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Abstract. Since their introduction as a means of front propagation and their first
application to edge-based segmentation in the early 90’s, level set methods have
become increasingly popular as a general framework for image segmentation. In this
paper, we present a survey of a specific class of region-based level set segmenta-
tion methods and clarify how they can all be derived from a common statistical
framework.

Region-based segmentation schemes aim at partitioning the image domain by
progressively fitting statistical models to the intensity, color, texture or motion in
each of a set of regions. In contrast to edge-based schemes such as the classical
Snakes, region-based methods tend to be less sensitive to noise. For typical images,
the respective cost functionals tend to have less local minima which makes them
particularly well-suited for local optimization methods such as the level set method.

We detail a general statistical formulation for level set segmentation. Subse-
quently, we clarify how the integration of various low level criteria leads to a set of
cost functionals and point out relations between the different segmentation schemes.
In experimental results, we demonstrate how the level set function is driven to
partition the image plane into domains of coherent color, texture, dynamic texture
or motion. Moreover, the Bayesian formulation allows to introduce prior shape
knowledge into the level set method. We briefly review a number of advances in
this domain.

Keywords: Image segmentation, level set methods, Bayesian inference, color, tex-
ture, motion

1. Introduction

The goal of image segmentation is to partition the image plane into
meaningful areas, where meaningful typically refers to a separation of
areas corresponding to different objects in the observed scene from the
area corresponding to the background.

A large variety of segmentation algorithms have been proposed over
the last few decades. While earlier approaches were often based on a
set of rather heuristic processing steps (cf. [69]), optimization methods

© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

IJCV.tex; 19/09/2005; 19:10; p.1



2

have become established as more principled and transparent methods:
Segmentations of a given image are obtained by minimizing appropri-
ate cost functionals. Among optimization methods, one can distinguish
between spatially discrete and spatially continuous representations.

In spatially discrete approaches, the pixels of the image are usu-
ally considered as the nodes of a graph, and the aim of segmentation
is to find cuts of this graph which have a minimal cost. Optimiza-
tion algorithms for these problems include greedy approaches such
as the Iterated Conditional Modes (ICM) [2] and continuation meth-
ods such as Simulated Annealing [35] or Graduated Non-convezity [5].
Specific classes of graph cut approaches gained in popularity with the
re-discovery of efficient global optimization methods, which are based
on concepts of dynamic programming [6], on spectral methods [82, 56]
or on semidefinite programming techniques [45].

In spatially continuous approaches, the segmentation of the image
plane Q C IR? is considered as a problem of infinite-dimensional op-
timization. Using variational methods, one computes segmentations of
a given image I : 2 — IR by evolving contours in the direction of the
negative energy gradient using appropriate partial differential equations
(pdes). Such pde-based segmentation methods became popular with the
seminal paper on Snakes by Kass et al. [44]. In this paper, the contour
is implemented by an explicit (parametric) curve C : [0,1] — € which
is evolved by locally minimizing the functional

E(C) = —/|VI(C)\2ds + 1/1/]6’8|2ds n Vg/\CSS\st, (1)

where Cs and Cy4 denote the first and second derivative with respect to
the curve parameter s. The first term in (1) is the external energy which
accounts for the image information, in the sense that the minimizing
contour will favor locations of large image gradient. The last two terms
— weighted by nonnegative parameters v and v5 — can be interpreted as
an internal energy of the contour, measuring the length of the contour
and its stiffness or rigidity.

The Snakes approach had an enormous impact in the segmenta-
tion community (with over 3000 citations to date). Yet, it suffers from
several drawbacks:

1. The implementation of contour evolutions based on an explicit pa-
rameterization requires a delicate regriding (or reparameterization)
process to avoid self-intersection and overlap of control or marker
points.

! From a survey of a number of related publications and from our personal
experience, it appears that the rigidity term is not particularly important, such
that one commonly sets vo = 0.
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2. The explicit representation by default does not allow the evolving
contour to undergo topological changes such that the segmentation
of several objects or multiply-connected objects is not straight-
forward.?

3. The segmentations obtained by a local optimization method are
bound to depend on the initialization. The Snake algorithm is
known to be quite sensitive to the initialization. For many realistic
images, the segmentation algorithm tends to get stuck in undesired
local minima — in particular in the presence of noise.

4. The Snakes approach lacks a meaningful probabilistic interpreta-
tion. Extensions to other segmentation criteria — such as color,
texture or motion — are not straight-forward.

In the present paper, we will review recent developments in the
segmentation community which aim at resolving the above problems.
We will review the level set method for front propagation as a means
to handle topological changes of evolving interfaces and to remove the
issues of contour parameterization and control point regriding. Among
the level set methods, we will focus on statistical region-based methods,
where the contour is not evolved by fitting to local edge information (as
in the Snakes) but rather by fitting statistical models to intensity, color,
texture or motion within each of the separated regions. The respective
cost functionals tend to have less local minima for most realistic images.
As a consequence, the segmentation schemes are far less sensitive to
noise and to varying initialization.

The outline of the paper is as follows: In Section 2, we will review
the general idea of level set based boundary propagation and its first
applications to image segmentation. In Section 3, we will then review
a probabilistic formulation of region-based segmentation. In particular,
we will make very explicit what are the assumptions underlying the
derivation of appropriate cost functionals. In the subsequent sections,
we then detail how to adapt the probabilistic level set framework to
different segmentation criteria: In Section 4, we present probabilistic
models which drive the segmentation process to group regions of ho-
mogeneous intensity, color or texture. In Section 5, we briefly present
extensions of this framework to Diffusion Tensor Images. In Section 6,
we discuss a further extension which allows to exploit spatio-temporal
dynamics to drive a segmentation process, given an entire sequence of
images. In particular, this approach allows to separate textures which

2 Tt should be pointed out that based on various heuristics, one can successfully in-
corporate regriding mechanisms and topological changes into explicit representations
—cf. [62, 48, 28, 25].
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have identical spatial characteristics but differ in their temporal dy-
namics. In Section 7 we detail how to integrate motion information
as a criterion for segmentation, leading to a partitioning of the image
plane into areas of piecewise parametric motion. Finally, in Section
8, we briefly discuss numerous efforts to introduce statistical shape
knowledge in level set based image segmentation in order to cope with
missing or misleading low-level information.

2. Level Set Methods for Image Segmentation

In the variational framework, a segmentation of the image plane 2 is
computed by locally minimizing an appropriate energy functional, such
as the functional (1). The key idea is to evolve the boundary C from
some initialization in direction of the negative energy gradient, which
is done by implementing the gradient descent equation:

K- 2O _pon )
ot oc
modeling an evolution along the normal n with a speed function F.3

In general, one can distinguish between explicit (parametric) and
implicit representations of contours. In explicit representations — such
as splines or polygons — a contour is defined as a mapping from an
interval to the image domain: C : [0,1] — . The propagation of an
explicit contour is typically implemented by a set of ordinary differ-
ential equations acting on the control or marker points. In order to
guarantee stability of the contour evolution (i.e. preserve well-defined
normal vectors), one needs to introduce certain regriding mechanisms to
avoid overlap of control points, for example by numerically resampling
the marker points every few iterations, by imposing in the variational
formulation a rubber-band like attraction between neighboring points
[25], or by introducing electrostatic repulsion [91]. Moreover, in order
to segment several objects or multiply connected objects, one needs
to introduce numerical tests to enable splitting and remerging of con-
tours during the evolution. Successful advances in this direction were
proposed among others by [50, 62, 48, 28].

In implicit contour representations, contours are represented as the
(zero) level line of some embedding function ¢ : Q — IR:

C={zeQ|o(x) =0} (3)

3 Most meaningful contour evolutions do not contain any tangential component
as the latter does not affect the contour, but only the parameterization.
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There are various methods to evolve implicitly represented contours.
The most popular among these is the level set method [29, 30, 65], in
which a contour is propagated by evolving a time-dependent embedding
function ¢(x,t) according to an appropriate partial differential equa-
tion. In the following, we will briefly sketch two alternative methods
to derive a level set evolution implementing the minimization of the
energy E(C).

For a contour which evolves along the normal n with a speed F' —
see equation (2) — one can derive a corresponding partial differential
equation for the embedding function ¢ in the following way. Since
d(C(t),t) = 0 at all times, the total time derivative of ¢ at locations of
the contour must vanish:

d oc  0¢ o9

7 (C(t),t):Vtﬁa—I—E:V(ﬁF‘n—i—E—O. (4)

Inserting the definition of the normal n = %, we get the evolution
equation for ¢:

o¢

= —IVgIF. 5)
By derivation, this equation only specifies the evolution of ¢ (and the
values of the speed function F') at the location of the contour. For a
numerical implementation one needs to extend the right-hand side of
(5) to the image domain away from the contour.

