Developing RL Agents that
Learn Many Subtasks

Martha White

Associate Professor
University of Alberta

UNIVERSITY OF

amit SAIRERTA

Goals for the Talk

 Motivate that general purpose agents need to learn many subtasks in parallel
* Introduce the Continual Subtask Learning setting

» which allows us to focus on developing such agents
* Point out exciting open research questions in this area

e as well as some progress we have made

Let’s start with a brief background in RL

Problem Setting: Reinforcement Learning

* An agent interacts with the environment, to maximize reward

/

S’ r

Agent learns policy z(a | s)

to maximize expected return
“ = LGS, = 5]

with Gt :Rt+1 +}/Rt+2+

0> A T'15 S15 A1y oy oy s - ..

Most Learning Approaches use Value Estimation

A value function v_ tells us the expected return from a state s, under policy 7

e v.(5) =LE_[G|S,=s]=E_[R+yv(S)]|S = 5]

 Action-value ¢ allows us to improve the policy, by taking greedy actions

» q.(s,a) =LE_[G,|S,=s,A, =d]

. 7'(s) = arg max g (s, a) obtains as good or higher return in each state
acd

An Example of a Learning Agent: Sarsa

o Sarsa Agent learns policy through trial-and-error interaction

» Learns action-values g and uses softmax (Boltzmann) policy on g to select
actions proportionally to their value: z(a|s) o« exp(g(s, a))

» In state s, the agent takes action a, ~ z(- |s,), transitions to s, ; and
receives reward r,, | and preemptively samples a, ; ~ (- \St +1)

» |t updates its value estimate g with parameters w using
W w+a(G,—q(s,a)) V,q(s,a)

e Where CA}t = 1,1 +74(s,. 1, a,.1) approximates the true return from s, under x

But how far can we get with this simple (model-free, trial-and-error) update?

We Need More for the Lifelong Learning Setting

 Many steps of interaction
» Potentially vast environments
 Consider examples such as
* AssistantBot interacting with people
* CourierBot navigating a city

 EcoAgent controlling energy usage for an (expanding) network of buildings

Example: CourierBot

 The RL agent needs to make many predictions about the world
 What will happen if | pick up this object?
 How many steps until | get to the door?

 How much longer can | drive before | need to recharge?

If | navigate-to-
Would | bump if | w Lab, would try-to-
drive-forward pugin succeed?

OQQ OQ

Lifelong Learning Is a Practical Paradigm

* Real-world environments
* are complex and potentially vast
* require the agent to run for a long time
» Lifelong learning is not grandiose nor is it only about AGI

 We will need to tackle this setting to obtain agents for complex environments

Claim: Under a Long Sequence of Interaction...

* the agent should accumulate knowledge about its environment
* that knowledge can be used to learn/adapt faster in
* new situations

* under nonstationarity, which can arise even just from limited function
approximation in a large, complex world

Knowledge as Subtasks

 Subtasks are modular pieces of knowledge about the world that can be re-used
* We use two types of subtask specifications
* Options/Skills - Control Subtasks

* (General Value Functions (GVF) - Prediction Subtasks

Example of an Option (Control Subtask)

* Learn an option policy & that navigates to the lab (e.g., with Sarsa)
 The primary task is to maximize reward in the environment

* This subtask (navigate to lab) helps the agent with the primary task

If | navigate-to-
Would | bump if | | Lab, would try-to-
drive-forward pugiln succeed?

QOQ @O

Example of an Option (Control Subtask)

* | earn an option policy & that navigates to the lab
* This option can be repeatedly used by the agent
e as a macro-action: executing a known skill or behavior

* for planning: it can reason about the utility of going to the lab

If | navigate-to-
Would | bump if | | Lab, would try-to-
drive-forward pugin succeed?

QQQ @O

Examples of GVFs (Prediction Subtask)

 What is the probabillity | will successfully plug-in, if | run the navigate-to-lab
option policy 77

 How many packages will | receive today?

If | navigate-to-
Would | bump if | w Lab, would try-to-
drive-forward pugin succeed?

