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Abstract

Evaluating an agent’s performance in a stochastic
setting is necessary for agent development, scien-
tific evaluation, and competitions. Traditionally,
evaluation is done using Monte Carlo estimation;
the magnitude of the stochasticity in the domain or
the high cost of sampling, however, can often pre-
vent the approach from resulting in statistically sig-
nificant conclusions. Recently, an advantage sum
technique has been proposed for constructing unbi-
ased, low variance estimates of agent performance.
The technique requires an expert to define a value
function over states of the system, essentially a
guess of the state’s unknown value. In this work,
we propose learning this value function from past
interactions between agents in some target popu-
lation. Our learned value functions have two key
advantages: they can be applied in domains where
no expert value function is available and they can
result in tuned evaluation for a specific population
of agents (e.g., novice versus advanced agents). We
demonstrate these two advantages in the domain of
poker. We show that we can reduce variance over
state-of-the-art estimators for a specific population
of limit poker players as well as construct the first
variance reducing estimators for no-limit poker and
multi-player limit poker.

Introduction

Michael Bowling
Department of Computing Science
University of Alberta
bowling@cs.ualberta.ca

Recently, Zinkevich and colleagues [2006] proposed an
advantage-surtechnique for constructing a low-variance un-
biased estimator for an agent’s performance. The estimator
examines the complete history of interaction for a trial; un
like Monte Carlo which uses only the single value (utility) o
the agent’s per-trial performance. As the estimator is prov
ably unbiased (matching the player’s realized utility in ex
pectation), a sample average using the estimator provites a
alternative, potentially lower-variance, estimate of gerat’s
performance. Unfortunately, the approach requires a domai
specific value function to be provided, which much satisfy
certain constraints. Furthermore, the variance reduaifon
the resulting estimator depends entirely on the qualithef t
provided value function. This limits the applicability dfa
approach to well-understood domains for which a value func-
tion can be constructed. Although the approach was success-
fully used to achieve dramatic variance reduction in evalua
ing play for two-player, limit Texas hold’em pokéBillings
and Kan, 200§F the difficulty in hand-crafting appropriate
value functions for other domains is limiting.

In this paper, we propose using machine learning to find a
value function to be used in an advantage-sum estimator. We
define an optimization to directly minimize the estimator’s
variance on a set of training data and derive a closed form
solution for this optimization in the case of linear valuadu
tions. The optimization results in two distinct advantages
First, it can be more easily applied to new domains. Instéad o
requiring a hand-crafted, domain-specific value functar,
approach only requires a set of domain-specific featuresgalo

Evaluating an agent’s performance is a common task. It isvith data from previous interactions by similar agents. In
a critical step in any agent development cycle, necessary fdact, if a good hand-crafted value function is already knoitvn
scientific evaluation and useful for determining the resaft
a competition, which have become popular in the artificialfurther variance reduction. Second, our approach can find an
intelligence community. In some cases it is possible to comestimator for agent evaluation that is tuned to a specific pop
pute an exact measure of performance, but only for small oulation of agent behavior (e.g., advanced behavior or movic
deterministic domains. In the other cases, the most commolehavior) by providing such data in training. The approach
approach is to use Monte Carlo estimation. The agent conis general, applying to a wide variety of domains: single
pletes a number of repeated independent trials of int@mracti agent and multi-agent domains; fully and partially obsblea

in the domain, and a sample average of its performance isettings; as well as zero-sum and general-sum games. We
used as an estimate. The magnitude of the stochasticitgin ttdemonstrate the efficacy of the approach on the classic two-
domain, however, may prevent the approach from resulting iplayer limit poker game and two poker domains for which
statistically significant conclusions, particularly iktlcost of
trials is high.

can be provided as a feature, and the optimization can iiasult

no previous variance reduction estimator exists: a twggsla
no-limit and a 6-player limit game.



