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f(x)=o(x) w= Z o(x)iwi,  f(x) =y
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Example: Matching similarity
for categorical data

age {15-24, 25-34, ..., 65+}
_ gender {F, M}
Income {Low, Medium, High}
education

{Bachelors, Trade-Sch, High-Sch, ...}

Census dataset: Predict hours worked per week
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o 24-34 35-44
F F
k(Xl,Xz) — k = 0.5
Medium Medium

Trade-Sch Bachelors




Why kernel representations”

* Many specialized kernels (similarity measures)
e convolutional kernels for images

* string kernel for text and gene analysis

* Universal function approximation capabilities

* but simple linear estimation techniques, given prototypes

* |ntuitive and interpretable solution



|[mproving optimization for
kernels Is key

* Widespread use seems limited

* unlike (for example) neural networks

* Need to investigate ettective optimization principles
and heuristics to make kernels easy-to-use

* Automatically and efficiently selecting prototypes

* Automatically selecting kernels and kernel parameters



Continual learning setting

* Modern setting
e (Constant streams of data collected by companies

* Agent interacting with environment in reinforcement learning
or online learning

* Requires efficient per-step updating for real-time
computation — linear in the number of prototypes



Why linear in the number of
orototypes?

* For sufficient complexity, need many prototypes
* similar to enabling large hidden layers

* Consider differences between b and b2
* b=1k —> b2 =1 million

* b =10k —> b2 = 100 million



Why do we need careful
selection of prototypes?
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Example setting: Time series
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lalk outline

* Problem formulation for selecting prototypes

* Using submodular maximization to solve this
problem for continual setting

e prove that simple, easy-to-use algorithm is effective

 Experiments demonstrating
e approximation quality of our algorithm

e efficacy of selected prototypes for prediction



Qur focus

e Select prototypes Ziq, ..

P(x) =
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* efficient, easy-to-use algorithm
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How do we pick prototypes?

* This topic has been widely explored

* unsupervised: active-set selection, tacility location, k-
medians, k-mediods, k-means

e supervised: sparse GPs, specialized methods for
classification

* We revisit the criteria for continual learning



How do we pick prototypes?

* This topic has been widely explored

e unsupervised: active-set selection, facility location, k-
medians, k-mediods, k-means

e supervised: sparse GPs, specialized methods for
classification

* We revisit the criteria for continual learning

Minimize distance to the function that uses all
the instances as prototypes



Criteria
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Criteria

2
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Obtain a generalized coherence criterion that is an upper
bound on this objective



An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks +1) Kgs(i,)) = k(z4,2;)

b
=Y log(1 + i) Ks = QAQ'
1=1
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An Instance of this criterion

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Ks +1) Kgs(i,)) = k(z4,2;)

=Y log(1 + i) Ks = QAQ'

If )\3 small
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Our focus for experiments

Unsupervised measure preferring diverse prototypes

g(S) =logdet(Kg + I)

b Ks = QAQ'

= Z log(1+ A;)
i=1

- S
Goal:  mmax q(.S)

|S|=0b



HOw dO we solve this
optimization problem?

e Submodular-set functions g(S) have diminishing returns

TcS = g(Su{z}) —g(5) <g(T'U{z}) —g(T)

g(S)

—

5

* (Greedy maximization algorithms effective for
submodular functions

3% 905
1S |=b



Greedy algorithm

e For afinite set, greedily select the best point, add to
set S until reach budget size b

arg Zglgicsg(s U{z})

* (Good approximation ratio for simple greedy algorithm

e ratio to optimal solutionis 1 - 1/e = 0.6321

* Incremental (streaming) versions of this algorithm

e but requires multiple passes of the dataset



OnlineGreedy
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Approximation ratio of about 1/2



Efficient Implementation

* Computation of g is the bottleneck

* O(b3) per step for exact computation!

* Exploit block-diagonal structure of the kernel matrix
to get a highly accurate approximation

* reduce computation to O(b) per step

* theory allows some inaccuracy in g(S)



Block-diagonal matrix

Kij = k(zi,z2;)
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Block-diagonal matrix

Kij = k(zi,z;) =1



Algorithmic take-away

* Principled selection with approximation guarantees

e OnlineGreedy for submodular maximization
o Efficient — linear in number of prototypes

* taking advantage of block-diagonal structure of the kernel matrix

e Easy-to-use approach

* meta-parameters include threshold and block-size



EXperiments

Investigated efticacy of algorithm with log-det

How eftectively are prototypes selected in terms of
maximizing the log-det?

How accurate is the block approximation?
What are the runtime improvements?

How accurate is the regression performance?



Datasets

* [wo simpler datasets used previously for streaming
prototype selection

* Boston housing — 13 features

* Parkinsons Telemonitoring — 25 features

e Santa Fe A — a benchmark time series dataset

 Census — a large dataset, with categorial features
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Impact of block diagonal
approximation
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Runtime
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Regression: Boston housing

l

\

5.5}
| KRLS

5|

Root \
Mean
Square

Error Random

st heage

aEsss

Block Greedy

Full Greedy

2.5

50 100 150 200 250 300 350 400
Samples Processed



Regression: lelemonitoring
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What is really new?

* BlockGreedy algorithm, which is O(b) per step

* |Introduced coverage property to generalize from
streaming algorithms to continual learning

* A space of possible supervised and unsupervised
criteria to explore under generalized coherence



Next steps

Incorporate supervised criteria
Automatically selecting kernels & meta-parameters
Improve incremental regression algorithm

More experiments validating practicality of approach
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Thank you for your attention