OQQ OQ

General Value Functions allow us to encode these types of predictions

They are a simple generalization of value functions, to reason about
any signal or cumulant (instead of only the reward)

One Example of a GVF Subtask

* Question: What is the probability | will successfully plug-in, if | run the
navigate-to-lab option policy 7,7

 Answer: Learn value function with cumulant in-place of reward

1 ifs'=pl d-I
 c(s,a,5) = {O At

. Qﬂzab(s,a) — 1T [Ct_|_1+CH_2-I- ...‘St=S,At=Cl]

Tiab

One Example of a GVF Subtask

* Question: What is the probability | will successfully plug-in, if | run the navigate-
to-lab option policy 7,

 Answer: Learn value function with cumulant in-place of reward

] ifs' = plugged-i
R

e §(s,a) = Q"a(s,a) = b[Ct+1 +Cppt+ ... |5, =54, =4]

W e w4 at(ct__l rr Y s a) — s, at)) V_a(s,a)

_ﬂlab[@(st_l_ 1 ’A ,)]

Another Example of a GVF Subtask

* Question: How many packages will | receive today?

« How many packages in total will | receive until the end of the day, under my
typical behavior 72

 Answer: Learn value function with cumulant in-place of reward

1 if s' = received package
(s, a,8) = {O else p g

e Q%(s,a) =Lt [C, +CHr+...|5 =s,A, = a] with termination of return
when s’ indicates it is the end of the day

* The return accumulates 1s each time there is a package, until day end

GVF Subtasks Can Encode Simpler One-Step Models

» The cumulant C,, ; could correspond to a sensor value on the next step

« Q%(s,a)=LE_[C,]S, =s,A, = a]is the expected sensor value

* set termination to occur immediately
 More generally GVFs consider longer horizon predictions about the future

 But cannot perfectly represent n-horizon predictions, such as those used In
time series prediction

We nonetheless focus on GVFs and Options to specify subtasks:
- allow us to use the same value function algorithms throughout the system

- still provide a sufficiently rich language to specify subtasks

What is the Alternative to Learning Subtasks?

 Many RL systems use end-to-end learning of policies, such as with Sarsa
* No models
 No options

e No GVFs

 For smaller environments (which can be covered in some reasonable time),
that are stationary, there is not much need to learn secondary objects

* So it is sensible to just use Sarsa

 For more complex environments, it is not too controversial that these
secondary components (subtasks) are needed to obtain effective agents

Learning Multiple Subtasks is an Old Idea in Al

* Early formalisms in lifelong learning looked at learning subtasks sequentially
* The experimenter designed the sequence of tasks for the agent
 We want to learn subtasks in parallel, from a single stream of experience

 The agent decides for itself what subtasks to focus on and where to go in
the environment to better learn the subtasks

Learning Multiple Subtasks is an Old Idea in Al

* Early formalisms in lifelong learning looked at learning subtasks sequentially
* The experimenter designed the sequence of tasks for the agent
 Naturally on-policy

 We want to learn subtasks in parallel, from a single stream of experience

 The agent decides for itself what subtasks to focus on and where to go in
the environment to better learn the subtasks

* Naturally off-policy, agent needs to reason counterfactually

On-policy vs Off-policy

CourierBot is dropping off a package near the lab (its charging station)

It finds a new shortcut through a building

It Is currently executing policy & to drop off the package, but can use this new
data to update Iits navigate-to-lab option policy x; ,,

» It updates 7, ; off-policy, since it counterfactually reasons about how to
improve 7, ;, when following 7

On-policy updating requires that we execute 7; , to learn about its value

RL algorithms have divergence and variance issues under off-policy updates

Learning Multiple Subtasks is an Old Idea in Al

* Early formalisms in lifelong learning looked at learning subtasks sequentially
* The experimenter designed the sequence of tasks for the agent
 Naturally on-policy

 We want to learn subtasks in parallel, from a single stream of experience

 The agent decides for itself what subtasks to focus on and where to go in the
environment to better learn the subtasks

* Naturally off-policy, agent needs to reason counterfactually
* We finally have the tools to explore this problem setting

e significant improvements in off-policy algorithms within even just a few years

Committing to this Inductive Bias

 Assumption: The agent can learn more effectively in a complex world by
learning and re-using modular components (subtasks)

 Under this assumption, we can ask:
 how can the agent discover which subtasks are useful?

 how can the agent learn these subtasks efficiently?

Committing to this Inductive Bias

 Assumption: The agent can learn more effectively in a complex world by
learning and re-using modular components

 Under this assumption, we can ask:
* how can the agent discover which subtasks are useful?

 how can the agent learn these subtasks efficiently?

