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Abstract: We describe a comprehensive framework for performing rapid and automatic nonlabel-based
nonlinear spatial normalizations. The approach adopted minimizes the residual squared difference
between an image and a template of the same modality. In order to reduce the number of parameters to be
fitted, the nonlinear warps are described by a linear combination of low spatial frequency basis functions.
The objective is to determine the optimum coefficients for each of the bases by minimizing the sum of
squared differences between the image and template, while simultaneously maximizing the smoothness of
the transformation using a maximum a posteriori (MAP) approach. Most MAP approaches assume that the
variance associated with each voxel is already known and that there is no covariance between neighboring
voxels. The approach described here attempts to estimate this variance from the data, and also corrects for
the correlations between neighboring voxels. This makes the same approach suitable for the spatial
normalization of both high-quality magnetic resonance images, and low-resolution noisy positron
emission tomography images. A fast algorithm has been developed that utilizes Taylor’s theorem and the
separable nature of the basis functions, meaning that most of the nonlinear spatial variability between
images can be automatically corrected within a few minutes. Hum. Brain Mapping 7:254–266, 1999.
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INTRODUCTION

This paper concerns the problem of nonlinear spatial
normalization: namely, how to map a single subject’s
brain image into a standard space. The solution of this
problem allows for a wide range of voxel-based analy-
ses and facilitates the comparison of different subjects
and data bases. The problem of spatial normalization

is not a trivial one; indeed, on some anatomical scales it
is not clear that a solution even exists.

A fundamental advantage of using spatially normal-
ized images is that activations can be reported accord-
ing to a set of meaningful Euclidian coordinates within
a standard space [Fox, 1995]. New results can be
readily incorporated into ongoing brain atlas and data
base projects such as that being developed by the
International Consortium for Human Brain Mapping
(ICBM) [Mazziotta et al., 1995]. The most commonly
adopted coordinate system within the brain imaging
community is that described by the atlas of Talairach
and Tournoux [1988].

When whole-brain structural images (typically high-
resolution magnetic resonance imaging; MRI) of the
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subject are available in addition to the functional
images, the images can be coregistered using any one
of a number of methods for intermodality registration
[Pelizzari et al., 1988; Woods et al., 1992; Studholme et
al., 1995; Collignon et al., 1995; Ashburner and Friston,
1997]. This allows the spatial transformations that
warp the images to the reference space to be deter-
mined from the structural images. These warps can
then be applied to the functional images. Because there
are only six rigid body parameters required to map
between the structural and functional images, the
coregistration parameters can be determined fairly
accurately. The structural images should have higher
spatial resolution, less noise, and more structural
information than the functional images, allowing a
more accurate nonlinear registration to be obtained.

However, not every functional imaging unit has
ready access to a high-quality magnetic resonance
(MR) scanner, so for many functional imaging studies
there are no structural images of the subject available
to the researcher. In this case, it is necessary to
determine the required warps based solely on the
functional images. These images may have a limited
field of view, contain very little useful signal, or be
particularly noisy. An ideal spatial normalization rou-
tine would need to be robust enough to cope with this
type of data.

Nonlinear spatial transformations can be broadly
divided into label-based and nonlabel-based. Label-based
techniques identify homologous features (labels) in the
image and template and find the transformations that
best superpose them. The labels can be points, lines, or
surfaces. Homologous features are often identified
manually, but this process is time-consuming and
subjective. Another disadvantage of using points as
landmarks is that there are very few readily identifi-
able discrete points in the brain. A similar problem is
faced during identification of homologous lines. How-
ever, surfaces are more readily identified, and in many
instances they can be extracted automatically (or at
least semiautomatically). Once they are identified, the
spatial transformation is effected by bringing the
homologies together. If the labels are points, then the
required transformations at each of those points are
known. Between the points, the deforming behavior is
not known, so it is forced to be as ‘‘smooth’’ as
possible. There are a number of methods for modeling
this smoothness. The simplest models include fitting
splines through the points in order to minimize bend-
ing energy [Bookstein, 1989]. More complex forms of
interpolation are often used when the labels are sur-

faces. For example, Thompson and Toga [1996] mapped
surfaces together using a fluid model.

Nonlabel-based approaches identify a spatial trans-
formation that minimizes some index of the difference
between an object and a template image, where both
are treated as unlabeled continuous processes. The
matching criterion is usually based upon minimizing
the sum of squared differences or maximizing the
correlation coefficient between the images. For this
criterion to be successful, it requires the template to
appear as a warped version of the image. In other
words, there must be correspondence in the gray levels
of the different tissue types between the image and
template.

There are a number of approaches to nonlabel-based
spatial normalization. A potentially enormous number
of parameters are required to describe the nonlinear
transformations that warp two images together (i.e.,
the problem is very high-dimensional). The forms of
spatial normalization tend to differ in how they cope
with the large number of parameters.