2 Background 2.2 Monte Carlo Estimation

We will first describe extensive games as a general model fofhe traditional approach to agent evaluation is to estimate
(multi-)agent interaction. We will then discuss previops a the expectation in Equation (1) by sampling. The agents re-

proaches to agent evaluation. peatedly interact with the environment, drawing independe
samples:y, . . ., zr from the distributionPr(z|o). The esti-

2.1 Extensive Games mator is simply the average utility,

Definition 1 [Osborne and Rubinstein, 1994, p. 2@0finite - 1

extensive game with imperfect information has the follgwin Ui = T Z uj (). @

components: t

This estimator is unbiased (i.&[U;|o] = E[u;(z)|o]), and
so the mean-squared-error (MSE) of the estimate is its vari-
ance,

o A finite set,V, of players.

e A finite set H, of sequences, the possilfiestories of
actions, such that the empty sequence i iand every )
prefix of a sequence i/ is also inH. Z C H are MSE(U;) = Var |Uslo| = =V . ) 3
the terminal histories (those which are not a prefix of (Uy) = Var [ JH 7' 13 (2)le] 3
any other sequencesM(h) = {a : ha € H} are tqe This approach is effective when the domain has little steeha
actions available after a non-terminal histoty e H-. ticity (i.e. Var [u;(z)] is small), agent trials are cheap (iE.

To denote that a history is a prefix of a terminal history  can be made large), and/or the required precision is not smal

z, we will write h £ 2. , (i.e. IargeVar(Uj) is tolerable). If trials are expensive rela-

e Aplayer function P that assigns to each non-terminal tive to the domain’s stochasticity and required precisiban
history,h € H\Z, a member ofV U {c}, wherec rep- it may not be possible to make statistically significant con-
resents chanceP () is the player who takes an action clusions based on this estimate. This limitation ofterearia
after the historys. If P(h) = ¢, then chance determines  sjtuations involving human or physical robot participarsr
the action taken after histordy. example, in one particular poker game (two-playg2 limit

e Afunctionf. on{h € H : P(h) = ¢} associatingto Texas hold’em), the standard deviation of a player's ouom
each such history a probability measufig-|~) on A(h) is around $6 and a typical desired precision is around $0.05.
(f(a|h) is the probability thatz occurs givem:). Each ~ This precision would require more than fifty thousand trials
probability measurg,(-|h) for a givenh is independent  to achieve. If one or more of the players is a human (or many

of the other probability measuregs(-|h'), h' # h. agent pairings must be evaluated), this large number d$ tria
e For each playeri € N a partitionI; of {h €¢ H : IS impractical. ) ) ) )
P(h) = i} with the property thatd(h) = A(h’) when- One approach to improving the Monte Carlo estimator is to

is amnformauon'set of playe_r?. _ Vo  E.[i;(2)0]=E, [u;(z)|o]. (4)
e For each playeri € N a utility functionu; from the . . .
terminal statesZ to the realsR.. In other words, Equation (4) means thig{ =) is an unbiased

] o estimator ofu;(z). If the variance ofi;(z) is lower than
The extensive game formalism is a very general model othe variance ofs;(z), then we can usé; in place ofu; in
sequential decision-making and encapsulates finite-tioriz Equation (2) to get an improved estimator. '
POMDPs (wherglN| = 1), finite-horizon MDPs (where  wplfe [Wolfe, 2003 employed this approach in evaluat-
IN| = 1 andV/; [I;| = 1), andn-player general-sum or ing performance in blackjack. Using a baseline policy with
zero-sum games. The only additional assumption made ig known expected performance, Wolfe compares the player’s
this work is that the gamE (but not any player’s policy) is  winnings on a given hand with the winnings the baseline pol-

known. ) . _ _ icy would have attained had it been employed. The result-
A strategy_of p|aye_f%,_0’i In an extensive game is a func- ing unbiased estimator is this difference added to the base-
tion that assigns a distribution ovei(/;) to eachl; € I;.  line policy’s known expected winnings. Wolfe showed the

