
Martha White
Associate Professor
University of Alberta

Developing RL Agents that
Learn Many Subtasks

Goals for the Talk
• Motivate that general purpose agents need to learn many subtasks in parallel

• Introduce the Continual Subtask Learning setting

• which allows us to focus on developing such agents

• Point out exciting open research questions in this area (we need your help)

• as well as some progress we have made

Problem Setting: Reinforcement Learning
• An agent interacts with the environment, to maximize reward

Hyper evaluation

+

⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

Hyper evaluation

+

⇤1

<latexit sha1_base64="deW2EVLxv/hd39iSw05YDyvSrxo=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xANvUK64VXcOtEq8nFQgR3NQ/uqHMUkFlYZwrHXPcxPjZ1gZRjidlvqppgkmYzykPUslFlT72XzhKTqzSoiiWNknDZqrvycyLLSeiMAmBTYjvezNxP+8XmqiKz9jMkkNlWTxUZRyZGI0ux6FTFFi+MQSTBSzuyIywgoTYzsq2RK85ZNXSfui6tWq9ftapXGd11GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352MRLTj5zDH8gfP5AzgHkAk=</latexit>

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

Data logs

Plant

Calibration
model

Deployment

⇤2

<latexit sha1_base64="iBzELazFZgD9R0Ma7T4DexHl4EU=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPaoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevknat6tWrF/f1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzBzmLkAo=</latexit>

⇤k

<latexit sha1_base64="5vXGSKBJonmcar4CKCU8+sMoymA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIiy6Lbly4qGAf0g4lk8m0oUlmSDJCGfoVblwo4tbPceffmLaz0NYDgcM555J7T5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtgTTmTtGWY4bSbKIpFwGknGN/M/M4TVZrF8sFMEuoLPJQsYgQbKz3272w0xIPxoFxxq+4caJV4OalAjuag/NUPY5IKKg3hWOue5ybGz7AyjHA6LfVTTRNMxnhIe5ZKLKj2s/nCU3RmlRBFsbJPGjRXf09kWGg9EYFNCmxGetmbif95vdREV37GZJIaKsnioyjlyMRodj0KmaLE8IklmChmd0VkhBUmxnZUsiV4yyevkvZF1atV6/e1SuM6r6MIJ3AK5+DBJTTgFprQAgICnuEV3hzlvDjvzsciWnDymWP4A+fzB4/vkEM=</latexit>

s0, a0, r1, s1, a1, r2, s2, a2, …

s′ , r

a
Agent learns policy  
to maximize expected return 
  
with

π(a |s)

𝔼π[Gt |St = s]
Gt = Rt+1 + γRt+2 + …

s

Most Learning Approaches use Value Estimation

• A value function tells us the expected return from a state s, under policy

•

• Action-value allows us to improve the policy, by taking greedy actions

•

• obtains as good or higher return in each state

• Can also directly estimate , the action-values for the optimal policy

vπ π

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[R + γvπ(S′) |S = s]

qπ

qπ(s, a) = 𝔼π[Gt |St = s, At = a]

π′ (s) = arg max
a∈𝒜

qπ(s, a)

q*

An Example of a Learning Agent: Sarsa
• Sarsa Agent learns policy through trial-and-error interaction

• Learns action-values and uses softmax (Boltzmann) policy on to select
actions proportionally to their value:

• In state , the agent takes action , transitions to and
receives reward and preemptively samples

• It updates its value estimate with parameters using

• where approximates the true return from under

̂q ̂q
π(a |s) ∝ exp(̂q(s, a))

st at ∼ π(⋅ |st) st+1
rt+1 at+1 ∼ π(⋅ |st+1)

̂q w

w ← w + αt(Ĝt − ̂q(st, at))∇w ̂q(st, at)

Ĝt ≐ rt+1 + γ ̂q(st+1, at+1) st π
But how far can we get with this simple (model-free, trial-and-error) update?

We Need More for the Lifelong Learning Setting
• Many steps of interaction

• Potentially vast environments

• Consider examples such as

• AssistantBot interacting with people

• CourierBot navigating a city

• EcoAgent controlling energy usage for an (expanding) network of buildings

Lifelong Learning is a Practical Paradigm
• Real-world environments are

• complex and potentially vast

• require the agent to run for a long time

• Lifelong learning is not grandiose nor is it only about AGI

• We will need to tackle this setting to obtain agents for complex environments

Example: CourierBot
• The RL agent is making many predictions about the world

• What will happen if I pick up this object?

• How many steps until I get to the door?

• How much longer can I drive before I need to recharge?

2

Would a
person say

that's a battery
charger?

Would my
try-to-plugin

procedure
succeed?

private
knowledge

public
knowledge

Fig. 1. A robot contemplates its camera image, trying to decide whether or not there
is a battery charger on the wall. The thought bubbles on the left and right illustrate
the di↵erence between formulating this question in a public-knowledge way and in a
sensorimotor-knowledge way. In the former, it is ultimately a question of what people
would say, whereas, in the latter, it is question about the outcome of a sensorimotor
procedure the robot could execute, in this case the procedure try-to-plugin, which is
presumed to be some extended closed-loop procedure for trying to connect to a battery
charger until success, with power trickling into the battery, or failure by running out
of time.

universal, and objective. In the sensorimotor approach, knowledge is ultimately
statements about the sensorimotor data stream that the system can check for
itself, whereas, in the public-knowledge approach, knowledge is ultimately state-
ments about entities in the world that can be checked by people but not typically
by the system itself. An example of the contrast between the two approaches is
suggested by Fig. 1.

The two approaches have di↵erent strengths. Public knowledge is easily com-
municated to and from people, and is naturally abstract and expressive, whereas
sensorimotor knowledge is more easily maintained without human intervention.
The latter is a key strength bearing directly on one of the most important prob-
lems facing modern knowledge based systems. A second motivation for explo-
ration of the sensorimotor approach is that it is much less developed; there has
been very little e↵ort expended trying to extend it to encompass abstract and
high-level knowledge. It is not clear if this can be done or even exactly what it
might mean. In this talk I summarize recent work trying to explore the uncharted
challenges of the sensorimotor approach to knowledge.

Would I bump if I
drive-forward

If I navigate-to-
lab, would try-to-
pugin succeed?

Under a Long Sequence of Interaction…
• the agent should accumulate knowledge about its environment

• that knowledge can be used to learn/adapt faster in

• new situations

• under nonstationarity, which can arise even just from limited function
approximation in a large, complex world

Knowledge as Subtasks
• Modular components about the world that can be re-used

• Options/Skills - Control Subtasks

• General Value Functions (GVF) - Prediction Subtasks

Example
• Control Subtask (option/skill) - Learn a policy that navigates to the lab

• Prediction Subtask (GVF) - What is the probability I will successfully plug-in, if
I run the navigate-to-lab option policy ?

π

π

2

Would a
person say

that's a battery
charger?

