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What is Dyna?

(s,a)

s’, r ~ M(s,a)

w = w + 𝛂 𝛅 x(s)
w = w + 𝛂 𝛅 x(s)

e.g., Q-learning

Focus usually to    
improve learned model



High-level take-away

• Planning with learned models in Dyna can improve 
data efficiency


• Key insight: the choice of what states to sample from 
(search-control) is critical to get improvements



Planning with learned models

• Trajectory-based approaches: generate rollouts for


• Monte carlo planning, e.g., Dagger (Ross and Bagnell), Hallucinated 
Dagger (Talvitie) 


• On-policy planning, e.g. NAF (Gu et al.)


• Trajectory optimization, e.g., control with LDS (Levine & Abbeel)


• Approximate value iteration with factored models 
(stochastic factorization, kernel mean embeddings,…)



Advantages of Dyna

• Interleaves learning and planning


• agent interacts with the world at a given timescale


• a model can be simulated in the background to improve action-
value estimates



Advantages of Dyna
• Naturally enables incomplete models 


• action-values are still learned and direct behaviour


• model can be used in any way to try to improve action-value 
estimates



Advantages of Dyna
• Avoids multi-step rollouts 


• iterated predictions compound error; can produce implausible states


• can do long-term planning use temporal abstraction (option models)

Figure 2: The Shooter game. a) Example of the real dynam-
ics. b) Propagating errors (red outlines) in a model optimized
for one-step error. c) A model optimized for multi-step error.

In the original Shooter the bullseyes remained still but
here they move back and forth across the targets. As such,
the problem is second-order Markov; when the bullseye is in
the center, one cannot predict its next position without know-
ing its previous position. The agent, however, will use a fac-
tored Markov model, predicting each pixel conditioned on
the current image. It cannot accurately predict the bullseyes’
movement, though it can predict everything else perfectly.

One might imagine that this limitation would be fairly mi-
nor; the agent can still obtain reward even if it cannot reli-
ably hit the bullseyes. However, consider the sample rollout
pictured in Figure 2b. Here each image is sampled from a
model’s one-step predictions, and is then given as input for
the next predictions. This model has the lowest possible one-
step prediction error. Still, as anticipated, it does not cor-
rectly predict the movement of the bullseyes in the second
image. Because of the resulting errors, the sampled image
is unlike any the environment would generate, and there-
fore unlike any the model has trained on. The model’s un-
informed predictions based on this unfamiliar image cause
more errors in the third image, and so on. Ultimately this
model assigns low probability to a target persisting more
than a few steps, making it essentially useless for planning.

Note, however, that there are models within this model
class that are useful for planning. Consider the sample roll-
out pictured in Figure 2c. The model that generated this
rollout makes the same one-step errors as the previous
model when given an environment state. However, when
it encounters an unreasonable sampled state it still makes
reasonable predictions, effectively “self-correcting.” Talvi-
tie (2014) presents several similar examples involving vari-
ous model deficiencies. These examples illustrate the inad-
equacy of Lemma 2 when the model class is limited. Mod-
els with similar one-step prediction error can vary wildly in
their usefulness for planning. The true distinguisher is the
accuracy of predictions far into the future.
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The bound in Lemma 2 has dependence on 1
1��

because
it effectively assumes the worst possible loss in value if the
model samples an “incorrect” state. In contrast, Lemma 3
accounts for the model’s ability to recover after an error,
only penalizing it for individual incorrect transitions. Un-
fortunately, it is difficult to directly optimize for multi-step
prediction accuracy. Nevertheless, this bound suggests that
algorithms that account for a model’s multi-step error will
yield more robust MBRL performance.

2.3 Hallucinated one-step prediction error
We now seek to formally analyze the practice of hallucinated
training, described in Section 1. Venkatraman et al. (2015)
provide some analysis but in the uncontrolled time series
prediction setting. Here we focus on its impact on control
performance in MBRL. As a first step, we derive a bound
based on a model’s ability to predict the next environment
state, given a state sampled from the model’s own predic-
tions, i.e. to self-correct. For a policy ⇡ and state-action dis-
tribution ⇠ let J t
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ronment and model state-action pairs if ⇡ is executed in both
simultaneously. Specifically, let

J
t

⇠,⇡
(s, a, z, b) = E(s0,a0)⇠⇠[D

t

s0,a0,⇡(s, a)D̂
t

s0,a0,⇡(z, b)].