Alternatively to the above derivation, one can obtain a level set equa-
tion from a variational formulation (cf. [98, 12]): Rather than deriving
an appropriate partial differential equation for ¢ which implements the
contour evolution equation (2), one can embed a variational principle
E(C) defined on the space of contours by a variational principle E(¢)
defined on the space of level set functions:

EC) — E(9)

Subsequently, one can derive the Euler-Lagrange equation which min-
imizes E(¢):
0¢ 9E(9)
=== (6)
ot (0]

In both cases, the embedding is not uniquely defined. Depending on the
chosen embedding, one can obtain slightly different evolution equations
for ¢(z,t).

The first applications of this level set formalism for the purpose of
image segmentation were proposed in [10, 58, 57]. Indepdently, Caselles
et al. [11] and Kichenassamy et al. [46] proposed a level set formulation
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for the Snake energy (1) given by:
Vo

¢ : Vo :

= Voldiv (o)) = a(nIVeldiv (55 ) + Va(n)- Vi, (7
where the gradient |VI| in functional (1) was replaced by a more general
edge function g(I). This approach is known as Geodesic Active Con-
tours, because the underlying energy can be interpreted as the length
of a contour in a Riemannian space with a metric induced by the image
intensity. See [11, 46] for details.

Local optimization methods such as the Snakes have been heavily
criticized because the computed segmentations depend on the initial-
ization and because algorithms are easily trapped in undesired local
minima for many realistic images. In particular in the presence of
noise, numerous local minima of the cost functional (1) are created by
local maxima of the image gradient. To overcome these local minima
and to drive the contour toward the boundaries of objects of interest,
researchers have introduced an additional balloon force [16] which leads
to either a shrinking or an expansion of contours. Unfortunately this
requires prior knowledge about whether the object of interest is inside
or outside the initial contour. Moreover, the final segmentation will be
biased toward smaller or larger segmentations.

In the following, we will review a probabilistic formulation of the
segmentation problem which leads to region-based functionals rather
than edge-based functionals such as the Snakes. Moreover, we will pro-
vide numerous experiments which demonstrate that such probabilistic
region-based segmentation schemes do not suffer from the above draw-
backs. While optimization is still done in a local manner, the respective
functionals tend to have few local minima and segmentation results
tend to be very robust to noise and varying initialization.

3. Statistical Formulation of Region-Based Segmentation

3.1. IMAGE SEGMENTATION AS BAYESIAN INFERENCE

Statistical approaches to image segmentation have a long tradition,
they can be traced back to models of magnetism in physics, such as
the Ising model [41], pioneering works in the field of image processing
include spatially discrete formulations such as those of Geman and
Geman [35] and Besag [2], and spatially continuous formulations such
as the ones of Mumford and Shah [63] and Zhu and Yuille [100].

The probabilistic formulation of the segmentation problem presented
in the following extends the statistical approaches pioneered in [49, 100,
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66, 87]. In particular, this extension allows the probabilistic framework
to be applied to segmentation criteria such as texture and motion,
which will be detailed in subsequent sections. In [49], a segmentation
functional is obtained from a Minimum Description Length (MDL)
criterion. The link with the Mumford-Shah functional and the equiva-
lence to Bayesian maximum a posteriori (MAP) estimation is provided
in [100]. Following [66], an optimal partition P(2) of the image plane
Q (i.e. a partition of the image plane into pairwise disjoint regions) can
be computed by maximizing the a posteriori probability p(P ()| I) for
a given image I.* The Bayes rule permits to express this conditional
probability as

p(P() 1) o p(I'|P(2)) p(P(£2)), (8)

thereby separating image-based cues (first term) from geometric prop-
erties of the partition (second term). The Bayesian framework has
become increasingly popular to tackle many ill-posed problems in com-
puter vision. Firstly the conditional probability p(I | P(€2)) of an obser-
vation given a model state is often easier to model than the posterior
distribution, it typically follows from a generative model of the image
formation process. Secondly, the term p(P(€2)) in (8) allows to intro-
duce prior knowledge stating which interpretations of the data are a
priort more or less likely. Wherever available, such a prior: knowledge
may help to cope with missing low-level information.

One can distinguish between generic priors and object specific priors.
Object specific priors can be computed from a set of sample segmen-
tations of an object of interest. In Section 8, we will briefly review a
number of recent advances regarding the incorporation of statistically
learnt priors into the level set framework.

In this section, we will focus on generic (often called geometric)
priors. The most commonly used regularization constraint is a prior
which favors a short length C of the partition boundary:

p(P(Q) x el v >o0. (9)

Higher-order constraints may be of interest for specific applications
such as the segmentation of thin elongated structures [71, 64].

To further specify the image term p(I|P(2)) in (8), we make the
following hypotheses. Following [66], we assume the image partition to
be composed of N regions without correlation between the labellings.
This gives the simplified expression:

N

p(I|P(Q) = p(I[{Q,....Qn}) = [ p(T| ), (10)
i=1

4 In the following, I can refer to a single image or to an entire image sequence.
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where p(I | ;) denotes the probability of observing an image I when €;
is a region of interest. Let us assume that regions of interest are char-
acterized by a given feature f(x) associated with each image location.
This feature may be a scalar quantity (such as the image intensity), a
vector quantity (such as color or the spatio-temporal image gradient),
or a tensor (such as a structure tensor or a diffusion tensor).

For the features presented in this paper, we make the assumption
that the values of f at different locations of the same region can be
modeled as independent and identically distributed realizations of the
same random process.® Let p; be the probability density function (pdf)
of this random process in ;. Expression (10) then reads

o1 1P@) =TT T ()™ (1)

i=1x€8;

where the bin volume dx is introduced to guarantee the correct con-
tinuum limit. Approximation (11) is not valid in general since image
features (such as spatial gradients) are computed on a neighborhood
structure and may therefore exhibit local spatial correlations. More
importantly, one should expect to find spatial correlations of features
when modeling textured regions. However, one can capture certain spa-
tial correlations in the above model by computing appropriate features
such as the structure tensor.

Maximization of the a posteriori probability (8) is equivalent to
minimizing its negative logarithm. Integrating the regularity constraint
(9) and the region-based image term (11), we end up with following
energy:

E({,....0n)) = Z/logp, Ndz+vicl.  (12)

In the context of intensity segmentation (i.e. f = I), this energy is the
basis of several works [49, 100, 80, 66]. The region statistics are typically
computed interlaced with the estimation of the boundary C [100], yet
one can also compute appropriate intensity histograms beforehand [66].
In this paper, we will focus on the case that distributions and seg-
mentation are computed jointly. Distributions can be either modeled
as parametric or non-parametric ones. Upon insertion of parametric
representations for p; with parameters 6;, the energy (12) takes on the

5 In Section 7, we will consider a generalization in which the underlying random
processes are assumed to be space-varying. The distributions p; in (11) then contain
an explicit space dependency p;(f(z),x) which allows to model spatially varying
statistical distributions of features.
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B({.0}im1.8) = = Y [logp(f(a) [0 do+vicl.  (13)
i
For particular choices of parametric densities, the optimal parame-
ters can be expressed as functions of the corresponding domains and
only the regions remain as unknowns of the new energy

B({9:}:) = min B({S, 0:):) /logp )16 do+vcl, (14)

such that
0; = argngn —/10gp(f(:r)|0) dx | . (15)
Q;

In this case, the optimal model parameters éz typically depend on
the regions ;. As pointed out by several authors [85, 81, 1], this
region-dependence can be taken into account in the computation of
accurate shape gradients. Exact shape gradients can also be applied
with non-parametric density estimation techniques like the Parzen win-
dow method [47, 73, 40]. In [75], it is shown that no additional terms
arise in the shape gradient if the distributions p; are assumed to be
Gaussian. And in [39], the authors point out that the additional terms
are negligible in the case of Laplacian distributions.® We will therefore
neglect higher-order terms in the computation of shape gradients and
simply perform an alternating minimization of the energy (13) with
respect to region boundaries and region models.

3.2. Two-PHASE LEVEL SET FORMULATION

Let us for the moment assume that the solution to (13) is in the class of
binary (two-phase) segmentations, i.e. a partitioning of the domain 2
such that each pixel is ascribed to one of two possible phases. Extending
the approach of Chan and Vese [12], one can implement the functional
(13) by:

E(6.{6:})= /H¢1ogp< 02)~(1-H) log p(162)+v [V H 6| d, (16)

where H¢ denotes the heaviside step function defined as:

B 1 if¢p>0
Ho = H(p) = . (17)

0 else

® Tor a recent study of various noise models on level set segmentation see [61].
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The first two terms in (16) model the areas inside and outside the
contour while the last term represents the length of the separating
interface.