A strategy profile o consists of a strategy for each player, approach could result in a 50-fold reduction in the standard
o = (01,02,...0\n]). The goal of agent evaluation is to deviation of the resulting estimator for evaluation in lac

estimate the expected utility of some playee N givena jack. The approach, however, is limited to single-agent set
strategy profile, i.e., tings and tends to over penalize near-optimal decisiorts wit

unlucky outcomes.
Uj = E. [u;(2)[o]. (1) Y

If the extensive game is small, one can compute this expec2-'3 Advqntagg Sum Estimators )
tation exactly by enumerating the terminal histories. hg¢a  Recently, Zinkevich and colleagues [2006] introduced a gen
games, however, this approach is not practical. eral approach to constructing low-variance estimatorséor
quential decision-making settings. Assume one is given a
We write ha to refer to the sequence with actiorconcatenated  real-valued function on historiel; : H — R. Define the
to historyh. following real-valued functions on terminal histories,



In order to ensuré/; satisfiesE [Ly, (z)|o] = 0 (the zero-

Sy, (z) = Z V;i(ha) — V;(h) (5) Iu_ck c_onstraint), let's assume th%gt_(ha)_is or_1|y provided f_or
o= histories where”(h) = ¢, i.e. on histories directly following
P(h)#c a chance nodéWe then definé’; for the remaining histories,
where chance is next to act, to explicitly satisfy the zerckl
Lv,(z) = Y Vi(ha) = Vi(h) ©)  constraint, P ’
Ph(lflz%:zc

Vi(hst.P(h)=c¢) = a'|h)V;(ha'), 11

Py, = Vi(0). - j(hst.P(h)=e) a/GZA(h)fC( [R)Vj(ha'),  (12)

We will call Sy, theskill for playerj, Ly, theluck for player

j, and Py, the value of playey’s position (a constant). We SO then,

label these functions skill and luck because the skill is ob-

tained from changes in the value function due to the agents’ / /

actions (i.e. its adgvantages) and the luck from changeagin th Ly, (2) = Z Vj(ha) — Z Jela'[h)V;(ha')

value function due to actions by chance. Notice that thé skil Ph(‘,ll)%c )

function for player; includes actions for all players, and so (12)

all the players’ actions affect all players’ skill termselad-

vantage sum estimator is now simply, This reformulation of the advantage-sum estimator has two
v (2) = Sy, (2) + Py.. (8)  benefits. First, we need only define a value function for the

. ’ ’ ’ . . histories directly following chance nodes. Second, theeal
Using th.e. fact that terms cancel when summing skill, IUCI(’function is guaranteed to be unbiased. Because of this guar-
and position, we can see that, antee, we are now unconstrained in our choice of value func-
uj(z) = Sy, (2) + Lv;(2) + Py;. 9) tion.

If V; is chosen carefully so that [Ly, (z)|o] is zero (the Our goalis to find a value function that minimizes the vari-

zero-luck constraint), they, is an unbiased estimator. Ad- ance of the advantage-sum estimator. The variance of the

ditionally, the advantage sum estimator subsumes Wolfe's a €Stimator depends upon the unknown agent strategies in the

proach for one-player games. target population. We presume that we have samples of out-

DIVAT, the Ignorant Value Assessment Tool, implementsCOMesz1, . .., zr from agents in this population, and use the

the advantage sum idea for two-player, limit Texas hold’erStimator's sample variance as a proxy for the true variance

using a hand-designed value function shown to satisfy thd Nis gives us the following target optimization.

zero-luck constraint. The resulting estimator has proeen t

; . ! N T T 2
be very powerful, with approximately a three-fold reduntio Minimize: Z iy, (21) — 1 Z iy (21)
in per-trial variance. As a result, nine-times fewer harns a Vj - vzt = 2 WA
t= t'=1

required to draw the same statistical conclusions. Though
DIVAT has been successful in two-player, limit poker, the3 1 Linear Value Function
hand-designed value function does not extend to other (poke o
games. Moreover, no useful reduced-variance estimator hdg order to make the above optimization tractable, we focus

s a i i . d
been identified for no-limit poker or games involving more ON the case wherg; is a linear function. Let : H — R
than two players. map histories to a vector affeatures. We require,

