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Abstract

During the past few years, the use of the theory of partial differential equations
has provided a solid formal approach to image processing and analysis research, and
has yielded provably well-posed algorithms within a set of clearly defined hypotheses.
These algorithms are the state-of-the-art in a large number of application fields such
as image de-noising, segmentation and matching. At the same time, the combination
of stochastic and variational approaches has led to powerful algorithms which may
also be described in terms of partial differential equations. This is the approach fol-
lowed in the present work, which studies the problem of dense matching between two
images using statistical dissimilarity criteria. Two classes of algorithms are consid-
ered, corresponding to these criteria being calculated globally for the entire image, or
locally within corresponding regions. In each case, three dissimilarity criteria are stud-
ied, defined as the opposite of the following similarity measures: mutual information
(well adapted to a general statistical dependence between the grey-level intensities),
correlation ratio (adapted to a functional dependence), and cross correlation (adapted
to an affine dependence). The minimization of the sum of the dissimilarity term and
a regularization term defines, through the associated Euler-Lagrange equations, a set
of coupled functional evolution equations. Particular emphasis is put in establishing
the conditions under which these evolution equations are well posed, i.e. they have a
unigue solution. It is shown that the proposed algorithms satisfy these conditions for
two classes of linear regularization terms, including one which encourages discontinu-
ities of the solution at the contours of the reference image. The discretization and the
numerical implementation of the matching algorithms is discussed in detail and their
performance is illustrated through several real and synthetic examples, both with 2D
and 3D images. As these examples show, the described algorithms are of interest in
applications which do not necessarily involve sensors of multiple modalities. They are
also of special interest to the medical imaging community, where data fusion between
different imaging sensors often requires correcting for nonlinear distortions.






Resune

Depuis quelques ages, I'utilisation degquations auxé&tivees partielles a pourvu
la recherche en traitement d'images d’une approche formelle solide, et a altagi
algorithmes dont on peut montrer le cagaet bien pos, étant dond un ensemble
d’hypothéses clairementédinies. Ces algorithmes formenétat de I'art dans beau-
coup de domaines d'application tels que &brlitage, la segmentation et la mise en
correspondance. En pasi a ceci, des approches combinant des principes varia-
tionnels et stochastiques ont areénde puissants algorithmes qui peuvent aggsi
décrits en termes @guations aux &rivées partielles. C’est I'approche suivi dans ce
travail, ai estétudi le probéme de mise en correspondance dense entre deux images,
en utilisant des critres statistiques de dissemblance. Deux classes d’'algorithmes sont
consicerées, selon que ces @ies soient calcak globalement pour toute I'image, ou
localement entre deggions correspondantes. Dans chaque cas, troisesitle dis-
semblance soritudés, dfinis comme l'oppas des crigres de ressemblance suivants:
information mutuelle (bien adag a une @pendance statistiquestr gerérale entre
les niveaux de gris), rapport de celation (adaga une @pendance fonctionnelle), et
corrélation croig€e (adafea une @pendance affine). La minimisation de la somme
du terme de dissemblance et un termeé&fgutarisation éfinit, a travers le€quations
d’Euler-Lagrange, un sysine déquations fonctionnelles &volution. Nousttudions
les conditions sous lesquelles @giations cBvolution sont bien p@&es, c’est-dire
ont une solution unique et montrons que les algorithmes péspeetisfont ces condi-
tions pour deux classes d'egateurs ligaires egularisants, dont une est conue pour
encourager des variations rapides de la solution le long des contours de I'image de
reference. La performance de ces algorithmes est i#astitravers plusieurs exem-
ples syntletiques eté&els, aussi bien sur des images 2D que 3D. Comme le montrent
ces exemples, les algorithmesadits sont applicabled des proldmes qui ne font
pas recessairement intervenir des capteurs de meédatiifierentes. lls sont aussi
spécialement iréressants pour la communaute I'imagerie radicale, o le probeEme
de fusionner des doges provenant de didfentes modakits d'imagerie acessite sou-
vent de corriger des distorsions nonéaires.






Contents

M éthodes Variationnelles pour le Recalage Multimodal 15
Introduction 23
Contributions . . . . . . . L 24
DocumentLayout . . . . . . . . . . .. 26

| A Generic Image Matching Problem 29
1 Overview 31
1.1 Definitionoflmages . . . .. .. ... ... ... 31
1.2 ImageMatching. .. .. ... ... ... ... ... .. ...... 31
1.3 Multimodality and Statistical Similarity Criteria . . . . . . . ... .. 33
1.4 Dense Matching and the Variational Framework . . . . . ... ... 36

2 Study of the Abstract Matching Flow 41
2.1 Definitionsand Notations . . . . . ... ... .. ... ....... 41
2.2 BasicProperties . . . . . ... 42
2.3 Semigroups of Linear Operators . . . . . .. ... ... ...... 44
2.4 Solutions of the Abstract Matching Flow . . . . . .. ... ... .. 47
2.4.1 Mildand Strong Solutions . . .. .............. 48

242 ClassicalSolution . ... ..................48

3 Regularization Operators 53
3.1 FunctionalSpaces . .. ... ... ... .. .. .. .. .. ..., 53
3.2 Notations . . . . . . .. . . . . e 54
3.3 Image Driven Anisotropic Diffusion . . . . .. .. ... ... .... 54
3.4 The Linearized Elasticity Operator . . . . . . ... ... ...... 57

3.5

Existence of Minimizers . . . . . . . . . . . ... 59



10 CONTENTS
Il Study of Statistical Similarity Measures 63
4 Definition of the Statistical Measures 65
4.1 GlobalCriteria . . . . . . . . . ... 66
4.2 LocalCriteria . . . . . . . . . . . e 68
4.3 ContinuityofMI9andMI? . . . .. ... 71
5 The Euler-Lagrange Equations 75
5.1 GlobalCriteria . .. .. ... .. .. . . .. .. .. 75
5.1.1 Mutual Information. . . . . ... ... ... ... ... ... 75

5.1.2 CorrelationRatio . . . . ... ... ... .. ......... 78

5.1.3 CrossCorrelation . . . .. ... ... ... .. ....... 79

5.2 LocalCriteria . . . . . . . . . . e 80
5.2.1 Mutual Information. . . . .. ... ... ... .. .. ... 81

5.2.2 CorrelatioRatio. . . . .. ... ... ... ... ... ..., 83

5.23 CrossCorrelation . . . .. ... ... ... ......... 83

53 Summary . ... 84
6 Properties of the Matching Terms 87
6.1 PreliminaryResults . . . . ... ... ... ... ... .. ..., 87
6.2 GlobalCriteria . . . .. .. ... .. . . ... 89
6.2.1 Mutual Information. . . . .. ... ... ... .. ... ... 89

6.2.2 CorrelationRatio . . . ... ... ... ... ......... 97

6.2.3 CrossCorrelation . . . .. ... ... ... ......... 103

6.3 LocalCriteria . . . . . . . . . .. . e 105
6.3.1 Mutual Information. . . . . ... ... ... .. .. .... 106

6.3.2 CorrelationRatio . . . ... ... ... .. ......... 110

6.3.3 CrossCorrelation . . . ... ... ... .. ......... 116

[l Implementation Aspects 121
7 Numerical Schemes 123
7.1 RegularizationOperators . . . . . .. ... ... ... ...... 123
7.1.1 The Linearized Elasticity Operator . . . . . ... ... ... 124

7.1.2 The Nagel-Enkelmann Operator . . . . .. ... ... .. 126

7.2 Dissimilarity Terms . . . . . . . . . .. e 127
7.3 Approximate Implementations &f,, (h) andFig(h) . . . . . . . .. 131
7.3.1 Mutual Information. . . . .. ... ... ... ... ..., 131

7.3.2 CorrelationRatio . . .. ... ... ... ... ....... 132

7.3.3 Parallel Implementation . . ... .............. 133



CONTENTS 11

8 Determining Parameters 137
8.1 Determining the Smoothing Parameter . . . . . .. .. ... ... 138
9 Experimental Results 143
9.1 Classification . . ... ... ... . . .. ... 143
9.2 Description of the Experiments . . . . . . . ... ... ... .... 143
Appendices 163
A Other Applications 163
A.1 Entropy Minimization for Image Segmentation . . .. ... .. .. 163
A.2 Diffeomorphic Matching . . . . . .. ... ... .. ... .. ... 164

B Library Description 171
B.1 GeneralRemarks . .. ... ... .. ... ... ... .. ... 171
B.2 C++ Listing: Global Mathching Functions . . . . .. ... ... .. 172
B.2.1 Mutual Information . . . . ... ... ... oL 172

B.2.2 CorrelationRatio . . . . ... ... ... ... .. .. ... 174

B.2.3 CrossCorrelation . . . . ... ... ... ... ....... 177

B.3 C++ Listing: Local Mathching Functions . . . ... ... ... .. 178
B.3.1 Mutual Information . . . . .. ... ... ... ....... 179

B.3.2 CorrelationRatio . . . ... ... ... .. ......... 181

B.3.3 CrossCorrelation . . . . ... ... ... .. ........ 183

B.4 C++Listing: 2D MatchingFlow . . . . .. ... ... ... .... 185
B.5 C++ Listing: Main Program and Multiscale Handling . . . . . . .. 187

Bibliography 189






List of Figures

11
1.2
1.3
1.4
15

2.1
2.2
2.3

4.1

51
5.2
5.3

7.1
7.2

8.1
8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Examples of differentimage modalities . . . . ... ... ... .. 32
Monomodal matchingexamples . . . .. ... ... ........ 34
Nonrigid “multimodal” matching examples . . . . . . .. ... .. 35
Synthetic sensors and the support of their joint intensity distribution87,
Schematic joint intensity distribution . . . . . . ... ... ... .. 38
The complex plane and the secfoof Definition2.2 . . . ... ... 46

The complex plane and the sectérsandX s defined in Theorem 2.7 46
The complex plane and the sectigsand A defined in Theorem 2.1351

Local joint intensity distribution. . . . . . .. .. ... ... ..... 69
Interpretation oV Jyvpe(h) . . . oL 77
Interpretation oV Jere(h) . . . . . . ... 79
Interpretation oV Jocs(h) . . . . . . .o 81
Execution flow for the master processor . . . . ... ... .. .. 134
Execution flow for each slave processor in the parallel implementation
ofthe matchingflow. . . . .. ... .. ... ... ......... 135
Density estimationexample 1. . . . . .. ... ... ... ..., 140
Density estimationexample2. . . . . .. ... ... ... ..., 141
Behavior of the two regularization operators . . . . . ... .. .. 145
Displacement fields with linearized elasticity and anisotropic diffusiot6
Linearized elasticity witl§ close to% andclosetoone .. ..... 146
DeterminantoD(Id +h*) . . . ... ... ... ... .. ..... 147
Proton density image matching against T2-weighted MRI. . . . .148
Deformation field recovered in the experiment of figure 9.5. . . . 149
Components of the deformationfield . . . . .. ... ... .... 149
Determinant of the Jacobian of the deformation . . . . . ... .. 150
Matching with local mutual information and correlation ratio . . . 151

9.10 Realigned image and its superposition with the reference image . 151.
9.11 Components of the applied deformation field . . .. .. ... .. 152



14 LIST OF FIGURES
9.12 Components of the recovered deformation field . . . .. ... .. 152
9.13 Determinant of the Jacobian for the deformation . . . . . . . . .. 153
9.14 Global mutual information withfMRIdata . . . . . . ... ... .. 154
9.15 Matching of T2-weighted anatomical MRI against EPI functional MEI5
9.16 Matching of anatomical vs diffusion-tensor-related MRl . . . . . 156
9.17 Sterao matching using global mutual information. . . . . . . . .. 157
9.18 Deformed and referenceimages . . . . . ... ... ... .... 158
9.19 Components of the obtained deformation field . . . . . . ... .. 158
9.20 Determinant of the Jacobian for the obtained deformation . . . . . 159
9.21 Human template matching. Reference (left) and target (right) images0
9.22 Deformedtemplate . . . . . . ... ... ... ... 160
9.23 Some correspondingpoints . . . . .. ... L. 161
9.24 Components of the obtained deformation. . . . .. ... ... .. 161
9.25 Determinant of the Jacobian for the obtained deformation . . . . . 162
Al Segmentationexamplel . ... ... ... ... ... ...... 165
A.2 Segmentationexample2 . ... ... ... ... ... ... 165
A.3 Segmentationexample3 . ... ... ... ... ... 166
A.4 Diffeomorphic matching using local mutual information . . . . . . 167
A.5 Diffeomorphic matching using local cross correlation: first examplel68
A.6 Diffeomorphic matching using local cross correlation: second exampie
A.7 Diffeomorphic matching using local cross correlation: third exampl&69



Meéethodes Variationnelles pour le
Recalage Multimodal






M éthodes Variationnelles pour le Recalage Multimodall 17

Introduction

Cette tlese porte sur le probine de la mise en correspondance dense entre deux
images, et en particulier lorsqu’'une comparaison directe des irésrsaere im-
possible. Rsoudre automatiquement ce pkabke est uné&tape fondamentale dans
I'exploitation et I'étude du contenu des images. Par exemple, c'est exmeguis
essentiel dans plusieurs prébies de vision par ordinateur tels quet&lonage de
canéras et la reconstruction 3® partir de (au moins) deux vues d'uneese. Le
probleme peuétre vu @rériguement comme celui de la fusion de dees, c’est-dire

celui de la mise en correspondance d’'informations provenant de plusieures sources.
Quand les sources sont d’une nature cammntaire, elles partagent pafidition

tres peu d'information comune, et il s@re donc difficile de fusioner leur sorties re-
spectives. Ceci est un pra@lshe tes courant dans I'analyse des imagesdivales,

ou I'on est souvent confroata des multiples modaéis d'imagerie (Tomographie par
rayons X, Resonance Magnetique Neelire, Emission de Positrons, etc.). Dans ce
contexte, le proldime est souvent appeliecalage multimodal. D’autres situations o

une comparison directe des inteésitdevient inutile apparaissent en vision par ordi-
nateur. Ainsi, mettre en correspondence des structures similaires sous des conditions
d’illumination variantes ou lorsque les objets ont des pé&ipsi de eflectance ou de
diffusion differents (albdos diferents) sont deux exemples ou leéthodes de re-
calage multimodal peuveiggalement s’appliquer.

