
Unifying task specification
for reinforcement learning

Martha White
Assistant Professor
University of Alberta

Problem setting

Environment

Agent

action Atstate St reward Rt

Rt+1

St+1

Problem setting

Environment

Agent

action Atstate St reward Rt

Rt+1

St+1

Infinite horizon

Problem setting

Environment

Agent

action Atstate St reward Rt

Rt+1

St+1

Markov decision process: (S,A,Pr,R, �c)

Infinite horizon

What is this talk about?

�c 2 [0, 1)

What is this talk about?

�c 2 [0, 1) � : S ⇥A⇥ S ! [0, 1]

Main take-away

Main take-away

• Transition-based discounting is useful for you

Main take-away

• Transition-based discounting is useful for you

• to simplify algorithm development

Main take-away

• Transition-based discounting is useful for you

• to simplify algorithm development

• to unify theoretical characterizations

Main take-away

• Transition-based discounting is useful for you

• to simplify algorithm development

• to unify theoretical characterizations

• to simplify implementation

Outline

• Generalization to transition-based discounting

• The theoretical and algorithmic implications

• generalized Bellman operators

• Utility of the generalized problem formalism

Returns (continuing)

V (s) = E[Gt | St = s]

Gt =
1X

i=0

�i
cRt+1+i = Rt+1 + �cGt+1

�c 2 [0, 1)

Returns (continuing)

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, . . .

V (s) = E[Gt | St = s]

Gt =
1X

i=0

�i
cRt+1+i = Rt+1 + �cGt+1

�c 2 [0, 1)

Returns (continuing)

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, . . .

V (s) = E[Gt | St = s]

r1 + �cr2 + �2
c r3 + . . .

Gt =
1X

i=0

�i
cRt+1+i = Rt+1 + �cGt+1

�c 2 [0, 1)

Returns (continuing)

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, . . .

V (s) = E[Gt | St = s]

r2 + �cr3 + �2
c r4 + . . .

Gt =
1X

i=0

�i
cRt+1+i = Rt+1 + �cGt+1

�c 2 [0, 1)

Returns (continuing)

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, . . .

V (s) = E[Gt | St = s]

r3 + �cr4 + �2
c r5 + . . .

Gt =
1X

i=0

�i
cRt+1+i = Rt+1 + �cGt+1

�c 2 [0, 1)

�i
c

time step i

Selection of discount
Gt =

1X

i=0

�i
cRt+1+i �c 2 [0, 1)

�c reflects horizon

Returns (episodic)

Returns (episodic)

Returns (episodic)

s0 = (7, 3), a0 = Sth, r1 = �1, s1 = (7, 2), a1 = Sth, r2 = �1, s2 = (7, 1)

r2 Nullr1 + r2

How do we unify the two?
• Algorithms and theory treat the two cases separately

• Absorbing state not a complete solution
Unifying Task Specification in Reinforcement Learning

The stationary distribution is also clearly equal to the origi-
nal episodic task, since the absorbing state is not used in the
computation of the stationary distribution.

Another strategy is to still introduce hypothetical states, but
use state-based �, as discussed in Figure 1c. Unlike ab-
sorbing states, the agent does not stay indefinitely in the
hypothetical state. When the agent goes right from s3, it
transitions to hypothetical state s4, and then transition deter-
ministically to the start state s1, with �s(s4) = 0. As before,
we get the correct update, because �t+1 = �s(s4) = 0. Be-
cause the stationary distribution has some non-zero probabil-
ity in the hypothetical state s4, we must set x(s4) = x(s1)
(or x(s4) = 0). Otherwise, the value of the hypothetical
state will be learned, wasting function approximation re-
sources and potentially modifying the approximation quality
of the value in other states. We could have tried state-based
discounting without adding an additional state s4. How-
ever, this leads to incorrect value estimates, as depicted in
Figure 1d; the relationship between transition-based and
state-based is further discussed in Appendix B.1. Overall,
to keep the specification of the RL task and the MDP sepa-
rate, transition-based discounting is necessary to enable the
unified specification of episodic and continuing tasks.

2.2. Options as RL tasks

The options framework (Sutton et al., 1999) generically
covers a wide range of settings, with discussion about macro-
actions, option models, interrupting options and intra-option
value learning. These concepts at the time merited their
own language, but with recent generalizations can be more
conveniently cast as RL subtasks.

Proposition 1. An option, defined as the tuple (Sutton et al.,

1999, Section 2) (⇡,�, I) with policy ⇡ : S ⇥ A ! [0, 1],
termination function � : S ! [0, 1] and an initiation set

I ⇢ S from which the option can be run, can be equivalently

cast as an RL task.

This proof is mainly definitional, but we state it as an
explicit proposition for clarity. The discount function
�(s, a, s0) = 1 � �(s0) for all s, a, s0 specifies termina-
tion. The interest function, i(s) = 1 if s 2 I and i(s) = 0
otherwise, focuses learning resources on the states of inter-
est. If a value function for the policy is queried, it would
only make sense to query it from these states of interest.
If the policy for this option is optimized for this interest
function, the policy should only be run starting from s 2 I,
as elsewhere will be poorly learned. The rewards for the RL
task correspond to the rewards associated with the MDP.

RL tasks generalize options, by generalizing termination
conditions to transition-based discounting and by providing
degrees of interest rather than binary interest. Further, the
policies associated with RL subtasks can be used as macro-

s1 s2 s3 s4 1

(a) Absorbing state formulation.

s1 s2 s3

�(s3, right, s1) = 0

(b) Transition-based termination, �(s3, right, s1)=0.

s1 s2 s3 s4

�s(s4) = 0

1

(c) State-based termination with �s(s4) = 0.

s1 s2 s3

�s(s1) = 0 or �s(s3) = 0

(d) Incorrect state-based termination.
Figure 1: Three different ways to represent episodic prob-
lems as continuing problems. For (c), the state-based dis-
count cannot represent the episodic chain problem with-
out adding states. To see why, consider the two cases
for representing termination: �s(s1) = 0 or �s(s3) = 0.
For simplicity, assume that ⇡(s, right) = 0.75 for all
states s 2 {s1, s2, s3} and transitions are deterministic. If
�s(s3) = 0, then the value for taking action right from s2 is
r(s2, right, s3)+ �s(s3)v⇡(s3) = �1 and the value for tak-
ing action right from s3 is r(s3, right, s1)+�s(s1)v⇡(s1) 6=
�1, which are both incorrect. If �s(s1) = 0, then the value
of taking action right from s3 is �1 + �s(s1)v⇡(s1) = �1,
which is correct. However, the value of taking action left

from s2 is �1 + �s(s1)v⇡(s1) = �1, which is incorrect.

actions, to specify a semi-Markov decision process (Sutton
et al., 1999, Theorem 1).

2.3. General value functions

In a similar spirit of abstraction as options, general value
functions were introduced for single predictive or goal-
oriented questions about the world (Sutton et al., 2011).
The idea is to encode predictive knowledge in the form
of value function predictions: with a collection or horde
of prediction demons, this constitutes knowledge (Sutton
et al., 2011; Modayil et al., 2014; White, 2015). The work
on Horde (Sutton et al., 2011) and nexting (Modayil et al.,
2014) provide numerous examples of the utility of the types
of questions that can be specified by general value functions,
and so by RL tasks, because general value functions can

How do we unify the two?
• Algorithms and theory treat the two cases separately

• Absorbing state not a complete solution
Unifying Task Specification in Reinforcement Learning

The stationary distribution is also clearly equal to the origi-
nal episodic task, since the absorbing state is not used in the
computation of the stationary distribution.