T
3 Our Approach: MIVAT Vilh) = ¢(h)"0;, (13)
A more general approach to using the advantage sum estiméer somed; € R?. We will useii, as shorthand for the
tor from Equation (5) is to learn a good value function from advantage-sum estimator from Equation (10), whéris de-
past interactions between players. This approach has two afined as above.
vantages. First, designing a value function can be difficult We now derive a closed-form solutioff;, to our optimiza-
particularly in the case of limited domain knowledge. Sec-tion. Letu, = wu;(z:). From Equations (10) and (12), we
ond, learning a more specific value function to a group ofget,
players (using a population of such players as the training _
data) can further reduce variance in the assessment fa thos %9; (2¢) =
players. This section defines an optimization for finding the T
ideal value function, and then derives a closed-form sofuti
for the space of linear value functions. We call this general u; — Z ¢(ha) — Z fe(d'|h)p(ha’) 0;

approach and closed-form solution to the optimization Ml- haCz a’€A(R)
VAT, the Informed Value Assessment Tool. P(h)=c
Our goal is to minimize the variance afy, (z). Using (14)
Equation (9), we can rewrite the advantage sum estimat — )
only in terms of the outcome’s utility and luck, *For simplicity, we assume that iP(ha) = c then P(h) #

N . I 10 ¢, i.e., the chance player never gets consecutive actiongivialt
iy, (2) = uj(z) = Ly, (2). (10)  modification can always make a game satisfy this constraint.



Define the following shorthand notation, To satisfy the zero-sum constraint, gt = Z‘M Lo )

and then only leard = (61, ...,0,y—1). We can then op-
timize the column vector of unconstrained parameters
A=Y [ olha)— ] fuld|m)éha’) | (15) P

haCz a’€A(h) or, .. ,HITN‘ 1} to minimize the sample variance averaged
P(h)T:C ., over all players.
1 - DefineSs, ..., S|y to benx (|N|—1)n selection matrices
=7 A a= T Z (16)  such that:
=t =t 1.V j € {1,..,|N| — 1}, S; has the identity matrix in
Then, g, (2) = w — AT9; and % ZtT/:l do,(20) = U — the jth n x n column block of the matrix, and is zero
AT9;, and we get the following optimization. elsewhere.
. 2. S|n| has the negative x n identity matrix in all| N'| — 1
MInImIZ(zi N Z wy— @ A A)Tej}z column block.s.. -
0; € R = We can then write the target optimization as:
As our objective is convex ifl;, we can solve this optimiza- Minimize: IN| T s 2
. . . ., . . t.j — U
tion by setting the objective’s derivative to 0. 9 c RINI-Dd Cc(9 Zl ; [ a ) 5,6
oC(6;) _ ’
a0, 0 where the selection matrices pick out the progeirom 6.
- As our objective is again convex th we can solve this op-
B _ T, timization by setting the objective’s derivative to 0. Siemw
=-2 Z(At = A) [(ur —w) = (A = A)"6;] through the derivation as before, we obtain the solution
a 1
=2 " [(Ar = A)(ur — u) — (A — A)(Ar — A)70,] N T -
= o = Z ST (Z — A)(A - A>T> S,
Solving ford;, =1
T - T MZ
. _ Ay — A)Sj(ur j —
0; = Z(At —A)(A, - AT Z ) (ug — u)} ;;( ' )5ty =)
t=1 t=1
—1
T T -1 T IN| T oAU
= KZAtjflt>_AAT K A”“)-M = 1> st <Z = AAT> S;
t=1 t=1 j=1 t=1
17 IN| /T wp A,
~ . »J -
We callig: the MIVAT estimator. Zl (; B I U_jA> S;
J= =
3.2 Multiplayer Games (18)

For two-player, zero-sum games, we only need to learn a sin-
gle estimatotiy:, since its negation is the variance minimiz-
ing estimator for the second player.strplayer, general-sum

gamesf > 2), we must learn individual; for each position ..
j. Inthe case oh-player, zero-sum games, however, the con-4  Applications to Poker

dition Z|—1 ue*( ) = 0 may not be satisfied when each of The MIVAT approach is applicable to any extensive game

the functlons are learned independently. We now show hogs Well as frameworks subsumed by extensive games (e.g.,
finite-horizon MDPs and POMDPs). We explore its useful-

to learn a set of parametets= [9? . 9[‘5\”] satisfyingthe  npess in the context of poker, a family of games involvinglskil