Nous proposons une approche variationnelle pour le recalage multimodal non-
rigide. Les techniquegatrites reposent sur le calcul de mesures statistiques de dissem-
blence entre les intengi de égions correspondantes. Deux familles d’algorithmes
sont consiérées, correspondant au calul global ou local de cesrest L'approche
suivie est celle d’'une mdadisation continue du probine et le calul de la presmrie
variation des critres statistiques. L'existence et 'uné&id’'une solution aux flots de
minimisation est @montée pour les trois céresétudiés (dans leur version locale et
globale) ainsi que pour deux familles dé&nateurs difrentiels de&gularisation.

Plan du manuscrit

Le document est divés en trois parties. La pregte partie (chapitres & 3) est
consacee a la description des concepts essentiels mis en jeu dans I'appariement de
deux images en utilisant des eéries statistiques de dissemblance, et donne une vue
d’ensemble de I'approche profms Les conditions @cessaires I'exsistence et
unicité de la solution du probme de minimisation sorétablies et deux dgateurs

de regularisation sonétudies en montrant qu'ils satisfont les pragéis requises. La
seule partie des algorithmes qui n’est pasémst celle qui concerne le terme de mise

en correspondance, issue duéem de dissemblance. C’estllobjet de la deuxme

partie (chapitres 4 6), quiétudie en étail ce terme degquations fonctionnelles,
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en calculant tout d’abord la preare variation des six cétes de dissemblance et en
établissant ensuite leurs bonnes pre@s pour le caraéte bien pos du processus
de minimisation. Finalement, la troishe partie (chapitres & 9) cecrit en ctail

la discgtisation et I'impémentation nui@rique des algorithmes quésultent de ces
équations, et fsente dessultats exprimentaux avec destbrmations syntetiques
et reelles, mettant en jeu des images 2D ou 3D. Esung de chaque chapitre est
donré a continuation.

PARTIE I: Un ProbEme Grérique de Mise en Correspondance Dense

CHAPITRE 1

Ce chapitre introduit les concepts de base mis en jeu dans la mise en correspondance
de deux images. Il commence par une introduction dedarth de I'espace éthelle
(scale-space) et donne I&fahition d’image adofite dans la suite. |l continue en
définissant le prol@me de mise en correspondance en fonction du type de transforma-
tion rechercke et @crit ensuite les critres statistiques de ressemblance@mel. 1l

termine en écrivant le formalisme du calcul de variations&ume I'approche suivie

dans cette thse en donnant la formégerale de€quations cevolution qui gouvernent

le processus de minimisation.

CHAPITRE 2

Ce chapitre est consdd I'étude du proldme de minimisation introduit au chapitre 1,
dans le cadre abstrait de I'analyse fonctionnelle. L'existence et I'énildtplusieurs
types (faible, forte, classique) de solutions au peai# dévolution est @montée en
supposant un terme de mise en correspondance Lipschitz-continu etdateaps de
régularisation §rérant des semi-groupes (continus, analytiques) de contractions.

CHAPITRE 3

Ce chapitreetudie la partie@gularisation des algorithmes de mise en correspondance.
Deux familles diferentes d’'oprateurs ligaires sont cons@iees, dont une congue
pour encourager les discontinest du champ deé&placement le long des contours

de I'image de &férence. |l est monérque ces ograteurs grerent des semi-groupes
uniformément continus et analytiques de contractions et satisfont donc les conditions
nécessairegtablies au chapitre 2. Aps une discussion sur les espaces fonctionnels
consickres, des preuveségérales d'existence de fonctions minimisantes pour les
fonctionnelles c&nergie propdses sont écrites.
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PARTIE II: Etude des Mesures Statistiques de Simé#arit

CHAPITRE 4

Ce chapitre introduit les deux classes de termes de dissemblanceéteesidap-
pekes globales et locales. Leugfthition est donae en termes d’estimations non-
parangtriques de la denéitjointe des intendis a partir soit des images dans leur
ensemble (globales) soit degions correspondantes autour de chaque point (locales).
Dans chaque cas, trois mesures de simdaxiint @finies: corélation croig€e, rapport

de corglation et information mutuelle.

CHAPITRES

Dans ce chapitre, lesguations d’Euler-Lagrange assees sont drivees pour les six
mesures de dissemblandétant donie la forme complexe de ces fonctionnelles, un
calcul explicite de leur @rivee de Giteaux est@cessaire pour le calcul deguations
d’Euler-Lagrange.

CHAPITRE 6

Ce chapitre est consd@ca montrer que les gradients caleslau chapitre 5&finissent
des fonctions satisfaisant les conditions de continnécessaires I'existence et
unicité de la solution du probme de minimisation, telles qu’elles sastablies au
chapitre 2.

PARTIE Ill: Aspects Nunériques

CHAPITRE 7

Ce chapitre dcrit les scBmas nurériques utili&€s pour disdtiser leséquations
d’évolution continues, ainsi que pour l'interpolation des images et leurs gradi-
ents. Des sdmas en temps explicites et implicites sont coadis. Le scBma
d'implémentation de I'estimation de dergstia€ sur du filtrage&cursif est écrit en
detail.

CHAPITRE 8

Ce chapitreetudie I'estimation des di#frents paragtres des alogrithmes, et en partic-
ulier du paramtre de lissage dans 'estimation de la déngiinte d’intensigs.
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CHAPITRE9

Ce chapitre gFsente desasultats exprimentaux pour tous les algorithmeiscdits en
utilisant des donees aussi bien syréitiques queéelles. Les exemples incluent des
images 2D pour des applications en vision par ordinateur, et des images 3D provenant
de differentes modalis d’imagerie radicale.

Conclusion

Dans cette tbse, noustudions le prodme de mise en correspondance dense en-
tre deux images, en utilisant des eris statistiques de dissemblance. Deux classes
d’'algorithmes sont cons@ées, selon que ces @ies soient calcagk globalement
pour toute I'image, ou localement entre dégions correspondantes. Dans chaque
cas, trois crigres de dissemblance s@tuidés, dfinis comme 'oppasdes crigres de
ressemblance suivants: information mutuelle (bien @dsptune @pendance statis-
tique tes @gererale entre les niveaux de gris), rapport de @aition (adaf@ a une
dépendance fonctionnelle), et celation croi€e (adagea une @pendance affine).
La minimisation de la somme du terme de dissemblance et un ternégdlarsation
définit, a travers lesquations d’Euler-Lagrange, un syste déquations fonction-
nelles dévolution. Nousétudions les conditions sous lesquelles égmiations
d’évolution sont bien p&es, c’esh dire ont une solution unique et montrons que les
algorithmes propdss satisfont ces conditions pour deux classes&tateurs ligaires
régularisants, dont une est congue pour encourager des variations rapides de la solution
le long des contours de I'image def@érence. La performance de ces algorithmes est
illustréea travers plusieurs exemples sygtifjues et &els, aussi bien sur des images
2D que 3D. Comme le montrent ces exemples, les algorithiergsisont applicables

a des prol#mes qui ne font paséaessairement intervenir des capteurs de meédalit
differentes. lls sont aussiésgalement iréressants pour la communaute I'imagerie
médicale, o le probEme de fusionner des doees provenant de défentes modalkits
d’'imagerie recessite souvent de corriger des distorsions nd@aires.
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Introduction

The present thesis deals with a specific problem in the field of image analysis, namely
image matching Loosely speaking, the problem is that of establishing correspon-
dences between points in two different images. Solving this problem is a fundamental
prerequisite in understanding and exploiting the contents of images. For instance, it
is essential in middle-level computer vision tasks such as camera calibration and 3D
reconstruction from two or more views. The problem may be viewed in a generic
fashion as that of data fusion, i.e. that of putting in correspondence information from
several sources. When the sources are of a complementary nature, they share by def-
inition little or no common information, and therefore fusing their outputs becomes
particularly difficult. This is a common problem in medical imaging, where several
modalities are widely used (Xray Tomography, Magnetic Resonance Imaging (MRI),
functional MRI (fMRI), Positron Emission Tomography, etc.). In this context, the
problem is callednultimodalimage matching. Other situations in which a comparison

of the source outputs becomes difficult are matching under varying illumination con-
ditions, or images produced by physical objects with different responses to the same
illumination (e.g. different albedos). A possible approach to the solution of this prob-
lem is to define meaningful structures in the image, invariant under transformations of
the grey-level intensities, for example edges, corners, etc, and then design low-level
methods to extract them from the image. Methods to match these structures can then
be devised.

This thesis proposes a variational framework for dense multimodal matching.
Rather than working with extracted features, the described techniques rely on the com-
putation of statistical dissimilarity measures between the intensities of corresponding
regions. The approach which is followed is that of a continuous modeling of the prob-
lem, based on the theory of the calculus of variations and partial differential equations
(PDEs). This formalism has proved very fruitful in image processing and analysis
through its application in image de-noising, segmentation, and matching, mainly be-
cause it de-emphasizes the role of discretization and allows to take profit of many
results from these mathematical disciplines. The proposed algorithms are divided into
two families, corresponding respectively to global and local statistical dissimilarity cri-
teria. The well posedness of the proposed algorithms is proved by showing existence
and uniqueness of the solution to the evolution equations that describe the maximiza-
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tion of the similarity criteria.

Contributions

This section aims at situating the present work in its context with respect to existing
methods, so that a clear appreciation of its contributions and limits may be established.
The amount of literature on the subject of image matching is very large. A good survey
in the computer vision domain is provided by Mitiche and Boutemy [59]. Barron, et al.
give a performance evaluation of some popular optical flow algorithms in [13]. In the
domain of medical image registration, a good and recent survey is provided by Maintz
and Viergever [9].

At a conceptual level, most of the existing methods for the recovery of motion
rely on the minimization of an energy which encompasses two sources of a priori
knowledge: (a) what should a good matching satisfy and (b) a model of the transfor-
mation or some other constraint allowing to limit the search for possible matches.
As for the first point we can mention the optical flow constraint, the local image
differences, or more general block matching strategies [79, 66], which allow to use
richer, non-local similarity measures (cross-correlation [35, 36, 21, 64], mutual infor-
mation [87, 93, 88, 52], correlation-ratio [76], among several others [94, 43, 70, 50]).
As for the second point, we can find for instance the search for low-dimensional
transformations (e.g. affine, quadratic, or spline-interpolation between a set of con-
trol points [57, 78]). Another example of a constrained deformation is the stereo case,
in which the knowledge of the fundamental matrix allows to restrict the search for
the matching point along the epipolar line [3, 95]. If the searched transformation is
a more general function (i.e. not described by parameters), the constraint may consist
in requiring some smoothness of the displacement field, possibly preserving discon-
tinuities [81, 3, 72, 6, 55, 56, 11, 10, 32]. Statistical similarity measures have been
widely used in the context of image registration through their maximization over a set
of low parametric transformations [9]. Mutual information was introduced by Viola
et al. [87, 93, 88] and independently by Maes et al. [52]. The correlation ratio was
first proposed as a similarity measure for image matching by Roche et al. [76]. Other
statistical approaches rely on learning the joint distribution of intensities, as done for
instance by Leventon et al. [50]. Extensions to more complex (non-rigid) transforma-
tions using statistical similarity measures include approaches relying on more complex
parametric transformations [57, 78], block-matching strategies [53, 41, 37], or para-
metric intensity corrections [74]. Some recent approaches rely on the computation of
the gradient of the local cross correlation [21, 64].

Concerning the regularization of dense displacement fields, we distinguish the
approaches based on explicit smoothing of the field, as in Thirion’s deamons algo-
rithm [81] (we refer to [69] for a variational interpretation of this algorithm), from



Contributions 25

those considering an additive term in the global energy, yielding (possibly anisotropic)
diffusion terms [12, 91]. For a comparison of these two approaches, we refer to the
work of Cachier and Ayache [19, 20].

Typically, differential methods are valid only for small displacements and special
techniques are required in order to recover large deformations. For instance Alvarez et
al. [6] use a scale-space focusing strategy. Christensen et al. [25] adopt a different ap-
proach. They look for a continuously invertible mapping which is obtained by the com-
position of small displacements. Each small displacement is calculated as the solution
of an elliptic PDE describing the non-linear kinematics of fluid-elastic materials un-
der deforming forces given by the matching term (in their case the image-differences).
Trouve [84] has generalized this approach using Lie group ideas on diffeomorphisms.
Under a similar formalism, a very general framework which also allows for changes
in the intensity values is proposed by Miller and Younes [58].