Some have abandoned conventional optimization
approaches, and use viscous fluid models [Christensen
et al., 1994, 1996] to describe the warps. In these
models, finite-element methods are used to solve the
partial differential equations that model one image as
it ‘‘flows’’ to the same shape as the other. The major
advantage of these methods is that they are able to
account for large nonlinear displacements and also
ensure that the topology of the warped image is
preserved, but they do have the disadvantage that they
are computationally expensive. Not every unit in the
functional imaging field has the capacity to routinely
perform spatial normalizations using these methods.

Others adopt a multiresolution approach whereby
only a few of the parameters are determined at any one
time [Collins et al., 1994b]. Usually, the entire volume
is used to determine parameters that describe global
low-frequency deformations. The volume is then sub-
divided, and slightly higher-frequency deformations
are found for each subvolume. This continues until the
desired deformation precision is achieved.

Another approach is to reduce the number of param-
eters that model the deformations. Some groups sim-
ply use only a 9- or 12-parameter affine transformation
to spatially normalize their images, accounting for
differences in position, orientation, and overall brain
size. Low spatial frequency global variability in head
shape can be accommodated by describing deforma-
tions by a linear combination of low-frequency basis
functions [Amit et al., 1991]. The small number of
parameters will not allow every feature to be matched
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exactly, but it will permit the global head shape to be
modeled. The method described in this paper is one
such approach. The rational for adopting a low-
dimensional approach is that there is not necessarily a
one-to-one mapping between any pair of brains. Differ-
ent subjects have different patterns of gyral convolu-
tions, and even if gyral anatomy can be matched
exactly, this is no guarantee that areas of functional
specialization will be matched in a homologous way.
For the purpose of averaging signals from func-
tional images of different subjects, very high-resolu-
tion spatial normalization may be unnecessary or un-
realistic.

The deformations required to transform images to
the same space are not clearly defined. Unlike rigid
body transformations, where the constraints are ex-
plicit, those for nonlinear warping are more arbitrary.
Without any constraints it is of course possible to
transform any image such that it matches another
exactly. The issue is therefore less about the nature of
the transformation and more about defining con-
straints or priors under which a transformation is
effected. The validity of a transformation can usually
be reduced to the validity of these priors. Priors are
normally incorporated using some form of Bayesian
scheme, using estimators such as the maximum a
posteriori (MAP) estimate or the minimum variance
estimate (MVE). The MAP estimate is the single solu-
tion that has the highest a posteriori probability of
being correct, and is the estimate that we attempt to
obtain in this paper. The MVE was used by Miller et al.
[1993], and is the solution that is the conditional mean
of the posterior. The MVE is probably more appropri-
ate than the MAP estimate for spatial normalization.
However, if the errors associated with the parameter
estimates and also the priors are normally distributed,
then the MVE and the MAP estimates are identical.

The remainder of this paper is organized as follows.
The theory section describes how the registrations are
performed, beginning with a description of the Gauss-
Newton optimization scheme employed. Following
this, the paper describes specific implementational
details for determining the optimal linear combination
of spatial basis functions. This involves using proper-
ties of Kronecker tensor products for the rapid computa-
tion of the curvature matrix used by the optimization.
A Bayesian framework using priors based upon mem-
brane energy is then incorporated into the registration
model. The following section provides an evaluation
focusing on the utility of nonlinear deformations per
se, and then the use of priors in a Bayesian framework.

There then follows a discussion of the issues raised,
and of those for future consideration.

THEORY

There are two steps involved in registering any pair
of images together. There is the registration itself,
whereby the parameters describing a transformation
are determined. Then there is the transformation, where
one of the images is transformed according to the set of
parameters. The registration step involves matching
the object image to some form of standardized tem-
plate image. Unlike in the work of Christensen et al.
[1994; 1996] or the segmentation work of Collins et al.
[1994a, 1995], spatial normalization requires that the
images themselves are transformed to the space of the
template, rather than a transformation being deter-
mined that transforms the template to the individual
images.

The nonlinear spatial normalization approach de-
scribed here assumes that the images have already
been approximately registered with the template ac-
cording to a 9 [Collins et al., 1994b] or 12-parameter
[Ashburner et al., 1997] affine registration. This section
will illustrate how the parameters describing global
shape differences between the images and template are
determined.

We begin by introducing a simple method of optimi-
zation based upon partial derivatives. Then the param-
eters describing the spatial transformations are intro-
duced. In the current approach, the nonlinear warps
are modeled by linear combinations of smooth basis
functions, and a fast algorithm for determining the
optimum combination of basis functions is described.
For speed and simplicity, a relatively small number of
parameters (approximately 1,000) are used to describe
the nonlinear components of the registration.

