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Comments for the lecture

e Please ask questions (this is a summer school)
e | will pause a few times and get you to answer questions/exercises

e QOutcomes: you will
e understand how models can be used to learn optimal values/policies
e understand in-depth one strategy, called Dyna, for online setting

e recognize some of the other ways models can be used
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Imagine we have the model

e Joint transition and reward dynamics

p(s',r|s,a)

* Then, we can learn offline without interacting with the world!



Bellman equations & Dynamic Programming
to find the optimal policy
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Bellman equations & Dynamic Programming
to find the optimal policy

 \We can directly solve for the (optimal) action-values, using Bellman equations

(s,a) = s’ rls.a)lr + ymaxag.(s’.a’
g-(s,a) ;;p(, I,)[ y max g.(s’ )l

qk+1(S9 a) = 2

SI

Y pGs',rls,a) [r +7 max qk(s',a')]

a

called Value lteration



Value Iteration, for estimating ™ ~ m,

Algorithm parameter: a small threshold 6 > 0 determining accuracy ot estimation
Initialize Q(s,a) = 0 for all s,a
Loop:
A+ 0
Loop for each s € 8,a €
v+ (s, a)
J(s,a) < Xy p(s,r|s,a)lr +ymax Q(s’, a’)]

A « max(A, |v — O@s.a)|) )
until A < 6

Output a deterministic policy, m = m,, such that
m(s) = argmax, Q(s,a)
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High-level Outline

e Part 1: Learning the optimal policy given the model (offline)
e Part 2: Moving to learned models (online)

e Part 3: A brief discussion about other ways to use models

RL with learned models can use a similar approach to Dynamic Programming
but online
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Online Reinforcement Learning

EE—

actions

Agent Environment

‘........._.....................
reward

Y W——

Tuples of experience:
states P b

(SO! AO! R1! S1)

SO AO R1 S1 A1 R2 Sz A2 - (S1! A1! R2! SZ)
(SZ! A2! R3! S3)



Online Reinforcement Learning

e 3
actions

Agent Environment
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reward

Y W——

Tuples of experience:
states P b

(SO! AO! R1! S1)
SO AO R1 S1 A1 R2 Sz A2 N (S1! A1! R2! SZ)
(SZ! A2! R3! S3)

Q-learning update:
Q(S,A)=Q(S,A)+a[R+ ymax Q(S’, A’) - Q(S, A)]
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Online RL with a Model
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Online RL with a Model

Agent
R
POIicy actions
Environment
 V——
reward
(St’ At! R1:+1! St+1) ‘-——-—-—-—-—-—-—'
Model states

One Goal: Improve Sample Efficiency



What are possible learned models?

* Most obvious answer: ﬁ(S ',I’ | s,a)
 Realistically: models with state abstraction and temporal abstraction

) . . A\ /
e For now: let’s assume we learn approximation p(S o I | s,a)



Outline for Part 2:
Moving to Learned Models

Introduce a planning framework called Dyna

e Explain how Experience Replay is a simple instance of Dyna
Discuss two key choices in Dyna: Model and Search Control
Discuss different choices for the Model

Discuss different choices for Search Control



What is Dyna?
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planning update

direct RL model s’ r M (S a)
dat experience ~
paatel /environment i ’ ’

\SxXposonce search (S a)
W=W+ Q0 X(S) learning control ‘

e.g., Q-learning




What is Dyna?