In this thesis, we focus on the study of a family of functional equations resulting
from the minimization of global and local statistical dissimilarity measures. The em-
phasis is put on to the computation of the first variation of these criteria and on the
study of the properties of their gradient operators which are important to establish the
well posedness of the minimization flows.

Concerning smoothness of the solution, we consider an energy functional com-
posed of the sum of a matching and a regularization term and restrict our study to
regularization terms yielding linear operators. We obtain a large family of matching
algorithms, each one implying different a priori knowledge about the smoothness of
the deformation and the relation between image intensities. We prove that all these
problems have a global solution and that the functional equations governing the min-
imization are well posed in the sense of Hadamard. Interesting generalizations of
these results may be obtained for more complex regularization schemes. In this re-
spect we refer to the work of Weickert and S6hn[91], Trouwe [84] and Miller and
Younes [58]. The main contributions of our work are listed below.

e We propose a unifying framework for a family of variational problems for multi-
modal image matching. This framework subsumes block matching algorithmic
approaches as well as techniques for non-rigid matching based on the global
estimation of the intensity relations.

e We formally compute the gradient of local and global statistical dissimilarity
measures, which is an essential step in defining and studying the well posedness
of their minimization. Contrary to more standard matching terms like intensity
differences or the optical flow constraint, these matching terms are non-local,
which makes the standard method of the calculus of variations inapplicable.

e \We show that the operators defined by the gradients of these criteria satisfy some
Lipschitz-continuity conditions which are required for the well posedness of the
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associated matching flows.

Document Layout

This manuscript is divided in three parts. Part | (chapters 1 to 3) is devoted to the
description of the basic concepts involved in matching two images using statistical
dissimilarity measures and provides an overview of the proposed approach. The
conditions for the existence and uniqueness of a solution to the minimization problem
are established and two regularization operators are studied by showing that they
satisfy the required properties. The only part of the algorithms that is not treated is
the study of the matching term, coming from the dissimilarity measure. This is the
object of part Il (chapters 4 to 6), which studies this term of the functional equations
in detail, computing the first variation of the six dissimilarity criteria and establishing
their good properties in the sense of the well posedness of the minimization process.
Finally, part Il (chapters 7 to 9) describes in detail the numerical implementation
of the resulting algorithms, and presents several experimental results with real and
synthetic deformations, involving both 2D and 3D images. In the following, a detailed
summary of each chapter is given.

PART I: The Generic Image Matching Problem

CHAPTER1

This chapter gives an overview of the type of algorithms studied in the thesis. After
providing the formal definition of an image adopted in the sequel, the general matching
problem is defined. The chapter continues with a discussion of the statistical similarity
criteria and their intuitive behavior. It ends by describing the general framework of the
calculus of variations and summarizes the approach followed in the thesis by giving
the general form of the functional equations which describe the minimization flows.

CHAPTER?Z2

This chapter is devoted to the study of the minimization problem introduced in chap-
ter 1, within the abstract framework of functional analysis. The chapter starts with

a discussion of the functional spaces considered. Then the existence and uniqueness
of several kinds of solutions (weak, strong, classical) to the generic evolution prob-
lem is shown assuming Lipschitz-continuity of the matching term and regularization
operators generating certain types of contraction semigroups of operators (uniformly
continuous, analytical).
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CHAPTER3

This chapter studies the regularization part of the algorithms. Two different families
of linear operators are considered, including one which is designed to encourage
discontinuities of the displacement field along the edges of the reference image. It
is shown that these operators generate uniformly continuous, as well as analytical
semigroups of contractions and therefore satisfy the required conditions established in
chapter 2.

PART II: Study of Statistical Similarity Measures

CHAPTER4

This chapter introduces the two classes of matching terms considered, which are called
local and global. Their definition is given in terms of non-parametric Parzen-window
estimates of the joint intensity distribution from either the whole image or correspond-
ing regions around each pixel (voxel). In each case, three similarity measures are
defined: cross-correlation, correlation ratio and mutual information. Existence of min-
imizers for the energy functional obtained is then shown.

CHAPTERS
In this chapter, the Euler-Lagrange equations are derived for the six dissimilarity mea-

sures. Due to the non-standard form of these functionals, an explicit computation of
their Gateaux-derivative is necessary.

CHAPTERG
This chapter is devoted to showing that the gradients of the statistical criteria com-
puted in chapter 5 satisfy the Lipschitz-continuity conditions established in chapter 2,

necessary to assert the well-posedness of the evolution equations.

PART Ill: Implementation Aspects

CHAPTERY

This chapter describes the numerical schemes employed in implementing the continu-
ous evolution equations, as well as for interpolating image and gradient values.
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CHAPTERS8

This chapter discusses the way in which the different parameters of the algorithms are
determined, particularly the smoothing parameter for the Parzen window estimates.

CHAPTER9

This chapter presents experimental results for all the described algorithms using both
real and synthetic data. Examples include 2D images for applications in computer
vision and 3D images concerning different medical image modalities.
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Chapter 1

Overview

This chapter gives an overview of the type of algorithms studied in the thesis. After
providing the formal definition of an image adopted in the sequel, the general matching
problem is defined. The chapter continues with a discussion of the statistical similarity
criteria and their intuitive behavior. It ends by describing the general framework of the
calculus of variations and summarizes the approach followed in the thesis by giving
the general form of the functional equations which describe the minimization flows.

1.1 Definition of Images

Physically, an image is a set of measurements obtained by integration of some density
field, for example irradiance or water concentration, over a finite area (pixel) or volume
(voxel). Sometimes images are vector valued, as color images for example. We shall
restrict ourselves to scalar images. In a computer, an image appears as a set of scalar
values ordered in a two or three-dimensional array. The grey-value obtained involves a
neighborhood of a point, and the idea of resolution, or scale, is captured by modeling
the physical field as a tempered distribution. In practice, this amounts to defining
image derivatives by convolution with the derivative of an appropriate kernel. We will
view images as functions defined over a two or three dimensional manifold, usually
a bounded domaif® of R™ (n = 2, 3) with smooth boundarg(). The range of an
image will be considered to be the interj@l AJ.

1.2 Image Matching

In many applications, one needs to integrate information coming from different types
of sensors, compare data acquired at different times, or put similar structures of two
different images into correspondence. These tasks are known respectively as data fu-
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sion, image registration and template matching, and they are all based upon the ability
to automatically map points between the respective domains of the images. Addition-
ally, computing the optical flow, reconstructing a 3D scene from (at least) two views,
tracking a “feature” or a region in a video sequence and calibrating a camera, also
require the ability to establish point correspondences between two images.

Fairview-Univ. Med. Ctr. 1

(a) Black and white photography (b) Magnetic resonance angiography

h o P
(c) T1-weighted magnetic resonance (d) Functional magnetic resonance

Figure 1.1: Examples of different image modalities

The problem can be formulated as follows. Given two sets of points on a manifold
(for instanceR™), we want to be able to automatically put them into correspondence,
say by finding a functiop : R™ — R™. This function can be constrained in many
ways, depending on how much we know about the relation between the two sets. For
instance, when matching points from a stereo pair we know that corresponding points
should belong to epipolar lines, and that from two views taken with the same center
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of perspective (but different viewing orientations), the transformation is a homogra-
phy [34]. In other cases, other, more complicated functions are needed, but some a
priori knowledge may still be available, like the fact that the transformation should
be “smooth” and invertible. Consider for instance the images shown in Figure 1.2 on
the following page. The first image pair represents a three-dimensional scene with
no moving objects, viewed by a projective camera from two different points in space.
Consequently, the transformation which links the points in both images is a homogra-
phy within each plane of the scene. The regions where occlusions occur, are regions
where the transformatios is not invertible. The two images of the second example
were constructed by calculating and assigning to each pixel its signed distance from
two given curves (the curves outlined in red). One possible way of matching points in
the first curve with points in the second curve is by matching all the points in these two
images. This would require to find a highly nonlinear mapping which however should
be smooth and invertible, at least for the points near the curves.

1.3 Multimodality and Statistical Similarity Criteria

The second component in the matching problem (the first one was the nature of the
transformationy) is the knowledge about what should be satisfied when two points are
to be associated with one another. Coming back to the examples of Figure 1.2, it is
clear that for the firstimage pair a reasonable way of matching the images is by simply
comparing the intensities of corresponding pixels. For the second case, since the value
of the images is zero for points lying on the curves, it seems also reasonable to match
the images by a comparison of the local image intensities.

However, images may be produced by a variety of sensors (Figure 1.1 on the facing
page gives some examples), and this simple way of measuring their similarity is no
longer adapted. More general ways of comparing the images are therefore needed.
This is the role of statistical similarity measures, which have been widely used to
cope with the problem of registering different medical image modalities (see the first
example of Figure 1.3 on page 35). Nevertheless, these criteria can be used in other
situations in which no intensity comparison can be made, even though the acquiring
sensors are of similar kind. This is the case for instance when matching images of
similar objects which however have different responses to similar lighting conditions
(e.g. the two skins with different albedos in the second example of Figure 1.3).

Let us try to give an intuition behind these similarity measures by picturing arti-
ficial imaging sensors. The described situation is admittedly far simpler than reality,
but the idea behind the similarity criteria can be better grasped in this ideal situation.
Formal definitions will be postponed until chapter 4.

Suppose our detectors are sensitive to a physical quaptifo fix ideas, we may
picture ) as the intensities of a given image (see Figure 1.4 on page 37). We note
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(c) (d)

Figure 1.2: Between (a) and (b) the camera has undergone a rigid 3D movement so
that, within each plane of the scene, the matching function is a homography. On the

other hand, (c) and (d) are constructed as the signed distance functions to the red
curves. The matching of these curves requires a highly nonlinear mapping between
the two images. The occlusions in the top-row example are regions where the mapping
function is not invertible. The mapping between the two curves should on the contrary

be invertible everywhere.
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Figure 1.3: Nonrigid “multimodal” matching examples: (a) and (b): T1-weighted
anatomical magnetic resonance image (MRI) against functional MRI. (c) and (d) : two
human faces (with different skin albedos) under similar illuminating conditions.
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the output of two given sensois andis. If their response is a smooth function @f

the support of the joint intensity distribution of intensities is generally a curve in the
plane[iy,i2]. A particular case is obtained when one of the responses is an invertible
function ofQ (sayi1). In this case, the support of the joint distribution has a functional
form f(i1). When bothi; andiy are invertible functions of), the support of the joint
distribution is also an invertible function and the output of the two sensors may be
equalized to yield the same image. This suggests that looking at the joint distribution
of intensities and somehow constraining it to be clustered is an appropriate way of
matching related outputs.

As will be clear from their expressions, the gradients of the three similarity mea-
sures that we consider define three types of clustering processes of the joint distribution
according to a hierarchy of constraints on the intensity relations. Roche et al. [75, 73]
have clarified the assumptions on which these similarity measures rely by looking
for optimal measures from various sensor models. At the most general stage, mutual
information is a measure of the statistical dependency betwesmdi,. A more con-
strained criterion is the correlation ratio, which measures the functional dependency
between the intensities. Finally, the cross correlation is still more constrained, as it
measures their affine dependency (see Figure 1.5).

1.4 Dense Matching and the Variational Framework

We now summarize the modeling assumptions used in the sequel and define the match-
ing problem in the context of the calculus of variations. We consider two images
IY = I, * G, andI§ = I, « G, at a given scale, i.e. resulting from the convolution

of two square-integrable functiods : R® — R andl; : R* — R (n = 2, 3) with

a Gaussian kernel of standard deviation Given a region of interes®, a bounded

region of R™ (we may require its bounda®®(? to fulfill some regularity constraints,

e.g. that of being of class?), we look for a functiorh : Q — R”™ assigning to each
pointx in €2 a displacement vectdi(x) € R™. This function is searched for in a set

F of admissible functions such that it minimizes an energy functi@nalF — R of

the form

Z(h) = J(h) + R(h),
where7 (h) measures the “dissimilarity” betweéfi and
IS o (Id + h)

andR(h) is a measure of the “irregularity” df (Id is the identity mapping oR™).

The dissimilarity term will be defined in terms of global or local statistical mea-
sures on the intensities 8f and/g o (Id + h), and the irregularity term will generally
be a measure of the variationsloin 2. For example i is differentiableR (h) could
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Sensor a Sensor b Sensor ¢

‘‘‘‘‘‘‘‘‘‘‘

Figure 1.4: Synthetic sensors and the support of the joint intensity distribution (SJID)
of their outputs. The second and third rows represent the response and output of three
synthetic sensors.
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i1 i1 i1 Joint intensity distribution (i1, i2)

I (x) ¢

p(i1)

. 12 (X) i 19
marginals |

p(i1]I2(x)) \

p(iz)

conditionals 7
2

p(i2|11(x))

12

Figure 1.5: Schematic joint intensity distribution. The three criteria give a hierarchy
of measures to compare image intensities. The cross correlation measures their affine
dependency, so that maximizing this criterion amounts to trying to fit an affine function
to the joint density. The correlation ratio measures their functional dependency, so that
the optimal density can have the shape of a nonlinear function. Finally, their mutual
information gives an estimate of their statistical dependency; maximizing this criterion
tends to clusteP.

be defined as a certain norm of its Jacohizn. In summary, the matching problem is
defined as the solution of the following minimization problem:

h* = inZ(h) = i h h)). 1.1
argminZ(h) = argmin (7 (h) + R(h)) (1.1)
Assuming that is sufficiently regular, its first variation & < F in the direction of

k € Fis defined by

5Z(h k) — lim 2R —Z(h) _ dZ(h+ek)|
e—0 € de o

If a minimizerh* of Z exists, theryZ (h*, k) = 0 must hold for evenk € F. The
equation®Z (h*, k) = 0 are called the Euler-Lagrange equations associated with the
energy functionalZ. Assuming thatF is a linear subspace of a Hilbert spafle
endowed with a scalar produgt -) 7, we define the gradiefi; Z (h) of Z by requiring

that
dZ(h + €k)

vk
e F, i .

