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Goals for the talk

• Motivate the importance of learning an explicit 
Representation for online updating


• Introduce the Online-Aware Meta-Learning objective


• Show how the representations from this objective


• improve prediction performance when learning online


• complement previous strategies for continual learning, like EWC

On arXiv: Meta-Learning Representations for Continual Learning  
(https://arxiv.org/abs/1905.12588) 

https://arxiv.org/abs/1905.12588


Problem Setting

• A Continual Learning Prediction (CLP) problem has an 
unending stream of samples


• Correlated sequence for inputs X


• Each Y dependent only on X: Yt distributed according to 
P(Y | Xt)

Solution Manifold 
for Task 1

Solution manifolds for an
unconstrained representation

Joint Training 
Soluion

Parameter Space

Solution manifolds for an ideal
representation for continual learning
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Figure 2: Effect of the representation on continual learning, for a problem where targets are generated
from three different distributions p1(Y |x), p2(Y |x) and p3(Y |x). The representation results in
different solution manifolds for the three distributions; we depict two different possibilities here. We
show the learning trajectory when training incrementally from data generates first by p1, then p2

and p3. On the left, the online updates interfere, jumping between distant points on the manifolds.
On the right, the online updates either generalize appropriately—for parallel manifolds—or avoid
interference because manifolds are orthogonal.

regression and classification problems. We analyze the representations learned with our objective
and find that they are highly sparse. We then show that this idea complements and improves on other
continual learning strategies, like Meta Experience Replay [Riemer et al., 2019], which can learn
more effectively from our learned representations.

2 Problem Formulation

A Continual Learning Prediction (CLP) problem consists of an unending stream of samples

(X1, Y1), (X2, Y2), . . . , (Xt, Yt), . . .

for inputs Xt and prediction targets Yt, from sets X and Y respectively.1 The random vector Yt is
sampled according to an unknown distribution p(Y |Xt). We assume the process X1, X2, . . . , Xt, . . .
has a marginal distribution µ : X ! [0, 1), that reflects how often each input is observed. This
assumption allows for a variety of correlated sequences. For example, Xt could be sampled from a
distribution potentially dependent on past variables Xt�1 and Xt�2. The targets Yt, however, are
dependent only on Xt, and not on past Xi.

The goal of the agent is to learn a function f : X ! Y , to predict targets y from inputs x. This
function can be parameterized, with parameter vector ✓ and W as

f✓,W (x) = gW (�✓(x)) for representation �✓ : X ! Rd (1)

with gW : Rd ! Y a task-specific prediction function learned on a shared representation �✓(x).
For example, if the agent is making m predictions, then we could have W = [w1, . . . , wm], with
prediction vector gW (�✓(x)) = tanh(�✓(x)W ) composed of predictions tanh(�✓(x)wi) for each
prediction target i.

A variety of continual problems can be represented by this formulation. One example is an online
regression problem, such as predicting the next spatial location for a robot given the current location.
Current classification benchmarks in continual learning can also be represented by this CLP formalism.
One class is selected, with iid samples of Xt only from data for that class. This sequence is correlated,
because the process consistently reveals samples only from one class until switching to another class.
The CLP formulation also allows for targets Yt that are dependent on a history of the most recent k
observations. This can be obtained by defining each Xt to be the last k observations. The overlap
between Xt and Xt�1 does not violate the assumptions on the correlated sequence of inputs. Finally,

1This definition encompasses the continual learning problem where the tuples also include task descriptors
Tt [Lopez-Paz and Ranzato, 2017]. Tt in the tuple (Xt, Tt, Yt) can simply be considered as part of the inputs.
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CLP is General,  
it encompasses….

• Formulations with task descriptors 


• Continual learning classification benchmarks


• observe pairs (X,Y) for each class in order 


• Online regression problems 


• even RL by considering Yt to be a bootstrapped target  


• Settings where Yt depends on the last k observations


• Xt equal to the last k observations, with overlap between Xt and Xt-1

(Xt, Tt, Yt)
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Correlated X 
Yt ~ P(Y | Xt) 
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CLP Objective

Objective is still an empirical risk minimization objective

the prediction problem in reinforcement learning—predicting the value of a policy from a state—can
be represented by considering the inputs Xt to be states and the targets to be sampled returns or
bootstrapped targets.

