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The Value Estimation Problem

* Find approximate values v that minimizes the value error objective:

v =villy = Y d(s) (V) = v(s))”

 We cannot directly optimize this objective



Motivation and History

« Sound off-policy value estimation was an open problem for some time

» Significant progress since the introduction of the mean squared projected
Bellman Error (PBE) and resulting gradient TD algorithms

 PBE primarily for the linear setting

 nonlinear PBE relatively complex, with Hessian-vector products
 BE difficult to optimize due to the double-sampling problem
* plus, it has identifiability issues

* though recent positive developments using conjugate form



What is the right objective for value estimation
under nonlinear function approximation?

My Answer:

e The Generalized PBE

* which uses a more general projection on the Bellman Error
« With a potentially different weighting over states d in the objective

» than the weighting digeq| in the VE



Outline

 Derive the Generalized PBE

* Explain the role of the state-weighting in the objective

e Highlight two possible gradient estimates to optimize the Generalized PBE

* [Maybe] Show positive empirical results for an algorithm using these insights

» Slides and working paper on website: marthawhite.ca

o Paper title: “Investigating Objectives for Off-policy Value Estimation in
Reinforcement Learning”


http://marthawhite.ca

Let’s start by deriving the Generalized PBE



A Conjugate Form of the Bellman Error

» Beautiful result from Bo Dai and others: “Learning from Conditional
Distributions via Dual Embeddings”

« Reformulate BE as a saddlepoint problem (min-max form)

* Auxiliary variable h learned to estimate a part of the objective
« Non-parametric approaches for h provide a close estimate for the BE
 Key Insight (for us):

« Now have some practical algorithms to (nearly) optimize the BE



We build on this work to derive a generalized PBE

* | et’'s understand the steps for the finite state case

e Some notation:
» V(s, W) is the parameterized value function, with function space &#

e 0(W) =R+ yv(S,w)—V(S, w) is the TD-error

e E_[0(W)|S =s]=Tv(-,w)(s)— V(S, w) for Bellman operator T

» Let F ;| be the space of all functions



Deriving a Conjugate Form for the Bellman Error

BE(w) = ) _d(s)Eq[d(w) | S = s] = max vk =i
seS
_ ; d(s) max (2E[0(w) | S = s h - h?)
= max ) d(s) (2B<[5(w) | S = s]h(s) — h(s)*)
all scS

The function A*(s) = E,|d | S = s| provides the minimal error of zero.




Why is this useful?

 Computing a gradient update for the weights is now straightforward

h(8)(Vaw (s, w) = 7V d (S, w))

» h(s) needs to estimate E_[&(W) | S = s]

* This estimator can be updated simultaneously with w

(2E[§(w) | S = s] h(s) — h(s)?)
o(W) =R+ yv(§,w) —V(S, w)




Why is this useful?

 Computing a gradient update for the weights is now straightforward

h(s)(Vaw (s, w) = 7V d (S, w))

» h(s) needs to estimate E_[&(W) | S = s]

 But, wait! Isn’t the BE non-identifiable (or non-learnable)?

* This reformulation helps us solve that problem too



An ldentifiable BE

* [he counterexample involves partial observability in the data

0
¢ =1 ¢ =1 ¢ =1

* from Sutton and Barto, 2018, Chapter 11.6

e Issue: BE defined on quantities not available in the data



An ldentifiable BE

« Issue: BE defined on quantities not available in the data

e Solution:

Hon = {h= fo¢ | where f is any function on the space produced by ¢}.

Identifiable BE(w) = max [ 2E,[6(w) | S]h(S) — h(S)?] .
Ciall




Restricting the Function Space for h
Corresponds to a Projection on the Bellman Error

13y qu = arg min ||ju — h||q
heH

PBE(w) = d(s 01 S = s|h(s) — h(s)?
%3‘{365 [0 | S = s]h(s) — h(s)?)

— HHH,d(T@('v w) _ @('7 w)) chi

IvlZ =) d(s)v(s)*



The Generalized PBE

PBE(w) = d(s) (2E,[5 | S = s| h(s) — h(s)?
I&%; 0| S =s]h(s)—h(s)?)

o For #/ = % = alinear function space, this equals the linear PBE

« For # = % = a nonlinear function space, we get a natural extension of the
linear PBE to the nonlinear setting

« For ' = # 5, this equals the Identifiable BE

» For & C # C # ,, this provides a new Projected Bellman Error



Let’s move now to the Role of the Weighting in the Generalized PBE



Upper Bound on the Value Error

Theorem 1 [f H O F, then the solution vy, , to the generalized PBE satisfies

||U7T _ U”wa,de < HHF,HHdHUW _ H]—“,dUde-

H is a (hon-diagonal) matrix, where the projection to # is weighted by H



Impact of the Weighting

o Kolter’s counterexample a two-state MDP with small approximation error

» Shows that with d corresponding to off-policy stationary distribution d,, the
solution to the linear PBE can have arbitrarily bad VE

» Using an emphatic weighting for d prevents this, and gives

HUW — U’wa,de < C(Pm?’ad)'HUW — H}_,dUWHd-

HUW — Vwyy 4 Hdog C(Pm%dadb)'HUW — H]—“,d“w”d-

* for some constants dependent on the problem



Empirical Results for Solution Quality
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The final step to obtaining a practical algorithm using the generalized PBE:
Reducing reliance on our estimate h



Sampling the Gradient

 The saddlepoint update
Aw + h(s)(Vud(s,w) — yVud(S, w))
* [he gradient-correction update
Aw <+ d(w)Vv(s,w) — h(s)yVev(S', w)

 [o make it appropriate to use gradient-correction, analysis suggests h should
be learned using the gradient of v as the features

* the gradient vector includes the last layer of the neural network



QC and QRC (Q-learning with Corrections)

 Add head to a neural network to estimate h (gradients not passed back)
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* our paper: “Gradient Temporal-Difference Learning with Regularized Corrections”, ICML, 2020



Control Results (in MinAtar)
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Summary of the Talk

e Point 1: The Generalized PBE is the natural extension of the linear PBE to the
nonlinear setting

 Point 2: The Generalized PBE help resolve questions about the BE

e both about identifiability and connection to PBE

* Point 3: The role of weighting should not be overlooked in the objective

Thank you! Questions?



