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Abstract

Reinforcement learning is a general formalism for sequential
decision-making, with recent algorithm development focus-
ing on function approximation to handle large state spaces
and high-dimensional, high-velocity (sensor) data. The suc-
cess of function approximators, however, hinges on the qual-
ity of the data representation. In this work, we explore repre-
sentation learning within batch reinforcement learning, with
a focus on making the assumptions on the representation ex-
plicit and making the learning problem amenable to prin-
cipled optimization techniques. We specify a reinforcement
learning objective for value function learning that facilitates
the addition of a regularized matrix factorization objective
to specify the desired class of representations. The result-
ing joint optimization over the representation and value func-
tion parameters enables us to take advantages of recent ad-
vances in unsupervised learning and presents a general yet
simple formalism for learning representations in reinforce-
ment learning.

Introduction

For tasks with large state or action spaces, where tabular
representations are not feasible, reinforcement learning al-
gorithms typically rely on function approximation. Whether
they are learning the value function, policy or models, the
success of function approximation techniques hinges on the
quality of the representation. Typically, representations are
hand-crafted, with some common representations including
tile-coding, radial basis functions, polynomial basis func-
tions and Fourier basis functions (Sutton 1996; Konidaris
et al. 2011). Automating feature discovery, however, alle-
viates this burden and has the potential to significantly im-
prove learning.

Representation learning techniques in reinforcement
learning first define a representation set (implicitly or ex-
plicitly) and then optimize an objective or use heuristics
to select a “good” representation from that set. For exam-
ple, for feature selection, the set of representations is all
possible subsets of the given features. There are numer-
ous methods to find a representation from this set, such
as ¢; regularized least-squares temporal difference learn-
ing (LSTD) (Kolter and Ng 2009), sparse LSTD using
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LASSO (Loth et al. 2007), feature selection based on the
Bellman error (Parr et al. 2008; Painter-Wakefield and Parr
2012) and online feature selection for model-based rein-
forcement learning (Nguyen et al. 2013). Another possible
set of features is a subspace of the original feature space.
One heuristic approach to find a representation in this set
is to use random projections (Ghavamzadeh et al. 2010;
Fard et al. 2013); another is an optimization approach that
uses /5 regularized LSTD (Farahmand et al. 2008). Another
approach is to optimize parameters of the commonly used
basis functions and tile coding representations in reinforce-
ment learning. Again, this involves heuristic approaches,
such as adaptive tile coding (Whiteson et al. 2007), as well
as explicit objectives, such as maximizing likelihood of pa-
rameters for basis functions (Menache et al. 2005).

The choice of set strongly influences the ability to op-
timally select the representation. Though some sets may
be more powerful, such as neural network representations,
the optimization can become more difficult. Heuristic ap-
proaches to find a representation in this set can be sim-
ple, such as random representations (Sutton and Whitehead
1993) and linear threshold unit search (Mahmood and Sutton
2013); others are computationally intensive optimizations of
layered objectives, such as neural-Q iteration (Riedmiller
2005), evolutionary algorithms like NEAT (Stanley and Mi-
ikkulainen 2002) and deep reinforcement learning (Mnih et
al. 2013). Similarly, the set of instance-based representa-
tions can be very powerful, since kernel representations are
non-parametric and use a linear optimization to enable non-
linear learning with respect to the original feature space.
These approaches can have issues with storage of sam-
ples/states or choosing representative instances, such as in
locally weighted regression (Atkeson and Morimoto 2003),
sparse distributed memories (Ratitch and Precup 2004) and
proto-value functions (Mahadevan and Maggioni 2007).

Regardless of the approach, it is key to (1) make the rep-
resentation learning set explicit, so the algorithm target is
clear, (2) connect the representation selection to learning
performance and (3) facilitate selection of the representation
from that set. We propose to look at representation learning
as a matrix factorization: factorizing the features in a ba-
sis dictionary and new representation. Matrix factorization
has been an important advance in unsupervised learning,
because it unifies many unsupervised learning algorithms



into one framework (Xu et al. 2009; White and Schuurmans
2012; De la Torre 2012), including (exponential family)
principal components analysis, k-means clustering, mixture
model clustering, canonical correlation analysis and normal-
ized graph cut. Moreover, there have been important ad-
vances in convex formulations for a restricted class of matrix
factorization problems (Bach et al. 2008; Zhang et al. 2011;
White et al. 2012), facilitating optimization for at least two
important classes of representation learning: sparse coding
and subspace learning.