Would my
try-to-plugin

procedure
succeed?

private
knowledge

public
knowledge

Fig. 1. A robot contemplates its camera image, trying to decide whether or not there
is a battery charger on the wall. The thought bubbles on the left and right illustrate
the di↵erence between formulating this question in a public-knowledge way and in a
sensorimotor-knowledge way. In the former, it is ultimately a question of what people
would say, whereas, in the latter, it is question about the outcome of a sensorimotor
procedure the robot could execute, in this case the procedure try-to-plugin, which is
presumed to be some extended closed-loop procedure for trying to connect to a battery
charger until success, with power trickling into the battery, or failure by running out
of time.

universal, and objective. In the sensorimotor approach, knowledge is ultimately
statements about the sensorimotor data stream that the system can check for
itself, whereas, in the public-knowledge approach, knowledge is ultimately state-
ments about entities in the world that can be checked by people but not typically
by the system itself. An example of the contrast between the two approaches is
suggested by Fig. 1.

The two approaches have di↵erent strengths. Public knowledge is easily com-
municated to and from people, and is naturally abstract and expressive, whereas
sensorimotor knowledge is more easily maintained without human intervention.
The latter is a key strength bearing directly on one of the most important prob-
lems facing modern knowledge based systems. A second motivation for explo-
ration of the sensorimotor approach is that it is much less developed; there has
been very little e↵ort expended trying to extend it to encompass abstract and
high-level knowledge. It is not clear if this can be done or even exactly what it
might mean. In this talk I summarize recent work trying to explore the uncharted
challenges of the sensorimotor approach to knowledge.

Would I bump if I
drive-forward

If I navigate-to-
lab, would try-to-
pugin succeed?

GVF Subtask
• What is the probability I will successfully plug-in, if I run the navigate-to-lab

option policy ?

• Learn value function with cumulant in-place of reward

•

•

π

c(s, a, s′) = {1 if s' = plugged-in
0 else

Qπ(s, a) = 𝔼π[Ct+1 + Ct+2 + … |St = s, At = a]

What is the Alternative to Learning Subtasks?
• Many RL systems use end-to-end learning of policies, such as with Sarsa

• No models

• No options

• No GVFs

• For smaller environments (which can be covered in some reasonable time),
that are stationary, there is not much need to learn secondary objects

• So it is sensible to just use Sarsa

• For more complex environments, it is not too controversial that these
secondary components (subtasks) are needed to obtain effective agents

Learning Multiple Subtasks is an Old Idea in AI
• Early formalisms in lifelong learning looked at learning subtasks sequentially

• The experimenter designed the sequence of tasks for the agent

• We want to learn subtasks in parallel, from a single stream of experience

• The agent decides for itself what subtasks to focus on and where to go in
the environment to better learn the subtasks

Learning Multiple Subtasks is an Old Idea in AI
• Early formalisms in lifelong learning looked at learning subtasks sequentially

• The experimenter designed the sequence of tasks for the agent

• Naturally on-policy

• We want to learn subtasks in parallel, from a single stream of experience

• The agent decides for itself what subtasks to focus on and where to go in
the environment to better learn the subtasks

• Naturally off-policy, agent needs to reason counterfactually

Learning Multiple Subtasks is an Old Idea in AI
• Early formalisms in lifelong learning looked at learning subtasks sequentially

• The experimenter designed the sequence of tasks for the agent

• Naturally on-policy

• We want to learn subtasks in parallel, from a single stream of experience

• The agent decides for itself what subtasks to focus on and where to go in the
environment to better learn the subtasks

• Naturally off-policy, agent needs to reason counterfactually

• We finally have the tools to explore this problem setting

• significant improvements in off-policy algorithms within even just a few years

Committing to this Inductive Bias
• Assumption: The agent can learn more effectively in a complex world by

learning and re-using modular components (subtasks)

• Under this assumption, we can ask:

• how can the agent discover which subtasks are useful?

• how can the agent learn these subtasks efficiently?

Committing to this Inductive Bias
• Assumption: The agent can learn more effectively in a complex world by

learning and re-using modular components

• Under this assumption, we can ask:

• how can the agent discover which subtasks are useful?

• how can the agent learn these subtasks efficiently?

A Lifelong Learning RL Agent
• The RL agent needs to adapt

behavior to

• maximize reward

• learn about the subtasks,
that help maximize reward

• Intrinsic reward reflects
information gain for subtasks

• Agent maximizes both external
reward and intrinsic reward

Behavior

Task 1 Task 2 Task N

Intrinsic Reward
Weight Change

St
at

e/
O

bs
er

va
tio

n
Agent

(S
t+

1
)

<latexit sha1_base64="OjSwn01Y1y62YFQEFg9u2D/6H18=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpRdqeix6MVjRfsh7VKyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1RpVkkH8w4pr7AA8lCRrCx0mP5vpeaM29y2iuW3Io7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhFd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5PmecWrVi7uqqXadRZHHo7gGMrgwSXU4Bbq0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+hlo+n</latexit>

Rt+1

<latexit sha1_base64="V1A7ppgGUup3oxpxVAu7QIY7BKo=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKrYdehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fK+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/XnY9B</latexit>

At+1

<latexit sha1_base64="kReBLeP7qxIcNi6r2Ca46gqAW68=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseqF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7qZ+64lrI2L1iOOE+xEdKBEKRtFKrZtehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fKhWq7d5nEU4BhO4Aw8uIIa3EMdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx+9c48w</latexit>

Environment
Rt+1

To make traction on this difficult problem, we focus first on understanding 
how to develop algorithms for maximizing intrinsic reward (subtask learning)

Continual Subtask Learning

Behavior

Task 1 Task 2 Task N

Intrinsic Reward
Weight Change

St
at

e/
O

bs
er

va
tio

n

Agent

(S
t+

1
)

<latexit sha1_base64="OjSwn01Y1y62YFQEFg9u2D/6H18=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpRdqeix6MVjRfsh7VKyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1RpVkkH8w4pr7AA8lCRrCx0mP5vpeaM29y2iuW3Io7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhFd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5PmecWrVi7uqqXadRZHHo7gGMrgwSXU4Bbq0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+hlo+n</latexit>

Rt+1

<latexit sha1_base64="V1A7ppgGUup3oxpxVAu7QIY7BKo=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKrYdehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fK+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/XnY9B</latexit>

At+1

<latexit sha1_base64="kReBLeP7qxIcNi6r2Ca46gqAW68=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkoseqF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7qZ+64lrI2L1iOOE+xEdKBEKRtFKrZtehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLxq5fKhWq7d5nEU4BhO4Aw8uIIa3EMdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx+9c48w</latexit>

Environment

Rt+1 =
N

∑
j=1

Rj
t+1

No reward from 
the environment 
 
Focus is on  
maximizing 
intrinsic reward  
to learn subtasks

A Hypothetical Idealized System
• Bayesian subtask learners

• Each subtask has associated parameters , maintains posterior

• The data is the sequence of experience

• Actions are selected by the behavior (to maximize intrinsic reward)

• Intrinsic reward = information gain

• For j-th subtask,

w p(w |𝒟t)

𝒟t s0, a0, s1, a1, …, st

ai

r j
t+1 = KL(p(wj |𝒟t+1) | |p(wj |𝒟t))

A Hypothetical Ineffective System
• Subtask learners using SGD with a fixed (large) stepsize

• does not modulate learning up or down

• distracted by noise (talked about as the noisy TV problem)

• Intrinsic reward = prediction error

• prediction error = for targets and prediction

• prediction error = stochasticity in targets + estimation error + bias

• encourages (forever) visiting states with stochastic targets and high bias

(yj − fwj(x))2 yj fwj(x)

Key Technical Challenge
• Identify intrinsic rewards that lead to efficient learning

• Bayesian subtask learners make it easy to specify a sensible intrinsic reward
(information gain), but can be computationally expensive

• What about other subtask learners?