A Lifelong Learning RL Agent

 The RL agent needs to adapt
behavior to

e maximize reward

* |earn about the subtasks,
that help maximize reward

* Intrinsic reward reflects
information gain for subtasks

* Agent maximizes both external
reward and intrinsic reward

State/Observation(S;.1)

Environment

s

R{+1

Behavior

f

Intrinsic Reward

‘ Y é Y é ‘

To make traction on this difficult problem, we focus first on understanding
how to develop algorithms for maximizing intrinsic reward (subtask learning)

Continual Subtask Learning

Environment

fA,
No reward from Behavior v
the environment i J .
e Ra=XR,
. . * +
Focus is on Intrinsic Reward i=1

efficiently learning
the subtasks

‘ Y é Y é |

Task 1| | Task 2 |*®® |Task N

State/Observation(S:+1)

Continual Subtask Learning

No reward from
the environment

Focus IS on
efficiently learning
the subtasks

State/Observation(S:+1)

Environment

4

Behavior

{7

Intrinsic Reward

Task 1

Task 2

‘ Y é Y é |

Task N

Technical challenges:

1.

Algorithms for
the subtasks

. Intrinsic reward

specification

. Algorithm for

the behavior

Let’s consider a small experiment in a bandit setting

Let’s consider a small experiment in a bandit setting

from a larger journal paper in JAIR on understanding intrinsic rewards:
Adapting Behaviour via Intrinsic Reward: A Survey and Empirical Study

s e

primarily with Cam Linke and Adam White

.

Small Bandit Experiment

e There Is no context or state 50
- high-variance
 Each subtask learner is estimating the target (1)

. high-variance
mean of a different target 7

target (4)
* N independent learners (4) target

. o . values
J J — (v — v/
* W1 & Wi AU / ‘\4%
 Each action only generates data for

Constant target dnftmg target
one subtask learner 50

Q' ' ' ' Q
e there are N actions N %

Time Steps (in thousands)

Behavior has to learn to balance the needs of all these subtask learners

Example of Good Behavior

1.0
50
: high-variance
target (1)
high-variance
o @ probability
target :
values ™0 of select!ng
| / each action
constant target drifting target K
. © (2 |
50 S S 0.0 |

Time Steps (in thousands)

Constant can be learned fast, behavior should stop selecting relatively early on
Distractors take longer (due to stochasticity), but also should stop being selected
Drifting needs to be selected forever (non-stationary)

Let’s examine the effect of using two different
Intrinsic rewards and two different subtask learners
and the interactions between these choices

Two Intrinsic Rewards

« Squared Prediction Error: (y{ — W{)2

(Y = wi? = E| (] - EY)+ (BL¥] - wi? |

\stochésticityj amount of Iearn{ng

« Weight Change: \w{ — Wii—l |

» Reflects amount of learning: how much subtask learner adjusted its weights

Two Subtask Learners

 LMS with a Fixed Stepsize

J J_ (v — v/
.« W = W o' (wi — yy)

 LMS with an Adaptive Stepsize

J J— (] —)
.« W =W, o (Wi — y7)

Two Subtask Learners

 LMS with a Fixed Stepsize

J J_ (v — v/
.« W = W o' (wi — yy)

* cannot modulate learning down, so is not robust to noise
 |LMS with an Adaptive Stepsize

J I Jlurd
. W =W, at(wt yt)

e can slowly decrease stepsize to average out noise and stop learning

Only Auto+Weight Change Effective

Fixed Stepsize Auto (adaptive stepsize)
Squared Error Squared Error
drifter target
Squared & L
Prediction % \ distractor targets - -
Error > \\ 1' @ @
= stochasticity + 25! \ TTTT eI e
amount of learning e | (.
N e ———— | (o
|
| Weight Change 1 Weight Change
Weight
Change
= amount of learning 00)
\ 4

Action Selection Probabilities

Fixed Stepsize Auto (adaptive stepsize)
1 Squared Error ~ Squared Error
somes |
Prediction 3 il “r J i l @ [RBERERE S 0

Error 5 [pnboE
= stochasticity + PRI AL
amount of learning

| Weight Change 1 Weight Change
Change
= amount of learning | distractor targets = =/

/
/
/
/
A
/
———_ _drifter target /
|constant target _ Kﬁ_\
50000

50000

Key lakeaway 1

* Designing effective Continual Subtask Learning (CSL) systems requires
considering interactions between learning components

 For CSL we need:
o Subtask Learners that modulate their own learning

* |ntrinsic Rewards based on Amount of Learning (not error)

