
Learning a Value Analysis Tool For Agent Evaluation

Martha White
Department of Computing Science

University of Alberta
whitem@cs.ualberta.ca

Michael Bowling
Department of Computing Science

University of Alberta
bowling@cs.ualberta.ca

Abstract

Evaluating an agent’s performance in a stochastic
setting is necessary for agent development, scien-
tific evaluation, and competitions. Traditionally,
evaluation is done using Monte Carlo estimation;
the magnitude of the stochasticity in the domain or
the high cost of sampling, however, can often pre-
vent the approach from resulting in statistically sig-
nificant conclusions. Recently, an advantage sum
technique has been proposed for constructing unbi-
ased, low variance estimates of agent performance.
The technique requires an expert to define a value
function over states of the system, essentially a
guess of the state’s unknown value. In this work,
we propose learning this value function from past
interactions between agents in some target popu-
lation. Our learned value functions have two key
advantages: they can be applied in domains where
no expert value function is available and they can
result in tuned evaluation for a specific population
of agents (e.g., novice versus advanced agents). We
demonstrate these two advantages in the domain of
poker. We show that we can reduce variance over
state-of-the-art estimators for a specific population
of limit poker players as well as construct the first
variance reducing estimators for no-limit poker and
multi-player limit poker.

1 Introduction
Evaluating an agent’s performance is a common task. It is
a critical step in any agent development cycle, necessary for
scientific evaluation and useful for determining the results of
a competition, which have become popular in the artificial
intelligence community. In some cases it is possible to com-
pute an exact measure of performance, but only for small or
deterministic domains. In the other cases, the most common
approach is to use Monte Carlo estimation. The agent com-
pletes a number of repeated independent trials of interaction
in the domain, and a sample average of its performance is
used as an estimate. The magnitude of the stochasticity in the
domain, however, may prevent the approach from resulting in
statistically significant conclusions, particularly if the cost of
trials is high.

Recently, Zinkevich and colleagues [2006] proposed an
advantage-sumtechnique for constructing a low-variance un-
biased estimator for an agent’s performance. The estimator
examines the complete history of interaction for a trial, un-
like Monte Carlo which uses only the single value (utility) of
the agent’s per-trial performance. As the estimator is prov-
ably unbiased (matching the player’s realized utility in ex-
pectation), a sample average using the estimator provides an
alternative, potentially lower-variance, estimate of an agent’s
performance. Unfortunately, the approach requires a domain-
specific value function to be provided, which much satisfy
certain constraints. Furthermore, the variance reductionof
the resulting estimator depends entirely on the quality of the
provided value function. This limits the applicability of the
approach to well-understood domains for which a value func-
tion can be constructed. Although the approach was success-
fully used to achieve dramatic variance reduction in evaluat-
ing play for two-player, limit Texas hold’em poker[Billings
and Kan, 2006], the difficulty in hand-crafting appropriate
value functions for other domains is limiting.

In this paper, we propose using machine learning to find a
value function to be used in an advantage-sum estimator. We
define an optimization to directly minimize the estimator’s
variance on a set of training data and derive a closed form
solution for this optimization in the case of linear value func-
tions. The optimization results in two distinct advantages.
First, it can be more easily applied to new domains. Instead of
requiring a hand-crafted, domain-specific value function,our
approach only requires a set of domain-specific features along
with data from previous interactions by similar agents. In
fact, if a good hand-crafted value function is already known, it
can be provided as a feature, and the optimization can resultin
further variance reduction. Second, our approach can find an
estimator for agent evaluation that is tuned to a specific pop-
ulation of agent behavior (e.g., advanced behavior or novice
behavior) by providing such data in training. The approach
is general, applying to a wide variety of domains: single
agent and multi-agent domains; fully and partially observable
settings; as well as zero-sum and general-sum games. We
demonstrate the efficacy of the approach on the classic two-
player limit poker game and two poker domains for which
no previous variance reduction estimator exists: a two-player
no-limit and a 6-player limit game.

2 Background
We will first describe extensive games as a general model for
(multi-)agent interaction. We will then discuss previous ap-
proaches to agent evaluation.

