# Unifying task specification for reinforcement learning

Martha White Assistant Professor University of Alberta





#### Problem setting







#### What is this talk about?

 $\gamma_c \in [0,1)$ 

#### What is this talk about?

 $\gamma_c \in [0, 1) \quad \longrightarrow \quad \gamma: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0, 1]$ 

• Transition-based discounting is useful for you

- Transition-based discounting is useful for you
  - to simplify algorithm development

- Transition-based discounting is useful for you
  - to simplify algorithm development
  - to unify theoretical characterizations

- Transition-based discounting is useful for you
  - to simplify algorithm development
  - to unify theoretical characterizations
  - to simplify implementation

#### Outline

- Generalization to transition-based discounting
- The theoretical and algorithmic implications
  - generalized Bellman operators
- Utility of the generalized problem formalism

$$V(s) = \mathbb{E}[G_t \mid S_t = s] \qquad \gamma_c \in [0, 1)$$

$$V(s) = \mathbb{E}[G_t \mid S_t = s] \qquad \gamma_c \in [0, 1)$$

 $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, \ldots$ 

$$V(s) = \mathbb{E}[G_t \mid S_t = s] \qquad \gamma_c \in [0, 1)$$

 $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, \ldots$ 

$$r_1 + \gamma_c r_2 + \gamma_c^2 r_3 + \dots$$

$$V(s) = \mathbb{E}[G_t \mid S_t = s] \qquad \gamma_c \in [0, 1)$$

 $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, \dots$   $\downarrow$  $r_2 + \gamma_c r_3 + \gamma_c^2 r_4 + \dots$ 

 $V(s) = \mathbb{E}[G_t \mid S_t = s] \qquad \gamma_c \in [0, 1)$ 

 $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, s_3, a_3, \ldots$ 

 $r_3 + \gamma_c r_4 + \gamma_c^2 r_5 + \dots$ 

#### Selection of discount



#### Returns (episodic)

| + | Ŧ | + |   | Ŧ | Ŧ | Ŧ | Ŧ |
|---|---|---|---|---|---|---|---|
| + | ŧ | + | Ŧ |   |   | + |   |
| + |   | + | ÷ | ÷ | ÷ | ÷ | Ŧ |
| + |   |   | + |   | ÷ | ÷ | + |
| + | Ŧ |   | + |   | Ŧ | ÷ | + |
| S |   | ŧ | ŧ | ÷ |   | G | ÷ |

#### Returns (episodic)

| ÷ | ŧ | + |     | ÷ | Ŧ | Ŧ | Ŧ |
|---|---|---|-----|---|---|---|---|
| + | ÷ | + | ÷   |   |   | + |   |
| + |   | + | +   | ÷ | ÷ | ÷ | Ŧ |
| + |   |   | -+• |   | ÷ | ÷ | + |
| + | ÷ |   | +   |   | + | ÷ | + |
| S |   | ÷ | ÷   | ÷ |   | G | ÷ |

#### Returns (episodic)



$$s_0 = (7,3), a_0 = \text{Sth}, r_1 = -1, s_1 = (7,2), a_1 = \text{Sth}, r_2 = -1, s_2 = (7,1)$$
  
 $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$  Null

#### How do we unify the two?

- Algorithms and theory treat the two cases separately
- Absorbing state not a complete solution



### How do we unify the two?

- Algorithms and theory treat the two cases separately
- Absorbing state not a complete solution



 Recent generalizations to state-based discount almost the complete solution

#### Unification using transitionbased discounting

Discount generalized to a function on (s,a,s')

#### $\gamma: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0, 1]$

- Can smoothly encode continuing or episodic
  - ...and specify a whole new set of returns

# Generalized return $\gamma : S \times A \times S \rightarrow [0, 1]$ $G_t = \sum_{i=0}^{\infty} \left( \prod_{j=0}^{i-1} \gamma(S_{t+j}, A_{t+j}, S_{t+j+1}) \right) R_{t+1+i}$

 $= R_{t+1} + \gamma_{t+1}G_{t+1}$ 

 $\gamma_{t+1} = \gamma(S_t, A_t, S_{t+1})$ 

# Generalized return $\gamma: S \times A \times S \rightarrow [0, 1]$

$$G_t = \sum_{i=0}^{\infty} \left( \prod_{j=0}^{i-1} \gamma(S_{t+j}, A_{t+j}, S_{t+j+1}) \right) R_{t+1+i}$$