In this work, we show how to extend Bellman residual
minimization to include an unsupervised, matrix factoriza-
tion component that ports these advances to reinforcement
learning. Regularized matrix factorization clarifies the as-
sumptions on the data distribution (from the chosen loss) and
structure of the representation (from the chosen regularizer).
In addition to making the representation set explicit and fa-
cilitating optimization, our proposed joint objective over the
representation and value function function parameters con-
nects the representation selection to prediction performance.

Our main contribution is an explicit joint optimization
over the value function parameters and the representation
that is amenable to known optimization techniques, includ-
ing convex reformulation techniques. In most previous rep-
resentation learning approaches with regularization, only
the weights are regularized, with the representation remain-
ing fixed. In the below approach, however, the represen-
tation itself is imputed, enabling more general properties
to be placed on the representation. In particular, for cer-
tain forms, such as subspace and sparse representations,
there are known convex reformulations (Zhang et al. 2011;
White et al. 2012) that guarantee a globally optimal pair
of value function parameters and representation. We indi-
cate the required restrictions on the chosen objective for
learning the value function parameters and the representa-
tion structure that enables a convex reformulation. More-
over, we show that the mean-squared project Bellman error
is not suitable for joint imputation of the value function pa-
rameters and the representation. We develop the optimiza-
tion using the Bellman residual; the approach, however, is
general and could use other reinforcement learning objec-
tives for the value function parameters.

Background

In reinforcement learning, an agent interacts with its en-
vironment, receiving observations and selecting actions to
maximize a scalar reward signal provided by the environ-
ment. This interaction is usually modeled by a Markov de-
cision process (MDP). An MDP consists of (S, A, P, R)
where S is the set of states; A is a finite set of actions; P, the
transition function, which describes the probability of reach-
ing a state s’ from a given state and action (s, a); and finally
the reward function R(s"), which returns a scalar value for
transitioning from state-action (s, a) to state s’. The state of
the environment is said to be Markov if Pr(s;i1|st,a:) =
PT’(St+1|St, Aty ... 50, (10)-

Learning a Value Function

One important goal in reinforcement learning is to learn the
value function for a policy. A value function approximates
the expected total discounted future reward for following
policy 7 : § x A — [0, 1] from a given state s;:

V7T (st) =

o0
E Y 7" R(sesn) ‘ si ~ P([si—1,ai-1),a; ~ 7(-[s;)
k=0
This value function satisfies the Bellman equation

V™(s) = R(s) + ’yZﬂ(a|s) ZP(S/|S, a)V™(s') (1)

For a finite number of states and actions, this formula can be
re-expressed in terms of matrices and vectors for each state

Vi =R+~yP™VT"
where V™, R € R"” are vectors of state values and rewards,

and P™ € R™*™ is the probability of transitioning between
two states under policy 7

Pf; = w(als = i)P(s' = j|s = i,a)
a

Given the reward function and transition probabilities, the
solution can be analytically obtained: V™ = (I —yP™)"1R.

In practice, however, we likely have a prohibitively large
state-action space. The typical strategy in this setting is to
use function approximation to learn V™ (s) from a trajec-
tory of samples: a sequence of states, actions, and rewards
S0, @0, 70,81, 01,71, 82, T2, 02 ..., Where sg is drawn from
the start-state distribution, s;y1 ~ P(:|s¢,a;) and a; ~
7(-|s¢). Commonly, a linear function is assumed:

VT(s) = ¢ (s)w

for w € R¥ a parameter vector and ¢ : S — R” a feature
function describing states. With this approximation, how-
ever, typically we can no longer satisfy the Bellman equa-
tion in (1), since solving for dw = R + yP"®w with
® ¢ R™** may not be defined if ® is not invertible. Rein-
forcement learning algorithms, such as LSTD and Bellman
residual minimization, therefore focus on finding an approx-
imate solution to the Bellman equation, despite this repre-
sentation issue.