Key lakeaway 1

* Designing effective CSL systems requires considering interactions between
learning components

* For CSL we need:
o Subtask Learners that modulate their own learning
* |ntrinsic Rewards based on Amount of Learning (not error)
 Open Challenge: Characterizing ideal subtask learners and intrinsic rewards

* We show some connection between Weight Change with MAP subtask
learners and Information Gain with Bayesian subtask learners

Now coming back to the RL setting

Key Technical Challenge

* |dentify intrinsic rewards that lead to efficient learning

Key Technical Challenges

* |dentify intrinsic rewards that lead to efficient learning

* Current simple strategy is to use Weight Change

 With sample efficient RL algorithms that use adaptive stepsizes
* Design subtask learners that learn efficiently from off-policy data
* The intrinsic rewards are non-stationary

* RL algorithms are designed for stationary rewards

Off-policy Algorithms

My lab has focused a lot on designing effective off-policy algorithms
* See recent journal submission summarizing much of this work

 “A Generalized Projected Bellman Error for Off-policy Value Estimation in
Reinforcement Learning”, with my PhD student, Andrew Patterson

 Key Takeaway 2: We have made a lot of progress on
understanding how to make stable off-policy algorithms

 Open Challenge: improving sample efficiency and
convergence rates

Let’s focus on the technical challenge of nonstationary rewards

Recent Paper: Continual Auxiliary Task Learning

 Focus: Handling non-stationarity in the rewards

 Key idea: Use Successor Features to learn stationary feature information
and only track changing rewards

Defining Successor Features

 Let X(s, a) be the features for state-action pair (s, a)

* The successor features Y are the cumulative, discounted sum of the
features when following policy 7«

w(s,a) = E_[X(S,A) +yXx(S,, 1, A) + 7 X(S,1 0, A) +...|S, = 5,A = a]
) — _][[X(SZ'9 At) T yl//(St+1aAt+1) ‘ St = S’At = dal

* This recursive form looks just like a value function (simply vector-valued)

* I/ can be learned using any value function learning approach

Why Are Successor Features Useful?

. If the rewards are linear in the features, (s, a) = x(s, a) ' w*

* Then the action-values for a policy & can be obtained immediately with the SF

Q7(s,a) = y(s,a) w*

To See Why. . r(s,a) = x(s,a) w*

w(s,a) w¥ = = [X(S,, At)TW>I< + rX(S, 1, A, +1)TW* +...1S5, =5,A, = da]
= E_[r(S,A,) +yr(S, 1, A)+ ... |S, =5,A, =d]
= Q"(s,a)

Why Are Successor Features Useful?

. If the rewards are linear in the features, (s, a) = x(s, a) ' w*
* Then the action-values for a policy & can be immediately with the SF using

Q7(s,a) = y(s,a) w*

 To estimate O”(s, a), we only need to solve a regression problem and learn
weights W such that (s, a) ~ X(s,a)'w, to get

q(s,a) = y(s,a) w

Wait, This Seems Worse

. If the rewards are linear in the features, (s, a) = X(s, a)' w*

 To estimate Q”(s, a), we only need to solve a regression problem and learn
weights W such that 7(s, a) ~ X(s,a)'w

« We’ve exchanged the easier problem of directly estimating OQ”(s, a) with
estimating (s, a) which outputs a vector of the same size as X(s, a)

When Are Successor Features Useful?

. If the rewards are linear in the features, (s, a) = X(s, a)' w*

 To estimate Q”(s, a), we only need to solve a regression problem and learn
weights W such that 7(s, a) ~ X(s,a)'w

« But now we’ve exchanged the easier problem of directly estimating O”(s, a)
with estimating y(s, a)

 This effort is only worth it if we get to re-use y(s, a)

SF Is Useful When Rewards Are Nonstationary

* Tracking (slowly) changing rewards is fundamentally simpler than tracking the
resulting changing value function: if new #(s, a) = X(s, a)' (W* + €)

wis,a) (w* +¢€) = O%(s,a) +

. where €(s,a) = X(s,a) '€

- 1e(S,A) +y+e(S, AL)+ . S, =5,A, =d]

SF Is Useful When Rewards Are Nonstationary

* Tracking (slowly) changing rewards fundamentally simpler than tracking the
resulting changing value function: if new #(s, a) = X(s, a)' (W* + €)

wis,a) (w* +¢€) = O%(s,a) +

. where €(s,a) = X(s,a) '€

- 1e(S,A) +y+e(S, AL)+ . S, =5,A, =d]

