Advances In Value Estimation in
Reinforcement Learning

Martha White

Associate Professor
University of Alberta

Canada CIFAR Al Chair O m l l

UNIVERSITY OF

57 ALBERTA

Problem Setting: Reinforcement Learning

* An agent interacts with the environment, to maximize reward

/

S’ r

Agent learns policy z(a | s)

to maximize expected return
“ = LGS, = 5]
with Gt — Rt+1 + }/RH_Z + ...
0> Qs T15 S15 A1s Ty Sy Aoy - . - and y > 0

Value Estimation is Central to Reinforcement Learning

A value function v_ tells us the expected return from a state s, under policy 7

e v.(5) =LE_[G|S,=s]=E_[R+yv(S)]|S = 5]

 Action-value ¢ allows us to improve the policy, by taking greedy actions

e q.(s,a) =E_[G,|S, =s,A, = da]

. 7'(s) = arg max g (s, a) obtains as good or higher return in each state
acd

 Can also directly estimate g™, the action-values for the optimal policy

* Value estimates critical for policy gradient methods (e.g., Actor Critic)

The Value Estimation Problem

» Problem: typically cannot exactly represent v

» instead use V(s, W) parameterized value function (e.g., linear function, NN)

» Goal: Find approximate values V(- , W) € & to minimize the value error

2 d(s) (f/(s, W) — vﬂ(s))2

* for simplicity we use finite states

The Value Estimation Problem

» Problem: typically cannot exactly represent v

» instead use V(s, W) parameterized value function (e.g., linear function, NN)

» Goal: Find approximate values V(- , W) € & to minimize the value error

Z d(s) (f/(s, W) — vﬂ(s))2

* Issue: Hard to directly optimize

* for simplicity we use finite states

Optimizing Value Error

 Option 1: Monte Carlo samples of return

» |f we can get samples of return G under policy 7 from state S we can
update using regression to these samples

e W — W+ 1noVi(S, w) foro = G — V(S, w)

 Issue: Need to get samples of (G, which can (a) be high variance and
(b) delay online updating

Using Bootstrapped Return Estimates
with Temporal Difference Learning

» Option 2: TD methods (including Q-learning)

* this has been the standard approach
e The TDupdateis W <« W+ 1noVi(S,w)

« where 6 = R + yv(S’, w) — (S, w) for transition (S, A, R, S’
W
~ G

Issues with Temporal Difference Learning

* The standard approach has been to use TD methods (including Q-learning)
e The TD updateis W < W+ 1o VV(S, w)
« where 0 = R+ yv(S',w) — v(S, w)
* Issue: TD is only sound on-policy under linear function approximation
 Can diverge under off-policy sampling

 Can diverge under nonlinear function approximation (e.g., neural networks)

Why is TD not sound?

 The TD update is not the gradient of any objective function
e Recal: w <« w4+ noVV(S,w)foro =R+ yV(S,w) —V(S, w)
* |t is not the gradient of the squared TD error 5°

. V52 = 5(yw(s', W) — V(5. w))

» TD update omits oy V(S’, w)

Why is TD not sound?

 The TD update is not the gradient of any objective function
e Recal: w <« w4+ noVV(S,w)foro =R+ yV(S,w) —V(S, w)

* |t is not the gradient of the squared TD error 5°
. V52 = 5(yw(s', W) — V(5. w))

» TD update omits oy V(S’, w)

 Rather, with linear function approximation, TD can be seen as a stochastic
update to solve a linear system of equations (iterative system solver)

What does this look like in practice?

D generally performs very well...until it doesn’t

Tabular Inverted Dependent Boyan Baird

3.0 -
2.5
Relative 2 V Q
2.0 1 &Q @ &Q &Q
©) O O %
RMSPBE ;' S & © 0 K /\Qo & «0&0 & & S
12 T Illl. IIII- III
0.5

* QOur algorithm in this talk is TDRC (a better gradient TD method)

« GTD2 and TDC are standard (sound) gradient methods, that have been
generally avoided because they seemed not to work too well

 TD diverges on Baird’s counterexample (rightmost)

How about in control, with Q-learning?

 Might be manifesting primarily as sensitivity to hyperparameters

 May also explain the need for target networks (speculative)

Mountain Car Lunar Lander
-200_ 'R R — -1
T O- ---------
_400 - 200- |
600 - T 400 -
200- | -600 -
~800 -
-1000 - a5k
O O O O
&8 &
,\Q N

How do we improve on TD methods?

