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Abstract—In this paper we present a public dataset to eval-
uate trackers used for visual manipulation tasks. We describe
in detail, both the process of recording the sequences and how
ground truth data was generated for the videos. The videos are
tagged with challenges that a tracker would face while tracking
the object in the sequence and the task it simulates. As an initial
example, we evaluate the performance of five published trackers
[5], [12], [13], [14], [15] and analyse their result. A total of 100
annotated and tagged sequences are reported. All the videos and
ground truth values are made publicly available on the website
http://webdocs.cs.ualberta.ca/~vis/trackDB/,

I. INTRODUCTION

Object tracking is a core component in visual servoing
and similar methods of using real-time vision to guide robot
motion. It is particularly challenging to precisely track the
many degrees of freedom (DOF) needed to control the
motion in robot arm and hand manipulation. In image-based
servoing 2D video frames from a digital camera are passed
on to a tracking algorithm that returns the object state in each
image frame. Visual state is described in the image frame
(e.g. homography parameters or 4 corner points of the patch)
rather than world coordinate pose. This information guides
a robotic manipulator to the desired position. The nature of
the application calls for trackers that can accurately track
high degrees of freedom (DOF) state transformation of the
object. This is much different from others work in tracking,
e.g. surveillance where it is sufficient to track the 2 DOF
object centre and possibly a loose bounding box.

In this paper we provide a public video dataset to eval-
uate 2D marker-less single object tracking algorithms. We
record two sets of videos (robot and human performing
similar tasks) of natural motions, to cover a wide range of
challenges. The tasks are natural table top manipulations
frequently performed in our daily life. Robot motion is
normally planned with smooth velocity profiles and limited
acceleration. Before grasping an object a robot normally
comes to a smooth stop, then smooth start. Human motions
are often less smooth, and a human may grasp an object on
the fly, causing a tracked object to accelerate quickly. To
cover this subtle difference we record both sets of videos.
All the videos are tagged with the task performed and the
challenges that a tracker would face while tracking. Using
these tags susceptibility of the tracking algorithm can be
properly narrowed down and subsequently improved. Each
task is repeated with different speed and under different light.

*This work is supported by NSERC and the Canadian Space Agency
(CSA)

! Authors are with the Department of Computing Science, University of
Alberta, Edmonton, AB, T6G2E8, Canada, ankush2@ualberta.ca

Fig. 1. Sequence showing both the robot and human user performing
identical tasks of pouring cereal in a bowl under normal light settings. The
red rectangle shows the tracking result on the sequence using ESM [12]

Ground truth data is made available for all sequences that
are reported. We define an error metric and analyse some of
the existing trackers in the literature as an example. However,
since ground truth data is provided users can also define
their own error metrics and analyse trackers based on other
evaluation schemes.

Previous works either use synthetically generated data by
applying random warps [9], [11] or test their algorithms on a
small set of videos that are either recorded or pooled from the
Internet. Zimmerman et al. [10] tested their algorithm on 3
grayscale videos (linTrack) that covered 6 DOF transforma-
tion of the object. They manually annotate the bounding box
using either a special marker or visual texture based cues. Lin
et al. [17] and Petit et al. [1] showed application of template
tracking in augmented reality, but restricted themselves to a
small set that they used to evaluate their tracking system.
Some other popular sources that report videos for tracking
are by Babenko et al. [4], Ross et al. in [5], Kalal et al.
[6], Collins et al. in PETS2005 [7], Fisher et al. in CAVIAR
[18] and Dalal et al. [8]. These datasets have sequences to
test tracking algorithms mainly developed for surveillance
applications.

In a recent paper Yang et al. 2013 [3] categorized some of
the above mentioned video sequences to publish a common
benchmark. Any new tracker can be evaluated and compared
with other state of the art trackers in the literature using this
benchmark. However, these video sequences are more suited
to surveillance tracking. Furthermore, as we elaborate on in
Section the accuracy measures used are too coarse and
ill suited for manipulation tasks.