= (VWwZ(h),k)q.
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The Euler equations are then equivalenMgZ (h*) = 0. Rather than solving them
directly (which is usually impossible), the search for a minimizeZ @$ done using
a “gradient descent” strategy. Given an initial estimagec H, we introduce time
and a differentiable function, also notadrom the interval0, 7] into H (we say that
h € C([0,T); H)) and we solve the following initial value problem:

dh

= ~VuI(h)= —(VHJ(h) + VHR<h))7

h(0)(-) = ho(-).

That s, we start from the initial field, and follow the gradient of the functional(the
minus sign is because we are minimizing). The solution of the matching problem is
then taken as the asymptotic state (i.e. when o) of h(¢), provided thah(t) € F

for a sufficiently large.

The boundary conditions, i.e. the valuesigt)(-) in 92, must also be specified.
This will be done along with the choice of the spaef admissible functions in Chap-
ter 3. We assume for the moment (since this is the case we shall treaX),tRéh)
is a linear application from a linear subspacerbfinto H. In Chapter 3, concrete
functional spaceg andH will be chosen and two families of regularization operators
will be studied.

The computation and study of the properties\af7 (h) for a set of statistical
dissimilarity measures will be the object of Part Il of this manuscript. In the following
chapter, we study the existence and uniqueness of a solution of (1.2) from an abstract
viewpoint, by borrowing tools from the theory of semigroups generated by unbounded
linear operators on a Hilbert space.

(1.2)






Chapter 2

Study of the Abstract Matching
Flow

In the previous chaptey,Z was defined by assuming thhtbelongs to a Hilbert
space denoteH . Consequently, equation (1.2) may be viewed as a first-order ordinary
differential equation with values iff . It turns out that studying it from such an abstract
viewpoint allows to prove the existence and uniqueness of several types of solutions
(mild, strong, classical) of (1.2), by borrowing tools from functional analysis and the
theory of semigroups of linear operators. We refer to the books of Brezis [18] and Pazy
[68] for formal studies of these subjects. In the present chapter, we study the generic
minimization flow (1.2) within this abstract framework. The linear operat®f; R (h)
defined by the regularization term will be simply notéénd the non-linear matching
term —Vy J will be generically noted”. The unknown of the problem is di valued
functionh : [0, +0o[— H defined orR*. The goal of this chapter is to establish the
properties required byl and F' in order for equation (1.2), which is now written as a
semilinear abstract initial value problem of the form

dh
— —Ah(t) = F(h(t), >0 (2.1)
h(0) =up € H,

to have a unique solution (in a sense to be defined). That these conditions are met will
be the object of Chapter 3 concerning two different families of linear regularization
operators4, and of Chapter 6 concerning six different matching functigihns

2.1 Definitions and Notations

We begin by introducing some definitions and notatiofs.will denote a complex
Hilbert space with scalar produ¢t,-); € C, i.e. satisfying foru andv in H,
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(u,v)g = (v,u)};, where \* denotes the complex conjugate df The real and

imaginary parts oA € C will be noted R¢\) and Im(A). The norm ofH, induced by

the Hilbert product, will be noted - |z = (-, .)}f.

If £ andF denote two Banach spaces, a linear operator is any linear application
A:D(A) C E — F fromits domainD(A), a linear subspace @, into £'. We shall
restrict ourselves to densely defined linear operators, i.e. for wihich) is dense in
E. In the following, we consider a linear operatér. D(A) C H — H.

The range ofA is the linear subspace &f

RanA) ={f € H: f=Au,ue D(A)}
and its graph is the set of pairs
I'(A) ={Ju,Au],u e D(A)} C H x H.

A is said to beclosedif I'(A) is a closed subset df x H. It is said to beboundedf
there exists: > 0 such that

[Aullg < cllullg, Vue€ D(A).

The smallest such will be denoted|A||. The graph norm ofd is the norm||| - ||| a
defined, foru € D(A), as

Hullla = llullg + A ullz
and its numerical range is the set
Q(A) ={(Au,v)m, [Jullz =1} CcC.

A is said to benvertibleif, for all f € H, there exists a unique € D(A) such that
Au = f. Itimplies that Rand) = H. We noteu = A~'f and readily verify that
A~lis alinear application fron# into D(A). If an invertible operator! is closed, it
follows (Proposition 2.3) thati ! is a bounded linear operator.

Finally, if I denotes the identity operator @h, the resolvent sei(A) of a closed
linear operator is the set of all\ € C for which AT — A is invertible, i.e (A — A)~!
is a bounded linear operator. The family

RA:A) =\ —-A)71 Xep(A)

of bounded linear operators is called the resolverd of

2.2 Basic Properties

We now state some basic properties of densely defined closed linear operators that will
be useful in the sequel. In all this sectiofi,denotes a densely definetbsedlinear
operator fronD(A) C H into H.
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Proposition 2.1 D(A), endowed with the graph norm df, is a Banach space.

Proof : Consider a Cauchy sequeng,} in D(A), i.e. such that

n,p— oo
—

len — il + | A — Aup gz 257 0. (2.2)

We must prove thafu,} converges tax € D(A). Because of (2.2), we have that
|lun, — up|lg — 0 and||Au,, — Au,||zp — 0, i.e. we have two Cauchy sequences in
H, which are convergent sind¢ is complete. We therefore haVe,, Au,| — [u, f],
whereu € H andf € H. Sincel'(A) is closed, we have that, f] € T'(A). This
means that (af = Au, which implies that||u,, — ul|/|a — 0, and (b)u € D(A)
which completes the prooft

We next recall the closed graph theorem.

Theorem 2.2 (Closed graph theorem)Let E and F' be two Banach spaces and let
T : E — F be alinear operator. If the graph df is closed then there exists> 0
such thatl|Tu||r < ¢ ||ul|, i.e.T is continuous.

Proof :  The proof can be found for example in Theorem 1.7 of the book of
Brezis [18].0

The closed graph theorem allows to prove the following.
Proposition 2.3 If A is invertible thend~! is a bounded linear operator.

Proof: We haveA™! : H — D(A) is a linear application. Sincé is closed,D(A)
endowed with the graph norm of is a Banach space (Proposition 2.1). Now since
RanA) = H andVf € H, A1 Af = f, we have that

D(A) = {[u, Aul,u € D(A)} = {[A7'f, f], f € H} =T(A7)

and thusA~! is closed. We therefore can apply the closed graph theoredAT to
which says that there exists> 0 such that

1A i+ ull < e Jlulls-

This implies that
1Al < e [lullm

and thusA~! is a bounded linear operator

From Proposition 2.3, the following result readily follows.
Proposition 2.4 If A is invertible then there exists> 0 such that

|Aul|g > ¢ ||ullg, Yu € D(A).
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Proof : SinceA is invertible,A~! is a bounded linear operator. Therefore there exists
¢ > 0 such that
||A*1 Aullg < ¢ ||Au||g, Yu € D(A).

This completes the proof sinceé™! Au =wu. O
As a direct consequence of Proposition 2.4, we have the following useful result.

Proposition 2.5 If A is invertible then the graph norm of, ||| - |||4 and the norm
|A - ||z are equivalent, i.e. there exist > 0 andcy > 0 such that

ullla er < [Auller < ez [l|ullla,  Vu € D(A).

Proof :  We havel||u|||a = [|Au|lg + ||u||z and therefore the right part of the
inequality is obviousd, = 1). For the left part, sinced is invertible we apply
Proposition 2.4 tod which says that there exists> 0 such that| Au||z > ¢ ||u||z.
Adding c|| Au|| g to both sides of this inequality yields the desired estimate.

2.3 Semigroups of Linear Operators

Consider a one-parameter famiyt), 0 < ¢t < +oo of bounded linear operators from
H to H. This family is said to be &y semigroup of bounded linear operators if

Definition 2.1
1. S(0)=1,

2. S(t1 +ta) = S(t1) S(t2), Viti,t2 >0. (the semigroup property)
3. limy g+ Stlu=u, VueH.

The Hille-Yosida theorem says that there is a one-to-one correspondence béfveen
semigroups of contraction§§(¢)|| < 1,Vt > 0) and maximal monotone operators in
a Hilbert space. A linear operatdris maximal monotone if and only if

1. Ais monotone: R@Au,u)y > 0, Yu € D(A),
2. and maximal: RafY + A) = H. That s, a linear operatot is maximal if

Vfe H, JueD(A) suchthat u+ Au=f.

if —A is a maximal monotone operatot, is said to be the infinitesimal generator of
the corresponding’y semigroup notedb 4(¢), ¢ > 0. The relation betweenl and
S(t) is the following. Givenuy € D(A), consider the initial value problem,

dh
— —Ah(t)=0, t>0
dt (2.3)

h(0) = uo.
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if —A is a maximal monotone operator, the Hille-Yosida theorem asserts that there
exists a unique solution of (2.3), i.e. a unique function[0, +oc[— H such that:

1. h(t) is continuous ant(t) € D(A) for ¢t > 0.
2. h(t) is continuously differentiable far> 0.
3. h(t) satisfies (2.3) fot > 0.

Moreover, the solution satisfigh(t)||z < ||uo|/x for ¢ > 0. The first two points
above are summarized by saying that

h € C([0, 4+00[, D(A)) N C([0, +o0[, H).

The linear applicatiorb 4 (t), D(A) — D(A) is defined byS4(t)up = h(t), where
h(t) is the solution of (2.3) at time. Since||Sa(t)uo|lzr < ||uol m, it is possible,
using the Hahn-Banach theorem and the fact fiias a Hilbert space [18], to extend
Sa(t) by continuity and density to a linear continuous operdfor~ H. This family
of operators, also notefls (¢), is theCy semigroup of contractions correspondingito

A property of theCy semigroups of bounded operators that we will need later is
given next.

Proposition 2.6 For all u € D(A), Sa(t)u € D(A) and

%SA(t) u=ASy(t)u=S4(t) Au.
Proof :  The proof can be found for example in Theorem 1.2.4 of the book of

Pazy [68]. O

We will also make use of analytic semigroups of operators, which are defined as fol-
lows. For more details, the interested reader is referred to [68].

Definition 2.2 Let A = {z € C : ¢1 < argz < v2, p1 < 0 < o} and for
z € A, let S(z) be a bounded linear operator. The famiyz), z € A is an analytic
semigroup inA if

1. z — S(z) is analytic inA.

2. 85(0)=1T1 and lim S(z)u=wu, Yu € H.

z—0
z €A

3. S(z1 4+ 22) = S(z1) S(2z2) Vz1,22 € A.  (the semigroup property)

A semigroupS(¢) will be calledanalyticif it is analytic in some sectoA containing
the nonnegative real axis (Figure 2.1). Clearly, the restriction of an analytic semigroup
to the real axis is &y semigroup.

We will make use of the following characterization of the infinitesimal generator
of an analytic semigroup.



46 Chapter 2: Study of the Abstract Matching Flow

Figure 2.1: The complex plane and the sectasf Definition 2.2, containing0, +oo[.
A semigroupS () will be called analytic if it is analytic im\.

Theorem 2.7 Let A be the infinitesimal generator of a uniformly boundégl semi-
group S(t) and assumeé < p(A). The following statements are equivalent.

1. S(t) can be extended to an analytic semigroup in a sedpr= {z : |arg z| <
5} and||S(z)]| is uniformly bounded in every closed sub-sedgr, §' < 4, of
Ag.

2. There exisd < § < w/2and M > 0 such that
p(A) > 5 = {\: |arg\| < g+5}u{0}

and

M
RN : A)| < B PorAEZsA £,

Proof . The proofis found in Theorem 2.5.2 of the book of Pazy [68].

Figure 2.2 illustrates the relation between the seciizrand A of Theorem 2.7.

C Im
J s C p(A)
2
As
)

0 6 Re
i

é

Figure 2.2: The complex plane and the secthysand>:; defined in Theorem 2.7. A
Cp semigroupS(t) can be extended to an analytic semigrouphjnif the resolvent set
p(A) of A includes the sectdt; for somel < § < 7/2.
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2.4 Solutions of the Abstract Matching Flow

We now consider the initial value problem (2.1):
dt B (2.4)

and start by defining four different kinds of solutions.

Definition 2.3 (Global classical solution)A functionh : [0, +oo[— H is a global
classical solution of2.4)if

h € C([0, +oo[; H) N C(J0, +oc[; H) N C(]0, +00[; D(A)),
and(2.4)is satisfied fort > 0.

