Adapting kernel representations
online using submodaular
maximization

Martha White
Assistant Professor
Department of Computer Science
Indiana University
(...soon to be at the University of Alberta)

Votivation

Votivation

* Goal: predict target y given observations X

Votivation

* Goal: predict target y given observations X

* Jarget is a nonlinear function of observations

Votivation

* Goal: predict target y given observations X
* Jarget is a nonlinear function of observations

* Strategy: Obtain transtormation (representation) of
observation to learn nonlinear functions

Votivation

* Goal: predict target y given observations X
* Jarget is a nonlinear function of observations

* Strategy: Obtain transtormation (representation) of
observation to learn nonlinear functions

f(x)=o(x) w= Z o(x)iwi, f(x) =y

xcRY ¢:RY >R, weR

Kernel representation

4 bins
R\

S,

é\g

(@

1if x in (0.0, 0.25
1if xin (0.25, 0.5

)
()
1if x in (0.5, 0.75)
1if xin (0.75, 1.0)

= Z O(x);w;

Kernel representation

4 bins
R\

S,

QE

(@

1if x in (0.0, 0.25) b
1if x in (0.25, 0.5) — Z (X)W,
) =

(
1if xin (0.5, 0.75

1if x in (0.75, 1.0)
4 radial basis functions

1

AN
0.625 / \

c=0. 875

Example: Matching similarity
for categorical data

age {15-24, 25-34, ..., 65+}
_ gender {F, M}
Income {Low, Medium, High}
education

{Bachelors, Trade-Sch, High-Sch, ...}

Census dataset: Predict hours worked per week

Example: Matching similarity
for categorical data

age

gender

Income

education

Example: Matching similarity
for categorical data

iiiiii

Example: Matching similarity
for categorical data

iiiiii

o 24-34 35-44
F F
k(Xl,Xz) — k = 0.5
Medium Medium

Trade-Sch Bachelors

Why kernel representations”

* Many specialized kernels (similarity measures)
e convolutional kernels for images

* string kernel for text and gene analysis

* Universal function approximation capabilities

* but simple linear estimation techniques, given prototypes

* |ntuitive and interpretable solution

|[mproving optimization for
kernels Is key

* Widespread use seems limited

* unlike (for example) neural networks

* Need to investigate ettective optimization principles
and heuristics to make kernels easy-to-use

* Automatically and efficiently selecting prototypes

* Automatically selecting kernels and kernel parameters

Continual learning setting

* Modern setting
e (Constant streams of data collected by companies

* Agent interacting with environment in reinforcement learning
or online learning

* Requires efficient per-step updating for real-time
computation — linear in the number of prototypes

Why linear in the number of
orototypes?

* For sufficient complexity, need many prototypes
* similar to enabling large hidden layers

* Consider differences between b and b2
* b=1k —> b2 =1 million

* b =10k —> b2 = 100 million

Why do we need careful
selection of prototypes?

1.
0.9+
0.8
0.7¢
0.6
0.5¢
0.4H

0.3

0.2}

200 400 600 800 1000
Training Data: Time Steps 1-1000

True continuation

|

Random(Center)
prediction

0.1}

!

It

uou&kQVM&

0
1000

1020

1040 1060 1080 1100
Time Steps 1001-1100

Cannot predict intensity collapse event

b =300

Example setting: Time series

1 -

True continuation—> » Improved on previous results
097 | using kernels
0.8} - Significantly more efficient
07l \ prototype selection
osl] | [|
0.5} BlockGreedy
04l prjdiction
0.3}
0.2}
Y UV UYL

O I I I I I
1000 1020 1040 1060 1080 1100
Time Steps 1001-1100

lalk outline

* Problem formulation for selecting prototypes

* Using submodular maximization to solve this
problem for continual setting

e prove that simple, easy-to-use algorithm is effective

 Experiments demonstrating
e approximation quality of our algorithm

e efficacy of selected prototypes for prediction

Qur focus

e Select prototypes Ziq, ..

P(x) =

Goal

* efficient, easy-to-use algorithm

AN R
k(X,Zl) |

; c R°
k(x,zp)

How do we pick prototypes?

* This topic has been widely explored

* unsupervised: active-set selection, tacility location, k-
medians, k-mediods, k-means

e supervised: sparse GPs, specialized methods for
classification

* We revisit the criteria for continual learning

How do we pick prototypes?

