

• What helps development:
– Sufficiently high-level abstractions (but limited OS).
– A “natural” composition mechanism.
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A Word about Standardization
• Claim: “Wireless Sensor Networks are not yet 

successful because the protocols have only 
recently been standardized, e.g., ZigBee.”

• What we should be asking is: 
– “Does the developer spend more time because of 

DL+PHY lack of standardization?”  
– “Does the developer's work become significantly 

more difficult when dealing with a proprietary 
DL+PHY vs. a standard one?”

• Standardization at the higher layers is a struggle.
– Some brave efforts from the Open Geospatial 

Consortium are reasons for hope, albeit “verbose”.
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The TinyOS Story

• Admittedly the first serious attempt to provide an 
open-source OS for wireless sensor networks. 

• Currently, a source of frustration for many 
developers. Value added products are not “free”. 

• Model: event handlers and tasks
– Event handlers cannot be preempted.
– No task preemption as such (in “vanilla” TinyOS).
– Tasks executed in order posted (in “vanilla” TinyOS).
– No multi-threading as such.
– Dynamic memory allocation curtailed.
– “Wired” components useful but potentially hard to 

track down how overall functionality composed.
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The Essence of the Problem

code

data

stack

x
shared, ROM (flash)

needed anyway

gets in the way
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The PicOS Alternative

• Protocol designers can (ought to be able to!) 
describe protocols as finite state machines. 

• A thread model allows for natural expression of 
concurrency across “independent” strands of logic.

• PicOS: an OS tuned to small platforms:
– Implement concurrency as co-routines.
– Co-routines reduce the stack requirements.
– Express each process/thread as a FSM.
– Process preemption possible at state boundaries.
– Interrupts can preempt processes.
– Interrupts deliver “events” to processes/threads. 
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The PicOS Solution

process process process process

RAM

shared stack

private data

20 bytes of RAM per process
64 bytes of (global) stack goes a long way
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Multi-Threading and CoRoutines

State B0

State B1State B1

State B2State B2

State B3State B3

State A0

State A1

State A2

State A3

State A4
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process (sniffer, sess_t)
    char c;
    entry (RC_TRY)
        data->packet = tcv_rnp (RC_TRY, efd);
        data->length = tcv_left (data->packet);
    entry (RC_PASS)
        if (data->user != US_READY) {
            wait (&data->user, RC_PASS);
            delay (1000, RC_LOCKED);
            release;
        }
        ...
    entry (RC_LOCKED)
        ...
    entry (RC_ENP)
        tcv_endp (data->packet);
        signal (&data->packet);
        proceed (RC_TRY);
endprocess (1)
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Architecture

micro-controller

the kernel

pluggable transceiver interface (TCV)

application TARP MAC

radio

phy

radio

API plugs TCP/IP?
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A Higher Level View

• Building the OS is fine, but what about some basic 
abstractions to help the developer?  Which ones?

• “Solution”:  read current literature, find patterns 
and translate them to a handful of abstractions.

• Some first attempts:
   The Emergence of Networking Abstractions and 

Techniques in TinyOS, by Levis et al. (NSDI 2004).
   Logical Neighborhoods : A Programming Abstraction 

for Wireless Sensor Networks, by Luca & Gian 
(DCOSS 2006).
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Prime Candidates for Abstraction

• Path (route) 

• Neighborhood 

• Spanning structure 

• Region 

• Duty cycle 

• ...
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Paths
• Useful for all the obvious reasons (getting from A 

to B, without concerns of how to get there).
– Why do we then care so much about the “next hop” 

and the maintenance of such information?
– Most of the literature will have you believe we 

should. It need not be so. 
– Moreover, there is no reason for the intermediate 

nodes to even be identified as “next hop”!

• We should care about a “path” which is 
customizable to fit arbitrary forwarding decisions.
– Trade node capabilities for routing performance.
– TARP: Tiny Ad-Hoc Routing Protocol
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How to Route in Wireless Sensors

am I the
recipient?

consume

YES

NO
rule 1

drop

rule 2
drop

rule n
drop

too many
hops?

NO

The rules are driven by 
caches. If no information 
is available in the cache, 
the rule fails (fail-safe).

rebroadcast

fail

fail

fail

YES

drop
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D destination
S source
s session tag 4
n packet number        5
k version (retransmission count) 4
r hop number limit        5
hf hops so far        5
hb total # of hops on reverse path  5
m slack        3
opf optimal path flag        1

TARP Header Information

(example
length in bits)

P
ac

ke
t  

“S
ig

na
tu

re
”
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Expressiveness: Drop Duplicates

packet
signature in

cache?