Factorized representation learning

We now specify a joint optimization over these value func-
tion parameters and the representation. Let L,(®,w) be
the chosen objective for learning the value function pa-
rameters, w. For example, L, (®,w) = MSPBE(®, w) or
L,(®,w) = BR(®,w), described in the next section. In
particular, for convex reformulations, we will require that
L,(®,w) is convex in each parameter; in general, however,
it can be any loss for which a gradient is computable for .

We augment this optimization to specify representation
learning in terms of regularization strategies used in unsu-
pervised learning. In particular, we can add a regularized
matrix factorization loss to find a representation:

i L.(®PB, X Reg(®
@e]fc%lnlgk,BeB ( )+ azReg(®)



where L, is any loss, X € R™*? is the default (expanded)
feature set, B € B C R¥*? is a learned basis dictionary and
ag is the weight on the regularizer. For example, X could
be all cross products of the observations, or a default set of
randomly generated basis functions. To obtain binary fea-
tures, set F = {® € {0,1}"*k}, or for probabilistic fea-
tures, F = {® € [0,1]"*k}. The structure of the learned
representation ®, depends on the chosen regularizer. For ex-
ample, Reg(®) = ||®||1,; imposes sparsity and ||® |21
imposes a subspace structure to reduce the dimension of the
representation. Both of these forms can be useful for deal-
ing with high-dimensional, high-volume data. Note that we
could also include a regularizer on B; for simplicity in pre-
sentation, however, we omit this addition.

We obtain the following Factorized-Representation RL
(FR-RL) optimization,

min  L,(®,w) + a1 L. (PB, X) + asReg(P)
w,P,BeB

where o is included to enable control on the importance of
all three components in the objective. This new joint opti-
mization combines a supervised and unsupervised loss, di-
recting representation learning based both on the desired
structure and on prediction performance. For a fixed repre-
sentation, ®, the optimization reduces to learning the value
function parameters for the learned representation. An out-
of-the-box optimization approach, therefore, is simply to al-
ternate between the variables using gradient descent algo-
rithms or to use gradient descent on the representation vari-
ables @ and B and solve each inner optimization over w on
each gradient step. Though in general, this approach may be
the only option for certain choices of constraint sets F and
B, regularizers and loss functions, in the next two section,
we show settings in which we can reformulate FR-RL as a
convex optimization.

Objective functions for Factorized Representations

Two widely used objective in reinforcement learning are the
the Bellman residual (BR) (Baird 1995):

min [|[®w — T(®w)||% = min ||dw — (R +yP"dw)|%,
wERF wERF

mean-squared projected Bellman error (MSPBE) (Sutton et
al. 2009):

min || ®w — II(R +yP"dw)|%,
wERF
where D € [0, 1]"*™ is a diagonal matrix giving the distri-
bution over states, ||z||2, = z " Dz and the projection matrix
for linear value functions is Il = ®(® " D®)~1® T D.
Though both have useful properties (Scherrer 2010), we
can see that the MSPBE is not a suitable choice for this joint
optimization because it can be solved with zero error for
each set of features. Assuming that we the transition model
and reward function are given, the closed form LSTD solu-
tion to the MSPBE is (Bradtke and Barto 1996):

w=(2"D®) " & D (R+~P dw)
= dw =II(R+~yP"0dw) = IIT(dw)

Therefore, setting L, = MSPBE produces a two stage ap-
proach, where features are learned in a completely unsuper-
vised way and prediction performance does not influence ®.

The Bellman residual, however, does result in an interest-
ing optimization. Moreover, it is convex in both ® and w,
which is also not the case MSPBE. We first present opti-
mization approaches to our factorized representation objec-
tive with the Bellman residual assuming we have access to
the transition model and reward function; we describe how
to move to a trajectory of samples in the last section.