Another strategy is to still introduce hypothetical states, but
use state-based �, as discussed in Figure 1c. Unlike ab-
sorbing states, the agent does not stay indefinitely in the
hypothetical state. When the agent goes right from s3, it
transitions to hypothetical state s4, and then transition deter-
ministically to the start state s1, with �s(s4) = 0. As before,
we get the correct update, because �t+1 = �s(s4) = 0. Be-
cause the stationary distribution has some non-zero probabil-
ity in the hypothetical state s4, we must set x(s4) = x(s1)
(or x(s4) = 0). Otherwise, the value of the hypothetical
state will be learned, wasting function approximation re-
sources and potentially modifying the approximation quality
of the value in other states. We could have tried state-based
discounting without adding an additional state s4. How-
ever, this leads to incorrect value estimates, as depicted in
Figure 1d; the relationship between transition-based and
state-based is further discussed in Appendix B.1. Overall,
to keep the specification of the RL task and the MDP sepa-
rate, transition-based discounting is necessary to enable the
unified specification of episodic and continuing tasks.

2.2. Options as RL tasks

The options framework (Sutton et al., 1999) generically
covers a wide range of settings, with discussion about macro-
actions, option models, interrupting options and intra-option
value learning. These concepts at the time merited their
own language, but with recent generalizations can be more
conveniently cast as RL subtasks.

Proposition 1. An option, defined as the tuple (Sutton et al.,

1999, Section 2) (⇡,�, I) with policy ⇡ : S ⇥ A ! [0, 1],
termination function � : S ! [0, 1] and an initiation set

I ⇢ S from which the option can be run, can be equivalently

cast as an RL task.

This proof is mainly definitional, but we state it as an
explicit proposition for clarity. The discount function
�(s, a, s0) = 1 � �(s0) for all s, a, s0 specifies termina-
tion. The interest function, i(s) = 1 if s 2 I and i(s) = 0
otherwise, focuses learning resources on the states of inter-
est. If a value function for the policy is queried, it would
only make sense to query it from these states of interest.
If the policy for this option is optimized for this interest
function, the policy should only be run starting from s 2 I,
as elsewhere will be poorly learned. The rewards for the RL
task correspond to the rewards associated with the MDP.

RL tasks generalize options, by generalizing termination
conditions to transition-based discounting and by providing
degrees of interest rather than binary interest. Further, the
policies associated with RL subtasks can be used as macro-

s1 s2 s3 s4 1

(a) Absorbing state formulation.

s1 s2 s3

�(s3, right, s1) = 0

(b) Transition-based termination, �(s3, right, s1)=0.

s1 s2 s3 s4

�s(s4) = 0

1

(c) State-based termination with �s(s4) = 0.

s1 s2 s3

�s(s1) = 0 or �s(s3) = 0

(d) Incorrect state-based termination.
Figure 1: Three different ways to represent episodic prob-
lems as continuing problems. For (c), the state-based dis-
count cannot represent the episodic chain problem with-
out adding states. To see why, consider the two cases
for representing termination: �s(s1) = 0 or �s(s3) = 0.
For simplicity, assume that ⇡(s, right) = 0.75 for all
states s 2 {s1, s2, s3} and transitions are deterministic. If
�s(s3) = 0, then the value for taking action right from s2 is
r(s2, right, s3)+ �s(s3)v⇡(s3) = �1 and the value for tak-
ing action right from s3 is r(s3, right, s1)+�s(s1)v⇡(s1) 6=
�1, which are both incorrect. If �s(s1) = 0, then the value
of taking action right from s3 is �1 + �s(s1)v⇡(s1) = �1,
which is correct. However, the value of taking action left

from s2 is �1 + �s(s1)v⇡(s1) = �1, which is incorrect.

actions, to specify a semi-Markov decision process (Sutton
et al., 1999, Theorem 1).

2.3. General value functions

In a similar spirit of abstraction as options, general value
functions were introduced for single predictive or goal-
oriented questions about the world (Sutton et al., 2011).
The idea is to encode predictive knowledge in the form
of value function predictions: with a collection or horde
of prediction demons, this constitutes knowledge (Sutton
et al., 2011; Modayil et al., 2014; White, 2015). The work
on Horde (Sutton et al., 2011) and nexting (Modayil et al.,
2014) provide numerous examples of the utility of the types
of questions that can be specified by general value functions,
and so by RL tasks, because general value functions can

• Recent generalizations to state-based discount
almost the complete solution

Unification using transition-
based discounting

• Discount generalized to a function on (s,a,s’)

• Can smoothly encode continuing or episodic

• …and specify a whole new set of returns

� : S ⇥A⇥ S ! [0, 1]

Generalized return
� : S ⇥A⇥ S ! [0, 1]

Gt =
1X

i=0

0

@
i�1Y

j=0

�(St+j , At+j , St+j+1)

1

ARt+1+i

�t+1 = �(St, At, St+1)= Rt+1 + �t+1Gt+1

Generalized return
� : S ⇥A⇥ S ! [0, 1]

If �(s, a, s0) = �c
i�1Y

j=0

�(St+j , At+j , St+j+1) = �i�1
c

Gt =
1X

i=0

0

@
i�1Y

j=0

�(St+j , At+j , St+j+1)

1

ARt+1+i

�t+1 = �(St, At, St+1)= Rt+1 + �t+1Gt+1

Encoding episodic tasks

• gamma(s,a,s’) = 0 for a terminal transition

• s’ is the start state for the next episode

• Return is truncated at termination by the product of
discounts, with gamma(s,a,s’) = 0

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
Passenger in
black square

Actions:
N, E, S, W,

Pickup,
Drop-off

States:
(x, y,

passenger
location)

State: (2, 1, 3)

Location can
be (0,1,2,3)

or 4 for in taxi

4

3

2

1

0

0 1 2 3 4 3 4 3 43 4 3 4

-1.1

-1.2 -1

-1

-1

-1.2

-1.2 -1.4

-1 -1.2

-1

-1

-1.4

-1 -1.2

-1.4

Car

(a) (b) (c) (d)

Example: taxi domain

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

• P((4,4,3), Pick-up, (4,4,4)) = 1.0

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

• P((4,4,3), Pick-up, (4,4,4)) = 1.0

• What is the discount function?

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

• P((4,4,3), Pick-up, (4,4,4)) = 1.0

• What is the discount function?

• 𝛄((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

• P((4,4,3), Pick-up, (4,4,4)) = 1.0

• What is the discount function?

• 𝛄((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0

• Why not 𝛄s((4,4,4)) = 0.0?
4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

Example: taxi domain
• What are the transition probabilities at (4,4,3)?

• P((4,4,3), Pick-up, (4,4,4)) = 1.0

• What is the discount function?

• 𝛄((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0

• Why not 𝛄s((4,4,4)) = 0.0?

• Why not add a termination state?

4

3

2

1

0

0 1 2 3 43 4

Car

Gt = Rt+1 + �t+1Gt+1

What are the implications?

What are the implications?

• Unified analysis for episodic and continuing
problems —> can extend previous results

What are the implications?

• Unified analysis for episodic and continuing
problems —> can extend previous results

• How does this change the algorithms?

What are the implications?

• Unified analysis for episodic and continuing
problems —> can extend previous results

• How does this change the algorithms?