2.1 Extensive Games
Definition 1 [Osborne and Rubinstein, 1994, p. 200] A finite
extensive game with imperfect information has the following
components:

• A finite set,N , of players.
• A finite set ,H , of sequences, the possiblehistories of

actions, such that the empty sequence is inH and every
prefix of a sequence inH is also inH . Z ⊆ H are
the terminal histories (those which are not a prefix of
any other sequences).A(h) = {a : ha ∈ H} are the
actions available after a non-terminal historyh ∈ H1.
To denote that a historyh is a prefix of a terminal history
z, we will writeh ⊑ z. ,

• A player function P that assigns to each non-terminal
history,h ∈ H\Z, a member ofN ∪ {c}, wherec rep-
resents chance.P (h) is the player who takes an action
after the historyh. If P (h) = c, then chance determines
the action taken after historyh.

• A functionfc on {h ∈ H : P (h) = c} associating to
each such history a probability measurefc(·|h) onA(h)
(fc(a|h) is the probability thata occurs givenh). Each
probability measurefc(·|h) for a givenh is independent
of the other probability measuresfc(·|h′), h′ 6= h.

• For each playeri ∈ N a partition Ii of {h ∈ H :
P (h) = i} with the property thatA(h) = A(h′) when-
everh andh′ are in the same member of the partition.
Ii is theinformation partition of playeri; a setIi ∈ Ii

is aninformation set of playeri.
• For each playeri ∈ N a utility function ui from the

terminal statesZ to the realsR.

The extensive game formalism is a very general model of
sequential decision-making and encapsulates finite-horizon
POMDPs (where|N | = 1), finite-horizon MDPs (where
|N | = 1 and∀Ii |Ii| = 1), andn-player general-sum or
zero-sum games. The only additional assumption made in
this work is that the gameΓ (but not any player’s policy) is
known.

A strategy of player i, σi in an extensive game is a func-
tion that assigns a distribution overA(Ii) to eachIi ∈ Ii.
A strategy profile σ consists of a strategy for each player,
σ = (σ1, σ2, . . . σ|N |). The goal of agent evaluation is to
estimate the expected utility of some playerj ∈ N given a
strategy profile, i.e.,

Uj = Ez [uj(z)|σ] . (1)

If the extensive game is small, one can compute this expec-
tation exactly by enumerating the terminal histories. In large
games, however, this approach is not practical.

1We writeha to refer to the sequence with actiona concatenated
to historyh.

2.2 Monte Carlo Estimation
The traditional approach to agent evaluation is to estimate
the expectation in Equation (1) by sampling. The agents re-
peatedly interact with the environment, drawing independent
samplesz1, . . . , zT from the distributionPr(z|σ). The esti-
mator is simply the average utility,

Ûj =
1

T

∑

t

uj(zt). (2)

This estimator is unbiased (i.e.,E[Uj |σ] = E[uj(z)|σ]), and
so the mean-squared-error (MSE) of the estimate is its vari-
ance,

MSE(Ûj) = Var
[

Ûj |σ
]

=
1

T
Var [uj(z)|σ] . (3)

This approach is effective when the domain has little stochas-
ticity (i.e. Var [uj(z)] is small), agent trials are cheap (i.e.T
can be made large), and/or the required precision is not small
(i.e. largeVar(Ûj) is tolerable). If trials are expensive rela-
tive to the domain’s stochasticity and required precision,then
it may not be possible to make statistically significant con-
clusions based on this estimate. This limitation often arises in
situations involving human or physical robot participants. For
example, in one particular poker game (two-player1/2 limit
Texas hold’em), the standard deviation of a player’s outcome
is around $6 and a typical desired precision is around $0.05.
This precision would require more than fifty thousand trials
to achieve. If one or more of the players is a human (or many
agent pairings must be evaluated), this large number of trials
is impractical.

One approach to improving the Monte Carlo estimator is to
find a better estimate of per-trial utility. The goal is to identify
a real-valued function on terminal historiesûj(z) where,

∀σ Ez [ûj(z)|σ] = Ez [uj(z)|σ] . (4)

In other words, Equation (4) means thatûj(z) is an unbiased
estimator ofuj(z). If the variance ofûj(z) is lower than
the variance ofuj(z), then we can usêuj in place ofuj in
Equation (2) to get an improved estimator.