Definition 2.4 (Local classical solution)A functionh : [0,7[— H is a local classi-
cal solution of(2.4)if

h e C([0,T; H) N C'(J0,T[; H) N C(10,T[; D(A)),
and(2.4)is satisfied fof <t < T.

Definition 2.5 (Strong solution) A functionh which is differentiable almost every-
where on|0, 7] such thatdh/dt € L(]0,T[; H) is called a strong solution of the
initial value problem(2.4)if h(0) = up anddh/dt — Ah(t) = F(h(¢)) almost every-
where on[0, T'].

Definition 2.6 (Mild solution) A continuous solutioih of the integral equation

h(t) = Sa(t)uo + /Ot Sa(t—s)F(h(s))ds (2.5)

is called a mild solution of the initial value probleff.4).

The last definition is motivated by the following argument. If (2.4) has a classical
solution then thef valued functionk(s) = Sa(t — s)h(s) is differentiable for0 <
s < t and (Proposition 2.6):

dk _ —ASA(t — s)h(s) + Sa(t — s)h'(s) =

ds
— ASA(t — s)h(s) + Sa(t — s)Ah(s) + Sa(t — s)F(h(s)) =
Sa(t—s)F(h(s)). (2.6)
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If Foh e LY([0,T[; H) thenSa(t — s)F(h(s)) is integrable and integrating (2.6)
from O tot yields

k() = K(0) = h(0) - Sa(t)us = | Salt — 5)F(n(s)) ds,

hence ;
h(t) = Sa(t)uo + /0 Sa(t—s)F(h(s))ds.

Definition 2.6 is thus natural.

The main goal of this chapter is to establish sufficient conditiond ¢im view of
the regularization operators that will be studied in the next chapter) aidiomrder
for the initial value problem (2.4) to have a uniqgiebal classical solution

2.4.1 Mild and Strong Solutions

Sufficient conditions o and F' for (2.4) to have a unique mild solution are given by
the following theorem.

Theorem 2.8 LetF' : H — H be uniformly Lipschitz continuous dih and let— A be
a maximal monotone operator. Then the initial value prob{m) has a unique mild
solutionh € C([0,T]; H) (given by equatioif2.5)). Moreover, the mappingy — h
is Lipschitz continuous frof{ into C'([0,T]; H).

Proof : The proof can be found for example in Theorem 6.1.2 of [68].
O

SinceH is a Hilbert space, taking an initial valug € D(A) suffices to obtain exis-
tence and uniqueness of a strong solution.

Theorem 2.9 Let ', A andh be those of Theorem 2.8. Thenuif € D(A), h is the
unigque strong solution g2.4).

Proof : This is a direct consequence of Theorem 6.1.6 in [68] siHcebeing a
Hilbert space, is a reflexive Banach space.

2.4.2 Classical Solution

To show the existence of a classical solution of (2.4), we will make use of analytic
semigroups. I~ A generates an analytic semigroup of operatorstaach(A) (i.e. A

is invertible), it is shown in Section 2.2.6 of the book of Pazy [68] tHé4tcan be
defined for0) < o < 1 and thatA® is a closed linear invertible operator with domain
dense inH.
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The closedness oll® implies that its domain, endowed with the graph norm of
A%, is a Banach space (Proposition 2.1). Moreover, sid€ds invertible, its graph
norm is equivalent to the normh- ||, = ||A“ - ||z (Proposition 2.5). Thu®(A“),
equipped with the norm - ||, is @ Banach space which we denoteAby.

Proposition 2.10 Let H,, be the Banach space defined above. Thenc H with
continuous embedding.

Proof: SinceA® is a densely defined closed linear invertible operator fiod®) C
H into H, we may apply Proposition 2.4 t&*, which says that there exists> 0 such
that|| A%ul| g > ¢ ||ul|a, Yu € D(A%). Therefore there exists> 0 such that

[ullzr < ¢ llulla, Vu € Ha. (2.7)

a

The importance of the continuous embedding®f into H lies in the fact that if the
function F' in (2.4) is Lipschitz continuous i/, i.e. if it satisfies for somé& r > 0:

[F'(u1) — F(u2)|lg < Lr|lur —uellm, VYui,uz € H,

then it follows from equation (2.7) that it is also Lipschitz continuou& jn Moreover,
if F'is bounded ind, i.e. if it satisfies for somé&(r > 0:

thenF is well defined inH,,. The main result that we will use is the following, which
is a special case of Theorems 6.3.1 and 6.3.3 in [68].

Theorem 2.11 Assume thatA generates an analytic semigroufi(¢) satisfying
|S(t)| < M and that0 € p(A), so that the Banach spadé,, above is well de-
fined. Assume further that for somie: > 0 and K > 0 and for0 < op < a < 1,

the functionF' satisfies

1. HF(ul) — F(U2)||H <Lp ||U1 — U2Ha Vul, ug € Hy,,.
2. HF(U)HHSKF Yu € H,.

Then for everyy € H,, the initial value problem (2.4) has a unique global classical
solution

h € C([0, +oo[; H) N C(]0, +00[; D(A)) N C*(]0, +oo; H).

Moreover, the function — dh/dt from]0, 4+oo[ into H,, is Holder continuous.
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Proof . This follows directly from Theorem 6.3.1 (existence of a local classical
solution) and Theorem 6.3.3 (extension to a global solution using the boundedness
of F) in [68], with k(t) = Kp in Theorem 6.3.3. The &lder continuity follows

from corollary 6.3.2 in [68] which also shows that thélder exponeni3 verifies
0<f<l—a O

We are thus interested in the possibility of definiity, i.e. that of extending a givef,
semigroup to an analytic semigroup in some sector around the nonnegative real axis.
In order to do that, we will use Theorem 2.7 on page 46, together with the following
one.

Theorem 2.12 Let A be a densely defined closed linear operatofin LetQ(A) be

the closure inC of the numerical range oft and¥ its complement, i.&2 = C\Q(A).
If 3¢ is a connected componentBfsatisfyingp(A) N Xy # () thenp(A) D Xy and

1
d(A: Q(A))

[RA: A <

whered(\ : Q(A)) is the distance of fromQ(A).

Proof: The proof is found in Theorem 1.3.9 of [68]1

In view of the regularization operators studied in the next chapter, the following the-
orem establishes sufficient assumptions Aoto be the infinitesimal generator of an
analytic semigroup.

Theorem 2.13 Let A be the infinitesimal generator of@, semigroup of contractions
on H (i.e. let—A be a maximal monotone operator). We assume thet invertible,
i.e. that0 € p(A) and that:

1. (Au,v)g = (u, Av) g, Vu,v € D(A) (A is called symmetric).
2. Re(Au,u)y < —c ||u|| g for somec > 0 (coerciveness).
ThenA is the infinitesimal generator of an analytic semigroup of operatorgion

Proof :  From the two assumptions aboudu, u)y, it follows that the numerical
rangeQ(A) = {(Au,u) g, ||u||z = 1} of A is a subset of the intervél-oo, —c] for
somec > 0 (since the first assumption implies, by the definition of the scalar product,
that (Au,u)g € R,Yu € H). Choosingd < ¢ < /2 and denotings; = {\ € C :
larg\| < /2 + 0} (see Figure 2.3 on the facing page), there exists a conSjasuch
that

dA: Q(A)) > Cs |A| forall X e 5. (2.8)

This is clear from Figure 2.3, where we see ti@X : Q(A)) > d; > dy = |\| cosd,

so we can set’s = cos 6. Moreover,d(0 : Q(A)) = c and therefor&; C C\Q(A).
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N
v\ \ As

—c 0,/ i Re

Figure 2.3: The complex plane and the sectosyandA; defined in Theorem 2.13.

The fact that € p(A) shows thaks, which contain$), is a connected component

of C\Q(A) that has a nonempty intersection witfl). This implies by Theorem 2.12
on the facing page thatf A) O X5 and that for every in X5, A # 0,

1 1

< :
d(x: Q(A)) ~ ColAl
We can therefore apply Theorem 2.7 on page 46, which allows us to conclude that the
Cp semigroup generated by can be extended to an analytic semigrdéi(g) in the
sectorA; = {z € C: |argz| < ¢} (see Figure 2.3), and thd®S(z)|| is uniformly
bounded in every closed sub-sectoy, §' < 6, of As. O

RO A <

As a summary of the results of this chapter, we end it by stating the main result
arrived at in the form of a single theorem.

Theorem 2.14 (Main result) If the following assumptions are satisfied,

1. The linear operatotd : D(A) C H — H is the infinitesimal generator of @
semigroup of contractions ol (— A is maximal monotone) and is invertible.

2. Yu,v € D(A), (Au,v)g = (v, Au)y and there exists: > 0 such that
(Au,u)g < —c[Jullm-

3. Fis bounded and Lipschitz continuousfih

then, for eachyy € H,, the initial value problen{2.4) has a unique global classical
solution as defined in Definition 2.3 on page 47.
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Proof : Assumptions 1 and 2 are the assumptions of Theorem 2.13 and therefore
A generates an analytic semigrodt) satisfying||.S(¢)|| < M. This is the first
assumption of Theorem 2.11 and, since we assumeAsinvertible, we also have
that0 € p(A). Now assumption 3 together with equation (2.7) implies the two
remaining assumptions of Theorem 2.11 and the proof is compigte.



Chapter 3

Regularization Operators

This chapter studies the regularization part of the initial value problem (1.2), i.e. the
term VR (h). Two families of regularization operators are considered, including one
which encourages the preservation of edges of the displacement field along the edges
of the reference image. In view of the results of the previous chapter, we choose con-
crete functional spaceg and H and specify the domain of the regularization opera-
tors. We then show that these operators satisfy the propertiéswiich are sufficient

to assert the existence of a classical solution of (2.1) according to the main result of
the previous chapter.

3.1 Functional Spaces

We begin by a brief description of the functional spaces that will be appropriate
for our purposes. In doing this, we will make reference to Sobolev spaces, denoted
WHP(Q). We refer to the books of Evans [33] and Brezis [18] for formal definitions
and in-depth studies of the properties of these functional spaces.

For the definition ofV;Z, we use the Hilbert space
H =1(Q) = (W(Q))".

The regularization functionals that we consider are of the form
R(h) = 04/ ¢(Dh(x)) dx, (3.1)
Q

where Dh(x) is the Jacobian oh at x, ¢ is a quadratic form of the elements of
the matrix Dh(x) anda > 0. Therefore the set of admissible functiafiswill be
contained in the space

H(Q) = (W ()"
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Additionally, the boundary conditions fdi will be specified inF. Assuming for
definiteness thdi = 9;h = 0 almost everywhere ofi(2, we set

F=H(Q) = (Wy*(Q)".

As will be seen, due to the special form &f(h), the regularization operators are
second order differential operators, and we therefore will need the space

H?(Q) = (W(Q))"

for the definition of their domain.

3.2 Notations

We introduce in this section some notations that will be used in the sequel. Recall
the general form ok (h) given by (3.1). The quadratic forga : M, «, — RT is
defined on the seM,,«,, of n x n matrices with real coefficients. The components
of a vectorx € R” will be notedx;, andd; f will denote thei!" partial derivative of

a scalar functiory, so that its gradienV f is given byV f = [01f,...,0.f]T. The
mappingy(Dh(x)) is given by

p(Dh(x)) = Y aiju(x) 0ih;(x) dphy(x),

i?j7k7l

wherea; ;i are n* scalar functions defined if2. The divergence of a vector field
h : R" — R" is denoted dith) = V -h = ). 0;h;. For a matrixT € My,
composed of row vectotgy ... tyy,), i.e. T = [ty .. .t{n}]T, we note

div(T) = [V - tgy, ..., Vot
so that the following relations hold:
div(Dh”) = div((V-h)Id) = V(V - h),
(3.2)
div(Dh) = [Ahy, ..., Ah,)? = Ah.
GivenR(h) as in (3.1), the computation &%, R (h) is standard:

ViR (h) = —a div(Dy(Dh)).

3.3 Image Driven Anisotropic Diffusion

The first regularization functional that we consider is defined by

1
©1(Dh) = 5Tr(Dh T;s Dh'), (3.3)
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whereT 7 is an x n symmetric matrix defined at every point @fby the following
expression:

A+ |VId - VIV T n
Ty = ( (n‘—fl‘)‘)VfP—i—fL)\f , for f:R" >R
This matrix is a regularized projector in the plane perpendiculd¥ fo It was first
proposed by Nagel and Enkelmann [62] for computing optical flow while preserving
the discontinuities of the deforming template. As pointed out by Alvarez et al. [6],
applying the smoothness constraint to the reference image (figrastead of the
deforming one (heréd) allows to avoid artifacts which appear when recovering large
displacements. The matrik; has one eigenvector equal¥of, while the remaining
eigenvectors span the plane perpendiculav o Its eigenvalues,; verify > . A\; =1
independently oV f.
It is straightforward to verify that

div(Te Vhy)
div(Dyy (Dh)) = ;
diV(T]f th)

Thus, the regularization operat®, R (h) yields a linear diffusion term witT'; as
diffusion tensor. In regions whei€h; is small compared to the paramefein T,
the diffusion tensor is almost isotropic and so is the regularization. At the edges of
where|V f| >> ), the diffusion takes place mainly along these edges. This operator is
thus well suited for encouraging large variationshadlong the edges of the reference
imagely.

We define our first regularization operator as follows.