Closest to our aim comes the Metaio dataset meant to
evaluate planar homography tracking by Lieberknecht et al.
[2]. They collect videos under various motions, illuminations
and textures. They used a camera mounted on a Faro arm (a
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passive robot arm with very high precision joint encoders)
that was calibrated and all transformations of pose were
stored. The stored values were used to calculate ground truth
data. However, instead of a 3D scene the Metaio benchmark
records a printed (2D planar) poster, making the benchmark
somewhat artificial. Furthermore the setup with a moving
camera on an arm means that the motions are not from
natural tasks and restricted by the arm workspace and mass.

In this paper we contribute a dataset of 100 videos for
tracking objects with high pixel precision and high DOF
state like Metaio [2]. However, unlike Metaio our videos
have meaningful motions that are part of everyday ma-
nipulation tasks and are carefully chosen so that a wide
range of challenges are covered. All the videos are of 3D
objects moved in an environment with natural foreground
and background. We provide ground truth data for all the
videos. Users can use this data to evaluate their trackers
using different error metrics and evaluation schemes or train
if the algorithm involves a training phase. This makes the
dataset more versatile compared to Metaio who withheld
ground truth in order to make the evaluation more secure.
Proper categorization is also ensured with each video tagged
with the challenges that it present. This help in analysing
a tracker’s performance. Experimentally we analyse some
of the most popular patch tracking algorithms, compare and
uncover properties. The experimental comparison illustrates
the use of the dataset and provides initial results, that others
are encouraged to build upon by using the dataset.

II. DATASET

The dataset consists of image sequences recorded by a
human and a robot arm.

A. Video Capture Set Up

All videos were recorded using a GRAS-20S4C-C fire-
wire camera equipped with a Kowa LM6NCM F1.2/6mm
lens. For the human recorded videos the camera stood on
a fixed position on a tabletop 90 cm from the edge of the
table. Camera settings were implemented through coriander
2.0.1 [19]. Lighting was varied between normal and diffused
light with each sequence recorded at both the light settings.
The videos were recorded at 30 frames per second (f.p.s.)
at a resolution of 600x800 in YUV colour space. Exact
parameters of recording are listed in Table [I]

TABLE I
PARAMETER SETTING FOR IMAGE ACQUISITION

Parameters Diffuse Light Normal Light
Exposure (in IL) 0.73 1.06
Gain (in dB) 6.02 0
Shutter (in s) 0.04 0.07
White Balance Blue/U927 Red/V493 Blue/U757 Red/V490
Saturation (in %) 95.22 119.04

Figure 2. shows a 7 DOF WAM arm with a Barret hand
[20] performing the manipulation tasks. The camera was
fixed on a tripod stand at a distance of 120 cm from the

WAM arm. Other parameters were same as reported in Table

0

Fig. 2. Set up for recording videos under normal light using a WAM arm
and a Barret hand.

B. Motion types in video database

We focus on evaluating trackers to handle “translation
(TR)”, “rotation (RO)”, “scale (SC)”, “perspective (PR)”,
“occlusion (OC)”, “specular reflection”, “texture (TX)”, “il-
lumination (IL)” and “speed (SP)” variations. The tasks were
selected in such a way so that one or more of the above
challenges are covered (Table [l ) while performing each
task.

The recorded videos were grouped under two broad cat-
egories Single Motion Tasks and Composite Motion Tasks.
Single Motion Tasks refers to highly structured motion of
the object. On the other hand Composite Motion Tasks have
videos that can be decomposed into simpler Single Motion
Tasks.