Lemma 4. For any policy ⇡ and state-action distribution ⇠,

✏
⇠,⇡,T

val
 M

T�1X

t=1

�
t E
(s,a,z,b)⇠J

t
⇠,⇡

⇥
kP a

s
� P̂

b

z
k1
⇤
.

Inspired by “Hallucinated Replay” (Talvitie 2014), we
call the quantity on the right the hallucinated one-step er-
ror. Hallucinated one-step error is intended as a proxy for
multi-step error, but having formalized it we may now see
that in some cases it is a poor proxy. Note that, regardless
of the policy, the multi-step and one-step error of a perfect
model is 0. This is not always so for hallucinated error.
Proposition 5. The hallucinated one-step error of a perfect
model may be non-zero.

Proof. Consider a simple MDP with three states {s0, sh, st}
and a single action a. In the initial state s0, a fair coin
is flipped, transitioning to sh or st with equal probability,
where it stays forever. Consider a perfect model P̂ = P .
Then J

1
s0,a

(sh, a, st, a) = P
a

s0
(sh)P a

s0
(st) = 0.25. How-

ever, |P a

sh
(sh) � P

a

st
(sh)| = 1 � 0 = 1. Thus, the halluci-

nated one-step error of a perfect model is non-zero.

Here the environment samples heads and the model sam-
ples tails. Given its own state, the model rightly predicts
tails, but incurs error nevertheless since the environment’s
next state is heads. Because the model and environment
dynamics are uncoupled, one cannot distinguish between
model error and legitimately different stochastic outcomes.

*image used with permission from Erik Talvitie



Advantages of Dyna
• Only requires conditional sample-based model


• do not need to explicitly estimate densities


• can take advantage of advances in generative models


• only need P(s, r, gamma | s, a), simplifying estimation



Advantages of Dyna

• Interleaves learning and planning


• Naturally enables partial models 


• Avoids multi-step rollouts 


• Can still do long-term planning use temporal abstraction


• Only requires conditional sample-based model 



Why aren’t we using Dyna?

• We sort of are with experience replay


• “simulate” transitions from (recent) experience to update action-values


• Buffer of transitions, instead of search-control queue


• replay entire transition, rather than sampling from M(s,a)


• …but does that matter? Can we gain something from 
learning an explicit conditional model? Is it worth the 
potential bias in the model?



Advantages from a learned 
model vs transition buffer

• Compactness: summarizes experience


• Coverage: cannot store all experience, so in ER common 
to use most recent experience (does not cover space)


• Querying: can query a model from particular (s,a)



Benefits of explicitly 
querying a model

• Predecessors: given a high-priority state, sample 
predecessor states that led to it


• need model P(s | s’, a)


• On-policy transitions: given a high-priority state, sample 
the outcome for the action a taken by the current policy


• ER can only replay what old policy did



Experiments in Gridworlds

G

S

+100

• Tabular and Continuous


• Deterministic and stochastic


• Q-learning, epsilon = 0.1


• Number planning steps = 5


• Buffer/queue size = 1024, 
oldest samples deleted

• Random


• Prioritized


• Predecessors

Sampling strategy



Experiments in a        
Tabular Gridworld
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But otherwise prioritization hurts

Conclusion 1: Dyna only outperforms ER with Predecessors



Experiments in a 
Continuous Gridworld 
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What are the desired properties 
for learned models in Dyna?

• Online — incrementally learned and adaptive


• Data-efficient — to feasibly improve data-efficiency of 
learning value functions 


• Robust to forgetting — non-stationarity policies and 
localized sampling can cause forgetting if not careful


• Computationally efficient sampling — a slow sampler 
will reduce the feasible number of planning steps 



Memory-based models
• Consider Kernel Density Estimation, given T samples


• Conditional distribution, using product kernel

the advantage that planning focuses on actions that the agent
currently estimates to be the best. In the tabular setting, this
on-policy sampling can result in dramatic efficiency improve-
ments for Dyna [Sutton and Barto, 1998], while [Gu et al.,
2016] report improvement from on-policy sample of transi-
tions, in a setting with multi-step rollouts. ER cannot emulate
on-policy search control because it replays full transitions
(s, a, s0, r, �), and cannot query for an alternative transition if
a different action than a is taken.