Wolfe [Wolfe, 2002] employed this approach in evaluat-
ing performance in blackjack. Using a baseline policy with
a known expected performance, Wolfe compares the player’s
winnings on a given hand with the winnings the baseline pol-
icy would have attained had it been employed. The result-
ing unbiased estimator is this difference added to the base-
line policy’s known expected winnings. Wolfe showed the
approach could result in a 50-fold reduction in the standard
deviation of the resulting estimator for evaluation in black-
jack. The approach, however, is limited to single-agent set-
tings and tends to over penalize near-optimal decisions with
unlucky outcomes.

2.3 Advantage Sum Estimators
Recently, Zinkevich and colleagues [2006] introduced a gen-
eral approach to constructing low-variance estimators forse-
quential decision-making settings. Assume one is given a
real-valued function on historiesVj : H → ℜ. Define the
following real-valued functions on terminal histories,

SVj
(z) =

∑

ha⊑z
P (h) 6=c

Vj(ha) − Vj(h) (5)

LVj
(z) =

∑

ha⊑z
P (h)=c

Vj(ha) − Vj(h) (6)

PVJ
= Vj(∅). (7)

We will call SVj
theskill for playerj, LVj

theluck for player
j, andPVj

the value of playerj’s position (a constant). We
label these functions skill and luck because the skill is ob-
tained from changes in the value function due to the agents’
actions (i.e. its advantages) and the luck from changes in the
value function due to actions by chance. Notice that the skill
function for playerj includes actions for all players, and so
all the players’ actions affect all players’ skill terms.The ad-
vantage sum estimator is now simply,

ûVj
(z) = SVj

(z) + PVj
. (8)

Using the fact that terms cancel when summing skill, luck,
and position, we can see that,

uj(z) = SVj
(z) + LVj

(z) + PVj
. (9)

If Vj is chosen carefully so thatE
[

LVj
(z)|σ

]

is zero (the
zero-luck constraint), then̂uVj

is an unbiased estimator. Ad-
ditionally, the advantage sum estimator subsumes Wolfe’s ap-
proach for one-player games.

DIVAT, the Ignorant Value Assessment Tool, implements
the advantage sum idea for two-player, limit Texas hold’em
using a hand-designed value function shown to satisfy the
zero-luck constraint. The resulting estimator has proven to
be very powerful, with approximately a three-fold reduction
in per-trial variance. As a result, nine-times fewer hands are
required to draw the same statistical conclusions. Though
DIVAT has been successful in two-player, limit poker, the
hand-designed value function does not extend to other (poker)
games. Moreover, no useful reduced-variance estimator has
been identified for no-limit poker or games involving more
than two players.

3 Our Approach: MIVAT
A more general approach to using the advantage sum estima-
tor from Equation (5) is to learn a good value function from
past interactions between players. This approach has two ad-
vantages. First, designing a value function can be difficult,
particularly in the case of limited domain knowledge. Sec-
ond, learning a more specific value function to a group of
players (using a population of such players as the training
data) can further reduce variance in the assessment for those
players. This section defines an optimization for finding the
ideal value function, and then derives a closed-form solution
for the space of linear value functions. We call this general
approach and closed-form solution to the optimization MI-
VAT, the Informed Value Assessment Tool.

Our goal is to minimize the variance of̂uVj
(z). Using

Equation (9), we can rewrite the advantage sum estimator
only in terms of the outcome’s utility and luck,

ûVj
(z) = uj(z) − LVj

(z). (10)

In order to ensureVj satisfiesE
[

LVj
(z)|σ

]

= 0 (the zero-
luck constraint), let’s assume thatVj(ha) is only provided for
histories whereP (h) = c, i.e. on histories directly following
a chance node.2 We then defineVj for the remaining histories,
where chance is next to act, to explicitly satisfy the zero-luck
constraint,

Vj(h s.t.P (h) = c) ≡
∑

a′∈A(h)

fc(a
′|h)Vj(ha′), (11)

so then,

LVj
(z) =

∑

ha⊑z
P (h)=c

Vj(ha) −
∑

a′∈A(h)

fc(a
′|h)Vj(ha′)

 .