Key ldea: Use RL updates on simulated experience
from a model as if it is the real world



Pseudocode
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P/olicy/value functions

Pseudocode

Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)

. Loop forever:

[Enwronmentj (a) S + current (nonterminal) state

(b) A < e-greedy (S, Q)

(c) Take action A; observe resultant reward, R, and state, S’
(d)

QR(S,A) + Q(S, A) + o|R + v max, Q(S’, a) — Q(S, Aﬂ
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e) Model(S, A) + R, S’
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P/olicy/value funct\ions

planning update
direct RL model >
update / . experience
environment \
kexperience Dyna‘_ Q
model search
learning

control

Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)

_ Model | Loop forever:
[Enwronmentj (a) S < current (nonterminal) state

)
(b) A < e-greedy (S, Q)

(c) Take action A; observe resultant reward, R, and state, S’
(d)

(

Q(S, A) + Q(S A) + a|R + v max, Q(S’,a) Q(S,Aﬂ
e) Model(S, A) + R, S’

S < random previously observed state

A < random action previously taken in S

R, S’ < Model(S, A)

Q(S, A) < Q(S, A) + a|R + ymax, Q(5',a) — Q(S, A)]
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P/olicy/value funct\ions

planning update
direct RL model >
update / . experience
environment \
kexperience Dyna‘_ Q
model search
learning

control
Initialize Q(s,a) and Model(s,a) for all s € 8 and a € A(s)

_ Model | Loop forever:
[Enwronmentj (a) S < current (nonterminal) state

)
b) A < e-greedy(S, Q)
c) Take action A; observe resultant reward, R, and state, S’
d)

)

)

Q(S,A) + Q(S A) + o| R + ymax, Q(S’,a) Q(S, Aﬂ
Model(S, A) < R, S’
Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R, S’ < Model(S, A)

Q(S,A) «— Q(S,A) + «a [R + vymax, Q(S’,a) — Q(S, A)]

(
(
(
(e
(f



Let’s see how much better an agent can do with Dyna



Agent In the first episode
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Agent In the first episode
O(s,a) < 0(s,a) + o (r + v - max,Q(s’,a’) — Q(s, a))
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Agent using many planning steps in Dyna
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Interleaving planning and acting

Number of steps planned: 100
Number of actions taken: 185




Dyna = Background Planning

* Given unlimited computation, each planning update in the background
could essentially solve the Bellman equation for the current model

e | oop over all states and actions many times

e At extreme of computation, behaves like Dynamic Programming
e |n practice, have limited computation

e Use any extra computation for background planning: do as many
updates to the value function or policy as computation allows



Advantages of Dyna

Anytime planning (asynchronous, occurs in the background)

e contrasts Decision-time planning
Can take advantage of parallelism
Naturally enables partial models

Can still do long-term planning use temporal abstraction, but avoids
multi-step rollouts



Now let’s dive into specific instances of Dyna



Important choices

* The type of model

e Search-control

Initialize (s, a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

(a) S < current (nonterminal) state
b) A < e-greedy(S, Q)
Take action A; observe resultant reward, R, and state, S’
) Q(S, A) + Q(S A) + a|R + ymax, Q(S’ a) — Q(S, A)]
Model(S,A) + R, S’
Loop repeat n times:
S < random previously observed state
A < random action previously taken in S
R,S" < Model(S, A)
Q(S,A) + Q(S,A) + a| R+ ymax, Q(S,a) — Q(S, A4)

(
(c)
(d
(e)
(f)




Important choices: Model

Initialize (s, a) and Model(s,a) for all s € § and a € A(s)

Loop forever:
e The type of model (a) S < current (nonterminal) state
) A < e-greedy(S, Q)

(b
e S h trol (c) Take action A; observe resultant reward, R, and state, .S’
edarcn-contro (d 5 Oé[R +7maxa Q(S’,a) o Q(S, A)]
(e)
(f) Loop repeat n times:

S < random previously observed state

7 +a[R+fymaXaQ( a) — Q(S, A)]



Important choices: Search Control

Initialize (s, a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

e The type of model (a) S < current (nonterminal) state
)

( ,
e S h trol (c) Take action A; observe resultant reward, R, and state, .S’
earch-contro (d) Q(S, A) « Q(S, A) + a[R + vymax, Q(S’,a) — Q(S, A)]
(e) Model(S,A) + R, S’
(f)

Loop re eat n tlmes

R,S" + Model(S A)
Q(S,A) + Q(S,A) + a| R+ ymax, Q(S,a) — Q(S, A4)



Let’s look at a simple example of Dyna:
Experience Replay



Experience Replay

e Essentially using a batch method in an online setting
e Store buffer of recent transitions (s, a, s’, r)
e e.7g., sliding window buffer

e Sample mini-batch updates from the buffer, for updates to the value
function or policy

Exercise: How can ER be seen as an instance of Dyna”?
What is the choice for the Model and for Search Control?



