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Problem setting

Infinite horizon

>

state S; | [reward R action A;

Markov decision process: (S, A, Pr, R, ~.)
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* Transition-based discounting is useful for you
* to simplify algorithm development
* to unify theoretical characterizations

* to simplity implementation



Outline

* Generalization to transition-based discounting
* [he theoretical and algorithmic implications
* generalized Bellman operators

o Utility of the generalized problem tormalism
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Selection of discount
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Retums (episodic)
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How do we unifty the two?

* Algorithms and theory treat the two cases separately

* Absorbing state not a complete solution

OBOWOAI=;

* Recent generalizations to state-based discount
almost the complete solution




Unification using transition-
pased discounting

* Discount generalized to a function on (s,a,s’)

7:SxAxS —|0,1]

* Can smoothly encode continuing or episodic

e ...and specity a whole new set of returns
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(Generalized return
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Encoding episodic tasks

* gamma(s,a,s’) = 0 for a terminal transition
* S’ |s the start state for the next episode

* Return is truncated at termination by the product of
discounts, with gamma(s,a,s’) = 0O

Gy = Rip1 + 7+1Ge41



Example: taxi domain

Actions:
N, E, S W,
Pickup,
Drop-off

States:
(X, Y,
passenger
location)
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State: (2, 1, 3)

| ocation can
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Example: taxi domain

* What are the transition probabilities at (4,4,3)7
* P((4,4,3), Pick-up, (4,4,4)) = 1.0
 \What is the discount function?

e v((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0

. Why not ys((4,4,4)) = 0.07 ;‘
* Why not add a termination state” j
1
Gy = Rip1 +7+1Ge41 Oj
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What are the implications”

* Unified analysis for episodic and continuing
problems —> can extend previous results

* How does this change the algorithms?
* very little

* avoids two versions of an algorithm
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Do all algorithms extend?

* Can define a generalized Bellman operator

* recursive form for return, that is Markov

Gy = Z (H ’Yt+j) Rit144 = Riqp1 + ’Yt+1Gt+1

i=0 \ j=1

¢ Replace Ve with Vt+1
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Definitions for the operator

ﬂ:Gt‘St — S]

v.(s) =E
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=1r.(s) + Z Pr~(s,8)ve(s)

P.~(s,8) = Z m(s,a)Pr(s,a,s' )vy(s,a,s’)

r.(s) = Z m(s,a) Z Pr(s,a, s )r(s,a,s’)
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Bellman operator

Vo =TIrx + Z PW,W(:7 S,)VW(S,> =Ty + Pﬂ',’yvﬂ'

e.g.,.rr+v.Prvx
Bellman operator

ITv=r+P, v

Reach solution (fixed point) when Tv =wv

Given models, can use dynamic programming
Otherwise, stochastic approximations (e.qg., TD)
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Key property: contraction

* The operator T has to be a contraction

* |f T Is an expansion, then repeated application of T
to v could expand to infinity

|Tvi — Tva|p = ||Pry (Vi = Vv2)|lD < ||PryliDl|Vi — V2D



Contraction properties

sp = [|[Pr4llD
e Smaller sp corresponds to faster contraction

 Example: constant discount

sp = ||Pr~|lD
:'YCHPW ‘D
:’yc
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Extending previous results

 LSTD convergence rates specifically derived for
continuing case

* extends to episodic with this generalization
* Unity seminal bias bounds for TD
* with more explicit episodic bounds

* New result: convergence of ETD for transition-
based trace, but not under on-policy weighting



Blas bounds
Continuing:

Vc(l B )‘>

Tvy — T <
|Tvy — Tva|p < L

|vi —Vv2||p

SSP (episodic):

Exists contraction constant s < 1
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|Tvy — Tva|p < sp||vi — v2|D

sp = ||Pr~|D

It policy reaches a transition where discount less than 1
guaranteed to have sp <1

EPISODIC TAXI 0.989
ve = 0.99 0.990
1% sINGLE pATH | 0.989
10% sINGLE PAaTH | 0.9877
1% aLL paTHs | 0.978
10% ALL PATHS 0.898