NO

fail

entry
expired?

YES

YES NO drop

The cache replacement policy is 
under the programmer's control. 
(Example: expiration time 
proportional to expected distance 
to destination.)

Cache key/entries: 
<D,S,s,n,k>
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Expressiveness: Suboptimal Path Discard

S DK

Cache key: 
<N>

Cache entries: 
<N,hNK,CNK>

For each arriving packet from N, 
hf, is stored as the hNK value. 
(Since duplicates already discarded,
hNK tends to represent the shortest path 
from N to K.)
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SPD (cont'd)

S DK

Suppose a packet from S arrives with a 
particular hb, node K checks whether

         hDK > hb – hf 

if yes, then it is very likely that a better
path exists from S to D not going through K. 
It looks like a good idea to drop the packet.

Except the paths may not be symmetric,
and we need to be able to recover from
node failures and/or mobility.

hb (from packet) 

hf

(from packet)
hDK

(from cache) 
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Relaxing SPD

S DK

hb (from packet) 

hf

(from packet)
hDK

(from cache) 

hDK> m+hb - hf ?

YES
drop

Increment CNK every time 
the rule is successful. When 
it reaches a certain 
threshold, it forcibly fails 
and resets CNK.



 November 14th, 2008 25

Additional Considerations

• Short burst of activity (fuzzy ack) to act as an 
implicit confirmation that the packet will not be 
dropped. Not a proper frame, but akin to a “tone”.

• An instance of cross-layering. The “fuzzy ACK” is 
sent upon network layer decision to forward the 
packet. It essentially absolves the sender of the 
responsibility of handling the packet. 

tpacket packet

DIFS
SIFS

fuzzy ack
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Additional Considerations (cont'd)

• Multiple paths with equal length but within range 
of each other. Set opf flag when the SPD fails (non-
forcibly). If opf is set, the DD rule compares 
against packet queued for transmission. If the 
queued hf is not less than hf-1 of the received 
duplicate, the packet is dropped.
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TARP Performance
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Spanning Structures

• (Mainly) Spanning Trees

• Features:
– All nodes reachable.

• Basic ingredient for data collection and reporting.
– Ordering via the parent/child relationship.
– Logical separation of “interior” and “leaf” nodes.
– Restricted forms possible.

• For example spanning within a geographic area.
– Spanning tree can be tuned to application needs.

• What is the most useful spanning tree?
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Clusters and Spanning Structure

• Name the interior nodes cluster-heads and the leaf 
nodes as cluster members. 

• The vast majority of cluster-based logical 
structures present in the literature provide also a 
strategy for connecting the clusters. 

• Translate the what is a “good spanning structure” 
question to what is a “good clustering structure”.

• Hence, check out the (Connected) Dominating Set.
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An example physical topology.
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A Dominating Set.
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A Connected Dominating Set.
(4 transmissions)
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CDS Spanning Structures

• We are interested in the Minimum CDS (MCDS)
– It represents the minimum number of transmissions 

to “get to all nodes.”
– An NP-hard problem (even on UDGs) with some 

known approximations including distributed ones.

• MCDS has received attention already:
– Routing in mobile ad-hoc networks: OLSR 
– Multicasting in mobile ad-hoc networks, etc.
– As the other side of the coin: “Leafy” Spanning Trees

• Is MCDS a useful “universal” spanning structure?
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An Example: Top-k Query

• Collect (periodically) information from sensors 
such that the top-k values can be determined.

• A Database Sensor Query Processing favorite.
– Easily expresses min-k, max, and min.

• The literature calls for a spanning structure 
(root=sink) without caring about its characteristics. 
– Usually what is used is a minimum spanning tree, or 

a shortest path tree (SPT). 
– We will compare against a Dominating Set Tree 

(DST) constructed as approx.(MCDS)U{Root}
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TAG 

   TAG: A Tiny Aggregation Service for Ad-Hoc Sensor 
Networks, by Madden, Franklin, Hellerstein, and 
Hong (OSDI 2002)

• Intuitive algorithm: perform aggregation on the 
way from the source to the sink. 

• A non-filtering approach. One-shot execution. 
Repeats in every round, exactly the same way.

• No particular attention to the spanning structure 
used for the data collection.



 November 14th, 2008 36

Let A be the root/sink. 
Collect the top-2 values at A.
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An SPT spanning tree.
(8 messages)
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TAG [Madden at al., 2002]
version of top-2 on SPT.
(17 message units)
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TAG [Madden at al., 2002]
version of top-2 on CDS.
(13 message units)
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TAGP = TAG + Pruning

• Provide a threshold value when requesting sensor 
values. The top-k is guaranteed to be above the 
threshold.