Experience Replay Pseudocode

Initialize  buffer Band Q(s,a) for all s € 8 and a € A(s)
Loop forever:

(a) S < current (nonterminal) state

b) A < e-greedy(S, Q)

c) Take action A; observe resultant reward, R, and state, S’
d) Q(S,A) Q(S A) + a| R + ymax, Q(S’ a) — Q(S, Aﬂ

) Add (S, A) to buffer B, drop oldest sample

) Loop repeat n times:

Grab random (S, A, S’, R) from buffer B

(
(
(
(e
(f

Q(S,A) + Q(S,A) + a| R+ ymax, Q(S,a) — Q(S, A4)|

Exercise: How can ER be seen as an instance of Dyna”?
What is the choice for the Model and for Search Control?



Experience Replay:
A Simple Example of Dyna
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model search
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Environment
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Experience Replay:
A Simple Example of Dyna

Policy/value functions

planning update

direct RL model (r S )
update experience 4y O
P \— (environment i +17 T
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S search
learning control (Si, ai)

Model is tuples of experience:
Environment |
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Experience Replay:
A Simple Example of Dyna

Policy/value functions

planning update

direct RL model

updateL @nvironment experienoe (ri+1’ Si+1)
\_experience o search
learning control (SI’ al)
Model is tuples of experience:
Environment | (S0, Qg 15 S4)
(31! 31, r2! s2)
We should be able to get a better Model (S2, @, I3, S3)

and smarter Search Control



Advantages of a Learned Model
over a lransition Buffer

e Compactness: summarizes experience

e Coverage: cannot store all experience, so in ER common to use most
recent experience (does not cover space)

 Querying: can query a model from a particular (s,a)



Important choices: Model

Initialize (s, a) and Model(s,a) for all s € § and a € A(s)

Loop forever:
e The type of model (a) S < current (nonterminal) state
) A < e-greedy(S, Q)

(b
e S h trol (c) Take action A; observe resultant reward, R, and state, .S’
edarcn-contro (d 5 Oé[R +7maxa Q(S’,a) o Q(S, A)]
(e)
(f) Loop repeat n times:

S < random previously observed state

7 +a[R+fymaXaQ( a) — Q(S, A)]
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What are possible learned models?

Most obvious answer: ﬁ(S ', r|s,a)

Transition Model with agent state

e agent state = constructed vector summarizing key information
Predictions about some observations/features in the future
Predictions about (cumulative) rewards in the future

...or even Q(s,a)?

Increasing
Abstraction
and/or
Simplicity



SO IS Sarsa a
model-based RL algorithm?

* This question only arises due to being imprecise

e | et’s try to be more precise



What does the model do?

* The agent uses knowledge/predictions about the world (a model) to
* Improve estimates of the optimal value function/policy

* |learn about new things faster
e e.g., learn new option policies (new skills)

e e.g., help agent re-visit parts of the space in non-stationary problems

Notice now that Q(s,a) does not really count as a model



What does the model do?