* This topic has been widely explored

e unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

e supervised: sparse GPs, specialized methods for
classification

* We revisit the criteria for continual learning

Minimize distance to the function that uses all
the instances as prototypes

Criteria

2
gncl?(‘,{,nl[él Hf fSWH

S| = b

Finite set X: f(x) = Z o k(x,2;)
Z;EX

fSW ZWZ XZ@

7z,ES

Criteria

2
min min ||f — fswl|

S| =0

Finite set X: f(x) = Z o k(x,2;)
Z;EX

fSW ZWZ XZ@

Z; ES

Obtain a generalized coherence criterion that is an upper
bound on this objective

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks +1) Kgs(i,)) = k(z4,2;)

b
=Y log(1 + i) Ks = QAQ'
1=1

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks +1) Kgs(i,)) = k(z4,2;)

Ks = QAQ'

Gene 3

Gene 2 Gene 1
*fromm Matthias Scholz

An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks +1) Kgs(i,)) = k(z4,2;)

=Y log(1 + i) Ks = QAQ'

If)\3 small

PC 1

Gene 3

Gene 2 Gene 1
*fromm Matthias Scholz

Our focus for experiments

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Kg + I)

b Ks = QAQ'

= Z log(1+ A;)
i=1

- S
Goal: mmax q(.S)

|S|=0b

HOw dO we solve this
optimization problem?

e Submodular-set functions g(S) have diminishing returns

TcS = g(Su{z}) —g(5) <g(T'U{z}) —g(T)

g(S)

—

5

* (Greedy maximization algorithms effective for
submodular functions

3% 905
1S |=b

Greedy algorithm

e For afinite set, greedily select the best point, add to
set S until reach budget size b

arg Zglgicsg(s U{z})

* (Good approximation ratio for simple greedy algorithm

e ratio to optimal solutionis 1 - 1/e = 0.6321

* Incremental (streaming) versions of this algorithm

e but requires multiple passes of the dataset

OnlineGreedy

SQ%@
fOI’tzlideSt%St_lLJ{Xt}

while interacting, t =56+ 1,... do

— argénaX g(Si—1\1z} U {x¢})
ZCOt—1

St Ny St_l\{Z/} U {Xt}
if g(St) — g(St—1) < € then
St Ny St—l

Approximation ratio of about 1/2

Efficient Implementation

* Computation of g is the bottleneck

* O(b3) per step for exact computation!

* Exploit block-diagonal structure of the kernel matrix
to get a highly accurate approximation

* reduce computation to O(b) per step

* theory allows some inaccuracy in g(S)

Block-diagonal matrix

Kij = k(zi,z2;)

Block-diagonal matrix

2 k(z2, z5) larger

Kij = k(zi,z2;)

Block-diagonal matrix

2

[k(z2, z5) larger

K(z2, Z29) small

Kij = k(zi,z2;)

Block-diagonal matrix

Kij = k(zi,z2;)

Block-diagonal matrix

Kij = k(zi,z2;)

Block-diagonal matrix

Kij = k(zi,z;) =1

Algorithmic take-away

* Principled selection with approximation guarantees

e OnlineGreedy for submodular maximization
o Efficient — linear in number of prototypes

* taking advantage of block-diagonal structure of the kernel matrix

e Easy-to-use approach

* meta-parameters include threshold and block-size

EXperiments

Investigated efticacy of algorithm with log-det

How eftectively are prototypes selected in terms of
maximizing the log-det?

How accurate is the block approximation?
What are the runtime improvements?

How accurate is the regression performance?

Datasets

* [wo simpler datasets used previously for streaming
prototype selection

* Boston housing — 13 features

* Parkinsons Telemonitoring — 25 features

e Santa Fe A — a benchmark time series dataset

 Census — a large dataset, with categorial features

| og-determinant

120 - BIOCkGreedy Est[mgjion ___________________ i -

100{

| BlockGreedy
80 - ;
Log ;]

Determinant{ |/ BlockGreedy without clustering

St

40 -

20 -

budget = 200 500 1000 1500 2000 2500 3000 3500
block size = 5 Samples Processed

Impact of block diagonal
approximation

17 Block Greedy -

0.8 -

Percentage
Accuracy

Block Greedy without clustering

0.4 1

0.2 -

0 20 40 60 80 100
Block Size

Runtime

1400 -
1200 -

1000 -

Time -
(Seconds) FuIIGreedy

400 -
BlockGreedy

200 -

100 200 300 400 500
Budget Size

Regression: Boston housing

l

\

5.5}
| KRLS

5|

Root \
Mean
Square

Error Random

st heage

aEsss

Block Greedy

Full Greedy

2.5

50 100 150 200 250 300 350 400
Samples Processed

Regression: lelemonitoring

754 1\

Root -

Mean
Square -

Error

45 - FullGreedy

500 1000 1500 2000 2500 3000 3500
Samples Processed

What is really new?

* BlockGreedy algorithm, which is O(b) per step

* |Introduced coverage property to generalize from
streaming algorithms to continual learning

* A space of possible supervised and unsupervised
criteria to explore under generalized coherence

Next steps

Incorporate supervised criteria
Automatically selecting kernels & meta-parameters
Improve incremental regression algorithm

More experiments validating practicality of approach

Next steps

Incorporate supervised criteria
Automatically selecting kernels & meta-parameters
Improve incremental regression algorithm

More experiments validating practicality of approach

Thank you for your attention