Let’s consider a small experiment in a bandit setting

from a larger journal paper in JAIR on understanding intrinsic rewards: 
Adapting Behaviour via Intrinsic Reward: A Survey and Empirical Study

primarily with Cam Linke and Adam White

Let’s consider a small experiment in a bandit setting

high-variance
target (4)

drifting target
(2)

high-variance
target (1)

constant target
(3)

target
values

50 15
0

jumpy target

constant targets

drifting targets

high-variance
targets

time steps (thousands)

switch time

5010

target 1

target 3

target 2

target 4

5010

50

-50

Drifter-distractor problem Switch drifter-distractor problem Jumpy eight arm problem

Time Steps (in thousands)

Small Bandit Experiment
• There is no context or state

• Each subtask learner is estimating the
mean of a different target

• N independent learners (4)

•

• Each action only generates data for
one subtask learner

• there are N actions

wj
t+1 ← wj

t − αj
t (w

j
t − yj

t)

Behavior has to learn to balance the needs of all these subtask learners

Example of Good Behavior

high-variance
target (4)

drifting target
(2)

high-variance
target (1)

constant target
(3)

target
values

50 15
0

jumpy target

constant targets

drifting targets

high-variance
targets

time steps (thousands)

switch time

5010

target 1

target 3

target 2

target 4

5010

50

-50

Drifter-distractor problem Switch drifter-distractor problem Jumpy eight arm problem

Time Steps (in thousands) absolute error
reduction

squared error

probability
of selecting
each action

probability
of selecting
each action

1.0

0.0
1.0

0.0

change in
uncertainty

stepsize
change

weight
change

variance of
prediction

unexpected
 demon error

error derivative
change

bayesian
surprise

expected error

50 50

time steps (thousands)
50 50 50

Constant can be learned fast, should stop selecting relatively early on

Distractors take longer (due to stochasticity), but also should stop being selected

Drifting needs to be selected forever (non-stationary)

Let’s examine the effect of using two different 
intrinsic rewards and two different subtask learners 
and the interactions between these choices

Two Intrinsic Rewards
• Squared Prediction Error:

•

• Weight Change:

• Reflects amount of learning: how much subtask learner adjusted its weights

(yj
t − wj

t)
2

𝔼[(Yj
t − wj

t)
2] = 𝔼[(Yj

t − E[Yj
t])

2

stochasticity

+ (E[Yj
t] − wj

t)
2

amount of learning
]

|wj
t − wj

t−1 |

Introspective vs Non-introspective
• Introspective Subtask Learner modulate learning down when learning is not

possible, modulate it up when there is more to learn

• e.g., Bayesian learners slowly concentrate posterior around most likely
weights (modulate down learning when learning is done)

• e.g., Adaptive stepsize approach (Auto) decreases stepsize to converge

• Non-introspective Subtask Learner does not modulate learning down

• e.g, Fixed stepsize SGD, constantly chases stochasticity in targets

Only Introspective+Weight Change Effective

Adapting Behavior via Intrinsic Reward: a Survey and Empirical Study

Error Derivative Expected Error Error Reduction

Squared Error Bayesian Surprise UDE

Uncertainty Change Variance of Prediction Weight Change

Time steps

R
o
o
t
M

ea
n
 S

q
u
ar

ed
 E

rr
o
r average

drifter target

constant target

distractor targets

Figure 8: RMSE over time corresponding to each intrinsic reward function in the Drifter-

Distractor problem with Non-introspective Learners. Each subplot corresponds to a
di↵erent reward as labelled. The line colors correspond exactly as in the previous plots:
green drifting, black and red high-variance, and blue constant. Each line is the expo-
nentially weighted moving average of the LMS predictor’s RMSE. The RMSE is computed
with an exponential average, with a decay 0.999. The final results are averaged over 200
independent runs (standard error bars are plotted but not visible). The heavy stroke black
dashed line reports average of the other four. Although many rewards induce similar action
selection strategies, they can produce di↵erent RMSE curves.

8.2 Results with Introspective Learners

In this section we analyze the impact of di↵erent intrinsic rewards with introspective learn-
ers. We use LMS learners with Autostep, a step-size adaption method, to obtain introspec-
tive prediction learners. First let us recall how the step-size parameter for each LMS learner
might change over time (see Figure 3 in Section 4 for reference), based on the errors gener-
ated by each of our three target types. The distractor targets are noisy—even if the mean
is stable—so the LMS learner will experience positive and negative errors. The Autostep
algorithm will reduce the step-size parameter corresponding to these targets, allowing each
LMS learner to mitigate the variance and converge to the correct prediction of zero. The
constant target on the other hand is easy to predict. Autostep will keep the step-size param-
eter large because the errors will be of the same sign. However, the error on the constant
error can easily be reduced to zero with repeated sampling. Once the prediction error is

27

SGD (non-introspective) Auto (introspective)

Squared  
Prediction  
Error 
= stochasticity +  
amount of learning

Weight  
Change 
= amount of learning

Adapting Behavior via Intrinsic Reward: a Survey and Empirical Study

Error Derivative Expected Error Error Reduction

Squared Error Bayesian Surprise UDE

Uncertainty Change Variance of Prediction Weight Change

Time steps

R
o
o
t
M

ea
n
 S

q
u
ar

ed
 E

rr
o
r average

drifter target

constant target

distractor targets

Figure 8: RMSE over time corresponding to each intrinsic reward function in the Drifter-

Distractor problem with Non-introspective Learners. Each subplot corresponds to a
di↵erent reward as labelled. The line colors correspond exactly as in the previous plots:
green drifting, black and red high-variance, and blue constant. Each line is the expo-
nentially weighted moving average of the LMS predictor’s RMSE. The RMSE is computed
with an exponential average, with a decay 0.999. The final results are averaged over 200
independent runs (standard error bars are plotted but not visible). The heavy stroke black
dashed line reports average of the other four. Although many rewards induce similar action
selection strategies, they can produce di↵erent RMSE curves.

8.2 Results with Introspective Learners

In this section we analyze the impact of di↵erent intrinsic rewards with introspective learn-
ers. We use LMS learners with Autostep, a step-size adaption method, to obtain introspec-
tive prediction learners. First let us recall how the step-size parameter for each LMS learner
might change over time (see Figure 3 in Section 4 for reference), based on the errors gener-
ated by each of our three target types. The distractor targets are noisy—even if the mean
is stable—so the LMS learner will experience positive and negative errors. The Autostep
algorithm will reduce the step-size parameter corresponding to these targets, allowing each
LMS learner to mitigate the variance and converge to the correct prediction of zero. The
constant target on the other hand is easy to predict. Autostep will keep the step-size param-
eter large because the errors will be of the same sign. However, the error on the constant
error can easily be reduced to zero with repeated sampling. Once the prediction error is

27

Adapting Behavior via Intrinsic Reward: a Survey and Empirical Study

error for the constant target does go to zero. Consequently, the magnitude of the update
also goes to zero, meaning the weight change goes to zero and preference for the constant
target diminishes over time. Bayesian Surprise induces similar behavior as Weight Change

as suggested by our analysis in Section 6. The variance-based rewards and UDE induce the
same overall action preferences as without Autostep.

