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High-level take-away

* Planning with learned models in Dyna can improve
data efficiency

 Key insight: the choice of what states to sample from
(search-control) is critical to get improvements



Planning with learned models

* Trajectory-based approaches: generate rollouts for

 Monte carlo planning, e.g., Dagger (Ross and Bagnell), Hallucinated
Dagger (Talvitie)

* On-policy planning, e.g. NAF (Gu et al.)

* Trajectory optimization, e.g., control with LDS (Levine & Abbeel)

 Approximate value iteration with factored models
(stochastic factorization, kernel mean embeddings,...)



Advantages of Dyna

* Interleaves learning and planning

e agent interacts with the world at a given timescale

* a model can be simulated in the background to improve action-

value estimates
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Advantages of Dyna

 Naturally enables incomplete models

e Qaction-values are still learned and direct behaviour

* model can be used in any way to try to improve action-value

estimates
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Advantages of Dyna

* Avoids multi-step rollouts
* jterated predictions compound error; can produce implausible states

* can do long-term planning use temporal abstraction (option models)
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Advantages of Dyna

* Only requires conditional sample-based model

 do not need to explicitly estimate densities

e can take advantage of advances in generative models

e only need P(s, r, gamma | s, a), simplifying estimation
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Advantages of Dyna

Interleaves learning and planning

Naturally enables partial models

Avoids multi-step rollouts

Can still do long-term planning use temporal abstraction

Only requires conditional sample-based model



Why aren’t we using Dyna?

e \We sort of are with experience replay

* “simulate” transitions from (recent) experience to update action-values

o Buffer of transitions, instead of search-control queue

e replay entire transition, rather than sampling from M(s,a)

e ...but does that matter? Can we gain something from
learning an explicit conditional model? Is it worth the
potential bias in the model?



Advantages from a learned
model vs transition buffer

e Compactness: summarizes experience

e Coverage: cannot store all experience, so in ER common
to use most recent experience (does not cover space)

* Querying: can query a model from particular (s,a)



Benefits of explicitly
querying a model

* Predecessors: given a high-priority state, sample
predecessor states that led to it

e need model P(s|s’, a)

 On-policy transitions: given a high-priority state, sample
the outcome for the action a taken by the current policy

* ER can only replay what old policy did



Experiments in Gridworlds
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Experiments In a
Continuous Gridworld
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What are the desired properties
for learned models in Dyna?

* Online — incrementally learned and adaptive

 Data-efficient — to feasibly improve data-efficiency of
learning value functions

* Robust to forgetting — non-stationarity policies and
localized sampling can cause forgetting if not careful

» Computationally efficient sampling — a slow sampler
will reduce the feasible number of planning steps



Memory-based models

e (Consider Kernel Density Estimation, given T samples
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REM: Reweighted
Experience Models

e Selects representative prototypes from experience

e Take advantage of the fact that only need to sample from
conditional distributions P(s, r, gamma | s, a) or P(s | s’, a)

e conditional reweighting can be obtained incrementally

e Semi-parameteric: only needs to learn reweightings and
subselect prototypes, so learns quickly



Results compared to other
models
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Open questions

Do we observe the same empirical phenomena (e.g.,
importance of predecessors) in other domains?

Can we improve training of DQN, using Dyna with a learned
model instead of ER?

What generative models are the most effective within Dyna?

What is the convergence rate and fixed point, using learned
models in Dyna?

Thank you! Questions?