1) Single Motion Tasks:

a) Juice: Juice from a juice box is poured in a con-
tainer. The goal is to track the juice box over the entire
sequence. This involves handling both translational (TR) and
rotational (RO) motion of the object. The axis of rotation
being parallel to the camera axis.

b) Cereal: This task is similar to that of the juice box
defined early, but with an additional challenge of tracking the
cereal box even during large motion when cereal is poured.

c) Book I: The object (book) is tilted from a vertical
upright position to finally lie flat on the table and vice versa.
The challenge in this sequence is to handle the perspective
(PR) deformation of the object.

d) Book II: Here the book is brought near to the camera
parallel to the camera axis and away again. The goal is to
capture scale (SC) variation of the object.

e) Book III: The challenge in this video sequence is to
track the book despite of varying occlusion (OC) from the
book holder.

f) Mug I: Pure translational (TR) motion of the object
(coffee mug) is recorded. An additional challenge in this case
is to track in the presence of specular reflection (SR) and low
texture (TX).

g) Mug II: This sequence combines the challenges of
Mug I sequence with perspective (PR) deformation of the
object. The object (coffee mug) is not only lifted up but also
tilted to drink the contents.



Fig. 3.
corresponding tasks executed by the robot arm are shown in (b)

h) Mug III: A low texture (TX) coffee mug is rotated
(RO) from its initial position and back again. The axis of
rotation being perpendicular to the principal camera axis.

2) Complex Tasks:

a) Bus: A toy bus is moved around on a table. The
goal is to track the planar surface in front of the bus that
undergoes scale change (SC) and perspective deformation
(PR) at varying speed (SP).

b) Highlighting: A portion of the newspaper is high-
lighted using a marker pen. The challenge is to track the
object in the presence of varying texture (TX) caused by
highlighting and occlusion (OC) caused by the portion of
the pen within region of interest.

c) Letter: The object to be tracked here is a part of
the envelope. The sequence records a letter being put inside
the envelope and out respectively. The challenge in this case
is largely to tackle the perspective deformation (PR) of the
object.

d) Newspaper: A portion of the newspaper is supposed
to be tracked in the presence of perspective (PR) and scale
(SC) changes under varying speed.

Single Motion Tasks are recorded at five different speeds,
starting from very slow motion to very fast motion of the
object. Table [II] summarises the challenges that a tracker is
likely to face. It also matches the task with the respective
sequence. Some of the tasks are shown in Figure 3.

III. GROUND TRUTH AND ERROR METRIC
A. Ground Truth

Ground truth (GT) refers to the four co-ordinates posi-
tions of the bounding box, denoting the object’s location in

Identical tasks are performed by a human and a robot arm. (a) shows the tasks performed by a human (Shaking, Moving, Placing, Drinking),

TABLE IT
DESCRIPTION OF VIDEOS

Video Object Challenge Task
Juice Juice Box TR,RO,SP,IL Pouring
Cereal Cereal Box TR,RO,SP,IL Shaking
Book 1 Book PR,SPIL,SR Lifting
Book II Book SC,SPIL Moving
Book IIT Book TR,OC,SP,IL Placing
Mug I Coffee Mug TR, TX,SPIL,SR Raising
Mug II Coffee Mug TR,PR, TX,SP,IL,SR Drinking
Mug III Coffee Mug RO, TX,SP,IL,SR Rotating
Bus Toy Bus TR,SC,PR,SPIL Shifting
Highlighting Newspaper OC,SPIL, TR Marking
Letter Envelope PR,SP,IL Putting
Newspaper Newspaper PR,SC,SPIL Reading

Acronym for challenges are as follow - translation (TR), rotation (RO),
scale (SC), perspective (PR), occlusion (OC), illumination (IL), speed
(SP), texture (TX) and specular reflection (SR)

the image plane. Lieberknecht et al. [2] used a precisely
calibrated set-up where stored pose information was used
to generate ground truth data. Both Lieberknecht et al.
[2] and Zimmerman et al. [10] also use visual markers to
verify ground truth. In our dataset we report sub-pixel level
co-ordinate positions solely based on tracking data. Three
trackers [12], [13], [14] were initiated on the first frame.
Ground truth is registered only when bounding box co-
ordinates reported by all of them lie within 1 (1) pixel
variation. The reason for choosing the following trackers
were primarily because of their high convergence which is
further illustrated in Table [l



One of the challenges that we faced while generating
ground truth, was the highly sensitive tracker convergence
requirement (£1 pixel). So we reinitialize the trackers [12],
[13], [14] using positional information from previous frames
every time it fails to converge. Number of reinitialisations
varied from O to 12 for more difficult sequences. As a final
step we also verify all ground truth data manually.