• very little

• avoids two versions of an algorithm

Do all algorithms extend?
• Can define a generalized Bellman operator

• recursive form for return, that is Markov

Gt =
1X

i=0

0

@
iY

j=1

�t+j

1

ARt+1+i = Rt+1 + �t+1Gt+1

Do all algorithms extend?
• Can define a generalized Bellman operator

• recursive form for return, that is Markov

Gt =
1X

i=0

0

@
iY

j=1

�t+j

1

ARt+1+i = Rt+1 + �t+1Gt+1

• Replace with �c �t+1

Definitions for the operator
v⇡(s) = E[Gt|St = s]

= E[Rt+1 + �t+1Gt+1|St = s]

= E[Rt+1|St = s] + E[�t+1v
⇡(St+1)|St = s]

= r⇡(s) +
X

s0

P⇡,�(s, s
0)v⇡(s

0)

Definitions for the operator

P⇡,�(s, s
0) =

X

a

⇡(s, a)Pr(s, a, s0)�(s, a, s0)

r⇡(s) =
X

a

⇡(s, a)
X

s0

Pr(s, a, s0)r(s, a, s0)

v⇡(s) = E[Gt|St = s]

= E[Rt+1 + �t+1Gt+1|St = s]

= E[Rt+1|St = s] + E[�t+1v
⇡(St+1)|St = s]

= r⇡(s) +
X

s0

P⇡,�(s, s
0)v⇡(s

0)

Definitions for the operator

P⇡,�(s, s
0) =

X

a

⇡(s, a)Pr(s, a, s0)�(s, a, s0)

r⇡(s) =
X

a

⇡(s, a)
X

s0

Pr(s, a, s0)r(s, a, s0)

v⇡ 2 Rnumber of states
v⇡(s) = E[Gt|St = s]

= E[Rt+1 + �t+1Gt+1|St = s]

= E[Rt+1|St = s] + E[�t+1v
⇡(St+1)|St = s]

= r⇡(s) +
X

s0

P⇡,�(s, s
0)v⇡(s

0)

Bellman operator
v⇡ = r⇡ +

X

s0

P⇡,�(:, s
0)v⇡(s

0) = r⇡ +P⇡,�v⇡

Bellman operator

e.g., r⇡ + �cP⇡v⇡

v⇡ = r⇡ +
X

s0

P⇡,�(:, s
0)v⇡(s

0) = r⇡ +P⇡,�v⇡

Bellman operator

Bellman operator
Tv = r⇡ +P⇡,�v

Given models, can use dynamic programming
Otherwise, stochastic approximations (e.g., TD)

e.g., r⇡ + �cP⇡v⇡

v⇡ = r⇡ +
X

s0

P⇡,�(:, s
0)v⇡(s

0) = r⇡ +P⇡,�v⇡

Reach solution (fixed point) when Tv = v

Key property: contraction

• The operator has to be a contraction

• If is an expansion, then repeated application of
to could expand to infinity

T

v
T T

Key property: contraction

• The operator has to be a contraction

• If is an expansion, then repeated application of
to could expand to infinity

kTv1 �Tv2kD = kP⇡,� (v1 � v2) kD kP⇡,�kDkv1 � v2kD

T

v
T T

Contraction properties

• Smaller sD corresponds to faster contraction

• Example: constant discount

sD = kP⇡,�kD

sD = kP⇡,�kD
= �ckP⇡kD
= �c

Extending previous results

Extending previous results
• LSTD convergence rates specifically derived for

continuing case

• extends to episodic with this generalization

• Unify seminal bias bounds for TD

• with more explicit episodic bounds

Extending previous results
• LSTD convergence rates specifically derived for

continuing case

• extends to episodic with this generalization

• Unify seminal bias bounds for TD

• with more explicit episodic bounds

• New result: convergence of ETD for transition-
based trace, but not under on-policy weighting

Bias bounds
Continuing:

SSP (episodic):

Exists contraction constant s < 1

kTv1 �Tv2kD �c(1� �)

1� �c�
kv1 � v2kD

Bias bounds
kTv1 �Tv2kD sDkv1 � v2kD

sD = kP⇡,�kD

If policy reaches a transition where discount less than 1
guaranteed to have sD < 1

Bias bounds
kTv1 �Tv2kD sDkv1 � v2kD

sD = kP⇡,�kD

If policy reaches a transition where discount less than 1
guaranteed to have sD < 1

Unifying Task Specification in Reinforcement Learning

For constant �c < 1 and �c, because P⇡,� = �P⇡

sD = kP�
⇡kD

= kD1/2

 1X

i=0

�i
c�

i
cP

i
⇡

!
�c(1� �c)P⇡D

1/2k2

 �c(1� �c)
1X

i=0

�i
c�

i
ckD1/2Pi+1

⇡ D1/2k2

= �c(1� �c)
1X

i=0

�i
c�

i
ckPi+1

⇡ kD

 �c(1� �c)
1X

i=0

�i
c�

i
c

=
�c(1� �c)

1� �c�c ⌅
We provide generalizations to transition-based trace param-
eters in the appendix, for the emphasis weighting, and also
discuss issues with generalizing to state-based termination
for a standard weighting with d⇡. We show that for any
transition-based discounting function � : S⇥A⇥S ! [0, 1],
the above contraction results hold under emphasis weight-
ing. We then provide a general form for an upper bound
on kP�

⇡kD⇡ for transition-based discounting, based on the
contraction properties of two matrices within P�

⇡. We fur-
ther provide an example where the Bellman operator is
not a contraction even under the simpler generalization to
state-based discounting, and discuss the requirements for
the transition-based generalizations to ensure a contraction
with weighting d⇡. This further motivates the emphasis
weighting as a more flexible scheme for convergence un-
der general setting—both off-policy and transition-based
generalization.

5.2. Properties of TD algorithms

Using this characterization of P�
⇡, we can re-examine pre-

vious results for temporal difference algorithms that either
used state-based or constant discounts.

Convergence of Emphatic TD for RL tasks. We can ex-
tend previous convergence results for ETD, for learning
value functions and action-value functions, for the RL task
formalism. For policy evaluation, ETD and ELSTD, the
least-squares version of ETD that uses the above defined
A and b with D = M, have both been shown to converge
with probability one (Yu, 2015). As an important compo-
nent of this proof is convergence in expectation, which relies
on A being positive definite. In particular, for appropriate
step-sizes ↵t (see (Yu, 2015)), if A is positive definite, the
iterative update is convergent wt+1 = wt + ↵t(b�Awt).
For the generalization to transition-based discounting, con-
vergence in expectation extends for the emphatic algorithms.
We provide these details in the appendix for completeness,

with theorem statement and proof in Appendix F and pseu-
docode in Appendix D.

Convergence rate of LSTD(�). Tagorti and Scherrer
(2015) recently provided convergence rates for LSTD(�)
for continuing tasks, for some �c < 1. These results can be
extended to the episodic setting with the generic treatment
of P�

⇡ . For example, in (Tagorti and Scherrer, 2015, Lemma
1), which describes the sensitivity of LSTD, the proof ex-
tends by replacing the matrix (1��c)�cP⇡(I��c�cP⇡)

�1

(which they call M in their proof) with the generalization
P�

⇡, resulting instead in the constant 1
1�sD

in the bound
rather than 1��c�c

1��c
. Further, this generalizes convergence

rate results to emphatic LSTD, since M satisfies the re-
quired convergence properties, with rates dictated by sM
rather than sDµ for standard LSTD.