Across the board there is an improvement in RMSE reduction as shown in Figure 10.
The RMSE is about half of that for the non-introspective learners. The di↵erences in RMSE
between the intrinsic rewards appear more minor, but the di↵erences are meaningful. The
total RMSE is well correlated with our definition of ideal behavior in this domain—reward
functions that result in lower error exhibit the expected action preferences over time. To
see larger di↵erences, though, we need more actions. This first experiment was primarily
designed to investigate qualitative behavior; the final experiment uses more actions and
provides a better insight into quantitative di↵erences.

Error Derivative Expected Error Step-size Change Error Reduction Squared Error

Bayesian Surprise UDE Uncertainty Change Variance of Prediction Weight Change

Time steps

R
o
o
t
M

ea
n
 S

q
u
ar

ed
 E

rr
o
r

Figure 10: RMSE over time corresponding to each intrinsic reward function in the Drifter-

Distractor problem with Introspective Learners. Results averaged over 200 runs, and
standard error bars included. In this experiment, reward functions that induce similar action
preferences produce similar RMSE reduction over profiles. Using Weight Change reward
produces the lowest RMSE (0.108), however both UDE (0.109) and Uncertainty Change

(0.110) result in similar performance. Squared Error results in the worst performance overall
(0.292), and rewards that induce uniform action selection like Error Derivative result in
larger error (0.124) compared with Weight Change.

For non-introspective learners, we observed that careful tuning of hyper-parameters al-
lowed for the correct behavior for certain intrinsic rewards, by slowing prediction learning.
This was the case for the Error Derivative, where in Figure 7 we observed that if the predic-
tors learned too quickly, the drifter target did not produce the highest Error Derivative. For
introspective learners, prediction learning cannot be slowed: they increase learning when
learning is possible. We might expect Error Derivative to therefore perform poorly, and

29

🙂

☹

☹

☹RM
SE

Action Selection Probabilities
SGD (non-introspective) Auto (introspective)

Squared  
Prediction  
Error 
= stochasticity +  
amount of learning

Weight  
Change 
= amount of learning 🙂

☹

☹

☹

Linke, Ady, White, Degris & White

Error Derivative Expected Error Error Reduction

Squared Error Bayesian Surprise UDE

Uncertainty Change Variance of Prediction Weight Change

Time steps

A
ct

io
n
 s

el
ec

ti
o
n
 p

ro
b
ab

il
it
y

drifter target

constant target

distractor targets

0

0

0

Figure 5: Behavior in the Drifter-Distractor problem, with Non-Introspective

Learners. Each subplot corresponds to the behavior of the Gradient Bandit with a dif-
ferent intrinsic reward. Each line depicts the action selection probabilities learned by the
behavior agent, over 50000 steps. The bold dashed lines show the mean probability of each
action, averaged over 200 repetitions of the experiment. The light stroke solid lines show
the probabilities computed by the Gradient Bandit for each action on individual runs—we
only show a small random subset of 15 runs for readability. The green line corresponds to
the drifter target, the blue line corresponds to the constant target, and the red and black

lines correspond to the distractor targets. Intrinsic rewards based on variance estimates
and averaging errors over time induce near-ideal action selection.

eral rewards induced the ideal behavior described above to varying degrees. Rewards based
on simple moving averages of each learner’s prediction error, including Expected Error and
UDE, quickly latch on to the action corresponding to the drifter target. The parameter
sweep chose a short averaging window, because the � are more consistently the same sign
for the drifter target, making the Expected Error higher for the drifter target. Using the
variance of each predictors estimate, as in Variance of Prediction and Uncertainty Reduc-

tion, the behavior also converges to mostly selecting the action corresponding to the drifter
target, after exploring the actions corresponding to the constant and distractor targets
initially a bit longer. A parameter corresponding to a long window is used, because the
predictions for the drifter target change much more over time than those for the distractor
targets. Perhaps unsurprisingly the Squared Error and Error Reduction produce inappro-

24

Linke, Ady, White, Degris & White

Error Derivative Expected Error Error Reduction

Squared Error Bayesian Surprise UDE

Uncertainty Change Variance of Prediction Weight Change

Time steps

A
ct

io
n

 s
el

ec
ti
o
n

 p
ro

b
ab

il
it
y

drifter target

constant target

distractor targets

0

0

0

Figure 5: Behavior in the Drifter-Distractor problem, with Non-Introspective

Learners. Each subplot corresponds to the behavior of the Gradient Bandit with a dif-
ferent intrinsic reward. Each line depicts the action selection probabilities learned by the
behavior agent, over 50000 steps. The bold dashed lines show the mean probability of each
action, averaged over 200 repetitions of the experiment. The light stroke solid lines show
the probabilities computed by the Gradient Bandit for each action on individual runs—we
only show a small random subset of 15 runs for readability. The green line corresponds to
the drifter target, the blue line corresponds to the constant target, and the red and black

lines correspond to the distractor targets. Intrinsic rewards based on variance estimates
and averaging errors over time induce near-ideal action selection.

eral rewards induced the ideal behavior described above to varying degrees. Rewards based
on simple moving averages of each learner’s prediction error, including Expected Error and
UDE, quickly latch on to the action corresponding to the drifter target. The parameter
sweep chose a short averaging window, because the � are more consistently the same sign
for the drifter target, making the Expected Error higher for the drifter target. Using the
variance of each predictors estimate, as in Variance of Prediction and Uncertainty Reduc-

tion, the behavior also converges to mostly selecting the action corresponding to the drifter
target, after exploring the actions corresponding to the constant and distractor targets
initially a bit longer. A parameter corresponding to a long window is used, because the
predictions for the drifter target change much more over time than those for the distractor
targets. Perhaps unsurprisingly the Squared Error and Error Reduction produce inappro-

24

Linke, Ady, White, Degris & White

zero Autostep will modify the step-size parameter no further. The drifter target has noise,
like the distractor targets, but the mean is not centered at zero, and it exhibits temporal
structure. Consequently, the Autostep algorithm will keep the step-size parameter value
high for the duration of the experiment. It is not hard to see that introspective learners
should e�ciently reduce error across all the targets, at least compared with a global, con-
stant step-size parameter value. More subtly, an intrinsic reward that takes into account
the dynamic values of the step-size parameter could exploit this additional information to
adapt behavior to reduce error even faster.