 $= R_{t+1} + \gamma_{t+1} G_{t+1} \qquad \gamma_{t+1} = \gamma(S_t, A_t, S_{t+1})$ 

If 
$$\gamma(s, a, s') = \gamma_c$$
  
$$\prod_{j=0}^{i-1} \gamma(S_{t+j}, A_{t+j}, S_{t+j+1}) = \gamma_c^{i-1}$$

### Encoding episodic tasks

- gamma(s,a,s') = 0 for a terminal transition
- s' is the start state for the next episode
- Return is truncated at termination by the product of discounts, with gamma(s,a,s') = 0

$$G_t = R_{t+1} + \gamma_{t+1} G_{t+1}$$

Actions: N, E, S, W, Pickup, Drop-off

**States**: (x, y, passenger location)



Passenger in black square

State: (2, 1, 3)

Location can be (0,1,2,3) or 4 for in taxi

 $G_t = R_{t+1} + \gamma_{t+1} G_{t+1}$ 



• What are the transition probabilities at (4,4,3)?



 $G_t = R_{t+1} + \gamma_{t+1}G_{t+1}$ 

- What are the transition probabilities at (4,4,3)?
  - P((4,4,3), Pick-up, (4,4,4)) = 1.0





- What are the transition probabilities at (4,4,3)?
  - P((4,4,3), Pick-up, (4,4,4)) = 1.0
- What is the discount function?





- What are the transition probabilities at (4,4,3)?
  - P((4,4,3), Pick-up, (4,4,4)) = 1.0
- What is the discount function?
  - γ((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0



$$G_t = R_{t+1} + \gamma_{t+1} G_{t+1}$$

- What are the transition probabilities at (4,4,3)?
  - P((4,4,3), Pick-up, (4,4,4)) = 1.0
- What is the discount function?
  - γ((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0
- Why not  $\gamma_{S}((4,4,4)) = 0.0?$

$$G_t = R_{t+1} + \gamma_{t+1} G_{t+1}$$



- What are the transition probabilities at (4,4,3)?
  - P((4,4,3), Pick-up, (4,4,4)) = 1.0
- What is the discount function?
  - γ((4,4,3), Pick-up, (4,4,4)) = 0.0, else 1.0
- Why not  $\gamma_{S}((4,4,4)) = 0.0?$
- Why not add a termination state?

$$G_t = R_{t+1} + \gamma_{t+1} G_{t+1}$$



#### What are the implications?
#### What are the implications?

Unified analysis for episodic and continuing problems —> can extend previous results

#### What are the implications?

- Unified analysis for episodic and continuing problems —> can extend previous results
- How does this change the algorithms?

#### What are the implications?

- Unified analysis for episodic and continuing problems —> can extend previous results
- How does this change the algorithms?
  - very little
  - avoids two versions of an algorithm

### Do all algorithms extend?

- Can define a generalized Bellman operator
  - recursive form for return, that is Markov

$$G_{t} = \sum_{i=0}^{\infty} \left( \prod_{j=1}^{i} \gamma_{t+j} \right) R_{t+1+i} = R_{t+1} + \gamma_{t+1} G_{t+1}$$

### Do all algorithms extend?

- Can define a generalized Bellman operator
  - recursive form for return, that is Markov

$$G_{t} = \sum_{i=0}^{\infty} \left( \prod_{j=1}^{i} \gamma_{t+j} \right) R_{t+1+i} = R_{t+1} + \gamma_{t+1} G_{t+1}$$

• Replace  $\gamma_c$  with  $\gamma_{t+1}$ 

#### Definitions for the operator

$$\mathbf{v}_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$
  
=  $\mathbb{E}[R_{t+1} + \gamma_{t+1}G_{t+1} | S_t = s]$   
=  $\mathbb{E}[R_{t+1} | S_t = s] + \mathbb{E}[\gamma_{t+1}\mathbf{v}^{\pi}(S_{t+1}) | S_t = s]$ 