Insights into sD. Though the generalized form enables
unified episodic and continuing results, the resulting bound
parameter sD is more difficult to interpret than for constant
�c,�c. With �c increasing to one, the constant 1��c�c

1��c
in

the upper bound decreased to one. For �c decreasing to zero,
the bound also decreases to one. These trends are intuitive,
as the problem should be simpler when �c is small, and bias
should be less when �c is close to one. More generally,
however, the discount can be small or large for different
transitions, making it more difficult to intuit the trend.

To gain some intuition for sD, consider a random policy in
the taxi domain, with sD summarized in Table 1. As �c

goes to one, sD goes to zero and so (1� sD)�1 goes to one.
Some outcomes of note are that 1) hard or soft termination
for the pickup results in the exact same sD; 2) for a constant
gamma of �c = 0.99, the episodic discount had a slightly
smaller sD; and 3) increasing �c has a much stronger effect
than including more terminations. Whereas, when we added
random terminations, so that from 1% and 10% of the states,
termination occurred on at least one path within 5 steps or
even more aggressively on every path within 5 steps, the
values of sD were similar.

�c 0.0 0.5 0.9 0.99 0.999

EPISODIC TAXI 0.989 0.979 0.903 0.483 0.086
�c = 0.99 0.990 0.980 0.908 0.497 0.090

1% SINGLE PATH 0.989 0.978 0.898 0.467 0.086
10% SINGLE PATH 0.987 0.975 0.887 0.439 0.086

1% ALL PATHS 0.978 0.956 0.813 0.304 0.042
10% ALL PATHS 0.898 0.815 0.468 0.081 0.009

Table 1: The sD values for increasing �c, with discount
settings described in the text.

Bias bounds
kTv1 �Tv2kD sDkv1 � v2kD

sD = kP⇡,�kD

If policy reaches a transition where discount less than 1
guaranteed to have sD < 1

Unifying Task Specification in Reinforcement Learning

For constant �c < 1 and �c, because P⇡,� = �P⇡

sD = kP�
⇡kD

= kD1/2

 1X

i=0

�i
c�

i
cP

i
⇡

!
�c(1� �c)P⇡D

1/2k2

 �c(1� �c)
1X

i=0

�i
c�

i
ckD1/2Pi+1

⇡ D1/2k2

= �c(1� �c)
1X

i=0

�i
c�

i
ckPi+1

⇡ kD

 �c(1� �c)
1X

i=0

�i
c�

i
c

=
�c(1� �c)

1� �c�c ⌅
We provide generalizations to transition-based trace param-
eters in the appendix, for the emphasis weighting, and also
discuss issues with generalizing to state-based termination
for a standard weighting with d⇡. We show that for any
transition-based discounting function � : S⇥A⇥S ! [0, 1],
the above contraction results hold under emphasis weight-
ing. We then provide a general form for an upper bound
on kP�

⇡kD⇡ for transition-based discounting, based on the
contraction properties of two matrices within P�

⇡. We fur-
ther provide an example where the Bellman operator is
not a contraction even under the simpler generalization to
state-based discounting, and discuss the requirements for
the transition-based generalizations to ensure a contraction
with weighting d⇡. This further motivates the emphasis
weighting as a more flexible scheme for convergence un-
der general setting—both off-policy and transition-based
generalization.

5.2. Properties of TD algorithms

Using this characterization of P�
⇡, we can re-examine pre-

vious results for temporal difference algorithms that either
used state-based or constant discounts.

Convergence of Emphatic TD for RL tasks. We can ex-
tend previous convergence results for ETD, for learning
value functions and action-value functions, for the RL task
formalism. For policy evaluation, ETD and ELSTD, the
least-squares version of ETD that uses the above defined
A and b with D = M, have both been shown to converge
with probability one (Yu, 2015). As an important compo-
nent of this proof is convergence in expectation, which relies
on A being positive definite. In particular, for appropriate
step-sizes ↵t (see (Yu, 2015)), if A is positive definite, the
iterative update is convergent wt+1 = wt + ↵t(b�Awt).
For the generalization to transition-based discounting, con-
vergence in expectation extends for the emphatic algorithms.
We provide these details in the appendix for completeness,

with theorem statement and proof in Appendix F and pseu-
docode in Appendix D.

Convergence rate of LSTD(�). Tagorti and Scherrer
(2015) recently provided convergence rates for LSTD(�)
for continuing tasks, for some �c < 1. These results can be
extended to the episodic setting with the generic treatment
of P�

⇡ . For example, in (Tagorti and Scherrer, 2015, Lemma
1), which describes the sensitivity of LSTD, the proof ex-
tends by replacing the matrix (1��c)�cP⇡(I��c�cP⇡)

�1

(which they call M in their proof) with the generalization
P�

⇡, resulting instead in the constant 1
1�sD

in the bound
rather than 1��c�c

1��c
. Further, this generalizes convergence

rate results to emphatic LSTD, since M satisfies the re-
quired convergence properties, with rates dictated by sM
rather than sDµ for standard LSTD.

Insights into sD. Though the generalized form enables
unified episodic and continuing results, the resulting bound
parameter sD is more difficult to interpret than for constant
�c,�c. With �c increasing to one, the constant 1��c�c

1��c
in

the upper bound decreased to one. For �c decreasing to zero,
the bound also decreases to one. These trends are intuitive,
as the problem should be simpler when �c is small, and bias
should be less when �c is close to one. More generally,
however, the discount can be small or large for different
transitions, making it more difficult to intuit the trend.

To gain some intuition for sD, consider a random policy in
the taxi domain, with sD summarized in Table 1. As �c

goes to one, sD goes to zero and so (1� sD)�1 goes to one.
Some outcomes of note are that 1) hard or soft termination
for the pickup results in the exact same sD; 2) for a constant
gamma of �c = 0.99, the episodic discount had a slightly
smaller sD; and 3) increasing �c has a much stronger effect
than including more terminations. Whereas, when we added
random terminations, so that from 1% and 10% of the states,
termination occurred on at least one path within 5 steps or
even more aggressively on every path within 5 steps, the
values of sD were similar.

�c 0.0 0.5 0.9 0.99 0.999

EPISODIC TAXI 0.989 0.979 0.903 0.483 0.086
�c = 0.99 0.990 0.980 0.908 0.497 0.090

1% SINGLE PATH 0.989 0.978 0.898 0.467 0.086
10% SINGLE PATH 0.987 0.975 0.887 0.439 0.086

1% ALL PATHS 0.978 0.956 0.813 0.304 0.042
10% ALL PATHS 0.898 0.815 0.468 0.081 0.009

Table 1: The sD values for increasing �c, with discount
settings described in the text.

Generalizing to probabilistic
discounts

Unifying Task Specification in Reinforcement Learning

A. More general formulation with

probabilistic discounts

In the introduction of transition-based discounting, we could
have instead assumed that we had a more general probabil-
ity model: Pr(r, �|s, a, s0). Now, both the reward and dis-
count are not just functions of states and action, but also are
stochastic. This generalization in fact, does not much alter
the treatment in this paper. This is because, when taking the
expectations for value function, the Bellman operator and
the A matrix, we are left again with �(s, a, s0). To see why,

v⇡(s) =
X

a,s0

⇡(s, a)Pr(s, a, s0)E[r + �v⇡(s
0)|s, a, s0]

=
X

a,s0

⇡(s, a)Pr(s, a, s0)E[r|s, a, s0]

+
X

a,s0

⇡(s, a)Pr(s, a, s0)E[�|s, a, s0]v⇡(s
0)

= r⇡(s) +
X

s0

P⇡,�(s, s
0)v⇡(s

0)

for �(s, a, s0) = E[�|s, a, s0].