The optimization method is extended to utilize
Bayesian statistics in order to obtain a more robust fit.
This requires knowledge of the errors associated with
the parameter estimates, and also knowledge of the a
priori distribution from which the parameters are
drawn. This distribution is modeled in terms of a cost
function based on the membrane energy of the deforma-
tions. We conclude with some comments on extending
the schemes when matching images from different
modalities.

Basic optimization algorithm

The objective of optimization is to determine a set of
parameters for which some function is minimized (or
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maximized). One of the simplest cases involves deter-
mining the optimum parameters for a model in order
to minimize of the sum of squared differences between
the model and a set of real-world data (x2). Usually
there are many parameters in the model, and it is not
possible to exhaustively search through the whole
parameter space. The usual approach is to make an
initial estimate, and to iteratively search from there. At
each iteration, the model is evaluated using the current
estimates, and x2 is computed. A judgment is then
made about how the parameters should be modified,
before continuing on to the next iteration.

The image-registration approach described here is
essentially an optimization. In the simplest case, one
image (the object image) is spatially transformed so
that it matches another (the template image), by
minimizing x2. In order for x2 minimization to work, it
is important that a distorted version of the object
image can be adequately modeled by the template (or
templates). When using a single template image, it
should have the same contrast distribution as the
images that are to be matched to it. The parameters
that are optimized are those that describe the spatial
transformation (although there are often other nui-
sance parameters required by the model, such as
intensity scaling parameters). The algorithm of choice
[Friston et al., 1995] is one that is similar to Gauss-
Newton optimization, and it is illustrated here:

Suppose that ei(p) is the function describing the
difference between the object and template images at
voxel i, when the vector of model parameters has
values p. For each voxel (i), a first approximation of
Taylor’s theorem can be used to estimate the value that
this difference will take if the parameters p are in-
creased by t:

ei(p 1 t) . ei(p) 1 t1

­ei(p)

­p1
1 t2

­ei(p)

­p2
. . .

This allows the construction of a set of simultaneous
equations (of the form Ax . e) for estimating the
values that t should assume in order to minimize
Siei(p 1 t)2:

1
­e1(p)

­p1

­e1(p)

­p2
· · ·

­e2(p)

­p1

­e2(p)

­p2
· · ·

···
···

· · ·

2 1
t1

t2

···
2 . 1

e1(p)

el2(p)
···

2.

From this we can derive an iterative scheme for
improving the parameter estimates. For iteration n, the
parameters p are updated as:

p(n11) 5 p(n) 2 (ATA)21 ATe (1)

where

A 5 1
­e1(p)

­p1

­e1(p)

­p2
· · ·

­e2(p)

­p1

­e2(p)

­p2
· · ·

···
···

· · ·

2 and e 5 1
e1(p)

e2(p)
···
2.

This process is repeated until x2 can no longer be
decreased, or for a fixed number of iterations. There
is no guarantee that the best global solution will be
reached, since the algorithm can get caught in a lo-
cal minimum. The number of potential local min-
ima is decreased by working with smooth images.
This also has the effect of making the first-order Taylor
approximation more accurate for larger displace-
ments.

In practice, ATA and ATe from Eq. (1) are computed
‘‘on the fly’’ for each iteration. By computing these
matrices using only a few rows of A and e at a time,
much less computer memory is required than is neces-
sary for storing the whole of matrix A. Also, the partial
derivatives ­ei(p)/­pj can be rapidly computed from
the gradients of the images using the chain rule.1 These
calculations will be illustrated more fully in the next
section.

Parameterizing the spatial transformations

Spatial transformations are described by a linear
combination of smooth basis functions. The choice of
basis functions depends partly upon how translations
at the boundaries should behave. If points at the
boundary over which the transformation is computed
are not required to move in any direction, then the basis
functions should consist of the lowest frequencies of
the three-dimensional discrete sine transform (DST). If
there are to be no constraints at the boundaries, then a

1Trilinear interpolation of the voxel lattice (rather than the sampling
lattice) is used to resample the images at the desired coordinates.
Gradients of the images are obtained at the same time, using a
finite-difference method on the same lattice. No assumptions are
made about voxel values that lie outside the field of view of image f.
Points where yi falls outside the domain of f are not included in the
computations.
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three-dimensional discrete cosine transform (DCT) is
more appropriate. Both of these transforms use the
same set of basis functions to represent warps in each
of the directions. Alternatively, a mixture of DCT and
DST basis functions can be used to constrain transla-
tions at the surfaces of the volume to be parallel to the
surface only (sliding boundary conditions). By using a
different combination of DCT and DST basis functions,
the corners of the volume can be fixed and the
remaining points on the surface can be free to move in
all directions (bending boundary conditions) [Chris-
tensen, 1994]. The basis functions described here are
the lowest-frequency components of the three (or
two)-dimensional discrete cosine transform. In one
dimension, the DCT of a function is generated by
premultiplication with the matrix BT, where the ele-
ments of the M by J matrix B are defined by:

bm,1 5
1

ÎM
m 5 1 . . . M

bm,j 5Î 2

M
cos 1 p(2m 2 1) (j 2 1)

(2M) 2
m 5 1 . . . M, j 5 2 . . . J. (2)

The two-dimensional DCT basis functions are shown
in Figure 1, and a schematic example of a deformation
based upon the DCT is shown in Figure 2.