 Result in paper formalizing this intuition: convergence rate for value

estimation with SF when estimating w™* is better than known convergence
rate for TD-based value estimation algorithms

Let’s test out this idea

Both subtask learners and behavior learn value functions
Both can leverage SF for non-stationary signals

An Experiment in the T-Maze

. Drifter
1.5¢

 Constant

ﬂ | | MMU

1.0

0.5¢

C. (t)

1
0.0

. —0.5]

_10l Distractor

)
S

0 5.0x103 1.0x10°% 1.5%x104

Time-step

One subtask per cumulant (constant at G2 and G4, drifter at G3, distractor at G1)

SF Improves Performance for both the
Behavior and Subtask Learners

 u(GPI) = behavior uses SF

7\ p(Sarsa), m('TB)
6 7(SR) = subtask uses SF
| 1L(GPY), (SR) A\ s

3 [\\T\ ,/’I \‘\ ad ° — .
. L | A (GPT), 7(TB) u(Sarsa) = behavior uses Sarsa
E 4t “‘:{/ “\\‘?T”‘T ,’”L— AV S PN T

s o e 1« 7(TB) = subtask uses Tree-
3| W n(Sarsa), m(SR) Backup, a sample efficient off-
LY policy algorithm designed for
20 , , , B , . stationary rewards
0 10 20 30 40 50 60

Steps (per 1000)

Improving Sample Efficiency of Subtask Learners with Replay

lllllll

u(Fixed), 7 (LSTD)

. v .
.........

0

10 20
Steps (per 1000)

30

Labels with “8” means we use 8
replay steps (8x more updates)

Replay does not interface well
with non-stationary data

Rewards are stale in the buffer

7(SR) uses replay only for
stationary SF part, updates
reward model online

Incorporating Off-Policy Ideas Also Helps

RMSE

15.0¢

12.5}

71.57

5.0t

u(GPI),

M\ (SR w/ Interest)

1(GPI), 7(SR)

10

20
Steps (per 1000)

30

40

* Result in an Open 2-D World

 Add Emphatic Weightings
(corrects bias in distributions)

 Add interest (focuses function
approximation on a subset of
states, counterfactual reasoning
everywhere not feasible)

G1

The Biggest Limitation of the Approach

« Choice of reward features X(s, a) critical

 More compact features are much more computationally efficient

» (s, a) is a function approximator that input (s,a) and outputs a vector of
the same size as X(s, a)

* |f reward features generalize too much, then this skews the value estimate

 SF was mostly useful for the nonstationary cumulant in the subtask
learners, where it was easy to hand design good X(s, a)

The Biggest Limitation of the Approach

« Choice of reward features X(s, a) critical

 More compact features are much more computationally efficient

» (s, a) is a function approximator that input (s,a) and outputs a vector of
the same size as X(s, a)

* |f reward features generalize too much, then this skews the value estimate

 SF was mostly useful for the nonstationary cumulant in the subtask
learners, where it was easy to hand design good X(s, a)

 Open challenge: learn reward features for SF, taking into consideration
Impacts on the value estimate accuracy

Summary of the Talk

* Point 1: General purpose agents (including for applications) require the system
to be built with subtask learning in mind

* Point 2: The Continual Subtask Learning (CSL) problem formalizes the
problem of efficiently learning many subtasks in parallel, off-policy

* Point 3: Key points to consider when designing CSL agents:
 critical to have sample efficient subtask learners that can modulate learning

* rewards are always non-stationary (since they reflect learning); the behavior
algorithm should be designed to handle this non-stationarity

Key Algorithmic Insights

o Off-policy algorithms are mature enough to help us move forward in CSL

* but improving them further can have significant impacts on improving these
systems due to complex interactions

* Successor Features facilitate handling non-stationary cumulants and rewards

 Weight Change is a simple, but effective Intrinsic Reward

Key Algorithmic Insights

Off-policy algorithms are mature enough to help us move forward in CSL

* but improving them further can have significant impacts on improving these

systems due to complex interactions

Successor Features facilitate handling non-stationary cumulants and rewards

Weight Change is a simple, but effective Intrinsic Reward

...And there iIs much more to do!

* (1) theoretical connection between maximizing intrinsic reward and optimal
learning of subtasks, (2) better subtask and behavior learners,
(3) incorporating environment rewards, (4) utility in applications,

(5) discovery of subtasks, ...

Thank you!