B. Relationship between state-based and

transition-based discounting

In this section, we show that for any MDP with transition-
based discounting, we can construct an equivalent MDP
with state-based discounting. The MDPs are equivalent in
the sense that learned policies and value functions learned
in either MDP would have equal values when evaluated
on the states in the original transition-based MDP. This
equality ignores practicality of learning in the larger induced
state-based MDP, and at the end of this section, we discuss
advantages of the more compact transition-based MDP.

B.1. Equivalence result

The equivalence is obtained by introducing hypothetical
states for each transition. The key is then to prove that
the stationary distribution for the state-based MDP, with
additional hypothetical states, provides the same solution
even with function approximation. For each triplet s, a, s0,
add a new hypothetical state fsas0 , with set F comprised of
these additional states. Each transition now goes through
a hypothetical state, fsas0 , and allows the discount in the
hypothetical state to be set to �(s, a, s0). The induced state-
based MDP has state set S̄ = S [F with |S̄| = |A|n2 + n.
We define the other models in the proof in Appendix B.3.

The choice of action in the hypothetical states is irrelevant.
To extend the policy ⇡, we arbitrarily choose that the policy
uniformly selects actions when in the hypothetical states
and define ⇡̄(s, a) = ⇡(s, a) for s 2 S and ⇡̄(s, a) = 1/|A|
otherwise. For linear function approximation, we also need

to assume x(fsas0) = x(s0) for fsas0 2 F .
Theorem 2. For a given transition-based MDP

(Pr, r,S,A, �) and policy ⇡, assume that the station-

ary distribution d⇡ exists. Define state-based MDP

(P̄r, r̄, S̄,A, �̄s) with extended ⇡̄, all as above. Then the

stationary distribution d̄⇡ for ⇡̄ exists and satisfies

d̄⇡(s)P
i2S d̄⇡(i)

= d⇡(s). (5)

8s 2 S, v̄⇡(s) = v⇡(s) and ⇡̄(s, a) = ⇡(s, a) for all

s 2 S, a 2 A with ⇡ = argmin⇡
P

s2S d⇡(s)v⇡(s); ⇡̄ =
argmin⇡

P
i2S̄ d̄⇡(s)v̄⇡(s)

B.2. Advantages of transition-based discounting over

state-based discounting

Though the two have equal representational abilities, there
are several disadvantages of state-based discounting that
compound to make the more general transition-based dis-
count strictly more desirable. The disadvantages of using an
induced state-based MDP, rather than the original transition-
based MDP, arises from the addition of states and include
the following.

Compactness. In the worst-case, for a transition-based
MDP with n states, the induced state-based MDP can have
|A|n2 + n states.

Problem definition changes for different discounts. For
the same underlying MDP, multiple learners with different
discount functions would have different induced state-based
MDPs. This complicates code and reduces opportunities for
sharing variables and computation.

Overhead. Additional states must be stored, with additional
algorithmic updates in those non-states, or cases to avoid
these updates, and the need to carefully set features for
hypothetical states. This overhead is both computational as
well as conceptual, as it complicates the code.

Stationary distribution. This distribution superfluously
includes hypothetical states and requires renormalization to
obtain the stationary distribution for the original transition-
based MDP.

Off-policy learning. In off-policy learning, one goal is to
learn many value functions with different discounts (White,
2015). As mentioned above, these learners may have differ-
ent induced state-based MDPs, which complicates imple-
mentation and even theory. To theoretically characterize a
set of off-policy learners, it would be necessary to consider
different induced state-based MDPs. Further, sharing infor-
mation, such as the features, is again complicated by using
induced state-based MDP rather than a single transition-
based MDP, with varying discount functions.

Specification of algorithms. Often algorithms are intro-
duced either for the episodic case (e.g., true-online TD (van

Generalizing to probabilistic
discounts

Unifying Task Specification in Reinforcement Learning

A. More general formulation with

probabilistic discounts

In the introduction of transition-based discounting, we could
have instead assumed that we had a more general probabil-
ity model: Pr(r, �|s, a, s0). Now, both the reward and dis-
count are not just functions of states and action, but also are
stochastic. This generalization in fact, does not much alter
the treatment in this paper. This is because, when taking the
expectations for value function, the Bellman operator and
the A matrix, we are left again with �(s, a, s0). To see why,

v⇡(s) =
X

a,s0

⇡(s, a)Pr(s, a, s0)E[r + �v⇡(s
0)|s, a, s0]

=
X

a,s0

⇡(s, a)Pr(s, a, s0)E[r|s, a, s0]

+
X

a,s0

⇡(s, a)Pr(s, a, s0)E[�|s, a, s0]v⇡(s
0)

= r⇡(s) +
X

s0

P⇡,�(s, s
0)v⇡(s

0)

for �(s, a, s0) = E[�|s, a, s0].

B. Relationship between state-based and

transition-based discounting

In this section, we show that for any MDP with transition-
based discounting, we can construct an equivalent MDP
with state-based discounting. The MDPs are equivalent in
the sense that learned policies and value functions learned
in either MDP would have equal values when evaluated
on the states in the original transition-based MDP. This
equality ignores practicality of learning in the larger induced
state-based MDP, and at the end of this section, we discuss
advantages of the more compact transition-based MDP.

B.1. Equivalence result

The equivalence is obtained by introducing hypothetical
states for each transition. The key is then to prove that
the stationary distribution for the state-based MDP, with
additional hypothetical states, provides the same solution
even with function approximation. For each triplet s, a, s0,
add a new hypothetical state fsas0 , with set F comprised of
these additional states. Each transition now goes through
a hypothetical state, fsas0 , and allows the discount in the
hypothetical state to be set to �(s, a, s0). The induced state-
based MDP has state set S̄ = S [F with |S̄| = |A|n2 + n.
We define the other models in the proof in Appendix B.3.

The choice of action in the hypothetical states is irrelevant.
To extend the policy ⇡, we arbitrarily choose that the policy
uniformly selects actions when in the hypothetical states
and define ⇡̄(s, a) = ⇡(s, a) for s 2 S and ⇡̄(s, a) = 1/|A|
otherwise. For linear function approximation, we also need

to assume x(fsas0) = x(s0) for fsas0 2 F .
Theorem 2. For a given transition-based MDP

(Pr, r,S,A, �) and policy ⇡, assume that the station-

ary distribution d⇡ exists. Define state-based MDP

(P̄r, r̄, S̄,A, �̄s) with extended ⇡̄, all as above. Then the

stationary distribution d̄⇡ for ⇡̄ exists and satisfies

d̄⇡(s)P
i2S d̄⇡(i)

= d⇡(s). (5)

8s 2 S, v̄⇡(s) = v⇡(s) and ⇡̄(s, a) = ⇡(s, a) for all

s 2 S, a 2 A with ⇡ = argmin⇡
P

s2S d⇡(s)v⇡(s); ⇡̄ =
argmin⇡

P
i2S̄ d̄⇡(s)v̄⇡(s)

B.2. Advantages of transition-based discounting over

state-based discounting

Though the two have equal representational abilities, there
are several disadvantages of state-based discounting that
compound to make the more general transition-based dis-
count strictly more desirable. The disadvantages of using an
induced state-based MDP, rather than the original transition-
based MDP, arises from the addition of states and include
the following.