The optimized parameters can be separated into a
number of distinct groups. The most important are
those for describing translations in the three orthogo-
nal directions (t1, t2, and t3). The model for defining the
nonlinear warps uses deformations consisting of a
linear combination of basis functions. In three dimen-
sions, the transformation from coordinates xi, to coordi-
nates yi is:

y1,i 5 x1,i 2 u1,i 5 x1,i 2 o
j51

J

tj,1b1,j(xi)

y2,i 5 x2,i 2 u2,i 5 x2,i 2 o
j51

J

tj,2b2,j(xi)

y3,i 5 x3,i 2 u3,i 5 x3,i 2 o
j51

J

tj,3b3,j(xi)

where tjd is the jth coefficient for dimension d, and
bjd(x) is the jth basis function at position x for dimen-
sion d.

The optimization involves minimizing the sum of
squared differences between the object image (f) and a
template image (g). The images may be scaled differ-
ently, so an additional parameter (w) is needed to
accommodate this difference. The minimized function
is then:

o
i

(f(yi) 2 wg(xi))2.

Each element of vector e (from the previous section)
contains f(yi) 2 wg(xi). Derivatives of the function
f(yi) 2 wg(xi) with respect to each parameter are
required in order to compute matrix A. These can be
obtained using the chain rule:

­f(yi)

­tj,1
5

­f(yi)

­y1,i

­y1,i

­tj,1
5

­f(yi)

­y1,i
bj(xi)

­f(yi)

­tj,2
5

­f(yi)

­y2,i

­y2,i

­tj,2
5

­f(yi)

­y2,i
bj(xi)

­f(yi)

­tj,3
5

­f(yi)

­y3,i

­y3,i

­tj,3
5

­f(yi)

­y3,i
bj(xi).

In order to adopt the Gauss-Newton optimization
strategy, ATA and ATe need to be computed on each
iteration. Assuming that the lowest J frequencies of a
three-dimensional DCT are used to define the warps,
and there are I sampled positions in the image, then

Figure 1.
The lowest-frequency basis functions of a two-dimensional dis-
crete cosine transform.
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the theoretical size of the matrix A is I 3 (3J3 1 1). The
straightforward computation of ATA and ATe would
be very time consuming. We now describe how this
can be done in a much more expedient manner.

A fast algorithm

The fast algorithm for computing ATA and ATe is
shown in Figure 3. The remainder of this section
explains the matrix terminology used, and why it is so
efficient.

For simplicity, the algorithm is only illustrated in
two dimensions, although it has been implemented to
estimate warps in three dimensions. Images f and g are
considered as matrices F and G, respectively. Row m of
F is denoted by fm,:, and column n by f:,n. The basis
functions used by the algorithm are generated from a
separable form from matrices B1 and B2. By treating the
transform coefficients as matrices T1 and T2, the defor-

mation fields can be rapidly constructed by computing
B1T1B2

T and B1T2B2
T.

Between each iteration, image F is resampled accord-
ing to the latest parameter estimates. The deriva-
tives of F are also resampled to give =1F and =2F.
The ith element of each of these matrixes contain
f(yi), ­f(yi)/­y1i and ­f(yi)/­y2i, respectively.

The notation diag(2=1f:,m)B1 simply means multiply-
ing each element of row i of B1 by 2=1fi,m, and the
symbol ‘‘^’’ refers to the Kronecker tensor product. If B2 is a
matrix of order M 3 J, and B1 is a second matrix, then:

B2 ^ B1 5 1
b211B1 · · · b21JB1

···
· · ·

···
b2M1B1 · · · b2MJB1

2.
The advantage of the algorithm shown in Figure 3 is

that it utilizes some of the useful properties of Kro-

Figure 2.
For the two-dimensional case, the deformation field consists of two scalar fields: one for horizontal
deformations, and the other for vertical deformations. Images at left show the deformation fields as a
linear combination of the basis images (see Fig. 1). Center column: Deformations in a more intuitive
sense. The deformation field is applied by overlaying it on the object image, and resampling (right).
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necker tensor products. This is especially important
when the algorithm is implemented in three dimen-
sions. The performance enhancement results from a
reordering of a set of operations such as (B3 ^ B2 ^ B1))T

(B3 ^ B2 ^ B1), to the equivalent (B3
T B3) ^ (B2

T B2) ^

(B1
T B1). Assuming that the matrices B3, B2, and B1 all

have order M 3 J, then the number of floating-point
operations is reduced from M3J3(J3 1 2) to approxi-
mately 3M(J2 1 J) 1 J6. If M equals 32, and J equals 4,
we expect a performance increase of about a factor of
20,000. The limiting factor to the algorithm is no longer
the time taken to create the curvature matrix (ATA),
but is now the amount of memory required to store it,
and the time taken to invert it.