Next, we introduce Reweighed Experience Models (REMs),
and then test REM-Dyna incorporating the subtleties of search-
control outlined above.

4 Reweighted Experience Models for Dyna

In this section, we highlight criteria for selecting amongst the
variety of available sampling models, and then propose a semi-
parametric model—called Reweighted Experience Models—
as one suitable model that satisfies these criteria.

4.1 Generative models for Dyna

Generative models are a fundamental tool in machine learning,
providing a wealth of possible model choices. We begin by
specifying our desiderata for online sample-based planning
and acting. First, the model learning should be incremen-

tal and adaptive, because the agent incrementally interleaves
learning and planning. Second, the models should be data-

efficient, in order to achieve the primary goal of improving
data-efficiency of learning value functions. Third, due to pol-
icy non-stationarity, the models need to be robust to forgetting:
if the agent stays in a part of the world for quite some time,
the learning algorithm should not overwrite—or forget—the
model in other parts of the world. Fourth, the models need to
be able to be queried as conditional models. Fifth, sampling

should be computationally efficient, since a slow sampler will
reduce the feasible number of planning steps.

Density models are typically learned as a mixture of simpler
functions or distributions. In the most basic case, a simple dis-
tributional form can be used, such as a Gaussian distribution
for continuous random variables, or a categorical distribu-
tion for discrete random variables. For conditional distribu-
tions, p(s0|s, a), the parameters to these distributions, like
the mean and variance of s0, can be learned as a (complex)
function of s, a. More general distributions can be learned
using mixtures, such as mixture models or belief networks.
A Conditional Gaussian Mixture Model, for example, could
represent p(s0|s, a) =

Pb
i=1 ↵i(s, a)N (s0|µ(s, a),⌃(s, a)),

where ↵i,µ and ⌃ are (learned) functions of s, a. In belief
networks—such as Boltzmann distributions—the distribution
is similarly represented as a sum over hidden variables, but
for more general functional forms over the random variables—
such as energy functions. To condition on s, a, those variables
in the network are fixed both for learning and sampling.

Kernel density estimators (KDE) are similar to mixture
models, but are non-parametric: means in the mixture are the
training data, with a uniform weighting: ↵i = 1/T for T
samples. KDE and conditional KDE is consistent [Holmes
et al., 2007]—since the model is a weighting over observed
data—providing low model-bias. Further, it is data-efficient,

easily enables conditional distributions, and is well-understood
theoretically and empirically. Unfortunately, it scales linearly
in the data, which is not compatible with online reinforcement
learning problems. Mixture models, on the other hand, learn
a compact mixture and could scale, but are expensive to train
incrementally and have issues with local minima.

Neural network models are another option, such as Gen-
erative Adversarial Networks [Goodfellow et al., 2014] and
Stochastic Neural Networks [Sohn et al., 2015; Alain et al.,
2016]. Many of the energy-based models, however, such as
Boltzmann distributions, require computationally expensive
sampling strategies [Alain et al., 2016]. Other networks—
such as Variational Auto-encoders—sample inputs from a
given distribution, to enable the network to sample out-
puts. These neural network models, however, have issues
with forgetting [McCloskey and Cohen, 1989; French, 1999;
Goodfellow et al., 2013], and require more intensive training
strategies—-often requiring experience replay themselves.

4.2 Reweighted Experience Models

We propose a semi-parametric model to take advantage of
the properties of KDE and still scale with increasing expe-
rience. The key properties of REM models are that 1) it is
straightforward to specify and sample both forward and reverse
models for predecessors—p(s0|s, a) and p(s|s0, a)—using es-
sentially the same model (the same prototypes); 2) they are
data-efficient, requiring few parameters to be learned; and 3)
they can provide sufficient model complexity, by allowing for
a variety of kernels or metrics defining similarity.