Compactness. In the worst-case, for a transition-based
MDP with n states, the induced state-based MDP can have
|A|n2 + n states.

Problem definition changes for different discounts. For
the same underlying MDP, multiple learners with different
discount functions would have different induced state-based
MDPs. This complicates code and reduces opportunities for
sharing variables and computation.

Overhead. Additional states must be stored, with additional
algorithmic updates in those non-states, or cases to avoid
these updates, and the need to carefully set features for
hypothetical states. This overhead is both computational as
well as conceptual, as it complicates the code.

Stationary distribution. This distribution superfluously
includes hypothetical states and requires renormalization to
obtain the stationary distribution for the original transition-
based MDP.

Off-policy learning. In off-policy learning, one goal is to
learn many value functions with different discounts (White,
2015). As mentioned above, these learners may have differ-
ent induced state-based MDPs, which complicates imple-
mentation and even theory. To theoretically characterize a
set of off-policy learners, it would be necessary to consider
different induced state-based MDPs. Further, sharing infor-
mation, such as the features, is again complicated by using
induced state-based MDP rather than a single transition-
based MDP, with varying discount functions.

Specification of algorithms. Often algorithms are intro-
duced either for the episodic case (e.g., true-online TD (van

How are all these conclusions
affected by function approximation?

• Assumed states; but likely partially observable

• May no longer be able to solve but can

• minimize Bellman residual

• get projected fixed point (MSPBE):

• …

⇧TV = V

kTV �Vk

TV = V

Example: TD
initialize ✓ arbitrarily

loop over episodes

initialize e = 0

initialize S0

repeat for each step in the episode

generate Rt+1, St+1 for St

if terminal: � Rt+1 � ✓>�(St)

else: � Rt+1 + �✓>�(St+1)� ✓>�(St)

e e+ �(St)

✓ ✓ + ↵�e

e ��e

Example: TD
initialize ✓ arbitrarily

loop over episodes

initialize e = 0

initialize S0

repeat for each step in the episode

generate Rt+1, St+1 for St

if terminal: � Rt+1 � ✓>�(St)

else: � Rt+1 + �✓>�(St+1)� ✓>�(St)

e e+ �(St)

✓ ✓ + ↵�e

e ��e

Example: TD

initialize ✓ arbitrarily

initialize e = 0

initialize S0

repeat until agent done interaction

generate Rt+1, St+1 for St

� Rt+1 + �t+1✓
>�(St+1)� ✓>�(St)

e e+ �(St)

✓ ✓ + ↵�e

e �t+1�e

initialize ✓ arbitrarily

loop over episodes

initialize e = 0

initialize S0

repeat for each step in the episode

generate Rt+1, St+1 for St

if terminal: � Rt+1 � ✓>�(St)

else: � Rt+1 + �✓>�(St+1)� ✓>�(St)

e e+ �(St)

✓ ✓ + ↵�e

e ��e

Outline

 Generalization to transition-based discounting

 The theoretical and algorithmic implications

• Utility of the generalized problem formalism

Additional utility
• Control

• simplifies specification of subgoals

• enables soft termination

• Policy evaluation

• GVFs and predictive knowledge

Example: taxi domain
Passenger in
black square

Actions:
N, E, S, W,

Pickup,
Drop-off

States:
(x, y,

passenger
location)

State: (2, 1, 3)

Location can
be (0,1,2,3)

or 4 for in taxi

4

3

2

1

0

0 1 2 3 4 3 4 3 43 4 3 4

-1.1

-1.2 -1

-1

-1

-1.2

-1.2 -1.4

-1 -1.2

-1

-1

-1.4

-1 -1.2

-1.4

Car

(a) (b) (c) (d)

Optimal policy
Can use average reward or continuing formulation

Unifying Task Specification in Reinforcement Learning

where the last line follows from the definition of the station-
ary distribution. Therefore, for j 2 S

d̄⇡P̄⇡(:, j) =
1

c
d⇡(j) = d̄⇡(j)

Case 2: j = fsas0 2 F
For the first component, because P̄⇡(i, fsas0) = 0 for all
i 6= s and because P̄⇡(s, fsas0) = ⇡(s, a)Pr(s, a, s0) by
construction,

X

i2S
d⇡(i)P̄⇡(i, fsas0) = d⇡(s)P̄⇡(s, fsas0)

= d⇡(s)⇡(s, a)Pr(s, a, s
0)

= c d̄⇡(fsas0).

For the second component, because P̄⇡(f, j) = 0 for all
f, j 2 F , we get

X

f2F
d̄⇡(f)P̄⇡(f, j) = 0.

Therefore, for j = fss0 2 F , d̄⇡P̄⇡(:, j) = d̄⇡(j).

Finally, clearly by normalizing the first component of d̄⇡

over s 2 S, we get the same proportion across states as in
d⇡ , satisfying (6).

To see why v̄⇡(s) = v⇡(s) for all s 2 S , first notice that

r̄⇡(i) =

⇢
r⇡(i) i 2 S
0 otherwise

and for any fsas0 2 F

v̄⇡(fsas0) = 0 +
X

j2S̄

P̄⇡(fsas0 , j)�̄s(j)v̄⇡(j)

= v̄⇡(s
0).

Now for any s 2 S ,

v̄⇡(s) = r̄⇡(s) +
X

j2S̄

P̄⇡(s, j)�̄s(j)v̄⇡(j)

= r⇡(s) +
X

fsas02F
P̄⇡(s, fsas0)�̄s(fsas0)v̄⇡(fsas0)

= r⇡(s) +
X

s02S

X

a2A
Pr(s, a, s0)�(s, a, s0)v̄⇡(s

0)

Therefore, because it satisfies the same fixed point equation,
v̄⇡(s) = v⇡(s) for all s 2 S .

With this equivalence, it is clear that
X

i2S̄

d̄⇡(i)v̄⇡(i)

=
1

c

X

s2S
d⇡(s)v⇡(s) +

1

c

X

fss02F
d⇡(s)P⇡(s, s

0)v⇡(s
0)

=
1

c

X

s2S
d⇡(s)v⇡(s) +

1

c

X

s2S

X

s02S
d⇡(s)P⇡(s, s

0)v⇡(s
0)

=
1

c

X

s2S
d⇡(s)v⇡(s) +

1

c

X

s02S
d⇡(s

0)v⇡(s
0)

=
2

c

X

s2S
d⇡(s)v⇡(s)

Therefore, optimizing either results in the same policy. ⌅

C. Discounting and average reward for

control

The common wisdom is that discounting is useful for asking
predictive questions, but for control, the end goal is average
reward. One of the main reasons for this view is that it has
been previously shown that, for a constant discount, optimiz-
ing the expected return is equivalent to optimizing average
reward. This can be easily seen by expanding the expected
return weighting according to the stationary distribution for
a policy, given constant discount �c < 1,

d⇡v⇡ = d⇡(r⇡ +P⇡,�v⇡) (7)
= d⇡r⇡ + �cd⇡P⇡v⇡

= d⇡r⇡ + �cd⇡v⇡

=) d⇡v⇡ =
1

1� �c
d⇡r⇡. (8)

Therefore, the constant �c < 1 simply scales the aver-
age reward objective, so optimizing either provides the
same policy. This argument, however, does not extend to
transition-based discounting, because �(s, a, s0) can signif-
icantly change weighting in returns in a non-uniform way,
affecting the choice of the optimal policy. We demonstrate
this in the case study for the taxi domain in Section 3.