#### Definitions for the operator

$$\mathbf{v}_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$
  
=  $\mathbb{E}[R_{t+1} + \gamma_{t+1}G_{t+1} | S_t = s]$   
=  $\mathbb{E}[R_{t+1} | S_t = s] + \mathbb{E}[\gamma_{t+1}\mathbf{v}^{\pi}(S_{t+1}) | S_t = s]$   
=  $\mathbf{r}_{\pi}(s) + \sum_{s'} \mathbf{P}_{\pi,\gamma}(s,s')\mathbf{v}_{\pi}(s')$ 

$$\mathbf{P}_{\pi,\gamma}(s,s') = \sum_{a} \pi(s,a) \Pr(s,a,s') \gamma(s,a,s')$$

$$\mathbf{r}_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \Pr(s, a, s') r(s, a, s')$$

#### Definitions for the operator

$$\mathbf{v}_{\pi}(s) = \mathbb{E}[G_t | S_t = s] \qquad \mathbf{v}_{\pi} \in \mathbb{R}^{\text{number of states}}$$
$$= \mathbb{E}[R_{t+1} + \gamma_{t+1}G_{t+1} | S_t = s]$$
$$= \mathbb{E}[R_{t+1} | S_t = s] + \mathbb{E}[\gamma_{t+1}\mathbf{v}^{\pi}(S_{t+1}) | S_t = s]$$
$$= \mathbf{r}_{\pi}(s) + \sum_{s'} \mathbf{P}_{\pi,\gamma}(s, s')\mathbf{v}_{\pi}(s')$$

$$\mathbf{P}_{\pi,\gamma}(s,s') = \sum_{a} \pi(s,a) \Pr(s,a,s') \gamma(s,a,s')$$

$$\mathbf{r}_{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \Pr(s, a, s') r(s, a, s')$$

#### Bellman operator

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \sum_{s'} \mathbf{P}_{\pi,\gamma}(:,s') \mathbf{v}_{\pi}(s') = \mathbf{r}_{\pi} + \mathbf{P}_{\pi,\gamma} \mathbf{v}_{\pi}$$

#### Bellman operator

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \sum_{s'} \mathbf{P}_{\pi,\gamma}(:,s') \mathbf{v}_{\pi}(s') = \mathbf{r}_{\pi} + \mathbf{P}_{\pi,\gamma} \mathbf{v}_{\pi}$$
  
e.g.,  $\mathbf{r}_{\pi} + \gamma_c \mathbf{P}_{\pi} \mathbf{v}_{\pi}$ 

Bellman operator  

$$\mathbf{v}_{\pi} = \mathbf{r}_{\pi} + \sum_{s'} \mathbf{P}_{\pi,\gamma}(:,s') \mathbf{v}_{\pi}(s') = \mathbf{r}_{\pi} + \mathbf{P}_{\pi,\gamma} \mathbf{v}_{\pi}$$
e.g.,  $\mathbf{r}_{\pi} + \gamma_c \mathbf{P}_{\pi} \mathbf{v}_{\pi}$ 

Bellman operator

$$\mathbf{T}\mathbf{v} = \mathbf{r}_{\pi} + \mathbf{P}_{\pi,\gamma}\mathbf{v}$$

Reach solution (fixed point) when  $\mathbf{T}\mathbf{v} = \mathbf{v}$ 

Given models, can use dynamic programming Otherwise, stochastic approximations (e.g., TD)

# Key property: contraction

- The operator  ${\bf T}$  has to be a contraction
- If  ${\bf T}$  is an expansion, then repeated application of  ${\bf T}$  to  ${\bf v}$  could expand to infinity

# Key property: contraction

- The operator  ${\bf T}$  has to be a contraction
- If  ${\bf T}$  is an expansion, then repeated application of  ${\bf T}$  to  ${\bf v}$  could expand to infinity

 $\|\mathbf{T}\mathbf{v}_1 - \mathbf{T}\mathbf{v}_2\|_D = \|\mathbf{P}_{\pi,\gamma}\left(\mathbf{v}_1 - \mathbf{v}_2\right)\|_D \le \|\mathbf{P}_{\pi,\gamma}\|_D \|\mathbf{v}_1 - \mathbf{v}_2\|_D$ 

# Contraction properties

$$s_{\mathbf{D}} = \|\mathbf{P}_{\pi,\gamma}\|_{\mathbf{D}}$$

- Smaller sp corresponds to faster contraction
- Example: constant discount

$$s_{\mathbf{D}} = \|\mathbf{P}_{\pi,\gamma}\|_{\mathbf{D}}$$
$$= \gamma_c \|\mathbf{P}_{\pi}\|_{\mathbf{D}}$$
$$= \gamma_c$$