REM models consist of a subset of prototype transitions
{(si, ai, s0i, ri, �i)}bi=1, chosen from all T transitions experi-
enced by the agent, and their corresponding weights ci. These
prototypes are chosen to be representative of the transitions,
based on a similarity given by a product kernel k
p(s, a, s0, r, �|si, ai, s

0
i, ri, �i) = k((s, a, s0, r, �), (si, ai, s

0
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>
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with covariance Hs. For discrete actions, the similarity is
an indicator ka(a, ai) = 1 if a = ai and otherwise 0. For
next state, reward and discount, a Gaussian kernel is used for
ks0,r,� with covariance Hs0,r,� . We set the covariance matrix
Hs = b�1

⌃s, where ⌃s is a sample covariance, and use a
conditional covariance for (s, r, �).

If all experience is stored, the KDE model is
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TX
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This estimator puts higher density around more frequently
observed transitions. A conditional estimator is similarly intu-
itive, and also a consistent estimator [Holmes et al., 2007],

N(s, a) = 1
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• Issue: Cannot store all data

the advantage that planning focuses on actions that the agent
currently estimates to be the best. In the tabular setting, this
on-policy sampling can result in dramatic efficiency improve-
ments for Dyna [Sutton and Barto, 1998], while [Gu et al.,
2016] report improvement from on-policy sample of transi-
tions, in a setting with multi-step rollouts. ER cannot emulate
on-policy search control because it replays full transitions
(s, a, s0, r, �), and cannot query for an alternative transition if
a different action than a is taken.

Next, we introduce Reweighed Experience Models (REMs),
and then test REM-Dyna incorporating the subtleties of search-
control outlined above.

4 Reweighted Experience Models for Dyna

In this section, we highlight criteria for selecting amongst the
variety of available sampling models, and then propose a semi-
parametric model—called Reweighted Experience Models—
as one suitable model that satisfies these criteria.

4.1 Generative models for Dyna

Generative models are a fundamental tool in machine learning,
providing a wealth of possible model choices. We begin by
specifying our desiderata for online sample-based planning
and acting. First, the model learning should be incremen-

tal and adaptive, because the agent incrementally interleaves
learning and planning. Second, the models should be data-

efficient, in order to achieve the primary goal of improving
data-efficiency of learning value functions. Third, due to pol-
icy non-stationarity, the models need to be robust to forgetting:
if the agent stays in a part of the world for quite some time,
the learning algorithm should not overwrite—or forget—the
model in other parts of the world. Fourth, the models need to
be able to be queried as conditional models. Fifth, sampling

should be computationally efficient, since a slow sampler will
reduce the feasible number of planning steps.
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functions or distributions. In the most basic case, a simple dis-
tributional form can be used, such as a Gaussian distribution
for continuous random variables, or a categorical distribu-
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A Conditional Gaussian Mixture Model, for example, could
represent p(s0|s, a) =

Pb
i=1 ↵i(s, a)N (s0|µ(s, a),⌃(s, a)),
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data—providing low model-bias. Further, it is data-efficient,
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2016]. Many of the energy-based models, however, such as
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they can provide sufficient model complexity, by allowing for
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the advantage that planning focuses on actions that the agent
currently estimates to be the best. In the tabular setting, this
on-policy sampling can result in dramatic efficiency improve-
ments for Dyna [Sutton and Barto, 1998], while [Gu et al.,
2016] report improvement from on-policy sample of transi-
tions, in a setting with multi-step rollouts. ER cannot emulate
on-policy search control because it replays full transitions
(s, a, s0, r, �), and cannot query for an alternative transition if
a different action than a is taken.

Next, we introduce Reweighed Experience Models (REMs),
and then test REM-Dyna incorporating the subtleties of search-
control outlined above.

4 Reweighted Experience Models for Dyna

In this section, we highlight criteria for selecting amongst the
variety of available sampling models, and then propose a semi-
parametric model—called Reweighted Experience Models—
as one suitable model that satisfies these criteria.

4.1 Generative models for Dyna

Generative models are a fundamental tool in machine learning,
providing a wealth of possible model choices. We begin by
specifying our desiderata for online sample-based planning
and acting. First, the model learning should be incremen-

tal and adaptive, because the agent incrementally interleaves
learning and planning. Second, the models should be data-

efficient, in order to achieve the primary goal of improving
data-efficiency of learning value functions. Third, due to pol-
icy non-stationarity, the models need to be robust to forgetting:
if the agent stays in a part of the world for quite some time,
the learning algorithm should not overwrite—or forget—the
model in other parts of the world. Fourth, the models need to
be able to be queried as conditional models. Fifth, sampling

should be computationally efficient, since a slow sampler will
reduce the feasible number of planning steps.