A maximum a posteriori solution

Without regularization, it is possible to introduce
unnecessary deformations that only reduce the re-
sidual sum of squares by a tiny amount. This could
potentially make the algorithm very unstable. Regular-
ization is achieved using Bayesian statistics.

Bayes’ rule can be expressed in the continuous form
as p(ap 0b) ~ p(b 0ap) p(ap) where p(ap) is the prior
probability of ap being true, p(b 0ap) is the conditional
probability that b is observed given that ap is true, and

p(ap 0b) is the posterior probability of ap being true,
given that measurement b has been made. The maxi-
mum a posteriori (MAP) estimate for parameters p is
the mode of p(ap 0b). For our purposes, p(ap) represents
a known prior probability distribution from which the
parameters are drawn, p(b 0ap) is the likelihood of
obtaining the data b given the parameters (the maxi-
mum likelihood estimate), and p(ap 0b) is the function
to be maximized.

A probability is related to its Gibb’s form by p(a) ~

e2H(a). Therefore, the posterior probability is maxi-
mized when its Gibb’s form is minimized. This is
equivalent to minimizing H(b 0ap) 1 H(ap). In this
expression, H(b 0ap) is related to the residual sum of
squares. If we assume that the parameters are drawn
from a zero mean, multinormal distribution described
by a covariance matrix Co, then H(ap) is simply given
by pTCop.

We previously illustrated a method of incorporating
knowledge about a priori parameter distributions into
the Gauss-Newton optimization scheme [Ashburner et
al., 1997]. For a zero mean prior distribution, the
iterative scheme is:

p(n11) 5 (Co
21s2 1 ATA)21(ATAp(n) 2 ATe) (3)

Figure 3.
Two-dimensional illustration of the fast algorithm for computing ATA (a) and ATe (b).
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where:

s2 5 o
i51

I

ei(p)2/n. (4)

n refers to the number of degrees of freedom after
correction for correlations between neighboring vox-
els.

The a priori distribution

The first requirement for a MAP approach is to
define some form of prior distribution for the param-
eters. For a simple linear approach, the priors consist
of an a priori estimate of the mean of the parameters
(assumed to be zero), and also a covariance matrix
describing the distribution of the parameters about
this mean. There are many possible forms for model-
ing these priors, each of which refers to some type
of ‘‘energy’’ term. The form of regularization des-
cribed here is based upon the membrane energy or
laplacians of the deformation field [Amit et al., 1991;
Gee et al., 1997]. Two other types of linear regulariza-
tion (bending energy and linear-elastic energy) are de-
scribed in the Appendix. None of these schemes
enforce a strict one-to-one mapping between the object
and template images, but this makes little difference
for the small deformations that we are interested in
here.

In three dimensions, the membrane energy of the
deformation field u is:

o
i

o
j51

3

o
k51

3

l 1 ­uji

­xki
2
2

where l is simply a scaling constant. The membrane
energy can be computed from the coefficients of the
basis functions by t1

THt1 1 t2
THt2 1 t3

THt3, where t1, t2,
and t3 refer to vectors containing the parameters
describing translations in the three dimensions. The
matrix H is defined by:

H 5 l (B83
TB83) ^ (B2

T B2) ^ (B1
T B1)

1 l (B3
T B3) ^ (B82

T B82) ^ (B1
TB1)

1 l (B3
T B3) ^ (B2

T B2) ^ (B81
TB81)

where the notation B81 refers to the first derivatives of
B1.

Assuming that the parameters consist of (t1
Tt2

Tt3
Tw)T,

matrix C0
21 from Eq. (3) can be constructed from H by:

Co
21 5 1

H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 0
2. (5)

H is all zeros, except for the diagonal. Elements on the
diagonal represent the reciprocal of the a priori vari-
ance of each parameter, and each is given by:

hj1J(k1J3l) 5 lp2M22((j 2 1)2 1 (k 2 1)2 1 (l 2 1)2)

where M is the dimension of the DCT (see Eq. 2), and J
is the number of low-frequency coefficients used in any
dimension.

Values of l that are too large will provide too much
regularization and result in underestimated deforma-
tions. If the values are too small, there will not be
enough regularization and the resulting deformations
will include a large amount of noise. There is no simple
way of estimating what the best values for these
constants should be.

In the absence of known priors, the membrane
energy provides a useful model in which we assume
that the probability of a particular set of parameters
arising is inversely related to the membrane energy
associated with that set. Clearly this model is some-
what ad hoc, but it is a useful and sensible one. If the
true prior distribution of the parameters is known
(derived from a large number of subjects), then Co

could be an empirically determined covariance matrix
describing this distribution. This approach would
have the advantage that the resulting deformations are
more typically ‘‘brain-like,’’ and so increase the face
validity of the approach.