#### Extending previous results

### Extending previous results

- LSTD convergence rates specifically derived for continuing case
  - extends to episodic with this generalization
- Unify seminal bias bounds for TD
  - with more explicit episodic bounds

### Extending previous results

- LSTD convergence rates specifically derived for continuing case
  - extends to episodic with this generalization
- Unify seminal bias bounds for TD
  - with more explicit episodic bounds
- New result: convergence of ETD for transitionbased trace, but not under on-policy weighting

Continuing:

$$\|\mathbf{T}\mathbf{v}_1 - \mathbf{T}\mathbf{v}_2\|_D \le \frac{\gamma_c(1-\lambda)}{1-\gamma_c\lambda} \|\mathbf{v}_1 - \mathbf{v}_2\|_D$$

SSP (episodic):

Exists contraction constant s < 1

$$\|\mathbf{T}\mathbf{v}_1 - \mathbf{T}\mathbf{v}_2\|_{\mathbf{D}} \le s_{\mathbf{D}}\|\mathbf{v}_1 - \mathbf{v}_2\|_{\mathbf{D}}$$

$$s_{\mathbf{D}} = \|\mathbf{P}_{\pi,\gamma}\|_{\mathbf{D}}$$

If policy reaches a transition where discount less than 1 guaranteed to have  $s_{\rm D} < 1$ 

$$\|\mathbf{T}\mathbf{v}_1 - \mathbf{T}\mathbf{v}_2\|_{\mathbf{D}} \le s_{\mathbf{D}}\|\mathbf{v}_1 - \mathbf{v}_2\|_{\mathbf{D}}$$

$$s_{\mathbf{D}} = \|\mathbf{P}_{\pi,\gamma}\|_{\mathbf{D}}$$

If policy reaches a transition where discount less than 1 guaranteed to have  $s_{\rm D} < 1$ 

| Episodic taxi     | 0.989 |
|-------------------|-------|
| $\gamma_c = 0.99$ | 0.990 |
| 1% SINGLE PATH    | 0.989 |
| 10% single path   | 0.987 |
| 1% ALL PATHS      | 0.978 |
| 10% ALL PATHS     | 0.898 |

$$\|\mathbf{T}\mathbf{v}_1 - \mathbf{T}\mathbf{v}_2\|_{\mathbf{D}} \le s_{\mathbf{D}}\|\mathbf{v}_1 - \mathbf{v}_2\|_{\mathbf{D}}$$

$$s_{\mathbf{D}} = \|\mathbf{P}_{\pi,\gamma}\|_{\mathbf{D}}$$

If policy reaches a transition where discount less than 1 guaranteed to have  $s_{\rm D} < 1$ 

| $\lambda_c$       | 0.0   | 0.5   | 0.9   | 0.99  | 0.999 |
|-------------------|-------|-------|-------|-------|-------|
| EPISODIC TAXI     | 0.989 | 0.979 | 0.903 | 0.483 | 0.086 |
| $\gamma_c = 0.99$ | 0.990 | 0.980 | 0.908 | 0.497 | 0.090 |
| 1% SINGLE PATH    | 0.989 | 0.978 | 0.898 | 0.467 | 0.086 |
| 10% SINGLE PATH   | 0.987 | 0.975 | 0.887 | 0.439 | 0.086 |
| 1% ALL PATHS      | 0.978 | 0.956 | 0.813 | 0.304 | 0.042 |
| 10% ALL PATHS     | 0.898 | 0.815 | 0.468 | 0.081 | 0.009 |

# Generalizing to probabilistic discounts

 $\Pr(r, \gamma | s, a, s')$ 

# Generalizing to probabilistic discounts

$$\mathbf{v}_{\pi}(s) = \sum_{a,s'} \pi(s,a) \Pr(s,a,s') \mathbb{E}[r + \gamma \mathbf{v}_{\pi}(s')|s,a,s']$$
$$= \sum_{a,s'} \pi(s,a) \Pr(s,a,s') \mathbb{E}[r|s,a,s']$$
$$+ \sum_{a,s'} \pi(s,a) \Pr(s,a,s') \mathbb{E}[\gamma|s,a,s'] \mathbf{v}_{\pi}(s')$$
$$= \mathbf{r}_{\pi}(s) + \sum_{s'} \mathbf{P}_{\pi,\gamma}(s,s') \mathbf{v}_{\pi}(s')$$

for  $\gamma(s, a, s') = \mathbb{E}[\gamma | s, a, s']$ .