Improved optimization for FR-BRM

Let C = [w B] € C, where C is a constraint set on C. We
use a change of variables, 71 = ®w, Z5 = ®B to obtain a
simpler optimization. For current convex reformulations, we
need to assume a norm regularizer, Reg(®) = ||®||. Set

L,(®,w) = [|(I - vP")@w — R|[}) = BR(®, )
then we get the following reformulation of the FR-BRM

min ||(I_WPW)@W_RH%)

2
C=[w BJ]eC,® + alL(@B,X)+a2||q)|| ()

= i I —~P™Z, — 2 LTZ7X Z
er[%lanQ]H( YP™)Zy — R|p + Ly (Z2, X) + o] Z]|

where

12l = min ~ min /2|
is the induced norm given the norm on ®. We can simplify
further using Y = [R X]and e; = [10...0], giving

mZin L(Z)Y) + ao||Z]| 3)

where L now contains both the loss between ®B
and X and the loss between ®w and [R. Note that
(I —~P™)Z; — R||2D is convex in Z; since multiplying by
a positive matrix maintain convexity: (I —~P™) simply puts
weights on instances.

Recent advances in (semi-supervised) matrix factoriza-
tion (Bach et al. 2008; Zhang et al. 2011; White et al.
2012) indicate that the induced regularizer || - || is convex
as long as the regularizer on ® sums over all latent features,

ie. Zle [|®.:]| where 1 < k < oo and for a restricted
class of constraint sets, C. See the Appendix for a list of
efficiently computable convex induced regularizers on Z.
Though this list is currently quite restricted, FR-BRM does
not rely on the above set and can advance as more efficiently
computable induced regularizers are discovered. The ability
to benefit from advances in the large field of unsupervised
learning is a strong benefit of FR-BRM.

Once we obtain Z, we can use a boosting procedure to re-
cover the parameters C' and ® (Zhang et al. 2012). For cer-
tain settings, it is more simple; for example, for C = {C :
|Cs:]l2 < 1} and |[® T ||z, the recovery is simply a sin-
gular value decomposition: for Z = QXM T with @ and
M orthonormal and ¥ a diagonal matrix of singular values,
C=MT"and ® = QX.



Learning from samples

To practically deal with real-world streams of data and large
state-spaces, we cannot assume we have explicit knowledge
of the (large) transition model P™ and R. Though these
could be learned, it is often desirable to be able to solve the
parameters without needing to find these models.

To avoid using the models, we define matrices approxi-
mated from sampled quartets (s;, a;, i, S})

f(Sl)T T1
_ f(52)—r _ T2
X = . ,R=

f(St)T Tt

where f : S — R? is the feature function for the initial set
of features, such as the observations. Unlike previous LSTD
and BRM sampled approaches, however, we cannot sample
both ® and &' = P7®, because the features are being im-
puted. Instead, we must directly approximate P™ to get the
corresponding instance weights in the loss. Fortunately, this
linear transformation is quite simple in practice, since P’ is
d shifted by one index. For example, if X is a sequential
stream of data, then we define

0 1 0 0
0 0 1 0
pr =
0 ... 0 1 0
0 ... 0 0 1
0 0 0 0

In general, the samples might not always be perfectly
aligned or in order, such as for offline trajectories or episode
ends; in such cases, the permutation matrix P™ would have
to be defined to take these discontinuities into account.

The resulting model-free FR-BRM optimization for Y =
[R X] can now be stated as:

2

' I —~P")ow — R
omin 7=y P)2w

D
+ a1 L, (®B, X) + as||®||

= min

R 2
I —~P™VZ —RH
Z=[2, Zs] (I=~P")2 D

+ Ly (22, X) + az|| Z]|

Discussion

Several questions arise from viewing representation learning
for reinforcement learning under the FR-BRM optimization.

The first natural question is about the generality of this
approach. Because the set of regularizers on ® to obtain a
convex formulation is limited, this suggests few structures
can be chosen. If we do not require convexity, however, we
can use a wider class of regularizers in Equation (2). For
example, if we wanted to learn a representation similar to tile
coding, we could add the constraint that ® € [0, 1] and use
a large regularizer weight on a sparsity regularizer to push
most entries to zero. This optimization is no longer convex,

but we can still optimize the non-convex objective over the
variables w, B and ®.

In addition, we can notice an interesting generalization
of Bellman residual minimization by generalizing the least-
squares loss on the reward prediction to any convex loss in
Equation (3). If we choose a Bregman divergence, for ex-
ample, this generalization suggests certain distributional as-
sumptions on the reward (White and Schuurmans 2012). The
relationship to fixed-point interpretations, however, becomes
unclear and requires further exploration.