The learning objective for the CLP problem is to minimize error over all samples. Let ` : Y ⇥Y ! R
be the loss for the entire prediction vector, with loss `(ŷ, y) between prediction ŷ 2 Y and target y.
If we assume that inputs X are seen proportionally to some density µ : X ! [0, 1), then the CLP
objective can be written as

CLP(✓,W )
def
= E[`(f✓,W (X), Y )] =

Z Z
`(f✓,W (x), y)p(y|x)dy

�
µ(x)dx. (2)

The objective for CLP is a standard empirical risk minimization problem, but the learning problem
differs from the standard iid setting. The agent sees a correlated stream of data, rather than getting
to directly sample from p(x, y) = p(y|x)µ(x). This modification can cause significant issues when
simply applying standard algorithms for the iid setting. Instead, we need to design algorithms that
take this correlation into account.

3 An Objective for Learning Representations for Continual Learning

Our goal is to learn representations that are suitable for continual learning. For an illustration of
what would constitute an effective representation for continual learning, suppose that we have three
clusters of inputs, which have significantly different p(Y |x), corresponding to p1, p2 and p3. For
a fixed 2-dimensional representation �✓ : X ! R2, we can consider the manifold of solutions
W 2 R2 given by a linear model that provide equivalently accurate solutions for each pi. These three
manifolds are depicted as three different coloured lines in the W 2 R2 parameter space in Figure 2.
The goal is to find one parameter vector W that is effective for all three distributions. For two different
representations, these manifolds, and their intersections can look very different. The intuition is that
online updates from a W are more effective when the manifolds are either parallel—allowing for
positive generalization—or orthogonal—avoiding interference. It is unlikely that a representation
producing such manifolds would emerge naturally. Instead, we will have to explicitly find it.

We frame the problem of learning a representation for continual learning as a meta-learning prob-
lem. We design the objective for a generic online update for W . Denote the online update for k
steps as U(✓,W, {(Xt+i, Yt+i)}k

i=1). For example, starting from parameters (✓t, Wt), the update
U(✓t, Wt, {(Xt+i, Yt+i)}k

i=1) could give (✓t+k, Wt+k) after k steps of stochastic gradient descent
where the ith step is taken with respect to (Xt+i, Yt+i). In this work, we consider an online update
that only changes W , for a fixed ✓, and only update the representation with the meta-objective. This
is a crucial idea behind the success of our method, and is further discussed in Appendix B. Our goal
is to optimize ✓ so that overall prediction accuracy is improved under these online updates.

We propose the following Online-aware Meta-Learning (OML) objective

OML(✓,W )
def
=

Z
E
h
CLP

⇣
U(✓,W, {(Xt+i, Yt+i)}k

i=1)
⌘
|Xt = x

i
µ(x)dx. (3)

This objective represents the expected loss after a k-step online update from any input x, sampled
proportionally to µ. Note that we could consider a different distribution than µ over starting x than in
the CLP. For example, we could consider a subset of x from which we do online updates, but want to
optimize performance on the full set of visited x. We will use this generality when demonstrating the
utility of this objective for pre-training representations for continual learning.

We can optimize this objective similarly to other gradient-based meta-learning objectives. Early work
on learning-to-learn considered optimizing parameters through learning updates themselves, though
typically considering approaches using genetic algorithms [Schmidhuber, 1987]. Improvements
in automatic differentiation have made it more feasible to computed gradient-based meta-learning
updates [Finn, 2018]. Some meta-learning algorithms have similarly considered optimizations
through multiple steps of updating for the few-shot learning setting [Finn et al., 2017; Li et al., 2017].
The successes in these previous works in optimizing similar objectives motivate OML as a feasible
objective for Meta-learning Representations for Continual Learning. We provide pseudo-code for
optimizing the OML objective given in Equation 3 in Appendix A .