Definition 3.1 The linear operatord; : D(A;) — H is defined as

D(Ar) = Hy(Q) NH(Q),
diV(T]iTVhl)
diV(T[if th)

We now check that A, is a symmetric maximal monotone invertible operator, apply-
ing the standard variational approach [33].

Proposition 3.1 The operator — A;) defines a bilinear forni; on the spac#I}(f2)
which is continuous and coercive (elliptic).

Proof : Because of the form of the operatdy, it is sufficient to work on one of the
coordinates and consider the operatpr D(a1) — L*(Q) defined by

ar u = div(T s Vu),
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and to show that the operator— (u — a;u) defines a bilinear formh; on the space
HZ () which is continuous and coercive. Indeed, we define

b1 (u,v) :/ (v — vdiv(T e Vu)) dx.
Q
We integrate by parts the divergence term, use the factvtiat/} (2), and obtain
b1 (u,v) = / (uv + Vo' T 1o V) dx.
Q

Because the coefficients @ ;o are all bounded, we obtain, by applying Cauchy-
Schwarz:

b1 (u, )| < erlull g 1ol 21 (@)
wherec; is a positive constant, hence continuity.

Because the eigenvalues of the symmetric mdfiix are strictly positive, we have
Ty > crld, wherecr is a positive constant. This implies that

[ 9TV dx = by, 0) =l = orl TulRag,
Q
from which it follows that

b1(u, u) > callul|F g,

for some positive constant > 0 and hence we have coerciveness.

We can therefore apply the Lax-Milgram theorem and state the existence and unique-
ness of a weak solution iH}(2) to the equatioth — A;h = f for all f € L2(Q).
Since(? is regular (in particulac’?), the coefficients offy7 in C1(9Q), the solution is

in Hy(2) N H2(Q) and is a strong solution (see e.g. [33]).

Proposition 3.2 —A; is a maximal monotone self-adjoint operator frad{A;) =
H}(Q) N H2(Q) into L2(Q).

Proof : Monotonicity follows from the coerciveness &f; proved in the previous
proposition. Maximality also follows from the proof of proposition 3.1. According to
the same proposition, we ha®¥(A;) = H}(Q) N H?(Q2) and Rafld — A;) = H
(application of the Lax-Milgram theorem). In order to prove that the operator is
self-adjoint, it is sufficient, since it is maximal monotone, to prove that it is symmetric
([18], proposition VII.6), i.e. tha{—Aih, k)12q) = (h, —Ai1k)r2q) and this is
obvious from the proof of proposition 3.1

Lemma 3.3 The linear operatorA; is invertible for alla > 0.
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Proof : Itis sufficient to show that the equatierd;h = f has a unique solution for

all f € L2(Q). The proof of proposition 3.1 shows that the bilinear form associated
to the operatorA; is continuous and coercive H'(f2), hence the Lax-Milgram
theorem tells us that the equationt; h = f has a unique weak solution H}(12) for

all f € L2(Q2). Since() is regular the weak solution is iH}(2) N H2(Q) and is a
strong solution.O

3.4 The Linearized Elasticity Operator

The second regularization operator that we propose is inspired from the equilibrium
equations of linearized elasticity (we refer to Ciarlet [27] for a formal study of three-
dimensional elasticity theory), which are of the form:

p Ah+ (A + 1) V(V - h) = 0. (3.4)

The constants\ and i are known as the Laéncoefficients. Rather than modeling
the domairt) as an elastic materiglthe idea in this section is simply to view the left-
hand side of (3.4) as a kind of “diffusion” operator and use it as an instangg/oth)

in (1.2). What interests us is the flexibility gained by the relative weight which we can
give to the two operatorAh andV (V - h), so that a single parameter (controlling this
weight) is a priori needed. Also, in order to assert the existence of a minimizer of the
functionalZ obtained, it is desirable to defing Dh) in such a way that it is convex

in the variableDh. To this end, we consider the one-parameter far‘r%ily((g <1)of
functions of the form

s(Dh) = %(5 TH(DRTDh) + (1) Tr(Dh?)). (3.5)
for which we have
div(Dys(Dh)) =& Ah+ (1 - &) V(V - h).
Thus, we define the second regularization operator as follows.
Definition 3.2 The linear operatotds : D(As) — H is defined as
D(Az) = H}(Q) N H2(Q),
Ash =& Ah+ (1 -¢) V(V-h).

for 3 <¢&<1.

1This would require a more complex modeling since true elasticity is always non-linear [27].
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We now check that- A5 is a symmetric maximal monotone invertible operator.

Proposition 3.4 The operator(/ — A,) defines a bilinear fornB, on the spacdl}
which is continuous and coercive (elliptic).

Proof : We consider the bilinear foriyy defined as
Co(h,k) = — / kT Ash dx,
Q
whereh andk are functions irHj}. Integrating by parts, we find

Cy(h, k) = /Q (¢ Tr(Dh"Dk) + (1 —¢) Tr(Dh Dk)) dx,

andBz(h, k) = Cz(h, k) +/ h(x) - k(x) dx. We have
Q

Con k) < aijkly/ 0sh; Dby dx,
ijkl Q

where the constants;;;; are all bounded. Thus, by applying several times Cauchy-
Schwarz, we find that

|Ca(h, k)| < ca|lhlgo)lkl[m1 ), c2 >0,
and hence, using Cauchy-Schwarz again,

|Ba(h, k)| < balb[[g o)l ka1 @), b2 > 0.
This proves the continuity aB,. Next we note that

Bsy(h,h) > €[hfq),

which proves the coercivenessBf. O

Proposition 3.5 —As is a maximal monotone self-adjoint operator frdi{As) =
H}(Q) N H?(Q) into L?(Q).

Proof : Monotonicity follows from the coerciveness &, proved in the previous
proposition. More precisely, singe-Azh, h)y2q) = C2(h, h), the proof shows that
(—=Ash, h)yz2(q) > € [ Tr(Dh' Dh) dx > 0.

Regarding maximality, proposition 3.4 shows that the bilinear f&nassociated
to the operatofd — A, is continuous and coercive H'(£2). We can therefore apply
the Lax-Milgram theorem and state the existence and uniqueness of a weak solution
in H3(Q) of the equatiorh — Ash = f for all f € L?(Q2). SinceQ is regular (in
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particularC?), the solution is i1} () N"H2(2) and is a strong solution (see e.g. [27],
Theorem 6.3-6).

Therefore we hav®(Ay) = H{(Q) N H2(Q2) and Raitl — A;) = H. Finally,
— A is self-adjoint for the same reasons as those indicated in the proof of proposition
3.5. 0

Lemma 3.6 The linear operatorA; is invertible for alla > 0.

Proof : Itis sufficient to show that the equatierdsh = f has a unique solution for

all f € L2(Q). The proof of proposition 3.4 shows that the bilinear form associated
to the operator A, is continuous and coercive H'(f2), hence the Lax-Milgram
theorem tells us that the equationloh = £ has a unique weak solution H}(€2) for

all f € L2(Q2). Since() is regular the weak solution is iH}(2) N H2(Q) and is a
strong solution.O

3.5 Existence of Minimizers

Having defined the regularization functionals, we discuss in this section the existence
of minimizers of the global energy functional

Z(h)=J)+ oz/Qgp(Dh(x)) dx, (3.6)

where is eitheryp, defined in Equation (3.3) ap, defined in Equation (3.5). We
assume thay/ (h) is continuous irh, and bounded below. These properties will be
shown for the statistical dissimilarity functionalg h) that we study in Part Il. In the
following, we use the notion of weak convergence, defined as follows (see e.g. [33]).

Definition 3.3 Let E' be a Banach space and IBt be its dual. We say that a sequence
{hy} C E weakly converges th € E, written

hk — h,
if (k*,hy) — (k*,h) for each bounded linear functionat € E*.

The main result that we will use is given by the following theorem, found in Ciar-
let [27].

Theorem 3.7 Let Q2 be a bounded open subset®f and 3 € R. Assume that the
functiony : Q x R* — [3, 0o] satisfies the following two conditions:

1. o(x,-) :u € R* — p(x,u) is convex and continuous for almost alk (2.
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2. ¢(-,u) : x € Q — ¢(x,u) is measurable for al € R*.
Then

k—o0

u, —~uinLY(Q) = / p(u) dx < liminf/ o(ug) dx.
Q Q
Proof : The proof is found in Theorem 7.3-1 of [27]3
The following theorem is a slight modification of Theorem 7.3-2 in [27], which

assumes thaf (h) is a linear continuous functional.

Theorem 3.8 GivenZ(h) as in(3.6), assume thap is convex and coercive, i.e. that
there existy > 0 and 3 such that

o(F) > a||F|?+ 3, forall Fe& M.
Assume further thaf (h) is continuous irh and bounded below, and that
infycp o) Z(k) < oo.
Then there exists at least one functiore H}((2) satisfying
h = infcpp (o) Z(k).

Proof : First, by the coerciveness of the functigrand the fact that/ (h) is bounded
below, we have (using the inequality of Poingar

Z(h) > ¢ |h|ip q) + 4.

for all h € H}(2) and some constants> 0 andd.
Let {h} be a minimizing sequence fdr, i.e.

h, € H)(Q) Vk, and Jim Z(hy) = infyepy () Z(k) = m.

The assumption thak < oo and the relatiorZ (k) — oo as||k||g1(q) — oo imply
together that(h,} is bounded in the reflexive Banach spddé(f2). Hence{h,}
contains a subsequenéh,} that weakly converges to an eleménte H'(2). The
closed convex sdfi}((2) is weakly closed and thus the weak lirhibelongs tdH}(2).
The fact thath, — h in H(Q2) implies thatDh, — Dh in L*(Q) and, since? is
bounded (which implies thdt>(2) c L%(Q2)), we have

Dh, — DhinL*(Q) = Dh, — DhinL'(Q).

We conclude from Theorem 3.7 on the preceding page that

/ ¢(Dh) dx < liminf/ ©(Dhy) dx.
Q Q

p—00
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SinceJ is continuous,7 (h) = lim J(h,) and thusZ(h) < liminfZ(h,) = m.
p—00

p—00

But sinceh € H}(Q2), we also havé€ (h) > m and consequently

We now check thatp; and ¢, satisfy the hypotheses of Theorem 3.8. For the
case ofp;, we consider each of its scalar components since this separation is possible.
As pointed out in [6], because of the smoothnes®);df, Ts has strictly positive
eigenvalues and therefore, clearly,

Proposition 3.9 The mapping

p1: R — RT
X — XTpXT

iS convex.

The coerciveness @f; readily follows.

Proposition 3.10 The functional

Rifh) = [ o1(Dhx) dx.
Q
satisfies the coerciveness inequality, He; > 0, ¢ > 0 such that:
v1(Dh(x)) > 61|Dh\2 — co.

Proof : We have
VuTTIfVu > 0|Vul? vx e

Wheref > 0 is the smallest eigenvalue @f;. O

We now turn top,.

Proposition 3.11 The mapping

()02: Mnxn — RJr
X = ETr(XTX) + (1-¢) Tr(X?2),

is convex.
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Proof : We write p, as a quadratic form of the componeris of X,

n? n?
(pQ(X) = Z Zaij Xl Xj
(]

and notice that the smallest eigenvalue of the maiyjxs equal ta2{ — 1. The result
follows from the factthat < ¢ <1. O

Proposition 3.12 The functional

Ra(h) = [ e2(Dhix) dx.
Q
satisfies the coerciveness inequality, He; > 0, ¢ > 0 such that:
@2(Dh(x)) > c1|Dh[* — c,.

Proof : We choose; equal to the smallest eigenvalue@f andcy = 0. O
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Measures






Chapter 4

Definition of the Statistical
Measures

As mentioned before, a general way of comparing the intensities of two images is by
using some statistical or information-theoretic similarity measures. Among numerous
criteria, the cross correlation, the correlation ratio and the mutual information provide
us with a convenient hierarchy in the relation they assume between intensities [75, 73].

The cross correlation has been widely used as a robust comparison function for
image matching. Within recent energy-minimization approaches relying on the com-
putation of its gradient, we can mention for instance the works of Faugeras and Keriven
[36], Cachier and Pennec [21] and Netsch et al. [64]. The cross correlation is the most
constrained of the three criteria, as it is a measure ohffiee dependency between
the intensities.

The correlation ratio was introduced by Roche et.al [76, 77] as a similarity mea-
sure for multi-modal registration. This criterion relies on a slightly different notion of
similarity. From its definition given two random variabl&sandY’,

B Var[E[X Y]]

CR = Var[X] (4.1)

the correlation ratio can intuitively be described as the proportion of enetgywhich
is “explained by Y. More formally, this measure is bounde@l € CR < 1)) and
expresses the level iinctionaldependence betweéefiandY:

CR=1 & 3¢X=0¢()
CR=0 < E[X|Y]=E[X]

The concept of mutual information is borrowed from information theory, and was
introduced in the context of multi-modal registration by Viola and Wells 111 [88]. Given
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two random variableX andY’, their mutual information is defined as
MI = H[X]+ H[Y] - H[X,Y],

where’H stands for the differential entropy. The mutual information is positive and
symmetric, and measures how the intensity distributions of two images fail to be inde-
pendent.