  
• A sensor need not respond (*) if its value is below 

the provided threshold. 

• Refine (raise) the threshold as you traverse toward 
the sink. 

 (*) really we need scheduling and/or short responses
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(a) (b)
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(c)

TAGP of top-2 on CDS.
(12 message units)
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Filtering-Based Approaches

• Useful for amortizing cost across multiple rounds. 

• Intuition: temporal locality, i.e., the set of sensors 
that gave the top-k values will likely be the same 
giving the top-k values in the next round. 

• Strategy: opt for a costly re-evaluation only if there 
has been a (significant?) change in values.

• Semantics: we insist that a top-k query means the 
k highest values with the possibility that many 
nodes might be in a tie for each of these k values.
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Previous Filtering Approaches

   Top-k Monitoring in Wireless Sensor Networks, by 
Wu, Xu, Tang, and Lee (IEEE Trans. KDE, 2007).
– Introduced the FILA protocol. 
– Somewhat odd semantics:

• Tracks the sensors with the k highest values, but not 
their values (only approximately). No ties supported.

   Energy-Efficient Monitoring of Extreme Values in 
Sensor Networks, by Silberstein, Braynard, and 
Yang (SIGMOD, 2006).
– Introduced ATA (Adaptive Threshold Algorithm).
– Defined for top-1, i.e., max (min) query only.
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ATA for Top-k (ATAK)

• The sensors that are part of the top-k in the 
current round must report in the next round if 
their value changes.

• The sensors with values below the top-k values are 
given a threshold (min of top-k values). They must 
report if they cross the threshold. 

• Broadcasts (along the spanning structure) at the 
end of each round, inform all nodes of the new 
threshold.
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ATAK Technical Details

• We have enough information to recompute the 
top-k values (and corresponding sensors with each 
one of the top-k values) with some exceptions.

• Summary of exceptions:
– (New) ties in the top-k space result in k' (<k) values 

“surviving” in the next round, forcing a one-shot top-
(k-k') query to be executed (over the non-top-k 
values, facilitated by the spanning structure).

– If more nodes “vacated” the top-k space (say m) 
than moved from non-top-k to top-k, we need find all 
values (from non-top-k space)  that are greater than 
the (k-k')-th highest value from the set of m values 
that “dipped” below the threshold (facilitated by the 
spanning structure).
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Message Overhead

ρ = radio range
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Message Overhead (cont'd)

γ = prob of change δ =% of change
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Message Overhead (cont'd)
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Message Overhead (cont'd)

Intel dataset.
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Energy Cost

Rc = Er/Et
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Dealing with (Rare) Failures
• Node failures: no real options

– If non-leaf, then reconstruct tree.
• Link failures: exploit top-k semantics

– Opportunistically, attempt (locally) to determine if 
the failure has distorted the result. If yes, using a 
unicast (“shortcut”) alert the sink and send the 
value(s) that were not seen.

• Opportunistic failure determination
– If we overheard the parent transmit an inconsistent 

result, then alert sink.
– If the parent's transmission was not received, then 

ask the neighbors if they heard the parent's 
transmission. (Have at least 2-hop neighbor info.)

– What gets in the way: scheduling (not solved). 
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Application Error Rate and Energy Cost

α = (individual) link error rate
ε = Application error rate

(Fraction of rounds with incorrect top-k results.) 
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Lessons

• A spanning structure based on an underlying 
“clustering” (like MCDS) introduces sensitivity to 
the density and scale of the network that might 
not be a good match for “naive” algorithms if the 
cluster does not perform “aggressive” reduction of  
data volume.

• A good use of an MCDS-based tree is when it is 
known that the protocol has to employ broadcasts 
for “state update” (like the threshold).

• But broadcasts should be used sparingly, so a 
suggested match would be for algorithms where 
broadcasts are “amortizable” over longer time 
frames.
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Instead of Conclusions: Pie-in-the-sky

• Provide (web) applications access to sensor data 
by transforming sensors to “first class citizens” of 
the cyber-infrastructure (à la SOA). 

• Technical Issues: reliability, security, routing, 
energy consumption, hostile deployment 
environments, long-term maintenance.

• Challenges: 
– abstractions (expressions of elementary 

protocols) & interface layer to express 
elementary sensor behaviors to make them 
accessible to programmers, ...

– … and we did not even touch the need for multi-
tiered code distribution tools & architecture
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Thanks
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