4

µ : X ! [0,1) marginal distribution over X
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Different training regime

• Do not get iid samples, 


• The sequence of samples is correlated


• This has a significant impact on training NNs online


• Updates are not spread across the space


• The NN begins to specialize to recent samples and forget 
what it learned before on other parts of the space

Xt ⇠ µ and Yt ⇠ P (Y |Xt)
<latexit sha1_base64="Wln0EJtxocUd1e4kaZHyimbv+R4=">AAACF3icbVDLSgMxFM34tr6qLt1cLIJuyowKuhTduKxgX3RKyaSpBpPMkNwRy9i/cOOvuHGhiFvd+TemD0FbDwQO55zLzT1RIoVF3//ypqZnZufmFxZzS8srq2v59Y2KjVPDeJnFMja1iFouheZlFCh5LTGcqkjyanRz1vert9xYEetL7Ca8qeiVFh3BKDqplS/WWgihFQpClUKI/A4zoLoNPaj/OKXdOtyDC+5BK1/wi/4AMEmCESmQEUqt/GfYjlmquEYmqbWNwE+wmVGDgkney4Wp5QllN/SKNxzVVHHbzAZ39WDHKW3oxMY9jTBQf09kVFnbVZFLKorXdtzri/95jRQ7x81M6CRFrtlwUSeVgDH0S4K2MJyh7DpCmRHur8CuqaEMXZU5V0IwfvIkqewXg4Oif3FYODkd1bFAtsg22SUBOSIn5JyUSJkw8kCeyAt59R69Z+/Nex9Gp7zRzCb5A+/jG5g/naU=</latexit>



Strategies to  
Mitigate Interference

• Replay or generate samples for more updates 


• e.g., replay in RL, model-based RL, knowledge distillation


• Modify the online update to retain knowledge 


• e.g.,  Elastic Weight Consolidation


• Use sparse (or semi-distributed) representations


• e.g., early work by French in 90s
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Importance of the Representation 
for Mitigating Interference

Solution Manifold 
for Task 1

Solution manifolds for an
unconstrained representation

Joint Training 
Soluion

Parameter Space

Solution manifolds for an ideal
representation for continual learning
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Separately considering the 
Representation

Representation Learning Network (RLN)
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(and learn it differently)

Prediction Learning Network (TLN)



Hypothesized Advantages
• Learning this representation could be a slower, 

background process


• Slowly changing representation would suffer much less 
from interference


• The Prediction Learning Network can still learning quickly online


• Gain stability without losing reactivity


• Can consider alternative objectives and learning 
approaches for the Representation Learning Network



Online-aware  
Meta-Learning Objective

the prediction problem in reinforcement learning—predicting the value of a policy from a state—can
be represented by considering the inputs Xt to be states and the targets to be sampled returns or
bootstrapped targets.

The learning objective for the CLP problem is to minimize error over all samples. Let ` : Y ⇥Y ! R
be the loss for the entire prediction vector, with loss `(ŷ, y) between prediction ŷ 2 Y and target y.
If we assume that inputs X are seen proportionally to some density µ : X ! [0, 1), then the CLP
objective can be written as

CLP(✓,W )
def
= E[`(f✓,W (X), Y )] =

Z Z
`(f✓,W (x), y)p(y|x)dy

�
µ(x)dx. (2)

The objective for CLP is a standard empirical risk minimization problem, but the learning problem
differs from the standard iid setting. The agent sees a correlated stream of data, rather than getting
to directly sample from p(x, y) = p(y|x)µ(x). This modification can cause significant issues when
simply applying standard algorithms for the iid setting. Instead, we need to design algorithms that
take this correlation into account.

3 An Objective for Learning Representations for Continual Learning

Our goal is to learn representations that are suitable for continual learning. For an illustration of
what would constitute an effective representation for continual learning, suppose that we have three
clusters of inputs, which have significantly different p(Y |x), corresponding to p1, p2 and p3. For
a fixed 2-dimensional representation �✓ : X ! R2, we can consider the manifold of solutions
W 2 R2 given by a linear model that provide equivalently accurate solutions for each pi. These three
manifolds are depicted as three different coloured lines in the W 2 R2 parameter space in Figure 2.
The goal is to find one parameter vector W that is effective for all three distributions. For two different
representations, these manifolds, and their intersections can look very different. The intuition is that
online updates from a W are more effective when the manifolds are either parallel—allowing for
positive generalization—or orthogonal—avoiding interference. It is unlikely that a representation
producing such manifolds would emerge naturally. Instead, we will have to explicitly find it.