Error Derivative Expected Error Step-size Change Error Reduction Squared Error

Bayesian Surprise UDE Uncertainty Change Variance of Prediction Weight Change

Time steps

A
ct

io
n
 s

el
ec

ti
o
n
 p

ro
b
ab

il
it
y

0

0

Figure 9: Behavior in the Drifter-Distractor problem with Introspective Learners.
Each subplot corresponds to the behavior of the Gradient Bandit with a di↵erent intrinsic
reward. Each LMS learner uses the Autostep algorithm to adapt the step-size parameter
over time. The line coloring, labelling, and semantics mirror Figure 5. With Autostep,
Weight Change induces near-ideal action selection. Error Derivative and Expected Error

rewards, on the other hand, induce inappropriate action selection.

The setup of our second experiment was identical to the first except that each LMS
learner maintained its own step-size parameter ↵t,i updated via Autostep. We also include
an intrinsic reward based on the change in the step-size parameter to assess the utility of
rewarding action choices that caused changes in the step-size parameter values. This reward
only makes sense if the step-size parameter can change over time, and thus was not included
in the previous experiment.

The results of our second experiment are summarized in Figure 9. As before we plot the
action selection probabilities to summarize the behavior. Weight change reward now induces
near-ideal action selection. The step-size parameters for the distractor targets decay to a
relatively small values causing the weight change to reduce—those actions become less and
less rewarding. Autostep keeps the step-size parameter value relatively high for the drifter
target, on the other hand, and the change in weights remains relatively high. Finally, even
though the step-size parameter does not decay to zero for the constant target, the prediction

28

Key Takeaway 1
• Designing effective CSL systems requires considering interactions between

learning components

• For CSL we need:

• Introspective Subtask Learners

• Intrinsic Rewards based on Amount of Learning (not error)

Key Takeaway 1
• Designing effective CSL systems requires considering interactions between

learning components

• For CSL we need:

• Introspective Subtask Learners

• Intrinsic Rewards based on Amount of Learning (not error)

• Open Challenge: Characterizing which subtask learners and intrinsic rewards
best mimic ideal behavior of Bayesian subtask learners and information gain

• We show some connection between Weight Change with MAP subtask
learners and Info Gain with Bayesian subtask learners

Now coming back to the RL setting

Key Technical Challenge
• Identify intrinsic rewards that lead to efficient learning

Key Technical Challenges
• Identify intrinsic rewards that lead to efficient learning

• Current simple strategy is to use Weight Change

• With sample efficient RL algorithms that use adaptive stepsizes

• Design subtask learners that learn efficiently from off-policy data

• The intrinsic rewards are non-stationary

• RL algorithms are designed for stationary rewards

Off-policy Algorithms
• My lab has focused a lot on designing effective off-policy algorithms

• See recent journal submission summarizing much of this work

• “A Generalized Projected Bellman Error for Off-policy Value Estimation in
Reinforcement Learning”, with my PhD student, Andrew Patterson

• Key Takeaway 2: We have made a lot of progress on  
understanding how to make stable off-policy algorithms

• Open Challenge: improving sample efficiency and  
convergence rates

Let’s focus on the technical challenge of nonstationary rewards

Recent Paper: Continual Auxiliary Task Learning
• Focus: Handling non-stationarity in the rewards

• Key idea: Use Successor Features to learn stationary feature information
and only track changing rewards

Chunlok Lo Matt Schlegel Raksha Kumaraswamy Adam White

Defining Successor Features
• Let be the features for state-action pair (s,a)

• The successor features are the cumulative, discounted sum of the
features when following policy

•

• This recursive form looks just like a value function (simply vector-valued)

• can be learned using any value function learning approach

x(s, a)

ψ
π

ψ(s, a) = 𝔼π[x(St, At) + γx(St+1, At+1) + γ2x(St+2, At+2) + … |St = s, At = a]
= 𝔼π[x(St, At) + γψ(St+1, At+1) |St = s, At = a]

ψ

Why Are Successor Features Useful?
• If the rewards are linear in the features,

• Then the action-values for a policy can be immediately with the SF using

r(s, a) = x(s, a)⊤w*

π

Qπ(s, a) = ψ(s, a)⊤w*

To See Why…

ψ(s, a)⊤w* = 𝔼π[x(St, At)⊤w* + γx(St+1, At+1)⊤w* + … |St = s, At = a]

= 𝔼π[r(St, At) + γr(St+1, At+1) + … |St = s, At = a]
= Qπ(s, a)

Why Are Successor Features Useful?
• If the rewards are linear in the features,

• Then the action-values for a policy can be immediately with the SF using

• To estimate , we only need to solve a regression problem and learn
weights such that , to get

r(s, a) = x(s, a)⊤w*

π

Qπ(s, a) = ψ(s, a)⊤w*

Qπ(s, a)
w r(s, a) ≈ x(s, a)⊤w

̂q(s, a) = ψ(s, a)⊤w

Wait, This Seems Worse
• If the rewards are linear in the features,

• To estimate , we only need to solve a regression problem and learn
weights such that

• We’ve exchanged the easier problem of directly estimating with
estimating which outputs a vector of the same size as

r(s, a) = x(s, a)⊤w*

Qπ(s, a)
w r(s, a) ≈ x(s, a)⊤w

Qπ(s, a)
ψ(s, a) x(s, a)

When Are Successor Features Useful?
• If the rewards are linear in the features,

• To estimate , we only need to solve a regression problem and learn
weights such that

• But now we’ve exchanged the easier problem of directly estimating
with estimating

• This effort is only worth it if we get to re-use

r(s, a) = x(s, a)⊤w*

Qπ(s, a)
w r(s, a) ≈ x(s, a)⊤w

Qπ(s, a)
ψ(s, a)

ψ(s, a)

SF Is Useful When Rewards Are Nonstationary
• Tracking (slowly) changing rewards fundamentally simpler than tracking the

resulting changing value function

• where

ψ(s, a)⊤(w* + ϵ) = Qπ(s, a) + 𝔼π[ϵ(St, At) + γ + ϵ(St+1, At+1) + … |St = s, At = a]

ϵ(s, a) = x(s, a)⊤ϵ

SF Is Useful When Rewards Are Nonstationary
• Tracking (slowly) changing rewards fundamentally simpler than tracking the

resulting changing value function

• where

• Result in paper formalizing this intuition: convergence rate for value
estimation with SF when estimating is better than known convergence
rate for TD-based value estimation algorithms

ψ(s, a)⊤(w* + ϵ) = Qπ(s, a) + 𝔼π[ϵ(St, At) + γ + ϵ(St+1, At+1) + … |St = s, At = a]

ϵ(s, a) = x(s, a)⊤ϵ

w*

Let’s test out this idea 
 

Both subtask learners and behavior learn value functions  
Both can leverage SF for non-stationary signals

An Experiment in the T-Maze

One subtask per cumulant (constant at G2 and G4, drifter at G3, distractor at G1)