Templates and intensity transformations

So far, only a single intensity scaling parameter (w)
has been considered. This is most effective when there
is a linear relationship between the images. However,
for spatially normalizing some images, it is necessary
to include other parameters describing intensity trans-
formations.

The optimization can be assumed to minimize two
sets of parameters: those that describe spatial transfor-
mations (pt), and those for describing intensity transfor-
mations (pw). This means that the difference function
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can be expressed in the generic form:

ei(p) 5 f(t(xi, pt)) 2 w(xi, pw)

where f is the object image, t() is a vector function
describing the spatial transformations based upon
parameters pt, and w() is a scalar function describing
intensity transformations based on parameters pw. xi

represents the coordinates of the ith sampled point.
The intensities could vary spatially (e.g., due to

inhomogeneities in the MRI scanner). Linear varia-
tions in intensity over the field of view can be ac-
counted for by optimizing a function of the form:

o
i

(f(xi, pt) 2 (pw1g(xi) 1 pw2x1ig(xi)

1 pw3x2ig(xi) 1 pw4x3ig(xi)))2.

More complex variations could be included by modu-
lating with other basis functions (such as the DCT
basis function set described earlier) [Friston et al.,
1995]. Information on the smoothness of the inhomoge-
neities could be incorporated by appropriate modifica-
tions to the matrix Co

21.
Another important idea is that a given image can be

matched not to one reference image, but to a series of
images that all conform to the same space. The idea
here is that (ignoring the spatial differences) any given
image can be expressed as a linear combination of a set
of reference images. For example, these reference
images might include different modalities (e.g., posi-
tron emission tomography (PET), single photon emis-
sion computed tomography (SPECT), 18F-DOPA, 18F-
deoxy-glucose, T1-weighted MRI, and T*2-weighted MRI)
or different anatomical tissues (e.g., gray matter, white
matter, and cerebro-spinal fluid (CSF) segmented from
the same T1-weighted MRI) or different anatomical
regions (e.g., cortical gray matter, subcortical gray
matter, and cerebellum) or finally any combination of
the above. Any given image, irrespective of its modal-
ity, could be approximated with a function of these
images. A simple example using two images would be:

o
i

(f(Mxi) 2 (pw1g1(xi) 1 pw2g2(xi)))2.

Again, some form of model describing the likely a
priori distributions of the parameters could be included.

EVALUATION

This section provides an anecdotal evaluation of the
techniques presented in the previous section. We com-

pare spatial normalization both with and without
nonlinear deformations, and compare nonlinear defor-
mations with and without the use of Bayesian priors.

T1-weighted MR images of 12 subjects were spatially
normalized to the same anatomical space. The normal-
izations were performed twice, first using only 12-
parameter affine transformations and then using affine
transformations followed by nonlinear transforma-
tions. The nonlinear transformation used 392
(7 3 8 3 7) parameters to describe deformations in
each of the directions, and four parameters to model a
linear scaling and simple linear image intensity inho-
mogeneities (making a total of 1,180 parameters in all).
The basis functions were those of a three-dimensional
DCT, and the regularization minimized the membrane
energy of the deformation fields (using a value of 0.01
for l). Twelve iterations of the nonlinear registration
algorithm were performed.

Figure 4 shows pixel-by-pixel means and standard
deviations of the normalized images. The mean image
from the nonlinear normalization shows more contrast
and has edges that are slightly sharper. The standard
deviation image for the nonlinear normalization shows
decreased intensities, demonstrating that the intensity
differences between the images have been reduced.
However, the differences tend to reflect changes in the
global shape of the heads, rather than differences
between cortical anatomy.

This evaluation should illustrate the fact that the
nonlinear normalization clearly reduces the sum of
squared intensity differences between the images. The
amount of residual variance could have been reduced
further by decreasing the amount of regularization.
However, this may lead to some very unnatural-
looking distortions being introduced, due to an overes-
timation of the a priori variability. Evaluations like this
tend to show more favorable results for less heavily
regularized algorithms. With less regularization, the
optimum solution is based more upon minimizing the
difference between the images, and less upon knowl-
edge of the a priori distribution of the parameters. This
is illustrated for a single subject in Figure 5, where the
distortions of gyral anatomy clearly have a very low
face validity (Fig. 5, lower right).