How are all these conclusions affected by function approximation?

- Assumed states; but likely partially observable
- May no longer be able to solve  $\mathbf{TV} = \mathbf{V}$  but can
  - minimize Bellman residual  $\|\mathbf{T}\mathbf{V} \mathbf{V}\|$
  - get projected fixed point (MSPBE):  $\Pi TV = V$
  - •

#### Example: TD

initialize  $\boldsymbol{\theta}$  arbitrarily **loop** over episodes initialize e = 0initialize  $S_0$ **repeat** for each step in the episode generate  $R_{t+1}$ ,  $S_{t+1}$  for  $S_t$ if terminal:  $\delta \leftarrow R_{t+1} - \boldsymbol{\theta}^{\top} \phi(S_t)$ else:  $\delta \leftarrow R_{t+1} + \gamma \boldsymbol{\theta}^{\top} \phi(S_{t+1}) - \boldsymbol{\theta}^{\top} \phi(S_t)$  $\mathbf{e} \leftarrow \mathbf{e} + \phi(S_t)$  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \delta \mathbf{e}$  $\mathbf{e} \leftarrow \gamma \lambda \mathbf{e}$ 

# Example: $TD_{initialize \theta}$ arbitrarily

initialize e = 0initialize  $S_0$ repeat for each step in the episode generate  $R_{t+1}$ ,  $S_{t+1}$  for  $S_t$ if terminal:  $\delta \leftarrow R_{t+1} - \theta^{\top} \phi(S_t)$ else:  $\delta \leftarrow R_{t+1} + \gamma \theta^{\top} \phi(S_{t+1}) - \phi$   $\mathbf{e} \leftarrow \mathbf{e} + \phi(S_t)$   $\theta \leftarrow \theta + \alpha \delta \mathbf{e}$  $\mathbf{e} \leftarrow \gamma \lambda \mathbf{e}$ 

**loop** over episodes

#### Example: TD

initialize  $\boldsymbol{\theta}$  arbitrarily initialize  $\boldsymbol{e} = \boldsymbol{0}$ 

initialize  $S_0$ 

**repeat** until agent done interaction generate  $R_{t+1}$ ,  $S_{t+1}$  for  $S_t$  $\delta \leftarrow R_{t+1} + \gamma_{t+1} \theta^\top \phi(S_{t+1}) - \theta^\top \phi(S_t)$  $\mathbf{e} \leftarrow \mathbf{e} + \phi(S_t)$  $\theta \leftarrow \theta + \alpha \delta \mathbf{e}$  $\mathbf{e} \leftarrow \gamma_{t+1} \lambda \mathbf{e}$ 

initialize  $\boldsymbol{\theta}$  arbitrarily **loop** over episodes initialize e = 0initialize  $S_0$ **repeat** for each step in the episode generate  $R_{t+1}$ ,  $S_{t+1}$  for  $S_t$ if terminal:  $\delta \leftarrow R_{t+1} - \boldsymbol{\theta}^\top \phi(S_t)$ else:  $\delta \leftarrow R_{t+1} + \gamma \boldsymbol{\theta}^\top \phi(S_{t+1}) - \boldsymbol{\theta}^\top$  $\mathbf{e} \leftarrow \mathbf{e} + \phi(S_t)$  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \delta \mathbf{e}$  $\mathbf{e} \leftarrow \gamma \lambda \mathbf{e}$ 

#### Outline

- Generalization to transition-based discounting
- **M** The theoretical and algorithmic implications
- Utility of the generalized problem formalism

# Additional utility

#### Control

- simplifies specification of subgoals
- enables soft termination
- Policy evaluation
  - GVFs and predictive knowledge

#### Example: taxi domain

Actions: N, E, S, W, Pickup, Drop-off

**States**: (x, y, passenger location)



Passenger in black square

State: (2, 1, 3)