D. Algorithms

We show how to write generalized pseudo-code for two al-
gorithms: true-online TD (�) and ELSTDQ(�). We choose
these two algorithms because they generally demonstrate
how one would extend to transition-based �, and further
previously had a few unclear points in their implementation.
For TO-TD, the pseudo-code has been given for episodic
tasks (van Seijen and Sutton, 2014), rather than more gen-
erally, and has treated vold carefully at the beginning of
episodes, which is not necessary. LSTDQ has typically only

Easy specification of
subgoals

• Each pick-up and drop-off
can be a subtask

• numerically more stable
that a constant discount

• options easily encoded
with this generalization

Easy specification of
subgoals

• Each pick-up and drop-off
can be a subtask

• numerically more stable
that a constant discount

• options easily encoded
with this generalization

Unifying Task Specification in Reinforcement Learning

0

1

2

3

4

0 1 2 3 4 3 4 3 43 4 3 4

-1.1

-1.2 -1

-1

-1

-1.2

-1.2 -1.4

-1 -1.2

-1

-1

-1.4

-1 -1.2

-1.4

Car

(a) (b) (c) (d) (e)

TOTAL PICKUP

AND DROPOFF

ADDED COST

FOR TURNS

TRANS-SOFT 7.74± 0.03 5.54± 0.01
TRANS-HARD 7.73± 0.03 5.83± 0.01
STATE-BASED 0.00± 0.00 18.8± 0.02
�c = 0.1 0.00± 0.00 2.48± 0.01
�c = 0.3 0.02± 0.01 2.49± 0.01
�c = 0.5 0.04± 0.01 2.51± 0.01
�c = 0.6 0.03± 0.01 2.49± 0.01
�c = 0.7 7.12± 0.03 4.52± 0.01
�c = 0.8 7.34± 0.03 4.62± 0.01
�c = 0.9 3.52± 0.06 4.57± 0.02
�c = 0.99 0.01± 0.01 2.45± 0.01

Figure 2: (a) The taxi domain, where the pickup/drop-off platforms are at (0,0), (0,4), (3,0) and (4,4). The Passenger P is at the source
platform (4,4), outlined in black. The Car starts in (2,3), with orientation E as indicated the arrow, needs to bring the passenger to
destination D platform at (3,0), outlined in blue. In (b) - (d), there are simulated trajectories for policies learned using hard and soft
termination.
(b) The optimal strategy, with �(Car in source, Pickup, P in Car) = 0.1 and a discount 0.99 elsewhere. The sequence of taxi locations are
(3, 3), (3, 4), (4, 4), (4, 4) with Pickup action, (4, 3), (4, 2), (4, 1), (4, 0), (3, 0). Successful pickup and drop-off with total reward �7.7.
(c) For �(Car in source, Pickup, P in Car) = 0, the agent does not learn the optimal strategy. The agent minimizes orientation cost to
the subgoal, not accounting for orientation after picking up the passenger. Consequently, it takes more left turns after pickup, resulting
in more total negative reward. The sequence of locations are (3, 3), (4, 3), (4, 4), (4, 4) with Pickup action, (3, 4), (3, 3), (3, 2), (3, 1),
(3, 0). Successful pickup and drop-off with total reward �8.
(d) For state-based �(Car in source and P in Car) = 0, the agent remains around the source and does not complete a successful drop-off.
The sequence of locations are (3, 3), (4, 3), (4, 4), (4, 4) with Pickup action, (4, 3), (4, 4), (4, 3).... The agent enters the source and
pickups up the passenger. When it leaves to location (4,3), its value function indicates better value going to (4,4) because the negative
return will again be cutoff by �(Car in source and P in Car) = 0, even without actually performing a pickup. Since the cost to get to the
destination is higher than the �2.6 return received from going back to (4, 4), the agent stays around (4, 4) indefinitely.
(e) Number of successful passenger pickup and dropoff, as well as additional cost incurred from turns, over 100 steps, with 5000 runs,
reported for a range of constant �c and the policies in Figure 2. Due to numerical imprecision, several constant discounts do not get close
enough to the passenger to pickup or drop-off. The state-based approach, that does not add additional states for termination, oscillates
after picking up the passenger, and so constantly gets negative reward.

We further generalize the definition to the transition-based
setting. The trace parameter � : S ⇥ A ⇥ S ! [0, 1] in-
fluences the fixed point and provides a modified (biased)
return, called the �-return; this parameter is typically mo-
tivated as a bias-variance trade-off parameter (Kearns and
Singh, 2000). Because the focus of this work is on gen-
eralizing the discount, we opt for a simple constant �c in
the main body of the text; we provide generalizations to
transition-based trace parameters in the appendix.

The generalized Bellman operator T(�) : Rn ! Rn is

T(�)v := r�⇡ +P�
⇡v, 8v 2 Rn (1)

where P�
⇡ := (I� �cP⇡,�)

�1 P⇡,�(1� �c) (2)

r�⇡ := (I� �cP⇡,�)
�1 r⇡

To see why this is the definition of the Bellman operator,
we define the expected �-return, v⇡,� 2 Rn for a given
approximate value function, given by a vector v 2 Rn.

v⇡,�(s) := r⇡(s)+
X

s02S
P⇡,�(s, s

0) [(1��c)v(s
0)+�cv⇡,�(s

0)]

= r⇡(s) + (1� �c)P⇡,�(s, :)v + �cP⇡,�(s, :)v⇡,�.

Sutton, 2010; Sutton et al., 2014; Yu, 2012).

Continuing the recursion, we obtain3

v⇡,� =

" 1X

i=0

(�cP⇡,�)
i

#
(r⇡ + (1� �c)P⇡,�v)

= (I� �cP⇡,�)
�1 (r⇡ + (1� �c)P⇡,�v) = T(�)v

The fixed point for this formula satisfies T(�)v = v for the
Bellman operator defined in Equation (1).

To see how this generalized Bellman operator modifies the
algorithms, we consider the extension to temporal differ-
ence algorithms. Many algorithms can be easily gener-
alized by replacing �c or �s(st+1) with transition-based
�(st, at, st+1). For example, the TD algorithm is gen-
eralized by setting the discount on each step to �t+1 =
�(st, at, st+1),

wt+1 = wt + ↵t�tet . for some step-size ↵t

�t := rt+1 + �t+1x(st+1)
>w � x(st)

>w (3)
et = �t�cet�1 + x(st).

3For a matrix M with maximum eigenvalue less than 1,P1
i=0 M

i = (I�M)�1. We show in Lemma 3 that P⇡,� satis-
fies this condition, implying �cP⇡,� satisfies this condition and so
this infinite sum is well-defined.