We frame the problem of learning a representation for continual learning as a meta-learning prob-
lem. We design the objective for a generic online update for W . Denote the online update for k
steps as U(✓,W, {(Xt+i, Yt+i)}k

i=1). For example, starting from parameters (✓t, Wt), the update
U(✓t, Wt, {(Xt+i, Yt+i)}k

i=1) could give (✓t+k, Wt+k) after k steps of stochastic gradient descent
where the ith step is taken with respect to (Xt+i, Yt+i). In this work, we consider an online update
that only changes W , for a fixed ✓, and only update the representation with the meta-objective. This
is a crucial idea behind the success of our method, and is further discussed in Appendix B. Our goal
is to optimize ✓ so that overall prediction accuracy is improved under these online updates.

We propose the following Online-aware Meta-Learning (OML) objective

OML(✓,W )
def
=

Z
E
h
CLP

⇣
U(✓,W, {(Xt+i, Yt+i)}k

i=1)
⌘
|Xt = x

i
µ(x)dx. (3)

This objective represents the expected loss after a k-step online update from any input x, sampled
proportionally to µ. Note that we could consider a different distribution than µ over starting x than in
the CLP. For example, we could consider a subset of x from which we do online updates, but want to
optimize performance on the full set of visited x. We will use this generality when demonstrating the
utility of this objective for pre-training representations for continual learning.

We can optimize this objective similarly to other gradient-based meta-learning objectives. Early work
on learning-to-learn considered optimizing parameters through learning updates themselves, though
typically considering approaches using genetic algorithms [Schmidhuber, 1987]. Improvements
in automatic differentiation have made it more feasible to computed gradient-based meta-learning
updates [Finn, 2018]. Some meta-learning algorithms have similarly considered optimizations
through multiple steps of updating for the few-shot learning setting [Finn et al., 2017; Li et al., 2017].
The successes in these previous works in optimizing similar objectives motivate OML as a feasible
objective for Meta-learning Representations for Continual Learning. We provide pseudo-code for
optimizing the OML objective given in Equation 3 in Appendix A .
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Recall:

where U(✓,W, {(Xt+i, Yt+i)}ki=1)

is the online update for k steps starting from ✓,W

[✓,Wt+k] = U(✓,Wt, {(Xt+i, Yt+i)}ki=1)
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We frame the problem of learning a representation for continual learning as a meta-learning prob-
lem. We design the objective for a generic online update for W . Denote the online update for k
steps as U(✓,W, {(Xt+i, Yt+i)}k

i=1). For example, starting from parameters (✓t, Wt), the update
U(✓t, Wt, {(Xt+i, Yt+i)}k

i=1) could give (✓t+k, Wt+k) after k steps of stochastic gradient descent
where the ith step is taken with respect to (Xt+i, Yt+i). In this work, we consider an online update
that only changes W , for a fixed ✓, and only update the representation with the meta-objective. This
is a crucial idea behind the success of our method, and is further discussed in Appendix B. Our goal
is to optimize ✓ so that overall prediction accuracy is improved under these online updates.

We propose the following Online-aware Meta-Learning (OML) objective

OML(✓,W )
def
=

Z
E
h
CLP

⇣
U(✓,W, {(Xt+i, Yt+i)}k

i=1)
⌘
|Xt = x

i
µ(x)dx. (3)

This objective represents the expected loss after a k-step online update from any input x, sampled
proportionally to µ. Note that we could consider a different distribution than µ over starting x than in
the CLP. For example, we could consider a subset of x from which we do online updates, but want to
optimize performance on the full set of visited x. We will use this generality when demonstrating the
utility of this objective for pre-training representations for continual learning.