Location can be (0,1,2,3) or 4 for in taxi

# Optimal policy

Can use average reward or continuing formulation

$$\mathbf{d}_{\pi} \mathbf{v}_{\pi} = \mathbf{d}_{\pi} (\mathbf{r}_{\pi} + \mathbf{P}_{\pi,\gamma} \mathbf{v}_{\pi})$$

$$= \mathbf{d}_{\pi} \mathbf{r}_{\pi} + \gamma_{c} \mathbf{d}_{\pi} \mathbf{P}_{\pi} \mathbf{v}_{\pi}$$

$$= \mathbf{d}_{\pi} \mathbf{r}_{\pi} + \gamma_{c} \mathbf{d}_{\pi} \mathbf{v}_{\pi}$$

$$\implies \mathbf{d}_{\pi} \mathbf{v}_{\pi} = \frac{1}{1 - \gamma_{c}} \mathbf{d}_{\pi} \mathbf{r}_{\pi}.$$

# Easy specification of subgoals

- Each pick-up and drop-off can be a subtask
  - numerically more stable that a constant discount
  - options easily encoded with this generalization

# Easy specification of subgoals

- Each pick-up and drop-off can be a subtask
  - numerically more stable that a constant discount
  - options easily encoded with this generalization

|                   | TOTAL PICKUP      |
|-------------------|-------------------|
|                   | AND DROPOFF       |
| TRANS-SOFT        | $7.74 \pm 0.03$   |
|                   |                   |
|                   |                   |
| $\gamma_c = 0.1$  | $0.00 \pm 0.00$   |
| $\gamma_c = 0.3$  | $0.02 \pm 0.01$   |
| $\gamma_c = 0.5$  | $0.04 \pm 0.01$   |
| $\gamma_c = 0.6$  | $0.03 \pm 0.01$   |
| $\gamma_c = 0.7$  | $7.12 \pm 0.03$   |
| $\gamma_c = 0.8$  | $7.34 \pm 0.03$   |
| $\gamma_c = 0.9$  | $ 3.52 \pm 0.06 $ |
| $\gamma_c = 0.99$ | $0.01 \pm 0.01$   |

#### Benefits of soft termination

- Soft termination: gamma(s, a, s') = 0.1
- Some amount of the value after subgoal should be considered important





-8

#### How do we use this generality?

- Do not need to use full generality
  - ...we know at least two useful settings
- Particularly useful for policy evaluation and predictive knowledge
  - GVFs (Horde), Predictron
  - Predictive representations

# Predictive knowledge



observations as cumulants, persistent policies, ...
Suggestions for automatically setting the discount

- Parametrize the discount
  - similarly to option-critic
- Variety of constant discounts for different horizons
  - myopic gamma = 0 for one-step predictions
- Decrease discount based on stimuli
  - e.g., sudden drop in stimulus (light)

#### Learning in compass world



#### Learning in compass world



#### Learning in compass world



• If you're considering state-based, may as well do transitionbased (and avoid the addition of hypothetical states)

- If you're considering state-based, may as well do transitionbased (and avoid the addition of hypothetical states)
- Algorithm implementation simpler for non-expert
  - modular: only need if statements in the discount function
  - **abstraction**: our A.I. algorithms should be as agnostic as possible to the problem settings
  - **simplicity**: e.g., computing stationary distributions from P

- If you're considering state-based, may as well do transitionbased (and avoid the addition of hypothetical states)
- Algorithm implementation simpler for non-expert
  - modular: only need if statements in the discount function
  - **abstraction**: our A.I. algorithms should be as agnostic as possible to the problem settings
  - **simplicity**: e.g., computing stationary distributions from P
- Our theoretical results should apply to both episodic and continuing problems

- If you're considering state-based, may as well do transitionbased (and avoid the addition of hypothetical states)
- Algorithm implementation simpler for non-expert
  - modular: only need if statements in the discount function
  - **abstraction**: our A.I. algorithms should be as agnostic as possible to the problem settings
  - **simplicity**: e.g., computing stationary distributions from P
- Our theoretical results should apply to both episodic and continuing problems
- Beneficial mindset shift to lifelong learning

- If you're considering state-based, may as well do transitionbased (and avoid the addition of hypothetical states)
- Algorithm implementation simpler for non-expert
  - modular: only need if statements in the discount function
  - **abstraction**: our A.I. algorithms should be as agnostic as possible to the problem settings
  - **simplicity**: e.g., computing stationary distributions from P
- Our theoretical results should apply to both episodic and continuing problems
- Beneficial mindset shift to lifelong learning

#### Thank you!