(12)

This reformulation of the advantage-sum estimator has two
benefits. First, we need only define a value function for the
histories directly following chance nodes. Second, the value
function is guaranteed to be unbiased. Because of this guar-
antee, we are now unconstrained in our choice of value func-
tion.

Our goal is to find a value function that minimizes the vari-
ance of the advantage-sum estimator. The variance of the
estimator depends upon the unknown agent strategies in the
target population. We presume that we have samples of out-
comesz1, . . . , zT from agents in this population, and use the
estimator’s sample variance as a proxy for the true variance.
This gives us the following target optimization.

Minimize:
Vj

T
∑

t=1

(

ûVj
(zt) −

1

T

T
∑

t′=1

ûVj
(zt′)

)2

3.1 Linear Value Function
In order to make the above optimization tractable, we focus
on the case whereVj is a linear function. Letφ : H → R

d

map histories to a vector ofd features. We require,

Vj(h) = φ(h)T θj , (13)

for someθj ∈ R
d. We will use ûθj

as shorthand for the
advantage-sum estimator from Equation (10), whereVj is de-
fined as above.

We now derive a closed-form solution,θ∗j , to our optimiza-
tion. Let ut = uj(zt). From Equations (10) and (12), we
get,

ûθj
(zt) =

ut −

∑

ha⊑zt

P (h)=c

φ(ha) −
∑

a′∈A(h)

fc(a
′|h)φ(ha′)

T

θj

(14)

2For simplicity, we assume that ifP (ha) = c then P (h) 6=
c, i.e., the chance player never gets consecutive actions. A trivial
modification can always make a game satisfy this constraint.

Define the following shorthand notation,

At =
∑

ha⊑zt

P (h)=c

φ(ha) −
∑

a′∈A(h)

fc(a
′|h)φ(ha′)

 (15)

A =
1

T

T
∑

t=1

At ū =
1

T

T
∑

t=1

ut (16)

Then, ûθj
(zt) = ut − AT

t θj and 1
T

∑T
t′=1 ûθj

(zt′) = ū −

AT θj , and we get the following optimization.

Minimize:
θj ∈ R

d C(θj) =
T
∑

t=1

[

(ut − ū) − (At − A)T θj

]2

As our objective is convex inθj , we can solve this optimiza-
tion by setting the objective’s derivative to 0.

∂C(θj)

∂θj

= 0

= −2

T
∑

t=1

(At − A)
[

(ut − ū) − (At − A)T θj

]

= −2

T
∑

t=1

[

(At − A)(ut − ū) − (At − A)(At − A)T θj

]

Solving forθj ,

θ∗j =

[

T
∑

t=1

(At − A)(At − A)T

]−1 [
T
∑

t=1

(At − A)(ut − ū)

]

=

[(

T
∑

t=1

AtA
T
t

T

)

− AAT

]−1 [(
T
∑

t=1

Atut

T

)

− ūA

]

(17)

We callûθ∗

j
the MIVAT estimator.

3.2 Multiplayer Games
For two-player, zero-sum games, we only need to learn a sin-
gle estimator̂uθ∗

1
, since its negation is the variance minimiz-

ing estimator for the second player. Inn-player, general-sum
games (n > 2), we must learn individualθj for each position
j. In the case ofn-player, zero-sum games, however, the con-
dition

∑|N |
j=1 ûθ∗

j
(z) = 0 may not be satisfied when each of

the functions are learned independently. We now show how

to learn a set of parametersθ =
[

θT
1 , ..., θT

|N |

]T

satisfying the

zero-sum constraint.
To satisfy the zero-sum constraint for a linear value func-

tion, it is sufficient3 to require,

θ|N | = −

|N |−1
∑

j=1

θj .

3If the features are linearly independent on the sampled data,
then it is a necessary condition as well.