* The agent uses knowledge/predictions about the world (a model) to
* Improve estimates of the optimal value function/policy

* |learn about new things faster
e e.g., learn new option policies (new skills)

e e.g., help agent re-visit parts of the space in non-stationary problems

Notice now that Q(s,a) does not really count as a model
But the model does not have to be the transition dynamics



Important aspects of the model

o State-to-State vs Observation-to-Observation



Models on Agent State

A

e Construct agent state §
e e.g., recurrent neural network to summarize history (POMDPs)

e e.g., remove unnecessary detail from an image, only keep key info in the agent
state needed to make predictions

A A A
e Learn one-step model for agent state p(§',r|§, a)

e Only model what the agent thinks is important, avoid pixel-to-pixel models



Important aspects of the model

o State-to-State vs Observation-to-Observation

e Expectation vs Sample Models



Sample Models

 GGiven (s,a), obtain a sample of s’ and r

* Examples: Q¢ pists,a) = e N(py, =)
oy : : : : O” T2 N(“’Qv 22)
e Conditional Gaussian distribution s a) — | | —> Oi \
!\
e Conditional Mixture Model O 1
O,
\

e Mixture Density Network FEEEETIE



Expectation Model

 (Given (s,a), output expected next state and reward

e Exercise: Imagine you train a feedforward NN with input-output pairs
((s,a), (s’, r)), with a squared error

e Would this result in a Sample Model or Expectation Model

e or something else?



Expectation Model

e (Given (s,a), output expected next state and reward

 Exercise: Imagine you train a feedforward NN with input-output pairs
((s,a), (s’, r)), with a squared error

e Would this result in a Sample Model or Expectation Model

e or something else?

e Answer: Expectation Model



Expectation Model

 (Given (s,a), output expected next state and reward

e Examples:

e |inear function of (features of) (s,a)
(s, @) —p —> E[S’ | s, a]

e Neural Network



Potential Issues with
an Expectation Model

(X+1,y+1)

X+1,y

Not so bad

(X+1,y-1)

* from Cosmin Paduraru’s nice thesis, “Planning with Approximate and Learned Models of Markov Decision Processes”
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Some Benefits of
an Expectation Model

e |ikely simpler to learn

e Modeling entire distributions more difficult than just statistics like the mean
e |f the world is deterministic, then expectation model = sample model
e ...maybe this is not so unreasonable

e |f the value function is linear in agent state, then there is no disadvantage
to using an expectation model

e See “Planning with Expectation Models”, Wan et al, 2019



Important aspects of the model

o State-to-State vs Observation-to-Observation
e Expectation vs Sample Models

e Rollouts vs Temporal Abstraction



Issues with Rollouts

L

§ = b " ¢

§ &

ae i = i :I-

i §

ae i e i :I-

*Image from Erin Talvitie, “Self-Correcting Models for Model-Based Reinforcement Learning”, 2017



Temporal Abstraction

e Use options to define macro-actions

* e.g., Imagine a navigation robot. It could have a policy that tells it how to get to the
door (policy defined by option, Andre will talk about this more)

e Agent can plan over options, ﬁ(S ’, r | S, 71')

e e.g., can ask: “What is the resulting agent-state and (accumulated) reward from a
given agent-state when following the option policy?”

e Advantage: Can reason about longer horizons (multiple steps into future)

 Without rolling out the model many steps



Important aspects of the model

o State-to-State vs Observation-to-Observation

e Expectation vs Sample models

 Rollouts vs Temporal abstraction

e Full transition dynamics or a subset of predictions about the future
* WWhether model outputs certainty estimates

e Sample efficiency in learning the model

e Computational efficiency for querying/sampling from the model



Important aspects of the model

o State-to-State vs Observation-to-Observation

e Expectation vs Sample models

 Rollouts vs Temporal abstraction

e Full transition dynamics or a subset of predictions about the future
* WWhether model outputs certainty estimates

e Sample efficiency in learning the model

e Computational efficiency for querying/sampling from the model
Any other suggestions?