DISCUSSION

The criteria for ‘‘good’’ spatial transformations can
be framed in terms of validity, reliability, and computa-
tional efficiency. The validity of a particular transforma-
tion device is not easy to define or measure and indeed
varies with the application. For example, a rigid body
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transformation may be perfectly valid for realignment
but not for spatial normalization of an arbitrary brain
into a standard stereotactic space. Generally the sorts
of validity that are important in spatial transforma-
tions can be divided into (1) face validity, established by
demonstrating that the transformation does what it is
supposed to do, and (2) construct validity, assessed by
comparison with other techniques or constructs. Face
validity is a complex issue in functional mapping. At
first glance, face validity might be equated with the
coregistration of anatomical homologues in two im-
ages. This would be complete and appropriate if the
biological question referred to structural differences or
modes of variation. In other circumstances, however,

this definition of face validity is not appropriate. For
example, the purpose of spatial normalization (either
within or between subjects) in functional mapping
studies is to maximize the sensitivity to neurophysi-
ological change elicited by experimental manipulation
of a sensorimotor or cognitive state. In this case, a
better definition of a valid normalization is that which
maximizes condition-dependent effects with respect to
error (and if relevant, intersubject) effects. This will
probably be effected when functional anatomy is
congruent. This may or may not be the same as
registering structural anatomy.

Figure 4.
Means and standard deviations of spatially normalized T1-weighted
images from 12 subjects. Images at left were derived using only
affine registration. Those at right used nonlinear registration in
addition to affine registration.

Figure 5.
Top left: Object or template image. Top right: An image that has
been registered with it using a 12-parameter affine registration.
Bottom left: Same image registered using the 12-parameter affine
registration, followed by a regularized global nonlinear registration
(using 1,180 parameters, 12 iterations, and a l of 0.01). It should be
clear that the shape of the image approaches that of the template
much better after nonlinear registration. Bottom right: Image after
the same affine transformation and nonlinear registration, but this
time without using any regularization. The mean squared difference
between the image and template after the affine registration was
472.1. After regularized nonlinear registration, this was reduced to
302.7. Without regularization, a mean squared difference of 287.3
was achieved, but this was at the expense of introducing a lot of
unnecessary warping.
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Limitations of nonlinear registration

Because deformations are only defined by a few
hundred parameters, the nonlinear registration method
described here does not have the potential precision of
some other methods. High-frequency deformations
cannot be modeled, since the deformations are re-
stricted to the lowest spatial frequencies of the basis
functions. This means that the current approach is
unsuitable for attempting exact matches between fine
cortical structures.

The method is relatively fast, taking on the order of
30 sec per iteration, depending upon the number of
basis functions used. The speed is partly a result of the
small number of parameters involved, and the simple
optimization algorithm that assumes an almost qua-
dratic error surface. Because the images are first
matched using a simple affine transformation, there is
less ‘‘work’’ for the algorithm to do, and a good
registration can be achieved with only a few iterations
(about 20). The method does not rigorously enforce a
one-to-one match between the brains being registered.
However, by estimating only the lowest-frequency
deformations and by using appropriate regularization,
this constraint is rarely broken.

When higher spatial frequency warps are to be
fitted, more DCT coefficients are required to describe
the deformations. There are practical problems that
occur when more than about the 8 3 8 3 8 lowest-
frequency DCT components are used. One problem is
that of storing and inverting the curvature matrix
(ATA). Even with deformations limited to 8 3 8 3 8
coefficients, there are at least 1,537 unknown param-
eters, requiring a curvature matrix of about 18 M bytes
(using double-precision floating-point arithmetic).
Other methods which search for more parameters
should be used when more precision is required. These
include the method of Collins et al. [1994a], the
high-dimensional linear-elasticity model [Miller et al.,
1993], and the viscous fluid models [Christensen et al.,
1996; Thompson and Toga, 1996].

In practice, however, it may be meaningless to even
attempt an exact match between brains beyond a
certain resolution. There is not a one-to-one relation-
ship between the cortical structures of one brain and
those of another, so any method that attempts to match
brains exactly must be folding the brain to create sulci
and gyri that do not really exist. Even if an exact match
is possible, because the registration problem is not
convex, the solutions obtained by high-dimensional
warping techniques may not be truly optimum. These
methods are very good at registering gray matter with

gray matter (for example), but there is no guarantee
that the registered gray matter arises from homolo-
gous cortical features.

Also, structure and function are not always tightly
linked. Even if structurally equivalent regions can be
brought into exact register, it does not mean that the
same is true for regions that perform the same or
similar functions. For intersubject averaging, an as-
sumption is made that functionally equivalent regions
lie in approximately the same parts of the brain. This
led to the current rationale for smoothing images from
multisubject studies prior to performing analyses.
Constructive interference of the smeared activation
signals then has the effect of producing a signal that is
roughly in an average location. In order to account for
substantial fine-scale warps in a spatial normalization,
it is necessary for some voxels to increase their vol-
umes considerably, and for others to shrink to an
almost negligible size. The contribution of the shrunken
regions to the smoothed images is tiny, and the
sensitivity of the tests for detecting activations in these
regions is reduced. This is another argument in favor
of registering only on a global scale.