To satisfy the zero-sum constraint, setθN = −
∑|N |−1

j=1 θj

and then only learnθ = (θ1, ..., θ|N |−1). We can then op-
timize the column vector of unconstrained parametersθ =
[

θT
1 , ..., θT

|N |−1

]T

to minimize the sample variance averaged

over all players.
DefineS1, . . . , S|N | to ben×(|N |−1)n selection matrices

such that:

1. ∀ j ∈ {1, ..., |N | − 1}, Sj has the identity matrix in
the jth n × n column block of the matrix, and is zero
elsewhere.

2. S|N | has the negativen×n identity matrix in all|N |−1
column blocks.

We can then write the target optimization as:

Minimize:
θ ∈ R

(|N |−1)d C(θ) =

|N |
∑

j=1

T
∑

t=1

[

(ut,j − ūj)
−(At − A)T Sjθ

]2

where the selection matrices pick out the properθj from θ.
As our objective is again convex inθ, we can solve this op-

timization by setting the objective’s derivative to 0. Stepping
through the derivation as before, we obtain the solution

θ∗ =

|N |
∑

j=1

ST
j

(

T
∑

t=1

(At − A)(At − A)T

)

Sj

−1

|N |
∑

j=1

T
∑

t=1

(At − A)Sj(ut,j − ūj)

=

|N |
∑

j=1

ST
j

(

T
∑

t=1

AtA
T
t

T
− AAT

)

Sj

−1

|N |
∑

j=1

(

T
∑

t=1

ut,jAt

T
− ūjA

)

Sj

(18)

The estimator for playerj is then ûSjθ∗ , where
∑

j ûSjθ∗(z) = 0, ∀z ∈ Z.

4 Applications to Poker
The MIVAT approach is applicable to any extensive game
as well as frameworks subsumed by extensive games (e.g.,
finite-horizon MDPs and POMDPs). We explore its useful-
ness in the context of poker, a family of games involving skill
and chance. We will first give background on Texas hold’em
Poker, the basis for our three testing domains, and then de-
scribe how our approach was applied to these domains.

Texas Hold’em Poker. Texas hold’em is a card game for2
to 10 players. A single hand consists of dealing two private
cards to each player from a shuffled 52-card deck. The play-
ers act over the course of four rounds, in which each player
in turn calls (matching the amount of money everyone else
has put into thepot), raises(increasing the amount of money

everyone has to put into the pot), orfolds (giving up the hand
and losing whatever money they already placed into the pot).
In between each round, public cards are revealed (3, 1, and
1 after rounds 1, 2 and 3, respectively). Among the players
who have not folded after the fourth round, the player who
can make the best five card poker hand from their cards and
public cards wins the money placed in the pot. If all but one
player folds, they win the pot regardless of their hand.

Texas hold’em can be played with fixed bet sizes (limit) or
no fixed bet sizes (no-limit). We show results for two-player
limit, two-player no-limit, and six-player limit poker. The
remainder of this section explains how we applied MIVAT in
each of these domains.

Implementation. We employed variations on five basic
poker hand features. Hand-strength (HS) is the expectation
over the yet-to-be-seen public cards of the probability of the
evaluated hand beating a single other hand chosen uniformly
at random. Hand-strength-squared (HS2) is the expectation
over the yet-to-be-seen public cards of the squared probabil-
ity of the evaluated hand beating a single other hand chosen
uniformly at random. It is similar to hand-strength but gives a
bonus for higher variance. Pot equity (PE), requiring knowl-
edge of all players’ hands, is the probability that the evalu-
ated hand wins the pot assuming no additional player folds.
The base features involved taking each of these hand-values
for each player and multiplying them by pot size (PS), the
amount of money in the pot, to make the features more repre-
sentative of the potential utility (the final pot size).

In the two-player games, therefore, we had 7 base fea-
tures. In order to allow for additional modelling power we
took products of the basic features to get quadratic functions
of the features instead of just linear functions. In some ex-
periments in the two-player, limit domain, we included an
additional feature: the hand-crafted value function used by
DIVAT. We did this to illustrate that we can improve on well-
designed value functions by using them as a feature. In the
six-player game, we did not use the pot equity feature (due to
its expensive computation4) or any feature cross-products.