Important choices: Search Control

Initialize (s, a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

e The type of model (a) S < current (nonterminal) state
)

( ,
e S h trol (c) Take action A; observe resultant reward, R, and state, .S’
earch-contro (d) Q(S, A) « Q(S, A) + a[R + vymax, Q(S’,a) — Q(S, A)]
(e) Model(S,A) + R, S’
(f)

Loop re eat n tlmes

R,S" + Model(S A)
Q(S,A) + Q(S,A) + a| R+ ymax, Q(S,a) — Q(S, A4)
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* Prioritize samples with high error

e e.9g., store observed (s,a) and associated TD-error

e Update backwards from “important” states

e e.0., generate predecessor states from state with high TD-error



The utility of updating with
predecessor states

Imagine agent initializes values to zero

Updates in the center are all zero!

Then imagine it reaches the Goal State
and transitions back to the Start

Zero-reward
States

What happens if the agent updates

Goal State
around the start state now? Agent

What happens if the agent updates
predecessors around the goal?
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Search Control strategies:
How to pick (s,a)

Prioritize samples with high error

* e.g., store observed (s,a) and associated TD-error

Update backwards from “important” states

* e.0., generate predecessor states from state with high TD-error
Update with on-policy transitions

* e.0g., store observed states s and query current policy for action a

See “Organizing experience: a deeper look at replay mechanisms for sample-
based planning in continuous state domains”, Pan et al, 2018



Search Control strategies:
How to pick (s,a)

Prioritize samples with high error
Update backwards from “important” states
Update with on-policy transitions

Update current state or nearby region around current state

e improve values right before they are used

e see Dyna-2 (Silver et al., 2016), “Hill Climbing on Value Estimates for Search-
control in Dyna”, Pan et al., 2019
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Search Control strategies:
How to pick (s,a)

Prioritize samples with high error
Update backwards from “important” states
Update with on-policy transitions

Update current state or nearby region around current state

Any other suggestions?
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So, are we done?

Can we just learn an accurate model with a deep NN and use Dyna”?
Two key take-aways:

How we use the model (search-control) can have a huge impact on how
useful it is (can have very little impact, just a waste of computation)

Small errors in the model can result in big errors in the policy



Examples of Bad Errors

Unreachable States

Reachable States

Goal State
Agent

- Imagine we initialize optimistically
* credit to Taher Jafferjee - Imagine we do search-control from observed states



High-level Outline

e Part 1: Learning the optimal policy given the model (offline)
e Part 2: Moving to learned models (online)

e Part 3: A brief discussion about other ways to use models



Models are useful. They have been
used In a variety of ways in RL.

Most related: Learn a model and then use dynamic programming on this
learned model to obtain approximate values

* e.g., KBRL, KBSF, Compressed CME, Pseudo-MDPs
Decision-time Planning

e Model Predictive Control (see work from Byron Boots), MCTS
Use model to improve exploration
Use model to obtain better estimates of policy gradients (PILCO)

Use model as inductive bias on value function (e.g., Predictron)



KBRL, KBSF, and CCME

Learn values only for a representative set of points
Define smaller (pseudo)-MDP only on these states

Use value iteration (dynamic programming) on this smaller MDP, which is
reasonably efficient

Value function for whole state-space a simple weighting of the values for
these representative states



Exploration with models

e Huge research area using learned models for sound exploration
e Often consider an optimistic model in the set/distribution of models
e Most algorithms though are very computationally expensive
e Reward bonuses: accuracy of learned models to incentivize exploration

e Only indirectly using model, no planning



Implicit Planning

e Optimize model and planner based on the reward the agent receives,
using end-to-end learning

e Contrasts learning the model using a separate objective and updating using
explicit planning steps

e Can be seen as an inductive bias on value function architecture
e Examples:

e Predictron (DeepMind)

e TreeQN and ATreeC (Whiteson and others)
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e Dyna for background planning

e Search-control and Model choices
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High-level Outline

e Part 1: Learning the optimal policy given the model (offline)

e Part 2: Moving to learned models (online)
e Dyna for background planning

e Search-control and Model choices
e Part 3: A brief discussion about other ways to use models

Questions?