Benefits of soft termination

• Soft termination:
gamma(s, a, s’) = 0.1

• Some amount of the
value after subgoal
should be considered
important

Unifying Task Specification in Reinforcement Learning

0

1

2

3

4

0 1 2 3 4 3 4 3 43 4 3 4

-1.1

-1.2 -1

-1

-1

-1.2

-1.2 -1.4

-1 -1.2

-1

-1

-1.4

-1 -1.2

-1.4

Car

(a) (b) (c) (d) (e)

TOTAL PICKUP

AND DROPOFF

ADDED COST

FOR TURNS

TRANS-SOFT 7.74± 0.03 5.54± 0.01
TRANS-HARD 7.73± 0.03 5.83± 0.01
STATE-BASED 0.00± 0.00 18.8± 0.02
�c = 0.1 0.00± 0.00 2.48± 0.01
�c = 0.3 0.02± 0.01 2.49± 0.01
�c = 0.5 0.04± 0.01 2.51± 0.01
�c = 0.6 0.03± 0.01 2.49± 0.01
�c = 0.7 7.12± 0.03 4.52± 0.01
�c = 0.8 7.34± 0.03 4.62± 0.01
�c = 0.9 3.52± 0.06 4.57± 0.02
�c = 0.99 0.01± 0.01 2.45± 0.01

Figure 2: (a) The taxi domain, where the pickup/drop-off platforms are at (0,0), (0,4), (3,0) and (4,4). The Passenger P is at the source
platform (4,4), outlined in black. The Car starts in (2,3), with orientation E as indicated the arrow, needs to bring the passenger to
destination D platform at (3,0), outlined in blue. In (b) - (d), there are simulated trajectories for policies learned using hard and soft
termination.
(b) The optimal strategy, with �(Car in source, Pickup, P in Car) = 0.1 and a discount 0.99 elsewhere. The sequence of taxi locations are
(3, 3), (3, 4), (4, 4), (4, 4) with Pickup action, (4, 3), (4, 2), (4, 1), (4, 0), (3, 0). Successful pickup and drop-off with total reward �7.7.
(c) For �(Car in source, Pickup, P in Car) = 0, the agent does not learn the optimal strategy. The agent minimizes orientation cost to
the subgoal, not accounting for orientation after picking up the passenger. Consequently, it takes more left turns after pickup, resulting
in more total negative reward. The sequence of locations are (3, 3), (4, 3), (4, 4), (4, 4) with Pickup action, (3, 4), (3, 3), (3, 2), (3, 1),
(3, 0). Successful pickup and drop-off with total reward �8.
(d) For state-based �(Car in source and P in Car) = 0, the agent remains around the source and does not complete a successful drop-off.
The sequence of locations are (3, 3), (4, 3), (4, 4), (4, 4) with Pickup action, (4, 3), (4, 4), (4, 3).... The agent enters the source and
pickups up the passenger. When it leaves to location (4,3), its value function indicates better value going to (4,4) because the negative
return will again be cutoff by �(Car in source and P in Car) = 0, even without actually performing a pickup. Since the cost to get to the
destination is higher than the �2.6 return received from going back to (4, 4), the agent stays around (4, 4) indefinitely.
(e) Number of successful passenger pickup and dropoff, as well as additional cost incurred from turns, over 100 steps, with 5000 runs,
reported for a range of constant �c and the policies in Figure 2. Due to numerical imprecision, several constant discounts do not get close
enough to the passenger to pickup or drop-off. The state-based approach, that does not add additional states for termination, oscillates
after picking up the passenger, and so constantly gets negative reward.

We further generalize the definition to the transition-based
setting. The trace parameter � : S ⇥ A ⇥ S ! [0, 1] in-
fluences the fixed point and provides a modified (biased)
return, called the �-return; this parameter is typically mo-
tivated as a bias-variance trade-off parameter (Kearns and
Singh, 2000). Because the focus of this work is on gen-
eralizing the discount, we opt for a simple constant �c in
the main body of the text; we provide generalizations to
transition-based trace parameters in the appendix.

The generalized Bellman operator T(�) : Rn ! Rn is

T(�)v := r�⇡ +P�
⇡v, 8v 2 Rn (1)

where P�
⇡ := (I� �cP⇡,�)

�1 P⇡,�(1� �c) (2)

r�⇡ := (I� �cP⇡,�)
�1 r⇡

To see why this is the definition of the Bellman operator,
we define the expected �-return, v⇡,� 2 Rn for a given
approximate value function, given by a vector v 2 Rn.

v⇡,�(s) := r⇡(s)+
X

s02S
P⇡,�(s, s

0) [(1��c)v(s
0)+�cv⇡,�(s

0)]

= r⇡(s) + (1� �c)P⇡,�(s, :)v + �cP⇡,�(s, :)v⇡,�.

Sutton, 2010; Sutton et al., 2014; Yu, 2012).

Continuing the recursion, we obtain3

v⇡,� =

" 1X

i=0

(�cP⇡,�)
i

#
(r⇡ + (1� �c)P⇡,�v)

= (I� �cP⇡,�)
�1 (r⇡ + (1� �c)P⇡,�v) = T(�)v

The fixed point for this formula satisfies T(�)v = v for the
Bellman operator defined in Equation (1).

To see how this generalized Bellman operator modifies the
algorithms, we consider the extension to temporal differ-
ence algorithms. Many algorithms can be easily gener-
alized by replacing �c or �s(st+1) with transition-based
�(st, at, st+1). For example, the TD algorithm is gen-
eralized by setting the discount on each step to �t+1 =
�(st, at, st+1),

wt+1 = wt + ↵t�tet . for some step-size ↵t

�t := rt+1 + �t+1x(st+1)
>w � x(st)

>w (3)
et = �t�cet�1 + x(st).

3For a matrix M with maximum eigenvalue less than 1,P1
i=0 M

i = (I�M)�1. We show in Lemma 3 that P⇡,� satis-
fies this condition, implying �cP⇡,� satisfies this condition and so
this infinite sum is well-defined.

Soft
termination

-7.7

Hard
termination

-8

How do we use this generality?

• Do not need to use full generality

• …we know at least two useful settings

• Particularly useful for policy evaluation and
predictive knowledge

• GVFs (Horde), Predictron

• Predictive representations

Predictive knowledge

observations as cumulants, persistent policies, …

Suggestions for automatically
setting the discount

• Parametrize the discount

• similarly to option-critic

• Variety of constant discounts for different horizons

• myopic gamma = 0 for one-step predictions

• Decrease discount based on stimuli

• e.g., sudden drop in stimulus (light)

Learning in compass world

Learning in compass world

Learning in compass world

Is it really worth it?

Is it really worth it?
• If you’re considering state-based, may as well do transition-

based (and avoid the addition of hypothetical states)

Is it really worth it?
• If you’re considering state-based, may as well do transition-

based (and avoid the addition of hypothetical states)

• Algorithm implementation simpler for non-expert
• modular: only need if statements in the discount function
• abstraction: our A.I. algorithms should be as agnostic as

possible to the problem settings
• simplicity: e.g., computing stationary distributions from P

Is it really worth it?
• If you’re considering state-based, may as well do transition-

based (and avoid the addition of hypothetical states)

• Algorithm implementation simpler for non-expert
• modular: only need if statements in the discount function
• abstraction: our A.I. algorithms should be as agnostic as

possible to the problem settings
• simplicity: e.g., computing stationary distributions from P

• Our theoretical results should apply to both episodic and
continuing problems

Is it really worth it?
• If you’re considering state-based, may as well do transition-

based (and avoid the addition of hypothetical states)

• Algorithm implementation simpler for non-expert
• modular: only need if statements in the discount function
• abstraction: our A.I. algorithms should be as agnostic as

possible to the problem settings
• simplicity: e.g., computing stationary distributions from P

• Our theoretical results should apply to both episodic and
continuing problems

• Beneficial mindset shift to lifelong learning

Is it really worth it?
• If you’re considering state-based, may as well do transition-

based (and avoid the addition of hypothetical states)

• Algorithm implementation simpler for non-expert
• modular: only need if statements in the discount function
• abstraction: our A.I. algorithms should be as agnostic as

possible to the problem settings
• simplicity: e.g., computing stationary distributions from P

• Our theoretical results should apply to both episodic and
continuing problems

• Beneficial mindset shift to lifelong learning
Thank you!