B. Error Metric

Evaluation of a tracker first involves defining an error
metric. Several error metrics are proposed in the literature.
Some of the commonly [3] used ones are centre distance
of the object (Xcr) from ground truth (Xcgr;) expressed as
Ec(Ec =/ (Xcr — Xceri)?) and area overlap E4 (E4 defined
as B4 = % where At is area of the target and Agr area
of ground truth). However, we define the error metric as the
one used in [2]. The alignment error E4;, (eq. 1) is expressed
as a root mean square distance of misalignment of the target
image (Xr;) with ground truth (Xgr;).

Y (XTi4—XGTi)2 (1)

Error(EaL) =

An advantage of using this score is that it correctly
captures the misalignment information as shown in Figure
4. In this case the other two errors Ec and E4 would have
very low error but E4; would have a high error score. This
is justified by the fact that the target image (T) is 180° out of
phase with the ground truth. Using an alignment based error
also helps in robotic tasks where an end effector needs to be
aligned accurately before the task is performed like grasping
or placing objects.

Fig. 4. Area overlap error measure. An error metric that looks only at
displacement of the centre (E¢) point or area overlap E4 will have very
small error in this case, but it clearly shows that the pose of the target
image (T) image is 180° out of phase with the Ground Truth (GT). An
error metric like E4;, will help to capture such misalignment

IV. TRACKER EVALUATION
A. Evaluation Measures

Several tracker evaluation strategies exist in the literature.
Users are also encouraged to define their own evaluation
criteria. Here as an example we evaluate five trackers based
on two measures Overall Success (Robustness) and Average
Drift(Convergence). Overall Success of a tracker is defined
as the fraction of frames that a tracker tracks within ¢,
pixel threshold. More specifically, it can be expressed as %
(where S={fi € F : e, <t,}, F set of all frames, ¢, error
of a frame f%). Average Drift on the other hand computes

the expected error of the tracker when it operates within a

allowed drift of 7, pixels. This is similar to the one proposed

by Stenger et al. in [16] Ele|e < 1,] (Ele|e < 1] = "o
ey, <tp). Yang et al. [3] used a pixel threshold 7, = 20
pixels. This is far too high for manipulation tasks. We set
threshold ¢, to be 5 pixels. Table[[T]] and TablelV]summarises
the performance of the trackers.

B. Trackers Used

Five trackers were evaluated on the dataset. Each tracker
was presented with the sequence and the bounding box
co - ordinates of the object in the first frame. Original
implementation of NNBMIC [13], IVT [5] and L1 [14] was
used. Parameters were set after cross validation to ensure
best results. A single run through the sequences was done
and results were further analysed.

1) Registration Based: These are 2D registration based
patch trackers. We use ESM [12], NNBMIC[13] and BMIC
[14], from the large number of template based trackers in
literature. 10 iterations were used in BMIC for convergence.
In NNBMIC 4000 i.i.d. samples were used to build the initial
warp index.

2) Online Learning Based: Two online learning based
trackers were used, IVT by David Ross [5] and L1 tracker
by Mei et al. [14]. Yang et al. in [3] analysed some of the
state of the art trackers that used online learning to update
the appearance model. We choose two of the trackers that
performed well in most of the videos in [3]. Both these
trackers used 600 particles for their particle filter search
method. Additionally L1 tracker used a template subspace
of 10 templates of the target image.