Minimization is done by alternating a gradient descent for the em-
bedding function ¢ (for fixed parameters 6;):

95 _ s (oete () 1 10g VD100
5t =00 (v (1) + s D) 18)

with an update of the parameters 6; according to (15). In practice, the
delta function ¢ is implemented by a smooth approximation — cf. [12].

3.3. MULTIPHASE LEVEL SET FORMULATION

Several authors have proposed level set formulations which can handle
a larger number of phases [98, 96, 66, 8]. These methods use a separate
level set function for each region. This clearly increases the computa-
tional complexity. Moreover, numerical implementations are somewhat
involved since the formation of overlap and vacuum regions needs to be
suppressed. By interpreting these overlap regions as separate regions,
Chan and Vese derived an elegant formulation which only requires
log,(n) level set functions to model n regions. Each of the n regions is
characterized by the various level set functions being either positive or
negative. See [93] for details.

3.4. SCALAR, VECTOR AND TENSOR-VALUED IMAGES

3.4.1. Scalar images
Let us consider a scalar image made up of two regions, the intensities
of which are drawn from a Gaussian distribution:

[y
1 _ U—ny)

p(I | Miagg) = € 20"2 5 i = {172} (19)
2no

This distribution can be injected in the general bi-partitioning energy
(16). Given a partition of the image plane according to a level set
function ¢, optimal estimates for the mean u; and the variance o; can
be computed analytically:

{m = & [H($)I(z)dx of = L [H($)(I(z) — m)*da,
p2 = o [(1= H(p))I(z)dz, o = o [(1 = H($))(I(x) — p2)*da.

where a1 = [H(¢)dx and ag = [(1—H (¢))dx are the areas of the inside
and outside region. For fixed model parameters, the gradient descent
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equation for the level set function ¢ — see (18) — reads

o9 (V¢ (I—p2)*  (I—)’ o1
i 5(o) (leV <|V¢]) + 202 207 + log 02> . (20)

More details on this derivation when the parameters (u;, 0;) are taken
as functions of ; can be found in [76]. We end up with an algorithm
that alternates the estimation of the empirical intensity means and
variances inside each region and the level set evolution described by
equation (20). Regarding the complexity, each iteration of the level
set evolution is applied only inside a narrow band around the zero-
crossing because the Dirac function is equal to zero at other locations.
More interesting is that the statistical parameters can also be updated
with a similar complexity: new updates are functions of their previous
values and of the pixels where the sign of ¢ changes. Assuming the
evolving interface to visit each pixel only once, the total complexity is
thus linear in the size of the image.

3.4.2. Vector-valued images

A direct extension to vector-valued images is to use multivariate Gaus-
sian densities as region models. Region pdfs are then parameterized
by a vector mean and a covariance matrix. Similarly to the scalar
case, the optimal statistical parameters are their empirical estimates
in the corresponding region. The 2-phase segmentation of an image [
of any dimension can thus be obtained through the following level set
evolution (cf. equation 18):

0 (Ve L pU@) . 5))
at‘(“‘b)( d (\wr)“gp(f(x)ml,z%))’ @)

with:

o 1
IU”L_|Q

ZS{I(:U) dx,

1

(22)
= ‘Qi’S{(I(x) ) I(2) — ) Tdz for i=1,2.

Like in the scalar case, the estimation of the statistical parameters can
be optimized to avoid a full computation over the whole image domain
at each iteration. Here, it becomes a bit more technical since cross-
components products appear in the covariance matrices but the final
complexity is identical to the one obtained in the scalar case [72].
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3.4.3. Tensor-valued images

In order to apply the above statistical level set framework to the seg-
mentation of tensor images, one needs to define appropriate distances
on the space of tensors. Several approaches have been proposed to define
distances from an information theoretic point of view by interpreting
the tensors as parameterizations of 0-mean multivariate normal laws.
The definition of a distance between tensors is then translated to one
of a dissimilarity measure between probability distributions.

The symmetric KL divergence

Wang and Vemuri [94] applied the symmetrized Kulback-Leibler (SKL)
divergence — also called J-divergence — to define the region term of the
front evolution. For multivariate 0-mean normal laws with covariance
matrices J; and J, the SKL divergence is given by:

1
D(J1,J2)skL = 2\/trace [Jl_lJQ + JQ_IJJ —2n, (23)

where n is the dimension of the tensors. This measure has the advantage
of being affine invariant and closed form expressions are available for
the mean tensors which is particularly interesting to estimate region
statistics. Region confidence were also incorporated in [77]. These works
present several promising segmentation experiments on 2D [94] and 3D
[77] real diffusion tensor images.

The Rao Distance

Another distance has been proposed in [52, 51] with the same idea
of considering tensors as covariance matrices of multivariate normal
distributions. Following [84], a Riemannian metric is introduced and
the geodesic distance between two members of this family is given by

(24)

where \; denote the eigenvalues of the matrix J; Y QJQJI_ 2 The same

metric was proposed in [68] from a different viewpoint. It verifies the
basic properties of a distance (positivity, symmetry and triangle in-
equality) and it is invariant to inversions: D(Jy, Jo) = D(J ', J5 ).
The above metrics permit to define statistics on sets of SPD matrices
which can be used to define the region term of the segmentation. It was
also shown in [51] that the (asymmetric) Kullback Leibler divergence
(23) is a Taylor approximation of the geodesic distance (24).
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Figure 1. Curve evolution for the segmentation of a gray-level image using Gaussian
intensity distributions to approximate region information.

In the following sections, we will exploit the statistical level set
framework introduced above to construct segmentation schemes for
color, texture, dynamic texture and motion. To this end, we will con-
sider different choices regarding the features f — namely intensity val-
ues, color values, spatial structure tensors, spatio-temporal image gra-
dients, or features modeling the local spatio-temporal dynamics — and
respective sets of model parameters #;, modeling color or texture dis-
tributions or parametric motion in the separated regions. Moreover, we
will consider different choices for the distributions p; of these model
parameters.

4. Intensity, Color and Texture

In the previous section, we considered Gaussian approximations for
scalar and vector-values images. These models can be used to segment
gray, color and texture images [12, 75, 73]. In the following, these
models are applied to the segmentation of natural images. Curve evo-
lutions are presented to illustrate the gradient descent driving to the
segmentation.

4.1. GRAY & COLOR IMAGES

In Figure 1, we present the curve evolution obtained with the gray-
value level set scheme of Section 3.4.1. The curve is initialized with
a set of small circles and it successfully evolves toward the expected
segmentation. Other initializations may be considered but using tiny
circles provides a fast convergence speed and helps to detect small
parts and holes. Note that changes of topology during the evolution
are naturally handled by the implicit formulation.

We previously argued that the region-based formulation exhibits less
local minima than approaches which solely rely on gradient information
along the curve. To support this claim, we plotted in Figure 2 the
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Figure 2. Comparison of edge- and region-based segmentation methods in 1D. For
a 1D intensity profile of the coin image (taken along the line indicated in white),
we computed the energy associated with a split of the interval at different locations.
While the region-based energy exhibits a broad basin of attraction around a single
minimum located at the boundary of the coin (thick black line), the energy of
the edge-based approach is characterized by numerous local minima (red line). A
gradient descent on the latter energy would not lead to the desired segmentation.

Q00000000

VW W W e O 0 W N 0 Y 0 W 0. W e W |

Figure 3. Binary segmentation of a color image using multivariate Gaussian distri-
butions as region descriptor (initialization and final segmentation) and multiphase
color segmentation obtained with the algorithm developed in [8].

empirical energy for the segmentation of a 1D slice of an image. In
contrast to the edge-based energy, the region-based energy (thick black
line) shows a single minimum corresponding to the boundary of the
coin.

The region-based approach can directly be extended to color images
by applying the vector-valued formulation of Section 3.4.2. The only
point to be careful about is the choice of color space for the multivariate
Gaussian model to make sense. The RGB space is definitely not the best
one since, as can be seen from the MacAdam ellipse, the perception
of color difference is nonlinear in this space. The CIE-lab space has
been designed to approximate this nonlinearity by trying to mimic the
logarithmic response of the eye. Figure 3 shows a two-phase and a
multiphase example of vector-valued segmentation obtained on natural
color images using this color space (the algorithm proposed in [8] was
used for the multiphase implementation).
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Figure /4. Left: Zebra image and color representation of its structure tensor (the
components of the structure tensors are used as RGB components). Right: Intensity
and structure tensor of the Zebra image after coupled nonlinear diffusion.