5 Results
We examine the effectiveness of MIVAT using a number of
different sources of poker hands. In all three domains we
used data from programs playing against each other in the
2008 AAAI Computer Poker Competition (this involved nine
agents for two-player limit, four for two-player no-limit,and
six for six-player limit). We call this data “Bots-Bots”. For
the two-player limit domain, we also used a dataset involv-
ing a single strong poker program playing against a battery
of weak to strong human players. We call this data “Bot-
Humans”. For each experiment we separated the data into
450,000 training hands and 50,000 testing hands, and then
trained a linear value function using the MIVAT optimization.
For each experiment we compare MIVAT’s performance to

4In two-player games, these features were pre-computed in a ta-
ble for all possible hand combinations. The two-player tables can
be used for hand-strength and hand-strength-squared in a six-player
game, but pot equity cannot.

Data MIVAT MIVAT+ DIVAT Money
Bot-Humans 2.387 2.220 2.238 5.669
Bots-Bots 2.542 2.454 2.506 5.438

Table 1: Standard deviation of estimators for two-player, limit
poker.

MIVAT MIVAT
Data Bot-Humans Bots-Bots DIVAT Money

Bot-Humans 2.169 2.253 2.238 5.669
Limit-Bots 2.461 2.418 2.506 5.438

Table 2: Standard deviation of tailored estimators for two-
player, limit poker.

that of Money (the estimator that just uses the player’s win-
nings on each hand) and, when appropriate, DIVAT.

Two-Player Limit Poker. We first compare the MIVAT
optimization to the hand-crafted DIVAT estimator for two-
player, limit poker. We computed two estimators: one with
the DIVAT value as a feature (MIVAT+) and one without (MI-
VAT). Both estimators were trained using the Bot-Humans
data. The standard deviation of these two estimators on test-
ing data from both the Bot-Humans data and the Bot-Bot data
is shown in Table 1. First, note that MIVAT without the DI-
VAT feature was still able to reach comparable variance re-
duction to the hand-crafted estimator, a dramatic improve-
ment over the Money estimator. Further variance reduction
was possible when DIVAT was used as a feature. MIVAT+’s
improvement over DIVAT is statistically significant for the
Bots-Bots data (even though it trained on the Bot-Humans
data) but not for Bot-Humans.

MIVAT can also be used to train specific estimators for spe-
cific populations of players. We trained an estimator specif-
ically for the Bot-Humans setting using the DIVAT feature
and exploiting the fact that we knew whether the bot was the
dealer on each hand. We also trained an estimator specifically
for the Bots-Bots data also using the DIVAT estimator. Ta-
ble 2 compares how well these functions and DIVAT perform
on the two datasets: one they were trained for, and the other
they were not. As expected, the functions perform better on
their respective datasets than the more general functions from
Table 1. Using the specific function, we now statistically
significantly outperform DIVAT on the Bot-Humans dataset.
Notice that the estimator trained specifically for the Bots-Bots
dataset did not outperform DIVAT on the Bot-Humans data,
suggesting that the estimators can be tailored to differentpop-
ulations of players.

Two Player No-Limit Poker. In two-player no-limit poker,
the betting is only limited by a player’s stack (their remain-
ing money), which in the AAAI competition was kept at
$1000. As a result the standard deviation of a player’s win-
nings is generally much higher than in limit poker. MIVAT
was trained using all cross-products of the standard features.
Table 3 shows the resulting standard deviation on test data
from the AAAI no-limit competition. MIVAT resulted in a

Data MIVAT Money
Bots-Bots 32.407158 42.339743

Table 3: Standard deviation of estimators for two-player, no-
limit poker.

Data MIVAT Money
Bots-Bots 22.9234365 28.0091805

Table 4: Standard deviation of estimators for six-player, limit
poker.

25% reduction on the standard deviation in a game where no
hand-crafted value function was yet to be successful. The less
dramatic reduction (as compared to limit) may be a result of
players’ strategies being inherently high variance, or more so-
phisticated features may be required. Features on the betting
rather than just the cards or specific features distinguishing
large-pot and small-pot games may result in additional im-
provements.