We can optimize this objective similarly to other gradient-based meta-learning objectives. Early work
on learning-to-learn considered optimizing parameters through learning updates themselves, though
typically considering approaches using genetic algorithms [Schmidhuber, 1987]. Improvements
in automatic differentiation have made it more feasible to computed gradient-based meta-learning
updates [Finn, 2018]. Some meta-learning algorithms have similarly considered optimizations
through multiple steps of updating for the few-shot learning setting [Finn et al., 2017; Li et al., 2017].
The successes in these previous works in optimizing similar objectives motivate OML as a feasible
objective for Meta-learning Representations for Continual Learning. We provide pseudo-code for
optimizing the OML objective given in Equation 3 in Appendix A .
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Recall:

Key Point: U maintains correlated ordering that the online learner will see

where U(✓,W, {(Xt+i, Yt+i)}ki=1)

is the online update for k steps starting from ✓,W

[✓,Wt+k] = U(✓,Wt, {(Xt+i, Yt+i)}ki=1)
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How is this different from 
MAML? Similar idea but…

• The goal is to learn a representation for continual learning, rather 
than few-shot learning (fine-tuning the network)


• Our goal is to learn fast and minimize interference across all data 


• Sample a sequence for the online update, and optimize error for all other data 


• There are no explicit tasks, just correlated data 

• Instead of updating the whole network online, only the 
prediction layers are updated online


• Can be seen as setting stepsizes for representation params to zero



Separately considering the 
Representation
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Prediction Learning Network (TLN)



Q1: Can we learn representations that 
are effective for online updating?

• Pre-train the representation on a pre-training set


• batch of data can be used however, including iid training


• Test performance when learning online on new data, with 
a fixed pre-trained representation


• Two settings: 


• One prediction, Y | x generated from 10 different functions


• An increasing number of predictions (increasing classes)



Dataset 2: Split-Omniglot
• Omniglot has 1623 characters, each with 20 hand-written 

images


• Pre-training data: the first 963 classes 


• The remaining classes are Evaluation data (for online 
learning): all of one class is seen before going to the next


• Inputs are the image (we do not use task IDs)


• Chosen because (a) a hard problem with many predictions, 
(b) a given split between pre-training and evaluation classes



Algorithms
• 8 layers in NN, with 6 for RLN and 2 for TLN  


• Scratch: learns online from a random initialization, no pre-training


• Pretraining: iid training on pre-training set


• SR-NN: a neural network with sparse activations, trained using 
the Set-KL method


• MRCL: our algorithm, Meta-learned Reps for Continual Learning


• MRCL without RLN: define online update on whole network



Number of classes learned

Accuracy
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Scratch
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Omniglot Training Trajectory Performance

MRCL without RLN

Continual Classification 
Results

MRCL  
is our method

Up  
is good

*Oracle: learned using IID training on the trajectory with multiple epochs 

1. Separating out the RLN is very important

2. Just fixing the representation does not prevent interference

3. Sparse Activation NN helps quite a bit, but not as much as MRCL



Sparsity naturally emerges 
when using OML

MRCL

SR-NN

Pre-training

Random Instance 1 Random Instance 2 Average Activation

Dead Neurons

0.0

1.0
Random Instance 3

SR-NN

MRCL has 4% activation and no dead neurons 
Pre-training has 40% activation 3% dead neurons 
Best SR-NN has 15% activation with 1% dead neurons 
SR-NN trained to be more sparse, with 4% activation, has 14% dead neurons 

  

*Reshaped the 2304 length representation vectors into 32x72 for visualization 



Q2: Do the learned representations 
complement other strategies for forgetting? 

Table 1: MRCL combined with existing continual learning methods. All memory-based methods
use a buffer of 200. Error margins represent one std over 10 runs. Performance of all methods is
considerably improved when they learn from representations learned by MRCL; moreover, even
online updates are competitive with rehearsal based methods with MRCL. Finally, online updates
on MRCL outperform all methods when they learn from other representations. Note that MER does
better than approx IID in some cases because it does multiple rehearsal-based updates for every
sample.