4.2. TEXTURE

In gray and color image segmentation, pixel values are assumed to be
spatially independent. This is not the case for textured images which
are characterized by local correlations of pixel values. In the following,
we will review a set of basic features which allow to capture these local
correlations. More sophisticated features are conceivable as well [53].

4.2.1. The nonlinear structure tensor as texture feature

While texture analysis can rely on texture samples to learn accurate
models [38, 26, 59, 83, 99], unsupervised image segmentation should
learn these parameters on-line. Since high-order texture models intro-
duce too many unknown parameter to be estimated in an unsupervised
approach, more compact features are usually favored. Bigiin et al. in
[4] addressed this problem with the introduction of the structure tensor
(also called second order moment matrix) which yields three different
feature channels per scale. It has mainly been used to determine the
intrinsic dimensionality of images in [3, 34] by providing a continuous
measure to detect critical points like edges or corners. Yet, the structure
tensor does not only give a scalar value reflecting the probability of an
edge but it also includes the texture orientation. All these properties
make this matrix a good descriptor for textures. The structure tensor
[34, 4, 70, 55, 36] is given by the matrix of partial derivatives smoothed
by a Gaussian kernel K, with standard deviation o:

(25)

2
JU:KU*(VIVIT): < KU*I$1 KU*IzlLrg).

Ko +1y 1, Kgx* I%Q

For color images, all channels can be taken into account by summing
the tensors of the individual channels [97].

Despite its good properties for texture discrimination, the structure
tensor is invariant to intensity changes. In order to segment images
with and without texture, a feature vector including the square root of
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Figure 5. Curve evolution for the segmentation of a zebra image using the nonlinear
structure tensor and the smoothed intensity (here, a rectangle is used as initialization
but small circles also lead to a similar result).

the structure tensor and the intensity was defined in [73]:

T
12 12 21, ) (26)

flz) = (1, NI VIV

The major problem of the classic structure tensor is the disloca-
tion of edges due to the smoothing with Gaussian kernels as shown
in figure 4. To address this problem, Weickert and Brox proposed in
[95] to replace the Gaussian smoothing by nonlinear diffusion, apply-
ing nonlinear matrix-valued diffusion schemes introduced in [89, 90].
Applied on the feature vector f, this nonlinear diffusion couples all
channels by a joint diffusivity, the information of all channels is used
to decide whether an edge is worth to be enhanced or not, leading to
the simplification of the data, the removal of outliers, and the closing
of structures. Figure 4 shows the features obtained on the zebra image.

The feature vectors resulting from the nonlinear diffusion form a
vector-valued image which can be segmented using the vector-valued
formulation presented in Section 3.4.2. Figure 5 shows a segmentation
of the zebra image obtained with this method. For results on a wider
range of texture images, we refer to [73].

The structure tensor is undoubtedly pertinent for texture discrim-
ination but the approach developed so far still allows for further im-
provements. We shortly mention two recent extensions of this work in
the following two paragraphs.

4.2.2. Scale introduction via TV flow

With the nonlinear structure tensor, one mainly considers a single scale
for the whole image. Yet textures often differ from one another with
respect to their intrinsic scale. In order to account for varying scale,
a straightforward extension is to combine texture features at different
scales. While this modification may integrate information at different
scales, it also increases dramatically the number of channels and redun-
dant information is introduced, making the second phase — the image
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Figure 6. Segmentation results obtained by running a level set segmentation process
on the 5-dimensional feature space given by the features of the structure tensor,
the image intensity and a local scale measure computed from the speed of a total
variation flow. Images are courtesy of Brox and Weickert [9].

Figure 7. Segmentation of a textured image with different dissimilarity measures be-
tween tensors. The left result was obtained using the Frobenius norm while the right
segmentation is based on the Rao distance (see text for details). Images courtesy of
de Lufs Garcfa and Deriche [27].

partitioning — more difficult. In order to work with a reduced feature
space, Brox and Weickert [9] proposed an elegant and efficient extension
of the above framework, which combines similar texture features as
above with a local scale measure. By exploiting the linear contrast
reduction property of the TV (total variation) flow:

A _ 4oy (V_f>

ot VIV +é (27)

ft=0)=1
the authors are able to extract a local scale measure computed from
the speed of the diffusion process. Upon combining this scale with the
intensity and orientation features in (26), one can perform segmentation

in a 5-dimensional feature space. Figure 6 shows three representative
segmentation results.
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Figure 8. Segmentation of corpus callosum from a diffusion tensor image using the
geodesic distance in the manifold of multivariate normal distributions. This 3D
segmentation was obtained in [51] using the level set formulation presented in Section
2. Being implicit, the level set representation allows a straightforward extension to
higher dimensions.

4.2.3. Metric between tensors

While the previous approaches construct a feature vector from the com-
ponents of the structure tensor and apply a vector-valued segmentation
scheme, on can directly define metrics on the space of structure tensors
[27], for example the metrics defined in Section 3.4.3. The comparison
in Figure 7 shows that appropriate tensor distances lead to drastic
improvements in the segmentation.

5. Diffusion tensor images

The problem of segmenting tensor-valued data also appears in medical
imaging with the relatively new modality of diffusion tensor magnetic
resonance images. In these images, a diffusion tensor is measured at
each voxel. This tensor captures the local motion of water molecules
as approximated by a Gaussian law. The metric between tensors de-
scribed in Section 3.4.3 can be used to segment these images. Figure 8
shows a segmentation of the corpus callosum obtained with the geodesic
distance.”

" This result was obtained in [51] with data provided by J. F. Mangin and J. B.
Poline.
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6. Dynamic Texture

The texture segmentation framework detailed earlier is based on as-
signing local texture signatures to each image location. The subsequent
integration into a level set framework aims at optimally grouping re-
gions of similar signatures while imposing a length constraint on the
separating boundary.

Given a video sequence of temporally varying textures — such as
smoke on water — one can extend this concept to the space-time domain
and group regions of similar spatio-temporal statistics. The first work
addressing this problem was proposed in [32] where the authors made
use of recent developments in the modeling of dynamic textures [31].
Due to the scope of this paper, we will merely review the key ideas.

Dynamic textures are models of temporally varying textures which
assume the image sequence to be generated by a second-order station-
ary process. Experiments have demonstrated that numerous realistic
image sequences, such as water waves, fluttering foliage, smoke and
steam can be well synthesized by such Gauss-Markov processes [32].

More specifically, it is assumed that the temporally varying pixel
intensities {I;(t)}i=1.m can be approximated by a model {y;(t)}i=1.m
which is driven by a random process r(t) € IR™ as follows [31]:

r(t+1) = Ar(t) +/Qu(t); r(0) =rg

(28)
y(t) = Cr(t) + VR w(t)

Here y(t) € IR™ represents the vector of intensities of all m pixels at time
t, v(t) € IR" and w(t) € IR™ are white zero-mean Gaussian processes,
Ae R C e IR™™ are the model parameters, and Q € R™*", R¢€
IR™*™ are the noise covariance matrices. The model parameters A and
C in (28) can be estimated from an image sequence I(z,t) [31].

As suggested in [32], we can associate with each image location x €
Q) a local signature {(z) characterizing the spatio-temporal dynamics
at this location based on the model parameters A and C' computed
in a small spatial window. A meaningful signature cannot be directly
defined on these model parameters because — as can be seen from the
definition of (28) — there exists an entire equivalence class of model
parameters which lead to the same dynamic texture®. Instead we define
a local signature &(x) by:

£(x) = (cosbi(z),...,cosb,(x)), (29)
8 Substituting in (28) A with TAT ™!, C with CT™!, Q with TQT ™", and choos-

ing the initial condition 7T'r(0), where T' € GL(n) is any invertible n x n matrix
generates the same output covariance sequence.
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Figure 9. Segmentation by texture orientation: Segmentation of two dynamic

textures which differ only in orientation but share the same dynamics and general
appearance (intensity values).

Figure 10. Segmentation by changing dynamics: The two dynamic textures are
identical in appearance, but differ in the dynamics. This particular segmentation
problem is quite difficult, even for human observers. Segmentation is obtained
exclusively on the basis of the temporal properties of the textures.

where {0;};=1.., are the subspace angles associated with the equivalence
classes of the model at location z and some reference model. More
precisely, if A and B are two measurement matrices, then {6;};—1., are
given by the principal angles [15] between range(A) and range(B). For
details on the computation of these angles, we refer to [32].

Assuming that the spatio-temporal signatures defined in (29) corre-
spond to two Gaussian distributions, one can apply the vector-valued
segmentation scheme introduced in Section 3.4.2 to group areas of
similar spatio-temporal dynamics.