SF Improves Performance for both the  
Behavior and Subtask Learners

<latexit sha1_base64="ZdLzjZV6lPy3KA+i3F0D+ksEDKg=">AAACCXicdVDJSgNBEO2JW4xb1KOXxiAoyNBj9lvAi8e4RAOZEHo6naRJz0J3jRiGXL34K148KOLVP/Dm39iJEVT0QcHjvSqq6nmRFBoIebdSc/MLi0vp5czK6tr6RnZz61KHsWK8wUIZqqZHNZci4A0QIHkzUpz6nuRX3vB44l9dc6VFGFzAKOJtn/YD0ROMgpE6Wez68b4L/AaSc6o0HR8cupH4Us7GB51sjtikUCqX85jY+YpTIFVDSuWiU8xjxyZT5NAM9U72ze2GLPZ5AExSrVsOiaCdUAWCST7OuLHmEWVD2uctQwPqc91Opp+M8Z5RurgXKlMB4Kn6fSKhvtYj3zOdPoWB/u1NxL+8Vgy9SjsRQRQDD9jnol4sMYR4EgvuCsUZyJEhlClhbsVsQBVlYMLLmBC+PsX/k8sj2ynZ5LSQq1VncaTRDtpF+8hBZVRDJ6iOGoihW3SPHtGTdWc9WM/Wy2dryprNbKMfsF4/AKEmmkg=</latexit>

µ(Sarsa),⇡(SR)

<latexit sha1_base64="KCbvVNSlPgEsHZ+pF2DvCdMg9aM=">AAACCXicdVDLSgNBEJyNrxhfqx69DAbBgCyzJibmJnrxqGhMIBvC7GSSDJl9MNMrhiVXL/6KFw+KePUPvPk3TmIEFS1oKKq66e7yYyk0EPJuZWZm5+YXsou5peWV1TV7feNKR4livMYiGamGTzWXIuQ1ECB5I1acBr7kdX9wMvbr11xpEYWXMIx5K6C9UHQFo2Ckto29INn1gN9AekGVpqPCnheLqXJ5PCq07TxxSKlcqRQxcYqHbolUDSlXDtyDInYdMkEeTXHWtt+8TsSSgIfAJNW66ZIYWilVIJjko5yXaB5TNqA93jQ0pAHXrXTyyQjvGKWDu5EyFQKeqN8nUhpoPQx80xlQ6Ovf3lj8y2sm0D1spSKME+Ah+1zUTSSGCI9jwR2hOAM5NIQyJcytmPWpogxMeDkTwten+H9yte+4ZYecl/JH1WkcWbSFttEuclEFHaFTdIZqiKFbdI8e0ZN1Zz1Yz9bLZ2vGms5soh+wXj8Aik2aOQ==</latexit>

µ(Sarsa),⇡(TB)

<latexit sha1_base64="8SSix4ySnQMRUrh/HHLWYLpsLOE=">AAACB3icdVDLSgMxFM34rPVVdSlIsAgKMqQPbbsrulB3FawKnVIyaaqhmQfJHbEMs3Pjr7hxoYhbf8Gdf2PajqCiBy6cnHMvufe4oRQaCPmwJianpmdmM3PZ+YXFpeXcyuq5DiLFeJMFMlCXLtVcCp83QYDkl6Hi1HMlv3D7h0P/4oYrLQL/DAYhb3v0yhc9wSgYqZPbcLxo2wF+C/FR4yTZ2XVCkb7PDpKdTi5P7BopkeoeJjaplio1YkipVi6WirhgkxHyKEWjk3t3ugGLPO4Dk1TrVoGE0I6pAsEkT7JOpHlIWZ9e8ZahPvW4bsejOxK8ZZQu7gXKlA94pH6fiKmn9cBzTadH4Vr/9obiX14rgl61HQs/jID7bPxRL5IYAjwMBXeF4gzkwBDKlDC7YnZNFWVgosuaEL4uxf+T86Jd2LfJaTlfr6VxZNA62kTbqIAqqI6OUQM1EUN36AE9oWfr3nq0XqzXceuElc6soR+w3j4BcPqZBw==</latexit>

µ(GPI),⇡(TB)

<latexit sha1_base64="CePl3kCPiu5Nqh/03NYDHDaZshs=">AAACB3icdVBLS0JBFJ7b0+xltQxiSAKFuIzaQ3dCi2pnD03wiswdRx2c+2Dm3Egu7tr0V9q0KKJtf6Fd/6bRDCrqgwPffN85zDmfG0qhgZB3a2p6ZnZuPrGQXFxaXllNra3XdBApxqsskIGqu1RzKXxeBQGS10PFqedKfuX2j0b+1TVXWgT+JQxC3vRo1xcdwSgYqZXacrwo4wC/gfi4cjrM7jqhmLwvzofZVipN7BIpkOI+JjYpFg5LxJBCaS9fyOOcTcZIowkqrdSb0w5Y5HEfmKRaN3IkhGZMFQgm+TDpRJqHlPVplzcM9anHdTMe3zHEO0Zp406gTPmAx+r3iZh6Wg8813R6FHr6tzcS//IaEXSKzVj4YQTcZ58fdSKJIcCjUHBbKM5ADgyhTAmzK2Y9qigDE13ShPB1Kf6f1PJ27sAmZ3vpcmkSRwJtom2UQTl0iMroBFVQFTF0i+7RI3qy7qwH69l6+WydsiYzG+gHrNcPh9OZFg==</latexit>

µ(GPI),⇡(SR)

• = behavior uses SF

• = subtask uses SF

• = behavior uses Sarsa

• = subtask uses Tree-
Backup, a sample efficient off-
policy algorithm designed for
stationary rewards

μ(GPI)

π(SR)

μ(Sarsa)

π(TB)

Improving Sample Efficiency of Subtask Learners with Replay

• Labels with “8” means we use 8
replay steps (8x more updates)

• Replay does not interface well
with non-stationary data

• Rewards are stale in the buffer

• uses replay only for
stationary SF part, updates
reward model online

π(SR)<latexit sha1_base64="ITJ8Uxkg9zvGjDfflW6tH7QHRwE=">AAACCXicdVDJSgNBEO1xN25Rj14ag6AgQ48mLjdBEI9uMUImhJ5OJWnSs9BdI4YhVy/+ihcPinj1D7z5N3ZiBBV9UPB4r4qqekGipEHG3p2R0bHxicmp6dzM7Nz8Qn5x6dLEqRZQFrGK9VXADSgZQRklKrhKNPAwUFAJOod9v3IN2sg4usBuArWQtyLZlIKjlep56ofpuo9wg9mRvIFGb2PTT+RQOT/rbdTzBebus22vtE2Z63nFnVLJkqLHdvdK1HPZAAUyxEk9/+Y3YpGGEKFQ3JiqxxKsZVyjFAp6OT81kHDR4S2oWhrxEEwtG3zSo2tWadBmrG1FSAfq94mMh8Z0w8B2hhzb5rfXF//yqik292qZjJIUIRKfi5qpohjTfiy0ITUIVF1LuNDS3kpFm2su0IaXsyF8fUr/J5dbrrfjstNi4WB/GMcUWSGrZJ14ZJcckGNyQspEkFtyTx7Jk3PnPDjPzstn64gznFkmP+C8fgCBEpoz</latexit>

µ(Fixed),⇡(SR)