Split-Omniglot
One class per task, 50 tasks Five classes per task, 20 tasks

Method Standard MRCL Pretraining Standard MRCL Pretraining

Online 04.64 ± 2.61 64.72 ± 2.57 21.16 ± 2.71 01.40 ± 0.43 55.32 ± 2.25 11.80 ± 1.92

Approx IID 53.95 ± 5.50 75.12 ± 3.24 54.29 ± 3.48 48.02 ± 5.67 67.03 ± 2.10 46.02 ± 2.83

ER-Reservoir 52.56 ± 2.12 68.16 ± 3.12 36.72 ± 3.06 24.32 ± 5.37 60.92 ± 2.41 37.44 ± 1.67

MER 54.88 ± 4.12 76.00 ± 2.07 62.76 ± 2.16 29.02 ± 4.01 62.05 ± 2.19 42.05 ± 3.71

EWC 05.08 ± 2.47 64.44 ± 3.13 18.72 ± 3.97 02.04 ± 0.35 56.03 ± 3.20 10.03 ± 1.53

enforce sparsity, has approximately 3% dead neurons. SR-NN with the same level of sparsity as
MRCL has approximately 14% dead neurons whereas one optimized for best accuracy has 0.7% dead
neurons, but with a higher average overall activation of 15%. MRCL, on the other hand, managed to
obtain a highly sparse representation, without incurring dead neurons. These results provide further
evidence that MRCL, and the objective it uses, promote learning an effective representation for online
updating.

5 Improvements by Combining with Knowledge Retention Approaches

We have shown that MRCL learns effective representations for continual learning. In this section, we
answer a different question: how does MRCL behave when it is combined with existing continual
learning methods? We test the performance of EWC [Lee et al., 2017], MER [Riemer et al., 2019]
and ER-Reservoir [Chaudhry et al., 2019b], in their standard form—learning the whole network
online—as well as with pre-trained fixed representations. We use pre-trained representations from
MRCL and Pretraining, obtained in the same way as described in earlier sections. For the Standard
online form of these algorithms, to avoid the unfair advantage of pre-training, we initialize the
networks by learning iid on the pre-training set.

As baselines, we also report results for (a) fully online SGD updates that update one point at a time in
order on the trajectory and (b) approximate IID training where SGD updates are used on a random
shuffling of the trajectory, removing the correlation.

We report the test set results for learning 50 tasks with one class per task, and learning 20 tasks with 5
tasks per class in Split-Omniglot in Table 1. For each of the methods, we do a 15/5 train/test split for
each Omniglot class and test multiple values for all the hyperparameters and report results for the best
setting. The conclusions are surprisingly clear. (1) MRCL improves all the algorithms; (2) simply
providing a fixed representation, as in Pretraining, does not provide nearly the same gains as MRCL
and (3) MRCL with a basic Online updating strategy is already competitive, outperforming all the
continual learning methods without MRCL. There are a few additional outcomes of note. MRCL
outperforms even approximate IID sampling, suggesting it is not only mitigating interference but
actually making learning faster on new data. Finally, the difference in online and experience replay
based algorithms for MRCL is not as pronounced as it is for other representations.

6 Conclusion and Discussion

In this paper, we proposed a meta-learning objective to learn representations that are robust to inter-
ference under online updates and promote future learning. We showed that using our representations,
it is possible to learn from highly correlated data streams with significantly improved robustness to
forgetting. We found sparsity emerges as a property of our learned representations, without explicitly
training for sparsity. We finally showed that our method is complementary to the existing state of the
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1. MRCL improves all the algorithms.

2. The results are not due to just fixing the representation. 

3. MRCL with a basic Online updating strategy is already competitive.

4. MRCL improves even approximate IID sampling (suggesting it is not 

only mitigating interference but making learning faster on new data). 

Split-Omniglot



Key take-away

We should be explicitly learning representations that are 
well-suited for online updating



Open Questions
• How can we learn these representations online?


• When can we expect to learn representations amenable 
to online updating? 


• e.g., how related does pre-training data have to be to future data?


• What are the disadvantages of delineating a 
representation and training it differently?


• Can we learn representations tailored to more complex 
continual updates?



Open Questions
• How can we learn these representations online?


• When can we expect to learn representations amenable 
to online updating? 


• e.g., how related does pre-training data have to be to future data?


• What are the disadvantages of delineating a 
representation and training it differently?


• Can we learn representations tailored to more complex 
continual updates?

Thank you!