Due to the scope of this survey paper, we will merely show two com-
plementary results obtained by the above segmentation scheme. Figure
6 shows the separation based on spatial orientation of a moving texture.
The image data shows a water sequence for which we simply rotated
two areas by 90 degrees. By construction, intensity characteristics and
dynamics of the separated regions are identical, yet due to the different
orientation they can be separated. Figure 6 shows a segmentation result
which is complementary to the previous one. We generated a sequence
containing regions which only differ with respect to their dynamics (but
have identical spatial texture) by overlapping the ocean sequence in the
regions corresponding to the disc and square over an ocean sequence
slowed down by a factor of 2.
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7. Motion

7.1. MOTION AS A CRITERION FOR SEGMENTATION

The central question underlying the construction of segmentation meth-
ods is to identify what properties characterize objects and distinguish
them from other objects and from the background. In the previous sec-
tions, we reviewed level set methods which exploit low level properties
such as color, texture or even dynamical texture. The respective image
segmentation algorithms essentially group regions of similar low level
properties.

Many objects in our environment are characterized by the fact that
they move in a coherent manner. Figure 11, top row, shows the intensi-
ty-based segmentation of a single frame taken from an image sequence
of two cars driving down the street.? The two cars and the background
are moving in different directions. Clearly the individual cars are not
homogeneous regarding their intensity or texture. A purely intensity-
based segmentation therefore fails to separate the objects from the
background.

In the following, we will detail how the statistical segmentation
scheme presented above can be adapted to incorporate motion informa-
tion given two consecutive frames from an image sequence. Minimiza-
tion of the resulting cost functional leads to a segmentation of the scene
in terms of piecewise parametric motion.! The present formulation
was proposed in [17, 23] with an earlier (explicit contour) formulation
n [21]. Related approaches were also proposed in [60, 67]. The central
idea is that we do not precompute local motion vectors. Instead we
jointly estimate the segmentation and the motion models for each of a
set of regions by minimizing the proposed functional. In the notation
introduced in Section 3, this means that — in contrast to the texture
schemes of the previous Sections — the model parameters 6; (the motion
models of the separate regions) will not correspond to simple aggregates
of the local feature vectors f(x) (the space time gradients), but rather
they will be derived quantities. Due to the scope of this article, we
will constrain the presentation to the key ideas. For further details and
a discussion of related approaches we refer the reader to [23]. For an
extension of the proposed framework to the segmentation of space-time
volumes given an entire video sequence, we refer to [22].

% http://i21www.ira.uka.de/image_sequences/

10 Tn this paper, we are only concerned with 2D motion models. Such 2D motion
models allow in particular to separate the different depth layers of a static scene
filmed by a moving camera (cf. [22]). In terms of 3D motion, such a static scene
instead corresponds to a single motion model.
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Motion-based level set segmentation

Figure 11. Intensity versus motion segmentation. Since cars and background are
not well-defined in terms of homogeneous intensity, color or texture, unsupervised
low-level segmentation schemes based on a single frame are unable to separate ob-
jects and background (top row). By minimizing the motion competition functional
(38) with v = 1.5, one obtains a fairly accurate segmentation of the two cars and
an estimate of the motion of cars and background.

7.2. MoTtiON COMPETITION

Let I : Q x IR — IR be a gray value image sequence. Denote the
spatio-temporal image gradient of I(x,t) by

-
ol oI 8]) ' (30)

Vsl = <8x1’ dxy’ Ot
Let v : Q — IR, v(x) = (u(z),w(x),1)T be the velocity vector at a
point x in homogeneous coordinates.

Let us assume that the intensity of a moving point remains constant
throughout time.'? Expressed in differential form, this gives a rela-
tion between the spatio-temporal image gradient and the homogeneous
velocity vector, known as the optic flow constraint:

al oI = 0I dxy oI dxo

T
Ty Ty =v V3l =0. 31
dt ot  Oxp dt Oxy dt (31)
'L Since we are only concerned with two consecutive frames from a sequence, we
will drop the time coordinate in the notation of the velocity field.
12Ty allow for variation of the global illumination, one can alternatively assume
constancy of higher-order derivatives (cf. [7]).
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For the sake of segmentation, we will assume that the velocity in each
of a set of regions can be modeled by a parametric motion of the form

v(z) = S(x) - g, (32)

with a space dependent matrix S and a parameter vector ¢. In partic-
ular, this includes the case of translational motion where S is the 3 x 3
unit matrix and ¢ = (u,w, 1) the vector of constant velocity in homo-
geneous coordinates. The parametric formulation (32) also includes the
more general affine motion model with:

r1 X9 1 0 0 0 O
Sx)=[0 0 0 2y 20 1 0], and ¢=(a,b,c,de, f,1)T (33)
0 00 0 0O01

In the context of segmentation in space and time, this parametric for-
mulation can be extended to incorporate temporally varying motion
(such as acceleration and deceleration) — for details we refer to [22].
Inserting the parametric model (32) into the optic flow constraint (31)
leads to a constraint on the relation between the parameter vector ¢
and the space-time gradient V3l at a specific location:

Vsl S(z)q=0. (34)

Neglecting the case that the space-time gradient vanishes, this con-
straint states that the two vectors ¢ and S(x) " V3I(z) must be orthog-
onal. We therefore model the conditional probability to encounter a
certain gradient measurement given a velocity model as a function of
the angle a between the two vectors:

(35)

ToT 2
P(V3l|q;x) x exp (— la 5 Vsl) )

|q[? [STVsI|?

This expression is maximal if the two vectors are indeed orthogonal, it
is minimal if the two vectors are parallel. Yet it does not depend on
the length of the two vectors. Note that due to the introduction of a
spatially parametric model, this conditional probability becomes space-
dependent — this is in contrast to the space-independent conditional
probabilities considered in the Sections 4, 4.2 and 6 on color and texture
segmentation. Analogous parametric generalizations of intensity-based
level set segmentation approaches have been proposed by Vese [92]. And
corresponding extensions of the above texture segmentation schemes
are certainly conceivable.

Based on the Bayesian formulation introduced in Section 3, we
can integrate the conditional probability for a measurement given cer-
tain model parameters into a variational framework for segmentation.
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Inserting equation (35) into energy (13), we obtain the functional
B, {g:}) Ej/q||2 de +vc], (36)
Z

where, for notational simplification, we have introduced the matrix

Vsl STS VsIT
1STV3I|2

T(z) = (37)

The corresponding two-phase level set implementation — cf. equation
(16) — is given by
71 Tq

E((I17Q2a¢): 2
s |q1]

t
Ho+ !T|2 (1-Ho) +v|VHg|dz,  (38)

The first two terms in (38) enforce a homogeneity of the estimated
motion in the two phases, while the last term enforces a minimal length
of the region boundary given by the zero level set of ¢. As discussed
in 3.2, the functional (38) is optimized by alternating the estimate of
the motion models ¢; and ¢o and an update of the level set function ¢
defining the motion boundaries.

For fixed level set function ¢, i.e. fixed regions ();, minimizing this
functional with respect to the motion parameters {¢;} results in a set
of eigenvalue problems of the form:

q' Tiq
Tq

. with Ty — / T(z) dx. (39)
Q;

q; = argmin
a q

The parametric motion model ¢; for each region §2; is therefore given
by the eigenvector corresponding to the smallest eigenvalue of T;. It
is normalized, such that the third component is 1. Similar eigenvalue
problems arise in motion estimation due to normalization with respect
to the velocity magnitude (cf. [4, 43]).

Conversely, for fixed motion models g;, a gradient descent on the
energy (38) for the boundary C results an evolution equation — cf. (18)
— of the form:

o9 _ . (Vo ) )
5 = o(o) (lev <|V¢>] +ep — : (40)
where
t ¢ T T,
~log P(Vy |gisa) = T @ = W0 SN0 ()

qlqi lgi|? |STV3I|?
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Figure 12. Contour evolution obtained with functional (38) for v = 0.06, superim-
posed on one of the two input frames. The input images show the text region (right
image) of the wallpaper moving right and the remainder moving left. The moving
regions are accurately reconstructed, although the input images exhibit little in
terms of salient features. The contour evolution took 10 seconds in Matlab.

are the motion energy densities associated with the respective regions.

Note that — as in the previous sections — we have neglected in the
evolution equation (40) higher-order terms which account for the de-
pendence of the motion parameters ¢; on the level set function ¢. An
Eulerian accurate shape optimization scheme as presented for example
in [42] is the focus of ongoing research.