We analyze these criteria from two different perspectives, namely that of comput-
ing them globally for the entire image, or locally within corresponding regions. Both
types of similarity functionals are based upon the use of an estimate of the joint prob-
ability of the grey levels in the two images. This joint probability, notgdi;, i2), is
estimated by the Parzen window method [67]. It depends upon the map@Eimge
we estimate the joint probability distribution between the imaffes (Id + h) and
I7. To be compatible with the scale-space idea and for computational convenience, we
choose a Gaussian window with variange- 0 as the Parzen kernel. We will often
use the notatioh = (i1, i2) and

212 -2 -2
Gai) = i )galie) = 550 (=5 ) = s expl-55) o exp( 52,
Notice thatg and all its partial derivatives are bounded and Lipschitz continuous. We
will need in Chapter 6 the infinite normjigs || and||g;|l-c. For conciseness, we will
sometimes use the following notation when making reference to a pair of grey-level
intensities at a poink:

In(x) = (I7 (%), I3 (x + h(x))).

4.1 Global Criteria

We noteX;; the random variable whose samples are the valfiés) and X n the
random variable whose samples are the valg¢s + h(x)).

The joint probability density function 01(?{ anXm?g’ ,, (the upper indey stands
for global) is defined by the functioR, : R? — [0, 1]:

)= - x) — i) dx
Pui) = o | Gofln(0—1) dx. 4.2)

Notice that the usual propertfs Py (i)di = 1 holds true.

With the help of the estimate (4.2), we define the cross correlation between the two
imagesI§ o (Id + h) andI{, notedCCY(h), the correlation ratio, notedR?(h) and
the mutual information, notellll Y (h). In order to do this we need to introduce more
random variables beside’é?i, and X§57h. They are summarized in Table 4.1. We
have introduced in this table the conditional Iaw)é?gjh with respect ton,’f, noted

Ph(i2|i1)l

Py (i2]ir) = (4.3)
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Random variable Value PDF
(Xt XYy 1) (i) Pa(i)
X?f 0 p(i1) = / Py(i) diz
R
Xig,n iz pi(ia) = / Pu(i) diy
R
E[X7e plX7] M2|1(i1,h)Z/i2Ph(i2!i1)di2 p(i1)
R
Var[Xfé,’h‘X?f} U2\1(i17h> = p(i1)
/ i3 Pul(iali1) dig — pigj (i1, h)?
R

Table 4.1: Random variables: global case.

and the conditional expectatidi)[X?g7h|X§’f] of the intensity in the second image
I§(Id + h) conditionally to the intensity in the first imag¢. We note the value of

this random variable,; (i1, h), indicating that it depends on the intensity valiye

and on the fielch. Similarly the conditional variance of the intensity in the second
image conditionally to the intensity in the first image is no¥air[ X7, | |X7.] and

its value is abbreviated,; (i1, h). The mean and variance of the images will also be
used. Note that these are not random variables and that, for the second image, they are
functions ofh:

pa(h) = /Riz ph(i2) dia, (4.4)

valb) = [ 3 pulia) dia = (ra(h)* (4.5)

Their counterparts for the first image do not dependhon

p1 = /Ril p(i1) diy, (4.6)

v = /RZ% p(il) d’Ll — (,ul)Q. (47)

The covariance o7, andX7, ,, will be noted

vi2(h) = /R2 i1 iy Pa(i) di — p1 pa(h). (4.8)
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The three similarity measures may now be defined in terms of these quantities

(%] 2(h)2

CC%h) = m (4.9)
CRg(h) = vzéh)/vml(ll,h) p(’il)dil, (410)
MI9(h) = / h(i)log (’651;9(}1)(12) di. (4.11)

The three criteria are positive and should be maximized with respect to thénfield
Therefore we propose the following definition.

Definition 4.1 The three global dissimilarity measures based on the cross correlation,
the correlation ratio and the mutual information are as follows:

Jeci(h) = —CC(h),
Jcre (h) = —CRg(h> +1

Jwis(h) = —MI9(h).

Note that this definition shows that the mappitgs- Jccs(h), h — Jcrs(h) and

h — Jwi¢(h) are not of the formh — [, L(h(x)) dx, for some smooth functioh :

R™ — R. Therefore the Euler-Lagrange equations will be slightly more complicated
to compute than in this classical case.

4.2 Local Criteria

An interesting generalization of the ideas developed in the previous section is to make
the estimator (4.2) local. This allows us to take into account non-stationarities in the
distributions of the intensities. We weight our estimate (4.2) with a spatial Gaussian
of variancey > 0 centered ak,. This means that for each poigy in 2 we have

two random variables, noteldf,i,7XO andX}gﬁxo’ 1, (the upper index stands for local)
whose joint pdf is defined by:

Py (i, xq) / Gp(In(x) — )G, (x — xq) dx, (4.12)
where SR . (_|x—x0|2)
TR T ey P ey )
and

G,(x0) = /;ZGW(X —xp) dx < [Q]G,(0). (4.13)

INote that instead of using the original definition@R, we use the total variance theorem to obtain

CR=1- %ﬁ,m This transformation was suggested in [77], and turns out to be more convenient.
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Joint local intensity distributio® (i1, i2, X0)

Figure 4.1: Local joint intensity distribution.

The pdf defined by expression (4.12) is in the line of the ideas discussed by Koenderink
and Van Doorn in [47], except that we now have a bidimensional histogram calculated
around each point (see figure 4.1). With the help of this estimate, we define at every
pointxy of 2 the local cross correlation between the two imaffeands o (Id + h),
notedCC!(h,xo), the local correlation ratio, note@dR!(h, x) and the local mutual
information, notedM| l(h, xp). In order to do this, just as in the global case, we need
to introduce more random variables besid{é@xo andX}g,xmh. We summarize our
notations and definitions in Table 4.2.

As in the global case, we define the mean and variandé}gfxo (note that they
are not random variables but they are functionggf

pi(xo) = / i1 pn(i1,xo) di1, (4.14)
R

o1(x0) = /R 2 pn(i1,%0) diy — (1 (x0))?, (4.15)

the mean and variance Qf}g’xo,h (note that these quantities depend additionally on
the displacement field):

M2(h,X0)E/i2 Ph(i2, Xo) dia, (4.16)
R
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Random variable Value PDF
(Xf¢ xo» XIg,x0, ) (i) Py (i1, 2, %)
Xio o i pli1, %) =

/Ph(i17’i27xo)di2
R

Xfégxo,h i2 Ph(i2,X0) =

/ Py (i1,12,%0) diy
R

E[X}g,x07h’X}f7xo] [LQ“(?Zl,h,XO) = p(’L.l,XO)
/ iQPh(iQ, Xo‘il) dig
R

VaI‘[X}g’th‘X}ir’xO] g1 (i1, h, x0) = p(i1,%0)

/ i%Ph(i27 Xo‘il) dig
R

_IU'QH (ila h7 XU)2

Table 4.2: Random variables: local case.

taftnx0) = [ B pulia,xo) diz — (afh x0))% (4.17)
R
as well as their covariance:
Uljg(h,x()) = / il ig Ph(iQ,XO) di — ,ul(Xo) ,ug(h,Xo). (418)
R

The semi-local similarity measures (i.e. dependingsghcan be written in terms of
these quantities:

h,x()?
CCl(h.x,) = —Yt2mx0)” 4.19
(b, x0) v1(x0) va2(h, %) (+.19)
1
l _ . . .
CR'(h,xg) = 1- m /Rvgl(zl,h,xo) p(i1,%g) di1, (4.20)

Pa(i, x0)
p(i1,%0)pn(i2, X0)

MI(h,xo) = /Ph(i,xo)log di. (4.21)
R2
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We define global similarity functionals by aggregating these local measures:

cCl(h) = / CC!(h, xo) dxo,
Q

CRl(h):/CRl(h,xo)dxo,
Q

M1 (h) :/QMIl(h,XO)de.

The three criteria are positive and should be maximized with respect to thafield
In order to define a minimization problem, we propose the following definition.

Definition 4.2 The three local dissimilarity measures based on the cross correlation,
the correlation ratio and the mutual information are as follows:

Jcc(h) = —CCl(h),
Jer(h) = —CR(h) + (9],

T (h) = —Mli(h).

Note that, just as in the global case, this definition shows that the maphings
Jeci(h), h — Jegi(h) andh — 7,1 (h) are not of the formh — [, L(h(x)) dx,

for some differentiable functioh : R™ — R. Therefore the Euler-Lagrange equations
will be more complicated to compute than in this classical case. This will be the object
of the next chapter.

4.3 Continuity of Ml ¢ and M1

Recall that the existence of minimizers fbth) was discussed in the end of Chapter 3

by assuming continuity and boundedness/gh). This is proved in Theorems 6.29

on page 104 and 6.61 on page 117 for the cross correlation in the global and local
cases, respectively, and in Theorems 6.21 on page 100 and 6.53 on page 115 for the
correlation ratio in the global and local cases, respectively. In the case of the mutual
information, we have the following.

Proposition 4.1 Leth,,,n = 1,--- ,00 be a sequence of functions Hf such that
h,, — h almost everywhere ife. ThenM|9(h,,) — MI9(h).

Proof : Becausdy andgs are continuous(7z(in,, (x) — i) — Gg(in(x) — i) a.e. in
Q x R?. SinceGy(in, (x) —1i) < g3(0)?, the dominated convergence theorem implies
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that P, (i) — Pu(i) for all i € R2. A similar reasoning shows that, (i2) — pn(i2)
for all i, € R. Hence, the logarithm being continuous,
Py, (i) Pa(i)

_ 1w, () B ORI
p(i1)pn,, (i2) () pn(ia) Vie R

Phn (1) log — Ph(l) 10g

We next consider three cases to find an upper bounéifofi) |log ﬁh(i)@) ;

19 <0
This is the case where

0 < |ig| < Jig — I§ (x 4+ hy,(x))] <lio—Al n>1
Hence

gpiz = A) < gpliz = I3 (x + hy(x))) < gp(iz) n=>1

This yields
gsliz = A) _ P, (i) _  gs(i2)
93(i2)  ~ p(i1)pn, (i2) ~ gglia —A)
e P, () (i2)
] b\l | o I\
o8 p(i1)pn, (i2) | — o8 g3(i2 — A)
and therefore
s Ph (l) . . gﬁ(ig)
B log ——2~72 | < log —222 =7
e () Lo8 iy, (| < 92U2IP( o8 26 0

The function on the right-hand side is continuous and integratitein- oo, A].

0<in<A
We have
0 < lig — I§ (x + hy,(x))] <A n>1
Hence
95(A) < gplia — I3 (x + hy(x))) < g3(0) n>1
This yields
95(A) _  Ba, () _ 95(0)
98(0) ~ p(i1)pn, (i2) ~ g3(A)’
ane P, (i) (0)
] i) | g I8
8 p(i)pm, (i2) | = 8 gs(A)
and therefore
. P, (1) , 95(0)
B log ——22__1 < g35(0 1 )
b )18 i m, ()| = #1084 ()

The function on the right-hand side is continuous and integraldesn[0, .A].
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i > A
This is the case where

OSiQ—ASiQ—IQU(X—i-hn(X)) <ip n>1.
Hence

gpliz) < gglia — I3 (x+hy(x)))  <gglia—A) n>1

This yields

gslia)  _  Pu,() _ gsliz— A

gplia — A) ~ pli1)pn, (i2) =  gplia)

and P (i) (s — A)

] L <1 w)

% p(i)pn, (i2) |~ % gslia)
and therefore

) Pa. (i) . : gs(iza — A)
hn(l) ng(h)phn(m) gﬁ(lz )P(ll) 0og 95(22)

The function on the right-hand side is continuous and integratitedpA, +oc].

The dominated convergence theorem implies that

o
Mo, = [ A @1og i
R2 p

(41)Pn, (i2)

MI 9 (h) :/RZ Pu(i) log (D)

i )pn (i)

Concerning the local case, a similar result holds true.

Proposition 4.2 Leth,,,n = 1,--- ,00 be a sequence of functions Af such that
h,, — h almost everywhere ift thenMI(h,,) — MI(h).

Proof . The proof is similar to that of proposition 4.0






Chapter 5

The Euler-Lagrange Equations

In this chapter, the computation of the first variation of the statistical dissimilarity mea-
sures defined in the previous chapter is carried out by considering the variations of the
joint density estimates. This provides us with a simple way to quantify the contribu-
tion of local infinitesimal variations df to these intrinsically non-local dissimilarity
criteria.

5.1 Global Criteria

We start with the global criteria, studying them in decreasing order of generality,
i.e. starting with mutual information.

5.1.1 Mutual Information

We do an explicit computation of the first variation ghs(h) (definition 4.1
on page 68). For this purpose, we recall that the first variation is defined as
%jMIg (h + €k) L:D . From the definition of7nps (h), we readily have

OJnms (h + k) / 9 { . Phex(i) } .
M\ RT ) [ Y B (i) log ——2tek | g
Oe re O | T k(1) log p(i1) pheecliz) |

_ _/ <1+log 'Ph—l-ek(l)» >5Ph+ek(1) diy di
R2 p(i1) Pnte(iz) e

_/ Phec(i) Opniaclia) o
R? Phtek(i2) O '
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We notice that the second term on the right-hand side is zero, since we have

Opnyek(iz) 1 / 0 / .
Py, di1 dis = — k(i2) dio = 0.
/R g prio(ia) Jo T k(i) diy dip = B¢ Rph+ k(i2) diz
—_—
Phtek (12) 1
Thus, we may write the first variation ghys (h) as
0Jmrs (h + k) wi e OPnteac(i) .
ME TPV = | E 2o hidd 1
e o R2 h (1) e o d17 (5 )
where (i)
BV (i :—<1—i—lo h‘)
i () ® p(ir) pa(ia)
The functionPy, . k(i) is given by equation (4.2):
. 1 .
Pusaci) = 7 [ Golsa) = 1) dx. (5.2)

and therefore

OPpyex(i 1 .