Blas bounds

|Tvy — Tva|p < sp||vi — v2|D

It policy reaches a transition where discount less than 1

SD — ||P7T,7

guaranteed to have sp <1

D

Ae 0.0 0.5 0.9 0.99 0.999
Episopic Taxi | 0.989 [ 0.979 | 0.903 | 0.483 | 0.086
Ye = 0.99 0.990 | 0.980 | 0.908 | 0.497 | 0.090
1% sINGLE pATH | 0.989 | 0.978 | 0.898 | 0.467 | 0.086
10% sINGLE paTH | 0.987 | 0.975 | 0.887 | 0.439 | 0.086
1% aLL paTHs | 0.978 1 0.956 | 0.813 | 0.304 | 0.042
10% aLL paTHs | 0.898 | 0.815 ] 0.468 | 0.081 | 0.009
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Generalizing to probabilistic
discounts
Va(s) = Z (s, a)Pr(s,a,s)E[r +yv(s')|s,a,s]
_ Zw(s, a)Pr(s,a, s )E[r|s, a, s’
+ > " 7(s,a)Pr(s,a,s")E[y]s,a, s'Ivx(s)

a,s’

=r,(s) + Z Pr~(s,8)ve(s)

for (s, a,5') = E[]s, a, s'].



How are all these conclusions
affected by function approximation”

* Assumed states; but likely partially observable
* May no longer be able to solve TV =V but can

* minimize Bellman residual ||TV — V||

* get projected fixed point (MSPBE): IITV =V
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Example: D

initialize @ arbitrarily
loop over episodes
initialize e = 0
initialize Sy
initialize 6 arbitrarﬂy repeat for each step in the episode
generate Ry 1, Siiq for S;
if terminal: § < Ry1 — 0 ' (Sy)

else: 0 «— Riyq1 + fyHTgb(StH) —

initialize e = 0

initialize Sy

repeat until agent done interaction

e e+ ¢(St>
generate R;1q, Sy for S; 0 < 0 + ade
A
6 ¢ Ripr + %410 §(Sipn) =01 9(S)  °7 T
e < e+ (S5
0 <+ 0 + aoe

€ < Vt+1 Ae



Outline

M Generalization to transition-based discounting
M The theoretical and algorithmic implications

* Ultility of the generalized problem formalism



Additional utility

* Control
* simplities specification of subgoals
* enables soft termination

* Policy evaluation

* GVFs and predictive knowledge



Example: taxi domain

Actions:
N, E, S W,
Pickup,
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States:
(X, Y,
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location)
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Optimal policy

Can use average reward or continuing formulation

d,v, =d;(r; +Pr V)
— dwrw + VchPwvw

— dﬂ'rﬂ' + fYCdT('VT('
1




Easy specification of
supgoals

 Each pick-up and drop-off
can be a subtask

* numerically more stable
that a constant discount

* options easily encoded
with this generalization



Easy specification of
supgoals

TOTAL PICKUP
AND DROPOFF

° Each pick_up and drOp_Off TrRANS-SOFT |7.74 + 0.03
can be a subtask

* numerically more stable ve = 0.1 10.00 = 0.00

that a constant discount v = 0.3 ]0.02 £ 0.01
v. = 0.5 (0.04 = 0.01

v = 0.6 (0.03 == 0.01
ve = 0.7 |7.12 = 0.03
v = 0.8 [7.34 == 0.03
v. = 0.9 |(3.52 £ 0.00
v. = 0.99 (0.01 = 0.01

* options easily encoded
with this generalization




Benefits of soft termination

4 .
-1.1 -1.2 1.4 1.4

e Soft termination:
gamma(s, a, s') = 0.1 ?'1'2 1y

» Some amount of the Tl J7 }
value after subgoal '1J7 J7 §
should be considered

important 145
<]7

Soft Hard
termination  termination
-7.7 -8



How do we use this generality”?

* Do not need to use full generality
* ...we know at least two useful settings

* Particularly useful for policy evaluation and
predictive knowledge

 GVFs (Horde), Predictron

* Predictive representations



Predictive knowledge

Trve Leap  Agent Observation

-.-.... Leap Optimal Generation

2628893
HEEEEVE ..
h 4 Leap Random Generation

EEEEEEE
0.828600
-.-.... Leap without predictions
.1.4.4831 0
HEEEENER |
Step: 2672619

Speed: 1000

observations as cumulants, persistent policies, ...



Suggestions for automatically
setting the discount

* Parametrize the discount
* similarly to option-critic

* Variety of constant discounts for different horizons
* myopic gamma = 0O for one-step predictions

* Decrease discount based on stimuli

* e.g., sudden drop in stimulus (light)
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s It really worth it”

e |f you're considering state-based, may as well do transition-
based (and avoid the addition of hypothetical states)

* Algorithm implementation simpler for non-expert
 modular: only need if statements in the discount function

e abstraction: our A.l. algorithms should be as agnostic as
possible to the problem settings

e simplicity: e.g., computing stationary distributions from P

* Our theoretical results should apply to both episodic and
continuing problems

* Beneficial mindset shitt to lifelong learning

Thank you!