C. Result Analysis

The evaluation measures (Average Drift and Overall Suc-
cess) as described earlier in Section are calculated for
all the videos (averaged over very slow, slow and medium
speed) and reported in Table [[I] and Table

TABLE III
AVERAGE DRIFT EXPRESSED AS AN EXPECTATION VALUE

Sequence L1 IVT ESM NNBMIC || BMIC
Juice 239 || 3.27 0.42 0.51 0.42
Cereal 2.67 || 2.80 0.28 0.27 0.27
Book I 2.87 || 296 || 0.324 0.29 0.29
Book II 332 || 3.37 0.29 0.27 0.27
Book III 1.21 1.14 0.22 0.22 0.22
Mug I 33 1.34 0.27 0.27 0.27
Mug II 247 || 3.09 0.70 0.49 0.50
Mug 11T 251 || 2.28 0.25 1.22 1.29
Bus 0.68 || 2.18 0.63 0.59 0.63
Highlighting || 3.71 1.61 1.23 1.21 0.47
Letter 1.79 1.68 0.36 0.505 0.36
Newspaper 2.49 3.18 0.42 0.53 0.31

Values in each field represent average drift, averaged over the frames where
ear was less than #, pixels. The values (%) indicate convergence of
the trackers. BMIC has the higher convergence among the registration based
trackers for most of the sequences. Compared to L1 tracker IVT has higher

convergence.



Fig. 5.

An instance of in plane rotation where L1 (orange) [15] (b) fails but the three homography based trackers i.e. ESM (red) [12], BMIC (yellow)

[14] and NNBMIC (cyan) [13] (a) and IVT (green) [5] (c) performs without considerable drift

Registration based trackers in general have a low average
drift (high convergence) compared to the online learned
trackers for all the sequences. The reason being, particle filter
uses random sampling to get an initial state estimate which is
unlikely to hit the best alignment when iterations are limited,
while the Gauss Newton method of the original registration
trackers provide fast and higher convergence when they do
converge. Not only this the online learned trackers build a
model of the object (lower dimensional subspace of the initial
template) to begin with. They update the model as tracking
progresses. Newer templates are accounted for the appear-
ance of the object. Though this makes the trackers more
robust (Figure 6), this comes at the expense of convergence.
This is because newer templates (shifted, scaled from the
original) which are not exactly the same as the target image
now also form a part of the appearance model.

TABLE IV
OVERALL SUCCESS EXPRESSED AS FRACTION OF FRAMES TRACKED

Sequence L1 IVT ESM || NNBMIC || BMIC
Cereal 0.24 0.99 1 1 1
Book I 0.10 0.477 1 1 1
Book II 0.79 || 0.3018 1 1 1

Book IIT 0.42 0.72 0.34 0.32 0.32

Juice 0.16 0.98 1 0.41 1
Mug 1 0.10 0.91 1 1 1
Mug I 0.30 0.72 0.89 0.89 0.89
Mug III 0.54 0.68 1 0.59 0.65

Bus 0.57 0.94 1 0.99 0.96

Highlighting || 0.67 0.95 0.76 0.70 0.33

Letter 0.19 0.25 1 1 1

Newspaper 0.61 0.92 1 0.51 0.43

Values in each field represent the fraction of successfully tracked frames.
Within reasonable speed of object motion ESM converges most frequently
followed by NNBMIC and then BMIC with threshold #, set to 5 pixels.
Among the online learned trackers IVT converges better than L1 but less
than the registration based trackers.

Overall success evaluates a tracker’s robustness. For very
small error margins (¢, = 5) and reasonable speed of object
motion registration based trackers have a higher success rate
for most of the sequences. Among the two online learned
trackers IVT has a higher overall success rate compared to
L1. A careful look at Table [[V]and Table [l narrows down the
reason for this. Challenge tags for the sequences where L1
has lower success rate is seen. A common set of challenges
where it fails are rotation (RO) and specular reflection (SR).

L1 tracker builds a template subspace that models the
appearance of the object. This template set is updated when-
ever it encounters occlusion. With a small template set of
10 templates, the algorithm fails to model the appearance
change and hence drifts when appearance changes consider-
ably. The inability of L1 tracker to handle rotation on the
other can be attributed to the fact that with each iteration
only the translation parameters are updated in the 6DOF
state transition model described in [21]. The algorithm does
not tackle full (6DOF) affine transformation of the object
and hence the rotation parameters are not updated with each
iteration.