Six-Player Limit Poker. As in two-player, limit poker,
there is no known reduced-variance estimator in six-player,
limit poker. MIVAT was trained on 200,000 training hands
and 20,000 test hands with six features: HS to the power of
the number of non-folded players not folded. The standard
deviation of MIVAT and the Money estimators are shown in
Table 4. Again, MIVAT shows only a modest 20% variance
reduction. The inability to match the success in two-player
limit is likely due to the limited feature set (no pot-equity) and
failure to capture the position of the players that had not yet
folded, a key factor in a player’s winnings. This result demon-
strates that MIVAT does not completely remove the need for
domain knowledge: informed identification of features could
have considerable impact on the resulting estimator.

6 Conclusion
We introduced MIVAT, the Informed Value Assessment Tool,
a general automated approach to obtaining low-variance, un-
biased assessments of agent performance. We constructed an
optimization for finding the variance-minimizing value func-
tion for use in an advantage sum estimator. We then derived
a closed-form solution for the case of linear value functions.
Our approach overcomes the requirement in previous work
for hand-designed value functions, and can be used to tai-
lor agent assessment to a known population distribution. We
tested MIVAT on three variants of Texas hold’em poker: two-
player limit, two-player no-limit and six-player limit poker.
We showed that we can attain and even exceed the best exist-
ing hand-crafted esimator for two-player limit poker. We also
showed that we can construct variance reducing estimators
for two-player, no-limit and six-player, limit poker, where no
previous estimators were available, based solely on simple
poker features and logs of past experience.

There are two main avenues for future work. First, the MI-
VAT formulation focuses on optimizing a linear value func-
tion using variance as the loss. However, there are other

options for the optimization. Expected variance is a conve-
nient loss function, but like many squared-loss measures, it
is heavily biased by outliers. An alternative loss may pro-
vide better estimators for typical agents, even while having a
higher variance on average. Furthermore, optimizing non-
linear value functions may alleviate the challenge of con-
structing good features. Second, we are also interested in
extending the approach to complex settings where a fully ex-
plicit game formulation may not be available. For example,
Robocup[Kitano et al., 1997], TAC [Wellmanet al., 2003],
and the General Game Playing Competition[Geneserethet
al., 2005] all have difficult evaluation problems, but it is not
practical to fully specify their corresponding extensive game.
One can still, however, identify the role of chance in these
simulated settings as invocations of a random number gener-
ator. Luck terms with zero expectation could be computed
(and a variance-minimizing value function optimized) using
feature changes before and after the affects of the random
number generator are applied. This approach could result ina
guaranteed unbiased variance-reducing estimator and hence,
more significant competition results.

7 Acknowledgments
We would like to thank the University of Alberta Poker Re-
search Group for help throughout for ideas and implementa-
tion issues. This research was funded by Alberta Ingenuity,
iCORE and NSERC.

References
[Billings and Kan, 2006] Darse Billings and Morgan Kan. A

tool for the direct assessment of poker decisions.Interna-
tional Computer Games Association Journal, 29(3):119–
142, 2006.

[Geneserethet al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the aaai competition.AI Magazine, 26(2):62–72, 2005.

[Kitano et al., 1997] Hiroaki Kitano, Yasuo Kuniyoshi, It-
suki Noda, Minoru Asada, Hitoshi Matsubara, and Eiichi
Osawa. RoboCup: A challenge problem for AI.AI Maga-
zine, 18(1):73–85, Spring 1997.

[Osborne and Rubinstein, 1994] Martin J. Osborne and Ariel
Rubinstein. A Course in Game Theory. The MIT Press,
July 1994.

[Wellmanet al., 2003] M. P. Wellman, A. Greenwald,
P. Stone, and P. R. Wurman. The 2001 trading agent com-
petition. Electronic Markets, 13:4–12, 2003.

[Wolfe, 2002] David Wolfe. Distinguishing gamblers from
investors at the blackjack table. InComputers and Games
2002, LNCS 2883, pages 1–10. Springer-Verlag, 2002.

[Zinkevichet al., 2006] Martin Zinkevich, Michael Bowl-
ing, Nolan Bard, Morgan Kan, and Darse Billings. Opti-
mal unbiased estimators for evaluating agent performance.
In Proceedings of the Twenty-First National Conference
on Artificial Intelligence (AAAI), pages 573–578, 2006.