The estimator for playerj is then dg;e-, where
le ﬂsjg* (Z) =0,VzeZ.

zero-sum constraint. and chance. We will first give background on Texas hold’em
To satisfy the zero-sum constraint for a linear value func-Poker, the basis for our three testing domains, and then de-
tion, it is sufficient to require, scribe how our approach was applied to these domains.
IN|-1 Texas Hold’em Poker. Texas hold’em is a card game f&r
On) = — Z 0;. to 10 players. A single hand consists of dealing two private

cards to each player from a shuffled 52-card deck. The play-
ers act over the course of four rounds, in which each player
3If the features are linearly independent on the sampled, datdn turn calls (matching the amount of money everyone else
then it is a necessary condition as well. has put into theot), raises(increasing the amount of money



everyone has to put into the pot),fotds (giving up the hand Data MIVAT | MIVAT+ | DIVAT | Money
and losing whatever money they already placed into the pot)| Bot-Humans| 2.387 | 2.220 | 2.238 | 5.669
In between each round, public cards are revealed (3, 1, ang Bots-Bots 2.542 2.454 2.506 | 5.438
1 after rounds 1, 2 and 3, respectively). Among the players

who have not folded after the fourth round, the player whorape 1: Standard deviation of estimators for two-playeitl
can make the best five card poker hand from their cards a”ﬁoker.

public cards wins the money placed in the pot. If all but one

player folds, they win the pot regardless of their hand.

Texas hold’em can be played with fixed bet sizes (limit) or Data B'Z:_'XJ '?:;ns ';AOIIZ':;ES DIVAT | Money
no fixed bet sizes (no-limit). We show results for two-player Bot-Humans 2169 5553 T 2238 | 5669
limit, two-player no-limit, and six-player limit poker. Eh ——— - - - -
remainder of this section explains how we applied MIVAT in Limit-Bots 2461 2418 | 2506 | 5438
each of these domains.

. o . _ Table 2: Standard deviation of tailored estimators for two-
Implementation. We employed variations on five basic player, limit poker.

poker hand features. Hand-strength (HS) is the expectation

over the yet-to-be-seen public cards of the probabilityhef t

evaluated hand beating a single other hand chosen uniformijpat of Money (the estimator that just uses the player’s win-
at random. Hand-strength-squared (HS2) is the expectatiamngs on each hand) and, when appropriate, DIVAT.

over the yet-to-be-seen public cards of the squared prbbabi

ity of the evaluated hand beating a single other hand choseRvo-Player Limit Poker. We first compare the MIVAT

bonus for higher variance. Pot equity (PE), requiring know player, limit poker. We computed two estimators: one with
edge of all players’ hands, is the probability that the evalu the DIVAT value as a feature (MIVAT+) and one without (M-
ated hand wins the pot assuming no additional player foldsVAT)- Both estimators were trained using the Bot-Humans
The base features involved taking each of these hand-valu@é‘ta- The standard deviation of these two estimators on test
for each player and multiplying them by pot size (PS), the!"d data from both the Bot-Humans data and the Bot-Bot data

amount of money in the pot, to make the features more reprds Shown in Table 1. First, note that MIVAT without the DI-
sentative of the potential utility (the final pot size). VAT feature was still able to reach comparable variance re-

In the two-player games, therefore, we had 7 base feaduction to the hand—craftgd estimator, a dramatic improye—
tures. In order to allow for additional modelling power we Ment over the Money estimator. Further variance reduction
took products of the basic features to get quadratic funstio WS Possible when DIVAT was used as a feature. MIVAT+'s
of the features instead of just linear functions. In some eximprovement over DIVAT is statistically significant for the
periments in the two-player, limit domain, we included an Bots-Bots data (even though it trained on the Bot-Humans

additional feature: the hand-crafted value function usgd b data) but not for Bot-Humans. o