There Is a long history and a plethora of approaches for value estimation

Most correspond to minimizing one of two typical objectives

Outline for What’s Coming Up

* A brief history of value estimation

e particularly by explaining the two key objectives
* An explanation of our generalized objective

* any why this generalization clarifies extensions to the nonlinear setting
* The naive algorithm, and how to improve on it significantly

* aka, how we actually got gradient TD methods to work well

Squared Bellman Error

» The true values v_ satisty the Bellman equation

« v_= Tv_for Bellman operator (Tv_)(s) = E_[R + yv (S)|S = s]

e e, v (s) =E_[R+yv (S)]|S = s] for all states s

Squared Bellman Error

» The true values v_ satisty the Bellman equation

« v_= Tv_for Bellman operator (Tv_)(s) = E_[R + yv (S)|S = s]

e e, v (s) =E_[R+yv (S)]|S = s] for all states s
« Under function approximation, may not be able to find v = 1v

BE(W) = Z d(s)(TH(-, w)(s) — (s, w))?> Recall
= 5(W) = R + y9(S’, w) — (S, w)

=) dSE[5(W)|S = 5]’

Squared Bellman Error

» The true values v_ satisty the Bellman equation

« v_= Tv_for Bellman operator (Tv_)(s) = E_[R + yv (S)|S = s]

« Under function approximation (FA), may not be able to find v = 1v

BE(W) =), dS)E[8(W)|S = s’

sed

e Issue: double sampling problem

* to get an unbiased sample of the gradient of this objective for a state, need
two independent samples of next state and reward from that state

More on the double sampling problem

BE(W) =), dS)E[8(W)|S = s’

sed

VBE(W) =2) d()E[6(W)|S = SIE,[VS(W)|S = s]

seS

For a state § with sampled R and §’, 6(w) V 0(W) is not an unbiased sample:

= [6(W)Vo(w) | S =s] #E [o(w)|S =s]E,[VO(W)]|S = s]

Recall: 6(w) = R + yv(S’, w) — V(§, w)

An Aside: Why not use Squared TD Error?

TDE(W) =) d(s)E[5(W)*|S = s]

sed

VTDE(W) =2) d(s)E[6(W)V3(W)|S = s]

sed

Then o(w) Vo(W) is an unbiased sample of this gradient

Reason: the resulting solution is typically bad

Linear Projected Bellman error

* Objective underlying Temporal Difference (TD) learning
» For linear FA, TD finds v that satisfies projected fixed point v = 117V

» Projection 11 projects 7v back to the linear function space

. Objective: PBE(W) = . d(s)((TITH(-, w))(s) = 9(-, W)(s))’
SES

* Issue: restricted to the linear setting
 Plus sometimes it can produce poor solutions

e BE Is better connected to the value error

Summary of Motivation and History

D can diverge under off-policy sampling and nonlinear function approximation

» Significant progress since the introduction of the linear PBE and the resulting
gradient TD algorithms, which ensure convergence (2009)

 PBE primarily for the linear setting

 nonlinear PBE relatively complex, with Hessian-vector products

» BE difficult to optimize due to the double-sampling problem
* plus, it has identifiability issues

* recent positive developments for double-sampling using a conjugate form

Key Points for this Talk

 We use the same conjugate form to develop a Generalized PBE

 Exploit insights from the literature, for linear PBE and BE, to obtain

* new theoretical results on the solution quality of the value estimate

* new algorithmic approaches to optimize the PBE

* “A Generalized Projected Bellman Error for Off-policy
Value Estimation in Reinforcement Learning”, JMLR, 2022

 Paper on arXiv about extension to Huber losses

Andrew Patterson

Let’s start by deriving the Generalized PBE

Bellman Error reformulated with an auxiliary variable

BE(w) = Y d(s)E-[5(w) | § = s’ Vi = max2yh - b
seS
_ ; d(s) max (2E[0(w) | S = s h - h?)
= max) d(s) (2B<[5(w) | S = s]h(s) — h(s)*)
all scS

where F) is the space of all functions

Why is this useful?

» Given h, computing a gradient update for the weights is straightforward

. Let c (W, h) = 2E_[6(W)|S = s]h(s) — h(s)*
BE(W) = max) d(s)c,(w,h)
all

he&F

V. c(w,h)=2E_[Vo(W)|S = s]h(s)
’ = 2E_[yVv(§S,w) — Vi(S,w) | S = s]h(s)

. Stochastic gradient update for w: /(s) (yV\A/(S W) — VI(S, W))

Learning h is also straightforward

» The optimal solution for his h*(s) = E_[o(W)|S = s]

» Update for h is a simple regression update with o0 as a target

The architecture and updates

 Green part standard TD or Q-learning. Red is the added auxiliary variable

(

~\

(

~\

(2)
Wt

(3)
Wt

/
X

v(S,, W)

W, < W, + 14, h)(VHS, W) —y VS, W))

h(S,. h)

h,, < h,+ 35— h(S,h))VAS,h,)

The architecture and updates for actions-values

 Green part standard TD or Q-learning. Red is the added auxiliary variable

(

~\

(

\

(3)
Wt

Q(Sta al)
Q(Sta Clz)

Q(Sta 613)

hT

tal

hT

taz

hT

ta3

Very similar updates

For control we use
a D error with a
maximum or soft-max

Once we approximate h, no longer minimizing the BE.
What are the ramifications of approximating h?