The two terms in the contour evolution (40) have the following intu-
itive interpretation: The first term aims at minimizing the length of the
separating motion boundary. The second term is proportional to the
difference of the energy densities e; in the regions adjoining the bound-
ary: The neighboring regions compete for the boundary in terms of their
motion energy density, thereby maximizing the motion homogeneity.
For this reason we refer to this process as Motion Competition.

7.3. EXPERIMENTAL RESULTS

All image segmentation models are based on a number of more or
less explicitly stated assumptions about the properties which define
the objects of interest. The motion competition model is based on the
assumption that objects are defined in terms of homogeneously moving
regions. It extends the Mumford-Shah functional of piecewise constant
intensity to a model of piecewise parametric motion. Despite this for-
mal similarity, the segmentations generated by the motion competition
framework are very different from those of its gray value analogue.
Figure 11, bottom row, shows the boundary evolution obtained by mini-
mizing the motion segmentation functional (38) and the corresponding
motion estimates superimposed on the first frame. In contrast to its
gray value analogue, the energy minimization simultaneously generates
a fairly accurate segmentation of the two cars and an estimate of the
motion of cars and background.
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Figure 13. Multiphase motion segmentation. Contour evolution for a multiphase
implementation of motion competition on two consecutive frames from the flower
garden sequence. A static scene filmed by a moving camera is partitioned into layers
of different depth. See [23] for details.

Initialization ~ Rotation Segment. Zoom Segment.

Figure 14. Piecewise affine motion segmentation. Segmentations obtained by mini-
mizing functional (38) with v = 8-107° for two image pairs showing a hand rotating
(top) and moving toward the camera (bottom).

Figure 12 shows segmentation the contour evolution generated by
minimizing functional (38) for two wall paper images with the text
region (right image) moving to the right and the remainder of the
image plane moving to the left. Even for human observers the differently
moving regions are difficult to detect — similar to a camouflaged lizard
moving on a similarly-textured ground. The gradient descent evolution
superimposed on one of the two frames gradually separates the two
motion regions without requiring salient features such as edges or Har-
ris corner points. Figure 13 shows results obtained with a multiphase
implementation of the motion competition functional. The static scene
filmed by a moving camera is segmented into layers of different depth.

The functional (38) allows to segment piecewise affine motion fields.
In particular, this class of motion models includes rotation and ex-
pansion/contraction. Figure 14 shows segmentations obtained for a
hand in a cluttered background rotating (in the camera plane) and
moving toward the camera. In this example the object of interest can
be extracted from a fairly complex background based exclusively on
their motion.
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8. Statistical Shape Priors for Level Set Segmentation

In the previous sections, we reviewed a number of approaches which
allow to drive the level set segmentation based on various low-level
assumptions regarding the intensity, color, texture or motion of objects
and background. In numerous real-world applications, these approaches
may fail to generate the desired segmentations, because the respective
assumptions about the low-level properties are either insufficient or
even violated. In certain medical images for example, object and back-
ground may exhibit very similar intensity characteristics. Moreover,
the observed intensity or color of a 3D object may not be uniform
due to directional lighting and cast shadows. And finally, misleading
low-level information may arise due to noise or partial occlusion of the
objects of interest. While the generic constraint (9) on the length of
the segmenting boundary helps to cope with a certain amount of noise,
it does introduce a bias toward contours of smaller length, thereby
rounding corners or suppressing small scale details.

Beyond simple geometric regularity, the Bayesian formulation of
the image segmentation problem allows to introduce higher-level prior
knowledge about the shape of expected objects. This idea was pioneered
by Grenander and coworkers [37]. In the following, we will briefly list
some of the key contributions in the field of shape priors for level set
segmentation.

The first application of shape priors for level set segmentation was
developed by Leventon et al. [54] who propose to perform principal
component analysis on a set of signed distance function embedding a
set of sample shapes. The distance functions are sampled on a regular
grid to obtain a vector representation. A term is added to the contour
evolution equation to drive the embedding function to the most likely
shape of the estimated distribution. Tsai et al. [86, 88] proposed a
very efficient implementation of shape-driven level set segmentation by
directly optimizing in the linear subspace spanned by the principal com-
ponents. A detailed analysis of various shape distances and statistical
shape analysis in the level set formulation can be found in [13]. Figure
15 shows the effect of variation along the first principal component on
the embedding function and the implicitly represented contour.

The use of principal component analysis to model level set based
shape distributions has two limitations: Firstly, the space of signed
distance functions is not a linear space, i.e. arbitrary linear combi-
nations of signed distance functions will in general not correspond
to a signed distance function. Secondly, while the first few principal
components capture (by definition) the most variation on the space of
embedding functions, they will not necessarily capture the variation on
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Figure 15. Visualization of principal component analysis on the level set function.
The images show the mean level set function (obtained on a set of airplane shapes),
and its deformation along the first eigenmode. Image data courtesy of [88].

the space of the embedded contours. As a consequence, one may need to
include a larger number of eigenmodes (compared to PCA on explicit
contours) in order to capture certain details of the modeled shape.
Nevertheless, we found the PCA representation to work fairly well in
practical applications. An alternative linear shape representation on
the basis of harmonic embedding has been studied in [33]. Chen et al.
[14] proposed to impose shape information on the zero crossing (rather
than on the level set function). Rousson et al. proposed variational
integrations of the shape prior [78, 79] based on the assumption of a
Gaussian distribution. The use of nonparametric density estimation to
model larger classes of level set based shape distributions was developed
in [20, 74]. This approach allows to model distributions of shape which
are not Gaussian — such as the various views of a 3D object [19] or
the silhouettes of a walking person [20]. Moreover, in the limit of large
sample size, the nonparametric estimator constrains the distribution
to the vicinity of the training shapes, such that the distribution favors
shapes which are signed distance functions. A method to simultane-
ously impose shape information about several objects into level set
based segmentation and to induce a recognition-driven segmentation
through the competition of shape priors was developed in [24]. Dy-
namical statistical shape priors for implicit shape representations were
proposed in [18]. The latter approach takes into account that in the
context of image sequence segmentation, the probability of a contour
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Figure 16. Sample segmentations using statistical shape priors. From left to right,
the shape priors are static (a single shape), uniformly distributed in the PCA
subspace, automatically selected from multiple shape instances [24] and dynamical
[18].

will depend on which contours have been observed in previous frames.
The respective shape models capture the temporal correlations among
silhouettes which characterize many deforming shapes.

In Figure 16, we show a selection of segmentations obtained with
some of the above methods. For further details we refer the reader to
the respective publications.

9. Conclusion

We presented a survey of the class of region-based level set segmenta-
tion methods and detailed how they can be derived from a common
statistical framework. The common goal of these approaches is to iden-
tify boundaries such that the color, texture, dynamic texture or motion
in each of the separated regions is optimally approximated by simple
statistical models.

Given a set of features or measurements f(x) at each image location,
minimization of the respective cost functionals leads to an estimation
of a boundary C and a set of parameter vectors {6;} associated with
each of the separated regions. Depending on the chosen segmentation
criterion, the features f may be the pixel colors, the local structure
tensors or the spatio-temporal intensity gradients, while the parameter
vectors {6;} model distributions of intensity, color, texture or motion.
The model parameters {6;} can be either simple aggregates of the
features (as in the cases of color, texture or dynamic texture presented
here) or derived quantities — as in the case of motion which is computed
from the aggregated space-time gradients. The boundary C' C € is
implemented as the zero-crossing of an embedding function ¢ : Q — IR.
Energy minimization leads to a gradient descent evolution of the em-
bedding function interlaced with an update of the parameter vectors
{6;} modeling the statistical distributions in the separated regions.
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In numerous experimental results, we demonstrate that this class of
level set methods allows to partition images into domains of coherent
color, texture, dynamic texture or motion. In particular, we show that
—in contrast to the traditional edge-based segmentation schemes, these
region-based approaches are quite robust to noise and to varying initial-
ization, making them well-suited for local optimization methods such
as the level set method. We ended by reviewing some recent advances
regarding the introduction of statistical shape knowledge into level set
based segmentation schemes.

Acknowledgments

We thank Christoph Schnérr for helpful comments on the manuscript.
We also thank Zhizhou Wang for fruitful discussions, and Thomas
Brox, Rodrigo de Luis Garcia, Christophe Lenglet, Gianfranco Doretto,
Paolo Favaro, Stefano Soatto and Anthony Yezzi for providing image
examples of their methods.

References

1. G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson. Image segmenta-
tion using active contours: Calculus of variations or shape gradients? SIAM
Journal of Applied Mathematics, 63(6):2128-2154, 2003.