DIVAT. We did this to illustrate that we can improve on well- _MIVAT canalso be used to train specific estimators for spe-
designed value functions by using them as a feature. In thgific populations of players. We trained an estimator specif
six-player game, we did not use the pot equity feature (due té¢@lly for the Bot-Humans setting using the DIVAT feature

its expensive computatiépor any feature cross-products. ~ and exploiting the fact that we knew whether the bot was the
dealer on each hand. We also trained an estimator spegificall

5 R | for the Bots-Bots data also using the DIVAT estimator. Ta-
esults ble 2 compares how well these functions and DIVAT perform
We examine the effectiveness of MIVAT using a number ofon the two datasets: one they were trained for, and the other
different sources of poker hands. In all three domains wéhey were not. As expected, the functions perform better on
used data from programs playing against each other in ththeir respective datasets than the more general functions f
2008 AAAI Computer Poker Competition (this involved nine Table 1. Using the specific function, we now statistically
agents for two-player limit, four for two-player no-limand  significantly outperform DIVAT on the Bot-Humans dataset.
six for six-player limit). We call this data “Bots-Bots”. Fo Notice that the estimator trained specifically for the BBtis
the two-player limit domain, we also used a dataset involv-dataset did not outperform DIVAT on the Bot-Humans data,
ing a single strong poker program playing against a batterguggesting that the estimators can be tailored to diffgrept
of weak to strong human players. We call this data “Bot-ulations of players.
Humans”. For each experiment we separated the data in
450,000 training hands and 50,000 testing hands, and the&E/v Y= L ) : :
trained a linear value function using the MIVAT optimizatio 1€ Petting is only limited by a player's stack (their remain
For each experiment we compare MIVAT’s performance to"d Money), which in the AAAI competition was kept at
$1000. As a result the standard deviation of a player’s win-

“In two-player games, these features were pre-computedsin a t Nings is generally much higher than in limit poker. MIVAT
ble for all possible hand combinations. The two-playerdaltan ~ Was trained using all cross-products of the standard festur

be used for hand-strength and hand-strength-squared sapdasier ~ Table 3 shows the resulting standard deviation on test data
game, but pot equity cannot. from the AAAI no-limit competition. MIVAT resulted in a

o Player No-Limit Poker.  In two-player no-limit poker,



Data MIVAT Money options for the optimization. Expected variance is a conve-
Bots-Bots | 32.407158] 42.339743 nient loss function, but like many squared-loss measutes, i
is heavily biased by outliers. An alternative loss may pro-

Table 3: Standard deviation of estimators for two-player, n Vide better estimators for typical agents, even while hgan

limit poker. higher variance on average. Furthermore, optimizing non-
linear value functions may alleviate the challenge of con-

Data MIVAT Money structin_g good features. Second, we are also interested in

Bots-Bots | 229234365 28.0091805 extending the approach to complex settings where a fully ex-

plicit game formulation may not be available. For example,
Robocup[Kitano et al,, 1997, TAC [Wellmanet al, 2003,
Table 4: Standard deviation of estimators for six-playetitl  and the General Game Playing Competit[@eneseretket
poker. al., 2009 all have difficult evaluation problems, but it is not
practical to fully specify their corresponding extensiaare.

One can still, however, identify the role of chance in these
Simulated settings as invocations of a random number gener-
tor. Luck terms with zero expectation could be computed

ﬁand a variance-minimizing value function optimized) gsin

25% reduction on the standard deviation in a game where n
hand-crafted value function was yet to be successful. 8 le
dramatic reduction (as compared to limit) may be a result o

pﬁgﬁ;@gifg{ﬁigﬂﬂf Igzi;enj:¥erggrllz\elgﬂjarre]ge(;r?t[ah@mgk et feature changes before and after the affects of the random
Pather than just the carés or sq ecific. features distingogshi number generator are applied. This approach could resalt in
J P gugs guaranteed unbiased variance-reducing estimator ang&thenc

large-pot and small-pot games may result in additional imore significant competition results.
provements.
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