<latexit sha1_base64="XRCgJKOjuQa6cQ6sB+2Bahj1sb4=">AAACCXicdVDJSgNBEO1xN25Rj14agxBBhhnNehMF8aiQRCETQk+nok16FrprxDDk6sVf8eJBEa/+gTf/xs4iqOiDgsd7VVTV82MpNDrOhzU1PTM7N7+wmFlaXlldy65vNHSUKA51HslIXfpMgxQh1FGghMtYAQt8CRd+73joX9yA0iIKa9iPoRWwq1B0BWdopHaWekGS9xBuMT0Rt9AZ7O55sZgotaPBbjubc2y3WHHLJerYhUq1WC0YUj4oVkoOdW1nhByZ4Kydffc6EU8CCJFLpnXTdWJspUyh4BIGGS/REDPeY1fQNDRkAehWOvpkQHeM0qHdSJkKkY7U7xMpC7TuB77pDBhe69/eUPzLaybYrbRSEcYJQsjHi7qJpBjRYSy0IxRwlH1DGFfC3Er5NVOMowkvY0L4+pT+Txr7tluynfNC7rA6iWOBbJFtkicuKZNDckrOSJ1wckceyBN5tu6tR+vFeh23TlmTmU3yA9bbJ5LzmkA=</latexit>

µ(Fixed),⇡(TB)

<latexit sha1_base64="P2J8ihdxIhtG5AuSSQtATBYvBxQ=">AAACC3icdVDLSgNBEJz1bXytevQyGIQIsuxqEuNNUMSDB8VEhWwIs5NOHJx9MNMrhiV3L/6KFw+KePUHvPk3TmIEFS1oqKnqZrorSKTQ6Lrv1sjo2PjE5NR0bmZ2bn7BXlw603GqONR4LGN1ETANUkRQQ4ESLhIFLAwknAdXe33//BqUFnFUxW4CjZB1ItEWnKGRmvaqH6YFH+EGswNxA63e+oafiKFydFrd76037bzruJXSVmWTuk6xXNkueYaYZ2lrh3qOO0CeDHHctN/8VszTECLkkmld99wEGxlTKLiEXs5PNSSMX7EO1A2NWAi6kQ1u6dE1o7RoO1amIqQD9ftExkKtu2FgOkOGl/q31xf/8uoptiuNTERJihDxz4/aqaQY034wtCUUcJRdQxhXwuxK+SVTjKOJL2dC+LqU/k/ONh2v7LgnxfzuzjCOKbJCVkmBeGSb7JJDckxqhJNbck8eyZN1Zz1Yz9bLZ+uINZxZJj9gvX4A3Kua7A==</latexit>

µ(Fixed),⇡(LSTD)

<latexit sha1_base64="aHvaRd/lgH6u1C8zmNH9ZDdhc6o=">AAACE3icdVDLSitBEO3xbfRq1KWbxiCoyNCjwSQ7QRCXvqJCJoSeTkUbex5014hhmH9w46+4caGIWzfu/Bs7D0HleqDgcE4VVXWCREmDjH04I6Nj4xOTU9OFmdl/c/PFhcUzE6daQF3EKtYXATegZAR1lKjgItHAw0DBeXC91/PPb0AbGUen2E2gGfLLSHak4GilVnHDD9M1H+EWs315C+18fdNP5FA5Oc7XB4zSvNoqlphbY9usVqHMZdXqDmOWbNfKXrlCPZf1USJDHLaK7347FmkIEQrFjWl4LMFmxjVKoSAv+KmBhItrfgkNSyMegmlm/Z9yumqVNu3E2laEtK9+n8h4aEw3DGxnyPHK/PZ64v+8RoqdajOTUZIiRGKwqJMqijHtBUTbUoNA1bWECy3trVRccc0F2hgLNoSvT+nf5GzL9XZcdlQu7daGcUyRZbJC1ohHKmSXHJBDUieC3JEH8kSenXvn0XlxXgetI85wZon8gPP2CfbqnjI=</latexit>

µ(Fixed),⇡(SR) 8

<latexit sha1_base64="wuh9SXMFkjq2of1ekbzDzfXxqHk=">AAACE3icdVDLSgNBEJz1GeMr6tHLYBBUZNkkRjc3URCPCkaFbAizk44Ozj6Y6ZWEZf/Bi7/ixYMiXr1482+cPAQVLWgoqrrp7vJjKTQ6zoc1Nj4xOTWdm8nPzs0vLBaWls91lCgOdR7JSF36TIMUIdRRoITLWAELfAkX/s1h37+4BaVFFJ5hL4ZmwK5C0RGcoZFahS0vSDY8hC6mR6IL7Wxz24vFSDk7yDaHjNLMbRWKju1Ud6puhTp2xa2VB2TXrVTLNVqynQGKZISTVuHda0c8CSBELpnWjZITYzNlCgWXkOW9REPM+A27goahIQtAN9PBTxldN0qbdiJlKkQ6UL9PpCzQuhf4pjNgeK1/e33xL6+RYMdtpiKME4SQDxd1Ekkxov2AaFso4Ch7hjCuhLmV8mumGEcTY96E8PUp/Z+cl+3Sru2c7hT3a6M4cmSVrJENUiJ7ZJ8ckxNSJ5zckQfyRJ6te+vRerFeh61j1mhmhfyA9fYJ8faeMA==</latexit>

µ(Fixed),⇡(TB) 8

Incorporating Off-Policy Ideas Also Helps

• Result in an Open 2-D World

• Add Emphatic Weightings
(corrects bias in distributions)

• Add interest (focuses function
approximation on a subset of
states, counterfactual reasoning
everywhere not feasible)

S0

G1

G2 G4

G3

<latexit sha1_base64="oKxxLbtGGNDH1jWEJuAn/0kYjcM=">AAACB3icdVDLSgMxFM34tr6qLgUJFqEFGSa2VrsTXKi7+ugDOqVk0lRDMw+SO2IZunPjr7hxoYhbf8Gdf2P6EFT0wIWTc+4l9x4vkkKD43xYE5NT0zOzc/OphcWl5ZX06lpVh7FivMJCGaq6RzWXIuAVECB5PVKc+p7kNa97NPBrN1xpEQaX0It406dXgegIRsFIrfSm68dZF/gtJMfl035ux43E+H1x3s+10hnHLjl5UixhxyaktJcnhhSIU9w/wMR2hsigMcqt9LvbDlns8wCYpFo3iBNBM6EKBJO8n3JjzSPKuvSKNwwNqM91Mxne0cfbRmnjTqhMBYCH6veJhPpa93zPdPoUrvVvbyD+5TVi6Bw0ExFEMfCAjT7qxBJDiAeh4LZQnIHsGUKZEmZXzK6pogxMdCkTwtel+H9S3bVJ0S6cFTKHpXEcc2gDbaEsImgfHaITVEYVxNAdekBP6Nm6tx6tF+t11DphjWfW0Q9Yb5+HgZkZ</latexit>

µ(GPI),⇡(SR)