2. J. Besag. On the statistical analysis of dirty pictures. J. Roy. Statist. Soc.,
Ser. B., 48(3):259-302, 1986

3. J. Bigiin and G. Granlund. Optimal orientation detection of linear symmetry.
In Proceedings of the 1st International Conference on Computer Vision, pages
433-438, London, England, June 1987. IEEE Computer Society Press.

4. J. Bigiin, G. H. Granlund, and J. Wiklund. Multidimensional orientation
estimation with applications to texture analysis and optical flow. I[IEEE PAMI,
13(8):775-790, 1991.

5. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

6. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE PAMI, 23(11):1222-1239, 2001.

7. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
flow estimation based on a theory for warping. In T. Pajdla and V. Hlavac,
editors, Furopean Conf. on Computer Vision, volume 3024 of LNCS, pages
25-36, Prague, 2004. Springer.

8. T. Brox and J. Weickert. Level set based image segmentation with multiple
regions. In 26th DAGM, pages 415-423, Tiibingen, Germany, August 2004.
In Pattern Recognition, Springer LNCS 3175, C.-E. Rasmussen, H. Biilthoff,
M. Giese, and B. Schélkopf (Eds.).

9. T. Brox and J. Weickert. A TV flow based local scale measure for texture dis-
crimination. In T. Pajdla and V. Hlavac, editors, European Conf. on Computer
Vision, volume 3022 of LNCS, pages 578-590, Prague, 2004. Springer.

IJCV.tex; 19/09/2005; 19:10; p.30



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

31

V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active
contours in image processing. Numer. Math., 66:1-31, 1993.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In Proc.
IEEE Intl. Conf. on Comp. Vis., pages 694-699, Boston, USA, 1995.

T.F. Chan and L.A. Vese. Active contours without edges. IEEE Trans. Image
Processing, 10(2):266-277, 2001.

G. Charpiat, O. Faugeras, and R. Keriven. Approximations of shape metrics
and application to shape warping and empirical shape statistics. Journal of
Foundations Of Computational Mathematics, 5(1):1-58, 2005.

Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. S. Gopinath,
R. W. Briggs, and E. Geiser. Using shape priors in geometric active contours
in a variational framework. Int. J. of Computer Vision, 50(3):315-328, 2002.
K. De Cock and B. De Moor. Subspace angles between linear stochastic
models. In Int. Conf. on Decision and Control, volume 2, pages 1561-1566,
Dec 2000.

L. D. Cohen and I. Cohen. Finite-element methods for active contour models
and balloons for 2-d and 3-d images. IEEE PAMI, 15(11):1131-1147, 1993.
D. Cremers. A variational framework for image segmentation combining mo-
tion estimation and shape regularization. In C. Dyer and P. Perona, editors,
IEEE Conf. on Comp. Vis. and Patt. Recog., volume 1, pages 53-58, June
2003.

D. Cremers and G. Funka-Lea. Dynamical statistical shape priors for level
set based tracking. In N. Paragios, editor, Intl. Workshop on Variational and
Level Set Methods, LNCS. Springer, 2005. To appear.

D. Cremers, T. Kohlberger, and C. Schnérr. Nonlinear shape statistics in
Mumford-Shah based segmentation. In A. Heyden et al., editors, Europ. Conf.
on Comp. Vis., volume 2351 of LNCS, pages 93-108, Copenhagen, May 2002.
Springer.

D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic
alignment for knowledge-driven segmentation: Teaching level sets to walk. In
C. E. Rasmussen, editor, Pattern Recognition, volume 3175 of LNCS, pages
36—44. Springer, 2004.

D. Cremers and C. Schnérr. Motion Competition: Variational integration
of motion segmentation and shape regularization. In L. van Gool, editor,
Pattern Recognition, volume 2449 of LNCS, pages 472-480, Ziirich, Sept. 2002.
Springer.

D. Cremers and S. Soatto. Variational space-time motion segmentation. In
B. Triggs and A. Zisserman, editors, [EEE Int. Conf. on Computer Vision,
volume 2, pages 886-892, Nice, Oct. 2003.

D. Cremers and S. Soatto. Motion Competition: A variational framework
for piecewise parametric motion segmentation. Int. J. of Computer Vision,
62(3):249-265, May 2005.

D. Cremers, N. Sochen, and C. Schnérr. A multiphase dynamic labeling model
for variational recognition-driven image segmentation. Int. J. of Computer
Vision, 2005. To appear.

D. Cremers, F. Tischhéuser, J. Weickert, and C. Schnérr. Diffusion Snakes:
Introducing statistical shape knowledge into the Mumford—Shah functional.
Int. J. of Computer Vision, 50(3):295-313, 2002.

G. Cross and A. Jain. Markov random field texture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5:25-39, 1983.

IJCV.tex; 19/09/2005; 19:10; p.31



32

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

R. de Luis Garcia and R. Deriche. Tensor processing for texture and colour
segmentation. Research report (to appear), INRIA, 2005.

H. Delingette and J. Montagnat. New algorithms for controlling active con-
tours shape and topology. In D. Vernon, editor, Proc. of the Europ. Conf. on
Comp. Vis., volume 1843 of LNCS, pages 381-395. Springer, 2000.

A. Dervieux and F. Thomasset. A finite element method for the simulation of
Raleigh-Taylor instability. Springer Lect. Notes in Math., 771:145-158, 1979.
A. Dervieux and F. Thomasset. Multifluid incompressible flows by a finite
element method. Lecture Notes in Physics, 11:158-163, 1981.

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. Int.
Journal of Computer Vision, 51(2):91-109, February 2003.

G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic texture segmen-
tation. In B. Triggs and A. Zisserman, editors, IEEE Int. Conf. on Computer
Vision, volume 2, pages 12361242, Nice, Oct. 2003.

A. Duci, A. Yezzi, S. Mitter, and S. Soatto. Shape representation via harmonic
embedding. In ICCV, pages 656—662, 2003.

M. A. Forstner and E. Giilch. A fast operator for detection and precise
location of distinct points, corners and centers of circular features. In Pro-
ceedings of the Intercommission Workshop of the International Society for
Photogrammetry and Remote Sensing, Interlaken, Switzerland, 1987.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE PAMI, 6(6):721-741, 1984.

G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision.
Kluwer Academic Publishers, 1995.

U. Grenander, Y. Chow, and D. M. Keenan. Hands: A Pattern Theoretic
Study of Biological Shapes. Springer, New York, 1991.

M. Hassner and J. Sklansky. The use of Markov random fields as models of
texture. Computer Graphics and Image Processing, 12:357-370, 1980.

M. Heiler and C. Schnorr. Natural image statistics for natural image
segmentation. In IEEE Int. Conf. on Comp. Vis., pages 12591266, 2003.
A. Herbulot, S. Jehan-Besson, M. Barlaud, and G. Aubert. Shape gradient
for multi-modal image segmentation using mutual information. In Int. Conf.
on Image Processing, 2004.

E. Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fir Physik,
23:253-258, 1925.

S. Jehan-Besson, M. Barlaud, and G. Aubert. DREAM2S: Deformable regions
driven by an eulerian accurate minimization method for image and video
segmentation. Int. J. of Computer Vision, 53(1):45-70, 2003.

A. Jepson and M.J. Black. Mixture models for optic flow computation. In
Proc. IEEE Conf. on Comp. Vision Patt. Recog., pages 760-761, 1993.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
Int. J. of Computer Vision, 1(4):321-331, 1988.

J. Keuchel, C. Schnérr, C. Schellewald, and D. Cremers. Binary partitioning,
perceptual grouping, and restoration with semidefinite programming. [EEE
PAMI, 25(11):1364-1379, 2003.

S. Kichenassamy, A. Kumar, P. J. Olver, A. Tannenbaum, and A. J. Yezzi.
Gradient flows and geometric active contour models. In IEEFE Intl. Conf. on
Comp. Vis., pages 810-815, 1995.

J. Kim, J. W. Fisher, A. Yezzi, M. Cetin, and A. Willsky. Nonparamet-
ric methods for image segmentation using information theory and curve
evolution. In Int. Conf. on Image Processing, volume 3, pages 797-800, 2002.

IJCV.tex; 19/09/2005; 19:10; p.32



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

33

J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topol-
ogy changes for coarse-to-fine three-dimensional surface extraction. Medical
Image Analysis, 3(2):187-207, 1999.

Y. G. Leclerc. Constructing simple stable description for image partitioning.
The International Journal of Computer Vision, 3(1):73-102, 1989.

F. Leitner and P. Cinquin. Complex topology 3d objects segmentation.
In SPIE Conf. on Advances in Intelligent Robotics Systems, volume 1609,
Boston, November 1991.