(And what are we actually minimizing?)

Restricting the Function Space for h
Corresponds to a Projection on the Bellman Error

het SES d(s) (2E«[0 | S = s] h(s) — h(s)*)

— ||HH,d(T@(°7 w) _ @('7 w))H?Z

where lly qu = arg min |u — hlqg
heH

IvlZ =) d(s)v(s)*

*Assuming # is a convex space

The Generalized PBE

PBE(w) = d(s) (2EL[6 | S = s] h(s) — h(s)?
I&%; 0 s|h(s) — h(s)?)

o For #/ = % = alinear function space, this equals the linear PBE

« For # = % = a nonlinear function space, we get a natural extension of the
linear PBE to the nonlinear setting

« For ' = F ,, this equals the Identifiable BE

« For & C # C F,|, a Projected Bellman Error between typical PBE and BE

Once we approximate h, no longer minimizing the BE.
What are the ramifications of approximating h?

(And what are we actually minimizing?)

Approximating h means we are optimizing the generalized PBE
(and all is well, things are sound)

But how well does it work?

o Sadly, not that well when using the straightforward gradient update
Aw + h(s)(Vud(s,w) — yVud(S, w))
* The update relies heavily on having an accurate estimate of h(s)

e e.9., If the estimate h(s) = 0, the update is zero

A practical algorithm using the generalized PBE:
Reducing reliance on our estimate h

Sampling the Gradient

 The saddlepoint update
Aw + h(s)(Vud(s,w) — yVud(S, w))
* [he gradient-correction update
Aw <+ d(w)Vv(s,w) — h(s)yVev(S', w)

* Gradient-correction much more effective than saddlepoint update

 Notice:

= [o(W) | S = s]Vi(s,w) —

=Ao(w) | S =s]E, [Vo(w)|S = s]
= [o(w) | S =s]E_[VV(S,w) —y VS, w)|S = 5]

= Lo(w) | S = 5]

= [y VoS, w) | S = s]

Sampling the Gradient

 The saddlepoint update

Aw + h(s)(Vud(s,w) — yVud(S, w))
* The gradient-correction update

Aw <+ d(w)Vv(s,w) — h(s)yVev(S', w)
 Point 1: Gradient-correction much more effective than saddlepoint update
» Point 2: Regularizing or restricting /4 significantly improves performance

* We called the algorithm TD with Regularized Corrections (TDRC) or Q-learning
with Regularized Corrections (QRC)

* Potential reason: corresponds to using a Huber loss

General Strategy for Other Losses

 Example with the Huber loss

(a) def a2 1f \a\ S T
Pr - 2 otherwise

2T|a| — T

2[0(0)]S = s] — h(s)*)

Feip. the set of all functions hgjip_: S — |7, 7.

Control Experiments

Cart Pole
Acrobot el N . DQNIId) | Lunar Lander
o] fEm o M o { RCA SRC Huber QRC Huber
| . (" . —~10000 - ’ WOWWVRAAR .
- | DQN + Target Nets " QRC 400 4
— ' QRC 300 - 0 -
5 250 1 QRC-Huber ~20000 - c
-Ia—') \ —-600 - 3 -100 -
o 390 200 4 [Q
350 WA -30000 4 § o - f
o - 100 DQN + Target Nets -800 1 |f | -
~40000 -{ | B
50 -+
0 - ~1000 —400 -
° Learning Steps 100000 0 Learning Steps 100000 ° Learning Steps 100000 ° Learning Steps 100000 ° Learning Steps ™

QRC optimizes squared PBE, without target nets, using gradient corrections
QRC-Huber is consistently the most effective

QRC methods generally more stable than DQN, even without target networks

* paper on arXiv: “Robust Losses for Learning Value Functions”

The Key Takeaway: Gradient-based approaches
Improve on our standard algorithms

- If we use the gradient-corrections form of the update
- If we constrain the auxiliary variable h

Summary of the Talk

* Point 1: We can improve on TD and Q-learning

* Point 2: Generalized PBE extends the linear PBE to the nonlinear setting and
provides a better alternative to the BE

 Point 3: The resulting gradient algorithms work! We can leverage the literature
on linear PBE and BE to get new algorithms (and theory)

Thank you! Questions?