<latexit sha1_base64="/4ojwX/Tx7OoazD3SyIcDEQFkMc=">AAAB+XicdVDJSgNBEO1xjXEb9eilMQgRZJhJxiy3oAf1FsEskITQ0+mYJj0L3TXBMORPvHhQxKt/4s2/sbMIKvqg4PFeFVX1vEhwBbb9YSwtr6yurac20ptb2zu75t5+XYWxpKxGQxHKpkcUEzxgNeAgWDOSjPieYA1veDH1GyMmFQ+DWxhHrOOTu4D3OSWgpa5ptv042wZ2D8ll9Xpycto1M7ZVtst5t4BtK1/KlcquJs5Zzi2WsWPZM2TQAtWu+d7uhTT2WQBUEKVajh1BJyESOBVskm7HikWEDskda2kaEJ+pTjK7fIKPtdLD/VDqCgDP1O8TCfGVGvue7vQJDNRvbyr+5bVi6Jc6CQ+iGFhA54v6scAQ4mkMuMcloyDGmhAqub4V0wGRhIIOK61D+PoU/0/qOcspWO6Nm6mcL+JIoUN0hLLIQUVUQVeoimqIohF6QE/o2UiMR+PFeJ23LhmLmQP0A8bbJy8Jk2U=</latexit>

µ(GPI),
<latexit sha1_base64="DwS2KIMKtzGZTlWn5L1d4U4it78=">AAACA3icdVA9TxtBEN0zAYz5cqAjzSoWkmmOO3PBdmclDelMgm0k27L21mNYsbd32p0DrJMlGv5KmhSJUNr8iXT5N6yNkQDBk0Z6em9GM/PCRAqDnvffyS28W1xazq8UVtfWNzaL77faJk41hxaPZaxPQ2ZACgUtFCjhNNHAolBCJ7z4MvU7l6CNiNUJjhPoR+xMiZHgDK00KO70ElHuIVxj9v0bvdqnXxWCBoOTvUGx5Ll1r34QHFLPPahVavXAEv9TJajWqe96M5TIHM1B8V9vGPM0AoVcMmO6vpdgP2MaBZcwKfRSAwnjF+wMupYqFoHpZ7MfJnTXKkM6irUthXSmPp3IWGTMOAptZ8Tw3Lz0puJrXjfFUa2fCZWkCIo/LBqlkmJMp4HQodDAUY4tYVwLeyvl50wzbnMwBRvC46f0bdKuuP6hGxwHpcbneRx58oF8JGXikyppkCPSJC3CyQ35QX6R386t89O5c/48tOac+cw2eQbn7z2gtpeN</latexit>

⇡(SR w/ Interest)
<latexit sha1_base64="aCk62bT2WW4ukl6PeOn8cURRkBU=">AAAB+XicdVDLSgNBEJz1GeNr1aOXwSBEkGUnBje5BT2otwgmCtklzE4mOmT2wUyvGJb8iRcPinj1T7z5N05iBBUtaCiquunuClMpNLjuuzUzOze/sFhYKi6vrK6t2xubbZ1kivEWS2SirkKquRQxb4EAya9SxWkUSn4ZDo7H/uUtV1ok8QUMUx5E9DoWfcEoGKlr236UlX3gd5CfNM9Ge/tdu+Q6xKsc1F3sOodejRBiSL3ieqSKieNOUEJTNLv2m99LWBbxGJikWneIm0KQUwWCST4q+pnmKWUDes07hsY04jrIJ5eP8K5RerifKFMx4In6fSKnkdbDKDSdEYUb/dsbi395nQz6tSAXcZoBj9nnon4mMSR4HAPuCcUZyKEhlClhbsXshirKwIRVNCF8fYr/J+2KQw6d6nm11DiaxlFA22gHlRFBHmqgU9RELcTQLbpHj+jJyq0H69l6+WydsaYzW+gHrNcPDGaTTQ==</latexit>

µ(GPI),
<latexit sha1_base64="1CoD5DCxVucu/W/pN2IxbGZ3lPo=">AAAB/nicdVDJSgNBEO2JW4xbVDx5aQyCXsbpGLLcQkTwGDUxQhJCT6ejTXoWumvUMAT8FS8eFPHqd3jzb+wsgoo+KHi8V0VVPTeUQoPjfFiJmdm5+YXkYmppeWV1Lb2+caGDSDFeZ4EM1KVLNZfC53UQIPllqDj1XMkbbv9o5DduuNIi8GswCHnbo1e+6AlGwUid9FYrFHst4HcQn5/h2wN8XKsM9zvpjGOTQvaw5GDHzheKhBBDSlmnQHKY2M4YGTRFtZN+b3UDFnncByap1k3ihNCOqQLBJB+mWpHmIWV9esWbhvrU47odj88f4l2jdHEvUKZ8wGP1+0RMPa0Hnms6PQrX+rc3Ev/ymhH0iu1Y+GEE3GeTRb1IYgjwKAvcFYozkANDKFPC3IrZNVWUgUksZUL4+hT/Ty6yNsnbudNcplyZxpFE22gH7SGCCqiMTlAV1RFDMXpAT+jZurcerRfrddKasKYzm+gHrLdP4veU0A==</latexit>

⇡(SR w/ ETB)

The Biggest Limitation of the Approach
• Choice of reward features critical

• More compact features are much more computationally efficient

• is a function approximator that input (s,a) and outputs a vector of
the same size as

• If reward features generalize too much, then this skews the value estimate

• SF was mostly useful for the nonstationary cumulant in the subtask
learners, where it was easy to hand design good

x(s, a)

ψ(s, a)
x(s, a)

x(s, a)

The Biggest Limitation of the Approach
• Choice of reward features critical

• More compact features are much more computationally efficient

• is a function approximator that input (s,a) and outputs a vector of
the same size as

• If reward features generalize too much, then this skews the value estimate

• SF was mostly useful for the nonstationary cumulant in the subtask
learners, where it was easy to hand design good

• Open challenge: learn reward features for SF, taking into consideration
impacts on the value estimate accuracy

x(s, a)

ψ(s, a)
x(s, a)

x(s, a)

Summary of the Talk
• Point 1: General purpose agents (including for applications) require the system

to be built with subtask learning in mind

• Point 2: The Continual Subtask Learning (CSL) problem formalizes the
problem of efficiently learning many subtasks in parallel, off-policy

• Point 3: Key points to consider when designing CSL agents:

• it is critical to have sample efficient subtask learners that can modulate
learning (introspective or Bayesian-like)

• rewards are always non-stationary (since they reflect learning); the behavior
algorithm should be designed to handle this non-stationarity

Key Algorithmic Insights
• Off-policy algorithms are mature enough to help us move forward in CSL

• but improving them further can have significant impacts on improving these
systems due to complex interactions

• Successor Features facilitate handling non-stationary cumulants and rewards

• Weight Change is a simple, but effective Intrinsic Reward

Key Algorithmic Insights
• Off-policy algorithms are mature enough to help us move forward in CSL

• but improving them further can have significant impacts on improving these
systems due to complex interactions

• Successor Features facilitate handling non-stationary cumulants and rewards

• Weight Change is a simple, but effective Intrinsic Reward

• …And there is much more to do!

• (1) theoretical connection between maximizing intrinsic reward and optimal
learning of subtasks, (2) better subtask and behavior learners,  
(3) incorporating environment rewards, (4) utility in applications,  
(5) discovery of subtasks, …

Thank you!