C. Lenglet, M. Rousson, and R. Deriche. Toward segmentation of 3D proba-
bility density fields by surface evolution: Application to diffusion MRI. INRIA
Research Report, June 2004.

C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on mul-
tivariate normal distributions: A geometric approach and its application to
diffusion tensor MRI. INRIA Research Report, June 2004.

T. Leung and J. Malik. Representing and recognizing the visual appearance
of materials using three-dimensional textons. Int. J. of Computer Vision,
43(1):29-44, 2001.

M. Leventon, W. Grimson, and O. Faugeras. Statistical shape influence in
geodesic active contours. In CVPR, volume 1, pages 316—-323, Hilton Head
Island, SC, 2000.

T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic
Publishers, 1994.

J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for
image segmentation. Int. J. of Computer Vision, 43(1):7-27, 2001.

R. Malladi, J. A. Sethian, and B. C. Vemuri. Evolutionary fronts for topology-
independent shape modeling and recovery. In Furop. Conf. on Computer
Vision, volume 1, pages 3-13, 1994.

R. Malladi, J. A. Sethian, and B. C. Vemuri. A topology independent shape
modeling scheme. In SPIE Conf. on Geometric Methods in Comp. Vision II,
volume 2031, pages 246-258, 1994.

S. Mallat. Multiresolution approximations and wavelet orthonormal bases of
L?(R). Trans. Amer. Math. Soc., 315:69-87, 1989.

A. Mansouri, A. Mitiche, and R. Feghali. Spatio-temporal motion segmen-
tation via level set partial differential equations. In Proc. of the 5th IEEE
Southewst Symposium on Image Analysis and Interpretation (SSIAI), Santa
Fe, 2002.

P. Martin, P. Refregier, F. Goudail, and F. Guerault. Influence of the noise
model on level set active contour segmentation. IEEE PAMI, 26(6):799-803,
June 2004.

T. Mclnerney and D. Terzopoulos. Topologically adaptable snakes. In Proc.
5th Int. Conf. on Computer Vision, pages 840-845, Los Alamitos, California,
June 20-23 1995. IEEE Comp. Soc. Press.

D. Mumford and J. Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Comm. Pure Appl. Math.,
42:577-685, 1989.

D. Nain, A. Yezzi, and G. Turk. Vessel segmentation using a shape driven
flow. In MICCAI, pages 51-59, 2003.

S. J. Osher and J. A. Sethian. Fronts propagation with curvature dependent
speed: Algorithms based on Hamilton—Jacobi formulations. J. of Comp. Phys.,
79:12-49, 1988.

IJCV.tex; 19/09/2005; 19:10; p.33



34

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

N. Paragios and R. Deriche. Geodesic active regions: a new paradigm to
deal with frame partition problems in computer vision. Journal of Visual
Communication and Image Representation, 13(1/2):249-268, 2002.

N. Paragios and R. Deriche. Geodesic active regions and level set methods for
motion estimation and tracking. Computer Vision and Image Understanding,
97(3):259-282, 2005.

X. Pennec, P. Fillard, and N. Ayache. A riemannian framework for tensor
computing. International Journal of Computer Vision, 65(1), October 2005.
W. A. Perkins. Area segmentation of images using edge points. IEEE PAMI,
2(1):8-15, 1980.

A. R. Rao and B. G. Schunck. Computing oriented texture fields. CVGIP:
Graphical Models and Image Processing, 53:157—185, 1991.

M. Rochery, I. Jermyn, and J. Zerubia. Higher order active contours.
Int. J. of Computer Vision, 2005. To appear.

M. Rousson. Cues Integrations and Front Evolutions in Image Segmentation.
PhD thesis, Université de Nice-Sophia Antipolis, December 2004.

M. Rousson, T. Brox, and R. Deriche. Active unsupervised texture segmenta-
tion on a diffusion based feature space. In Proc. IEEE Conf. on Comp. Vision
Patt. Recog. , pages 699-704, Madison, WI, 2003.

M. Rousson and D. Cremers. Efficient kernel density estimation of shape and
intensity priors for level set segmentation. In MICCAI 2005. To appear.

M. Rousson and R. Deriche. A variational framework for active and adaptative
segmentation of vector valued images. In Proc. IEEE Workshop on Motion
and Video Computing, pages 56-62, Orlando, Florida, December 2002.

M. Rousson and R. Deriche. A variational framework for active and adaptative
segmentation of vector valued images. RR 4515, INRIA, July 2002.

M. Rousson, C. Lenglet, and R. Deriche. Level set and region based surface
propagation for diffusion tensor MRI segmentation. In Computer Vision Ap-
proaches to Medical Image Analysis (CVAMIA) and Mathematical Methods
in Biomedical Image Analysis (MMBIA) Workshop, Prague, May 2004.

M. Rousson and N. Paragios. Shape priors for level set representations. In
A. Heyden et al., editors, Proc. of the Europ. Conf. on Comp. Vis., volume
2351 of LNCS, pages 78-92, Copenhagen, May 2002. Springer, Berlin.

M. Rousson, N. Paragios, and R. Deriche. Implicit active shape models for
3d segmentation in MRI imaging. In MICCAI, pages 209216, 2004.

C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zérubia. A variational
model for image classification and restoration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(5):460-472, May 2000.

C. Schnérr. Computation of discontinuous optical flow by domain decom-
position and shape optimization. Int. J. of Computer Vision, 8(2):153-165,
1992.

J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. IEEE
Conf. on Comp. Vision Patt. Recog. (CVPR’97), San Juan, Puerto Rico, 1997.
P. Simoncelli, W. Freeman, H. Adelson, and Heeger J. Shiftable multiscale
transforms. IEEFE trans. on Information Theory, 38:587-607, 1992.

L. T. Skovgaard. A Riemannian geometry of the multivariate normal model.
Scand. J. Statistics, 11:211-223, 1984.

J. Sokolowski and J.P. Zolesio. Introduction to shape optimization. Compu-
tational Mathematics. Springer Verlag, 1991.

IJCV.tex; 19/09/2005; 19:10; p.34



86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

35

A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, and
A. Willsky. Model-based curve evolution technique for image segmentation.
In Comp. Vision Patt. Recog., pages 463-468, Kauai, Hawaii, 2001.

A. Tsai, A. J. Yezzi, and A. S. Willsky. Curve evolution implementation of the
Mumford-Shah functional for image segmentation, denoising, interpolation,
and magnification. IEEE Trans. on Image Processing, 10(8):1169-1186, 2001.
A. Tsai, A. J. Yezzi, and A. S. Willsky. A shape-based approach to the
segmentation of medical imagery using level sets. IEEE Trans. on Medical
Imaging, 22(2):137-154, 2003.

D. Tschumperlé and R. Deriche. Diffusion tensor regularization with con-
straints preservation. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Kauai Marriott, Hawaii, December 2001.

D. Tschumperlé and R. Deriche. Regularization of orthonormal vector sets us-
ing coupled PDE’s. In IEEE Workshop on Variational and Level Set Methods,
pages 3-10, Vancouver, Canada, July 2001.

G. Unal, H. Krim, and A. Y. Yezzi. Information-theoretic active polygons for
unsupervised texture segmentation. Int. J. of Computer Vision, May 2005.
L. A. Vese. Multiphase object detection and image segmentation. In S.J.
Osher and N. Paragios, editors, Geometric Level Set Methods in Imaging,
Vision and Graphics, pages 175-194, New York, 2003. Springer.

L. A. Vese and T. F. Chan. A multiphase level set framework for image
segmentation using the Mumford and Shah model. The International Journal
of Computer Vision, 50(3):271-293, 2002.

Z. Wang and B. C. Vemuri. An affine invariant tensor dissimilarity measure
and its application to tensor-valued image segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, Washington, DC., June 2004.
J. Weickert and T. Brox. Diffusion and regularization of vector and matrix-
valued images. In Contemporary Mathematics, volume 313, pages 251-268,
2002.

A. Yezzi, A. Tsai, and A. Willsky. A statistical approach to snakes for bimodal
and trimodal imagery. In Proceedings of the 7th International Conference on
Computer Vision, volume II, pages 898-903, Kerkyra, Greece, 1999.

S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision,
Graphics, and Image Processing, 33:116-125, 1986.

H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set
approach to multiphase motion. J. of Comp. Phys., 127:179-195, 1996.

S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum
entropy (frame). The International Journal of Computer Vision, 27(2):1-20,
1998.

S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region growing,
and Bayes/MDL for multiband image segmentation. IEEFE PAMI, 18(9):884—
900, 1996.

IJCV.tex; 19/09/2005; 19:10; p.35