Second, it is important to notice that FR-BRM maintains
the original properties of the value-function learning ob-
jective. A complaint about the sparse LASSO approach to
LSTD (Loth et al. 2007) was that the fixed-point interpre-
tation was lost after adding a sparse regularizer. In this sit-
uation, however, if we compute and fix the representation
in the optimization, we revert to learning the value function
parameters according to the chosen reinforcement learning
objective, such as the Bellman residual or MSPBE.

Third, we need to consider computational complexity,
which is typically a large consideration for high-velocity,
high-dimensional data that occurs in realistic sequential
decision-making tasks. The types of representations the for-
malism specifies, such as sparse or subspace representations,
is key for high-dimensional data. The current algorithms for
this objective, however, have poor computational complex-
ity. One strategy is to develop an online approach for opti-
mizing FR-BRM, which has been possible for several regu-
larized matrix factorization problems (Warmuth and Kuzmin
2008; Mairal et al. 2010). Generally, however, there has been
little development of online algorithms for regularized ma-
trix factorization; this is likely the most crucial research di-
rection for making FR-BRM a practical option. I would ar-
gue, however, that the computational complexity of the rep-
resentation learning component itself is not as crucial as pro-
ducing and using the representation. Representation learn-
ing could be viewed as a difficult, “life-long” problem: a
representation for an observation must be produced quickly
for the value function learner to make predictions quickly,
but the representation basis/function itself can be improved
more slowly in the background. This representation hypoth-
esis does not negate the need for tractable approaches, but
does suggest a direction to focus computational efforts.

Finally, it is important to consider issues with using
the MSPBE for learning or selecting representations. Pre-
vious work combined the MSPBE and /¢; regularization
on the value function parameters (Kolter and Ng 2009;
Painter-Wakefield and Parr 2012). This regularization, how-
ever, is not balanced with prediction quality, since MSPBE
prediction quality is not tied to the representation. In fact,
the optimal choice of value function parameters zeros all but
one entry, since the ¢; loss will be minimal and minimizing
the MSPBE for the single feature gives zero loss.

Overall, formalizing representation learning as a matrix
factorization facilitates extending recent and upcoming ad-
vances in unsupervised learning to the reinforcement learn-
ing setting. The generality of the approach and easy to un-
derstand optimization make it a promising direction for rep-
resentation learning in reinforcement learning.
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Appendix

List of known convex induced regularizers

The introduced matrix factorization approach for representation learning formalized the approach using a constraint set on B
and a regularizer on ®. Interestingly, it can equivalently be formulated without constraints and instead regularizers on both
parameters (Bach et al. 2008).

Regardless of the choice, the list of tractable induced norms remains the same. The following constitute the known list of

regularizers and constraint set options that result in an efficient, closed-form induced regularizer on Z:

1.

The regularizer ||®||; 1 is chosen for sparsity. For C = {C' : ||C; .||, < 1}, the induced norm is ||Z7||, ;. For C = {[w B] :
[Wllax < 1, 11Bi.llgx < 8}, the induced norm on Z is 3=, max (1|27 |11, 512

led to trivial vector quantization solutions (Zhang et al. 2011); this issue needs to be further understood if this regularizer is
chosen for FR-RL.

1,4, |- Previously, these induced norms

. The regularizer ||® " ||5,1 is chosen for subspace learning. For C = {C : ||C;.||2 < 1}, the induced norm is || Z||,. For

C ={[w B] : [[wll2 < 1, |Bi.|]2 < 2}, the induced norm on Z is maxo<,<1 || ZE, " || where

B [ 207wyt |

. The regularizer ||® " ||, 1 can be useful to push down large values. The /., norm is used to bound maximum values, and as p

gets larger, ¢, approaches the /o, norm. For 1 < p < 2, we could also imagine some blended behaviour between p = 1 and
p = 2. In general, however, p # 1,2, co is not commonly used. If it is chosen, then for C = {C : ||C; .|| < 1}, the induced

normis || Z 7|1