The constrained normalization described here as-
sumes that the template resembles a warped version of
the image. Modifications are required in order to apply
the method to diseased or lesioned brains. One pos-
sible approach is to assume different weights for
different brain regions. Lesioned areas could be as-
signed lower weights, so that they would have much
less influence on the final solution.

CONCLUSIONS

Consider the deformation fields required to map
brain images to a common stereotactic space. Fourier-
transforming the fields reveals that most of the vari-
ance is low-frequency, even when the deformations
have been determined using good high-dimensional
nonlinear registration methods. Therefore, an efficient
representation of the fields can be obtained from the
low-frequency coefficients of the transform. The cur-
rent approach to spatial normalization utilizes this
compression. Rather than estimating warps based
upon literally millions of parameters, only a few
hundred parameters are used to represent the deforma-
tions as a linear combination of a few low-frequency
basis functions.

The method we have developed is automatic and
nonlabel-based. A maximum a posteriori (MAP) ap-
proach is used to regularize the optimization. How-
ever, the main difference between this and other MAP
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approaches is that an estimate of the errors is derived
from the data per se. This estimate also includes a
correction for local correlations between voxels. An
implication of this is that the approach is suitable for
spatially normalizing a wide range of different image
modalities. High-quality MR images, and also low-
resolution noisy PET images, can be treated the same
way.

The spatial normalization converges rapidly, be-
cause it uses an optimization strategy with fast local
convergence properties. Each iteration of the algo-
rithm requires the computation of a Hessian matrix
(ATA). The straightforward computation of this matrix
would be prohibitively time-consuming. However,
this problem has been solved by developing an ex-
tremely fast method of computing this matrix that
relies on the separable properties of the basis func-
tions. A performance increase of several orders of
magnitude is achieved in this way.
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OTHER LINEAR PRIORS

As an alternative to the membrane energy prior
already discussed, we now show how two other priors
can easily be incorporated into the model. For simplic-
ity, they will only be shown for the two-dimensional case.

Bending energy

Bookstein’s thin-plate splines [1997a,b] minimize
the bending energy of the deformations. For the two-
dimensional case, the bending energy of the deforma-
tion field is defined by:
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This can be computed by:

lt1
T(B29 ^ B1)T (B29 ^ B1)t1 1 lt1

T (B2 ^ B19)T (B2 ^ B19)t1 1

2lt1
T(B28^B18)T(B28^B18)t1 1 lt2

T(B29^B1)T(B29^B1)t21

lt2
T(B2 ^ B19)T (B2 ^ B19)t2 1 2lt2

T(B28 ^ B18)T(B28 ^ B18)t2

where the notation B81 and B91 refer to the first and
second derivatives of B1. This is simplified to t1

THt1 1
t2

THT2 where:

H 5 l ((B29
TB29) ^ (B1

TB1) 1 (B2
TB2) ^ (B19

TB19)

1 2 (B28
T B28) ^ (B18

TB18)).

Matrix Co
21 from Eq. (3) can be constructed from H as

described by Eq. (5), but this time values on the
diagonals are given by:

hj1k3J 5 l 11 p(j 2 1)

M 2
4

1 1 p(k 2 1)

M 2
4

1 2 1 p(j 2 1)

M 2
2

1 p(k 2 1)

M 2
2

2.

Linear elasticity

The linear-elastic energy [Miller et al., 1993] of a
two-dimensional deformation field is:

o
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k51
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where l and µ are the Lamé elasticity constants. The
elastic energy of the deformations can be computed by:

(µ 1 l/2)t1
T(B2 ^ B81)T (B2 ^ B81)t1

1 (µ 1 l/2)t2
T(B82 ^ B1)T (B82 ^ B1)t2

1 µ/2t1
T(B82 ^ B1)T (B82 ^ B1)t1

1 µ/2t2
T(B2 ^ B81)T(B2 ^ B81)t2

1 µ/2t1
T(B82 ^ B1)T (B2 ^ B81)t2

1 µ/2t2
T(B2 ^ B81)T(B82 ^ B1)t1

1 l/2t1
T(B2 ^ B81)T (B82 ^ B1)t2

1 l/2t2
T(B82 ^ B1)T(B2 ^ B81)t1.

A regularization based upon this model requires an
inverse covariance matrix (Co

21) that is not a simple
diagonal matrix. This matrix is constructed as follows:

Co
21 5 1

H1 H3 0

H3
T H2 0

0 0 0
2

where

H1 5 (µ 1 l/2) (B2
TB2) ^ (B18

T B18) 1 µ/2(B28
T B28) ^ (B1

TB1)

H2 5 (µ 1 l/2)(B28
T B28) ^ (B1

TB1) 1 µ/2(B2
T B2) ^ (B18

T B18)

H3 5 l/2(B2
TB28) ^ (B18

T B1) 1 µ/2(B28
T B2) ^ (B1

TB18).
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