Density models are typically learned as a mixture of simpler
functions or distributions. In the most basic case, a simple dis-
tributional form can be used, such as a Gaussian distribution
for continuous random variables, or a categorical distribu-
tion for discrete random variables. For conditional distribu-
tions, p(s0|s, a), the parameters to these distributions, like
the mean and variance of s0, can be learned as a (complex)
function of s, a. More general distributions can be learned
using mixtures, such as mixture models or belief networks.
A Conditional Gaussian Mixture Model, for example, could
represent p(s0|s, a) =

Pb
i=1 ↵i(s, a)N (s0|µ(s, a),⌃(s, a)),

where ↵i,µ and ⌃ are (learned) functions of s, a. In belief
networks—such as Boltzmann distributions—the distribution
is similarly represented as a sum over hidden variables, but
for more general functional forms over the random variables—
such as energy functions. To condition on s, a, those variables
in the network are fixed both for learning and sampling.

Kernel density estimators (KDE) are similar to mixture
models, but are non-parametric: means in the mixture are the
training data, with a uniform weighting: ↵i = 1/T for T
samples. KDE and conditional KDE is consistent [Holmes
et al., 2007]—since the model is a weighting over observed
data—providing low model-bias. Further, it is data-efficient,

easily enables conditional distributions, and is well-understood
theoretically and empirically. Unfortunately, it scales linearly
in the data, which is not compatible with online reinforcement
learning problems. Mixture models, on the other hand, learn
a compact mixture and could scale, but are expensive to train
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Stochastic Neural Networks [Sohn et al., 2015; Alain et al.,
2016]. Many of the energy-based models, however, such as
Boltzmann distributions, require computationally expensive
sampling strategies [Alain et al., 2016]. Other networks—
such as Variational Auto-encoders—sample inputs from a
given distribution, to enable the network to sample out-
puts. These neural network models, however, have issues
with forgetting [McCloskey and Cohen, 1989; French, 1999;
Goodfellow et al., 2013], and require more intensive training
strategies—-often requiring experience replay themselves.

4.2 Reweighted Experience Models

We propose a semi-parametric model to take advantage of
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models for predecessors—p(s0|s, a) and p(s|s0, a)—using es-
sentially the same model (the same prototypes); 2) they are
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they can provide sufficient model complexity, by allowing for
a variety of kernels or metrics defining similarity.
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next state, reward and discount, a Gaussian kernel is used for
ks0,r,� with covariance Hs0,r,� . We set the covariance matrix
Hs = b�1

⌃s, where ⌃s is a sample covariance, and use a
conditional covariance for (s, r, �).

If all experience is stored, the KDE model is

p(s, a, s0, r, �) = 1
T

TX

i=1

k((s, a, s0, r, �), (si, ai, s
0
i, ri, �i))

This estimator puts higher density around more frequently
observed transitions. A conditional estimator is similarly intu-
itive, and also a consistent estimator [Holmes et al., 2007],

N(s, a) = 1
T

TX

i=1

ks(s, si)ka(a, ai)

p(s0, r, �|s, a)= 1
N(s,a)

TX

i=1

ks(s, si)ka(a, ai)ks0,r,�((s
0,r,�), (s0i,ri,�i))



REM: Reweighted 
Experience Models

• Selects representative prototypes from experience


• Take advantage of the fact that only need to sample from 
conditional distributions P(s, r, gamma | s, a) or P(s | s’, a)


• conditional reweighting can be obtained incrementally


• Semi-parameteric: only needs to learn reweightings and 
subselect prototypes, so learns quickly



Results compared to other 
models

2000 10000 2000 10000
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REM-Dyna  (predecessors)

On-policy REM-Dyna 

ER (random)

REM-Dyna  (predecessors)

linear-Dyna 
(random)

NN-Dyna 
(predecessors)

Q-learning

Conclusion: NN model learns too slowly



Open questions

• Do we observe the same empirical phenomena (e.g., 
importance of predecessors) in other domains?


• Can we improve training of DQN, using Dyna with a learned 
model instead of ER?


• What generative models are the most effective within Dyna?


• What is the convergence rate and fixed point, using learned 
models in Dyna?

Thank you! Questions?


