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Goals for the talk

e Motivate the importance of learning an explicit
Representation for online updating

e |ntroduce the Online-Aware Meta-Learning objective

e Show how the representations from this objective
e improve prediction performance when learning online

e complement previous strategies for continual learning, like EWC

On arXiv: Meta-Learning Representations for Continual Learning
(https://arxiv.org/abs/1905.12588)



https://arxiv.org/abs/1905.12588

Problem Setting

e A Continual Learning Prediction (CLP) problem has an
unending stream of samples

(X17 Y1)7 (X27 Y2)7 SR (Xt7 1/;5)7 R
e Correlated sequence for inputs X

e Each Y dependent only on X: Y distributed according to
P(Y | Xt)



CLP is General, s
It encompasses....

Formulations with task descriptors (X;, T3, Y;)

Continual learning classification benchmarks

observe pairs (X,Y) for each class in order

Online regression problems

even RL by considering Yt to be a bootstrapped target

Settings where Yt depends on the last k observations

Xt equal to the last k observations, with overlap between Xt and Xt-1



Parameterized function

Could be any differentiable Learned

layer e.g a conv layer + relu  representation
or fc layer + relu
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CLP Objective

Objective is still an empirical risk minimization objective

CLP(0, W) = E[((fo,w (X),Y) :/ _/é(fe,w(az),y>p<y|ar)dy_ p(x)dz.

u: X — [0,00) marginal distribution over X



Different training regime

* Do not get iid samples, X; ~ p and Y; ~ P(Y|X})
e The sequence of samples is correlated
e This has a significant impact on training NNs online

* Updates are not spread across the space

* The NN begins to specialize to recent samples and forget
what it learned before on other parts of the space



Strategies to
Mitigate Interference

e Replay or generate samples for more updates

* e.g., replay in RL, model-based RL, knowledge distillation

e Modify the online update to retain knowledge

* e.g., Elastic Weight Consolidation

e Use sparse (or semi-distributed) representations

* e.g., early work by French in 90s



Strategies to
Mitigate Interference

e Replay or generate samples for more updates

* e.g., replay in RL, model-based RL, knowledge distillation

e Modify the online update to retain knowledge

* e.g., Elastic Weight Consolidation

e Use sparse (or semi-distributed) representations

* e.g., early work by French in 90s



Importance of the Representation
for Mitigating Interference

Parameter Space

Solution Manifold

for Task 1
o

L _ _ _
W
Joint Training \
Soluion
Solution manifolds for an Solution manifolds for an ideal

unconstrained representation representation for continual learning



Separately considering the
Representation

Could be any differentiable Learned
layer e.g a conv layer + relu representation
| ; or fc layer + relu
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Claim: It is useful to delineate the representation for continual learning
(and learn it differently)



Hypothesized Advantages

e | earning this representation could be a slower,
background process

e Slowly changing representation would suffer much less
from interference

* The Prediction Learning Network can still learning quickly online

e @Gain stability without losing reactivity

e Can consider alternative objectives and learning
approaches for the Representation Learning Network



Online-aware

def

OML(0, W) &

where U (0, W, {(Xt14, Yiri) }i1)
is the online update for k steps starting from 6, W
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Meta-Learning Objective
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Online-aware

def
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where U (0, W, {(Xt14, Yiri) }i1)
is the online update for k steps starting from 6, W

0, Wiir] = U0, Wi, { Xiii, Yigi) Vo))

Meta-Learning Objective

[ E[eLp (U W AKX, Vi) Vo) X, = 2] (o)

Key Point: U maintains correlated ordering that the online learner will see

Recall:
def

CLP(0, W) S E[l(fo w(X),Y)] =

/|

/ U fow (@), 1)p(yle)dy

u(x)dx.



How Is this different from
MAML? Similar idea but...

e The goal is to learn a representation for continual learning, rather
than few-shot learning (fine-tuning the network)

* Qur goal is to learn fast and minimize interference across all data

e Sample a sequence for the online update, and optimize error for all other data
 There are no explicit tasks, just correlated data

e |nstead of updating the whole network online, only the
prediction layers are updated online

e (Can be seen as setting stepsizes for representation params to zero



Separately considering the
Representation

Only updated with Could be any differentiable Learned Updated with the meta-update

the meta-update layer e.g a conv layer + relu  representation and inner updates
or fc layer + relu
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Q1: Can we learn representations that
are effective for online updating?

e Pre-train the representation on a pre-training set

e batch of data can be used however, including iid training

e Test performance when learning online on new data, with
a fixed pre-trained representation

e Two settings:

e One prediction, Y | x generated from 10 different functions

* An increasing number of predictions (increasing classes)



Dataset 2: Split-Omniglot

Omniglot has 1623 characters, each with 20 hand-written
iImages

Pre-training data: the first 963 classes

The remaining classes are Evaluation data (for online
learning): all of one class is seen before going to the next

Inputs are the image (we do not use task IDs)

Chosen because (a) a hard problem with many predictions,
(b) a given split between pre-training and evaluation classes



Algorithms

8 layers in NN, with 6 for RLN and 2 for TLN
Scratch: learns online from a random initialization, no pre-training
Pretraining: iid training on pre-training set

SR-NN: a neural network with sparse activations, trained using
the Set-KL method

MRCL.: our algorithm, Meta-learned Reps for Continual Learning

MRCL without RLN: define online update on whole network



Continual Classification
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MRCL without RLN
Pretraining
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Number of classes learned

1. Separating out the RLN is very important
2. Just fixing the representation does not prevent interference
3. Sparse Activation NN helps quite a bit, but not as much as MRCL

MRCL
iIs our method

*Oracle: learned using IID training on the trajectory with multiple epochs



Sparsity naturally emerges
when using OML

Random Instance 1 Random Instance 2 Random Instance 3 Average Activation
- e 1.0
- ] ] i R e iy
MRCL - ) |1 - ) - .
SR-NN
Pre-training | _. : - e - 1 .
T L . 1 0.0

Dead Neurons

MRCL has 4% activation and no dead neurons

Pre-training has 40% activation 3% dead neurons

Best SR-NN has 15% activation with 1% dead neurons

SR-NN trained to be more sparse, with 4% activation, has 14% dead neurons

*Reshaped the 2304 length representation vectors into 32x72 for visualization



Q2: Do the learned representations
complement other strategies for forgetting?

Split-Omniglot
Method Standard MRCL Pretraining
Online 04.64 +261 64.72 +257 21.16 +271
Approx 11D 53.95 £550 7512 +324  54.29 4348
ER-Reservoir 52.56 +212 68.16 +312 36.72 + 306
MER 5488 +412  T76.00 +207 62.76 +2.16
EWC 05.08 +247 64.44 +313 18.72 +3.97

1. MRCL improves all the algorithms.

2. The results are not due to just fixing the representation.

3. MRCL with a basic Online updating strategy is already competitive.

4. MRCL improves even approximate |ID sampling (suggesting it is not
only mitigating interference but making learning faster on new data).



Key take-away

We should be explicitly learning representations that are
well-suited for online updating



Open Questions

How can we learn these representations online?

When can we expect to learn representations amenable
to online updating?

* e.g., how related does pre-training data have to be to future data”?

What are the disadvantages of delineating a
representation and training it differently?

Can we learn representations tailored to more complex
continual updates?
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Thank you!