At moderate speeds though the registration based trackers
have a higher overall success and low average drift, at
high speed the nature changes. Overall accuracy for the
registration trackers decreases as speed increases. In Fig-
ure 6 we see error plots (E4r vs Frame number) of the
trackers on four sequences having high speed object motion.
Due to space limitations only a representative sample is
chosen, so that all challenges as listed in Table [ can be
addressed. Figure 6a. shows that with adaptive learning of
appearance change trackers can handle occlusion better than
the registration based trackers. Although all the trackers
drift substantially between frame number 200 and 300 i.e.
the point where the book holder starts occluding the object
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Fig. 6. Error (Esr) profile (E4z vs Frame Number) for each of the five trackers 1) BMIC (red), 2) NNBMIC (blue), 3) ESM (black), 4) IVT (green) and
5) L1 (magenta) is plotted for four sequences (BookIII (a), MuglI(b), Cereal(c), Bus(d)). (a) points out that IVT and L1 handles occlusion (OC) better
than the registration based trackers. Some of the frames are shown where the trackers fail due to substantial occlusion. (b) shows that L1 is incapable of
handling large change in appearance due to specular reflection (SR). The frames below show that this happens particularly when the mug is tilted. (c)
brings out the inability of L1 to track in plane rotation (RO). In (d) we see that the average drift of the registration based tracker (Gauss Newton search)
is lower compared to the particle filter based trackers (IVT and L1) within the operating range of 5 pixels.
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Two different state of the art trackers i) IVT [5](-) and ii) L1 Tracker (- -) [15] are tested on the book sequence (bookI) under normal light. The

video is recorded at five different speeds (SP), tracking results on all of the speeds are shown. Absolute error is plotted against the frame number. Here

L1 doesn’t converge back once it drifts whereas IVT does converges.

(Images shown below the graph), IVT and L1 recover and
track for the rest of the sequence. From Table [[V| we can see
that IVT handles occlusion in the best way possible among
the trackers studied. Its overall success is higher even in slow
object motion for this challenge (BookIIl and Highlight).
Figure 6b. validates the point that L1 fails to track when
appearance of the object (mug) changes considerably. In this
case, because of specular reflection (SR) on the mug (Images
shown below the graph). Figure 6¢. shows another instance
of the L1 tracker failing to handle rotation. Finally Figure
6d. brings out the fact that the registration trackers with a
Gauss Newton search step do operate with a low average
drift when they converge.

Study of object speed (SP) variation is shown in Figure 7.
Only the online learned trackers are used in this study. From
the graphs of Figure 6. it is clearly established that these
trackers are better in handling high speed object motion. So,
we do a further study to show which among the two (IVT
and L1) is better in doing so. We plot the error (E4z) profiles
(error vs frame number) for three different speeds(very slow,
medium and very fast). The behaviour of the trackers are
qualitatively same for other speeds which we don’t plot.
Both these trackers do fail initially but IVT recovers whereas
L1 fails to do so which certifies that IVT is more robust
compared to L1.

V. CONCLUSION AND DISCUSSION

We report a dataset of 100 video sequences to evaluate
trackers meant for manipulation tasks. The dataset consists of
videos recorded by both a robot and human to cover a wide
range of challenges. Complete ground truth data is made
available for all the sequences. The source codes are available
for the trackers that were used for evaluation so that results
could be replicated, or different evaluation metrics computed.
Users are encouraged to use the dataset to evaluate their
trackers.

We have provided an initial analysis of some of the
popular trackers in the literature. Some interesting results
are revealed during this analysis. It is observed that adaptive

learning model of IVT helps it to recover from drift and also
successfully handle occlusion at high speeds. However with
a particle filter search method they have a higher average
drift compared to the registration based tracker which uses
a Gauss Newton search. The susceptibility of L1 to in-plane
rotation and large appearance change is also narrowed down
using the proper categorisation of the dataset.

In future we would like to increase the set of trackers
we have analysed. Users of the dataset are also welcome to
report meaningful analysis of their trackers (Ground Truth is
made public) thus building a common benchmark that would
help the community.
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