OPhiadd) _ L / 8y Gp(Tntae(x) — i) VIS (x + h(x) 4 k(x)) - k(x) dx.
e 1] Jo

Thus, we finally have

OJmrs (h + €k)
Oe

\Q! Rz/E Gp(I(x)n — 1) VI3 (x + h(x)) - k(x) dx di.

A convolution appears with respect to the intensity varidbl€his convolution com-
mutes with the derivativ@, with respect to the second intensity variableand there-
fore

OJmrs (h + €k)
Oe

L = ]Sll\/ﬂ (Gﬁ * O Eﬁ') (Ih(x)) VI§(x +h(x)) - k(x) dx.

By identifying this expression with a scalar productfih = L?(Q2), we define the
gradient of 7y 19 (h), denotedVy, 7ars (h), with the property that:

OJmrs (h + €k)
Oe

= (VuJnms (h), K)p2(q)-
e=0

Thus,
Ve (0)00) = g (G x 00 B (1)) V15 (s + ().

M\ 92 Pu(i) _p/h(iZ)
02 B ) = ( Puli) ph@e))'

where
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We define the functio®? — R:
L? D= L Oy EM (i
Ml,h(l) = @ 2 By (1)

The gradient of 7y 19 (h) is @ smoothed version of this function, evaluated at the inten-
sity pairIy(x), times the vector pointing to the direction of local maximum increase
of i3, namelyV I (x+h(x)). Itis therefore of interest to interpret the behavior of this
function. Given a poink, the pairI,(x) lies somewhere in the squal@ .A] within

the domain of intensities, i.&R? (see Figure 5.1). The first term iByy, ,» namely
02 Py (i)
Pn(i)

tends to clusteP,,. On the contrary, the second term, namelg%, tries to prevent

the marginal lawy, (i2) from becoming too clustered, i.e kedys 1, as unpredictable

as possible. The fact that only the valuepfs changed implies that these movements
take place only along one of the axes. This lack of symmetry is a general problem
coming from the way in which the problem is posed. We refer to the works of €ouv
and Younes [83], Cachier and Rey [22], Christensen and He [24] and Alvarez et al. [1]
for some recent approaches to overcome this lack of symmetry. The red sketch in
Figure 5.1 depicts a possible state of the functiarafter minimization of 7apys (h).

, tries to make the intensitip move closer to a local maximum &#,. It thus

Joint intensity distribution (i1, i2)

p(i1)

: Ix(x) :
marginals i

p(i1]I2(x)) \
p(

conditionals

i2)

i2

p(iz2|11(x))

2

Figure 5.1: Sketch of a possible state of the joint pdf of intensities after minimization
of Jns (h) (see text).
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5.1.2 Correlation Ratio

In this section, we compute the first variation&frs (h) (definition 4.1 on page 68).
To do this, we note

w(h) = E[Var[Xg n|Xg]] = /R g1 (i1, h) p(i1) dix,

Feno(h) = U8 = ([ B Pu)di [ sl i) i),

poy1 (i1, h) Z/ il diz.

12—
R p(Zl)

Thus, we readily have

dTcrs (h + k) 1 dw(h + k) dus(h + k)
= — h+ek) ————
De vo(h + €k) Oe Jors (h+ k) de ’
where
ow(h + ek o OPnrac(i) . ) COPhaac(d) .
(86) = /R2 i3 ha:k() di — /F{2u2|1(11,h+6k)/Rthg€k() di,
and
Ova(h +el)) _ / i3 Ol ooy k) / i i) 5 g
Oe R2 Oe R2 Oe

Similarly to the case of the mutual information (see equation (5.1)), the first variation
of Jors (h) can be putin the form

8\70]_{9 (h + Gk) — ECR(i) 8Ph+6k(i) di
Oe o Jre B De o
where
EyR(i) = 22 (’52 — 2p9(1 (i1, h) — Jere (h)(ia — 2#2(h)))-
h ’UQ(h) | 5

The discussion starting before equation (5.2) remains identical in this case. Thus, the
gradient of 7crs (h) is given by:

Vi Jors (h)(x) = |512’ (G 0 B (Tu(x)) VI5 (x + h(x)),
where
00 i (5) = s (o) = iy 12 ) + CRI(B) (i = po(B)).
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As for the mutual information, we define the functiBA — R:

1

Ligu(i) = o & ESR{),

and interpret its behavior as an intensity comparison function. The funetjpfi;, h)
gives the backboné of P,. We see that trying to decrease the value7gfrs (h)
amounts to making lie as close as possible g, (i1, h), while keeping this back-
bone as “complex” as possible (away framh)). The red sketch in Figure 5.2 depicts
a possible state of the functidh, after minimization of7cgrs (h).

i1 i1 i1 Joint intensity distribution (i1, i2)

I (x) o

p(i1)

. Ix(x) :
marginals |

p(i1]12(x)) \

p(iz)

conditionals 7
2

p(iz2|11(x))

12

Figure 5.2: Sketch of a possible state of the joint pdf of intensities after minimization
of Jors(h) (see text).

5.1.3 Cross Correlation

In this section, we compute the first variation@fcs (h) (definition 4.1 on page 68).
This case is extremely similar to the previous two. From the definitiafi@fs (h),
we readily have

0Jccs(h+ek) 1
Oe vy va(h+ k)
(27)1,2(h—|—6k)8v1’2(;1€+6k) — CCh + k) v, 87}2(1(;:610)7
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where

9v12(h + ek) :/ i1 iy OPhyac(i) di— 1y / i OPhy (i) di,
Oe R2 Oe R Oe

and %vg(h + €k) is given by equation (5.3). Thus, one more time, we may put the
first variation of Jccs (h) in the form

8xyccg (h + 6k) — Eﬁc(i) aph+6k(i) di,
Oe =0 R2 Oe =0
where
EEC(i) = — (2 vra(h) s (i1 — p1) — CCY(h) vy i (iz — 2 m(h))).
V1 ’02(}1) ’

Again, the discussion starting before equation (5.2) remains valid, and therefore the
gradient of 7ccs (h) is given by:

1

VeJccs (h)(x) = 1

(G %02 BEE) (T (x)) V15 (x + h(x)),

where

= [ (45) -com (4550

Notice that in this simple case the convolution may be applied formally, yielding the
same expression (since only linear terms are involved), so that in fact

1

ijCCg (h) (X) ’Q‘

02 Ef (In(x)) VIS (x + h(x)).
As for the previous two criteria, we define the functi®f — R:

. 1 .
Lg:c,h(l) = @ da ERN(1),

and interpret its behavior as an intensity comparison function. Decreasing the value of
Jccs (h) amounts to making the pair of intensities lie on a non-vertical straight line
in R? (not necessarily passing through the origin). Again, the lack of symmetry in the
problem limits the change of intensities to a single direction. The red sketch in Figure
5.3 depicts a possible state of the functigpafter minimization of7ccs (h).

5.2 Local Criteria

We now analyse the case of the local criteria. As will be noticed, the reasoning is
completely analog to that of the global case, but the functions obtained are significantly
more complex.
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Joint intensity distribution (i1, i2)

i1 i1 i1

I (x)

p(i1)

. 12 (X) i 19
marginals |

p(i1]12(x)) \

p(iz)

;
conditionals 1 i B
| | 2
|

p(iz|11(x))

Figure 5.3: Sketch of a possible state of the joint pdf of intensities after minimization
of Jocs(h) (see text).

5.2.1 Mutual Information

We compute the first variation ofy;:(h) (definition 4.12 on page 68). From this
definition, we have

MMIz (h+ k) / / < Phvex(i, %0) ) ;
Phik(i,xg)lo - di dx
R2 De \' T k(l,xo) log p(i1, X0)Phtek(i2) °

// ( +log ' Phyeac(i, x0) )8Ph+ek(i7x()) di dx;
R2 Zl: ) ph—l—ek(l% XO) Oe

B i,xg) 0
/ / hotek (1, %0) Ophtek(i2,%0) didx .
R2 Phtek (42, X0) Oe

Q

We notice that

Q= / 3ph+ek lz,XO)

Poyex(i, xo) diy dig =

ol
Phtek(i2,%X0) JR

~~

Phtek (2,%0)

0 ) )
P /Rph+ek(127xo) dip = 0.

1
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Thus, the first variation off ;;: (h) may be written as

3JM11 (h + Gk)

. O0Pntex(i, xo) .
J— MI Zo ek AUJ
P - = /Q - Ep'(i, x0) e . di dxg,
where Pui.x0)
EM(i,x ——<1+1o _ “hil, X0, )
(1 x0) s p(i1,%0) ph(i2,X0)

The law P, 1 (i, X0) is given by equation (4.12):

Phyex (i, xo) / Ga(Intek(x) — 1) G, (x — xq) dx. (5.4)
Therefore

8Ph+5k(i X()) N
/ G ( x0)02G3(Intek(x) — 1) VI35 (x + h(x) + ek(x)) - k(x) dx.

Thus, we finally have

8jMIl (h + €k

//Rz/ g7 E 1 Xo) G,Y(X—X()) 82Gﬁ(1h(x)—i)
VIS (x +h(x)) - k(x) dx didx.

Two convolutions appear, one with respect to the space variabted the other one
with respect to the intensity variableThis last convolution commutes with the partial
derivatived, with respect to the second intensity variableand therefore

OJyrt (h + €k)
Oe

e=0
/Q G % (G » -0:B)) (Tn(x). x) VIS (x + h(x)) - k(x) dx.

This expression gives the gradient@{;: (h)
Vi Iyt () (%) = (G * (G * g%agEg')) (In(x),x) VI (x + h(x)),

where

MI /s _ aQPh(i’X) _ pi‘l(i27x)
Oy (1) = ( Pu(i, x) ph(iz,x)> '

We define the functio®? x R” — R:

leu h(l x) = ———02 By (i, %),

1
G (x)

which plays exactly the same role as its global counterggjt,, (i)
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5.2.2 Correlatio Ratio

In this section, we compute the first variationffy.: (h) (definition 4.12 on page 68).
If we write

w(h,xo) E/ o1 (i1, h, x0) p(in, xo) dix,
R
so that

1 .9 . . / . 9 . ) )
- 15 Pn(i,xq) di — i1,h,x i1,X0) di dxo,
/Q (vz(h,xo) (/Rz 2 Ph(1, %0) RMZII( 1,h, %0)” p(in, x0) 1) 0

we immediately see that we are in a situation completely analog to the global case, with
the same modification as that of mutual information in the previous section, i.e. that
we can write the first variation f g (h) as

aJCRL (h + Ek / E aPh+€k(i, XO) di dx07
aE R2 86 =0
where
19 . . w(h,xq) ,.
EC T — -2 h — ————2 (19 — 2us(h .
b (i,%0) = va(h x0) (m pap1 (i1, h, %) Ug(h,x())(m pa( ,Xo)))

The discussion starting before equation (5.4) applies directly to this case. Thus, the
gradient of 7. (h) is given by:

VieJor (h)(x) = (G, x (Gg * g%ﬁgEﬁR)) (Ih(x), x) VI§(x + h(x)),

where

0y ESR(i,x) = (21, %) = rapa (i1, B, %) + CRI (0, %) (i2 = pa(h, %)) ).

va(h, x)
We define the functio®? x R — R:
1
L 1.x O EXR(1,x
erun(i: ) = g 5 B %).

which plays exactly the same role as its global counterfigs,, (i)

5.2.3 Cross Correlation

Again, the situation is quite similar in the case/Qf: (h) (definition 4.1 on page 68).
We can put its first variation in the form

:/ Eﬁc(i,XO) 8Ph+6k(l7x()) di dX[),
e=0 Q JR? Oe e=0

ajccl (h + ek)
Oe
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where
-1

ECC . —
h (1,%0) v1(x0) v2(h, %)

(2 v1,2(h,%0) iz (i1 — pa(x0)) — CC'(h, x0) v1(x0) iz (i — 2#2(h7X0)))-

The discussion starting at equation (5.4) remains valid, and therefore the gradient of
Jcct(h) is given by:

Vi I (h)(x) = (G,y * (G@ * é@gEﬁc)) (Ih(x), x) VI§(x + h(x)),

where

i = -2 [220) (1)) - cci (20

Like in the global case, the convolution in the intensity domain yields the same expres-
sion (since itis linear id). Thus,

1
Vi T (h) (x) = (G7 * 50 Eff) (In(x), x) VIS (x + h(x)).
Y
We define the functio®? x R™ — R:
. 1 .
Léqh(l,x) = m@g Erc(i, x).

which plays the same role as its global counterda@gyh(i).

5.3 Summary

We now summarize the results of this chapter by defining the functions that will be
used to specify the functioR in the generic matching flow (equation (2.4) on page 47),
depending on the various dissimilarity criteria.

Theorem 5.1 The infinitesimal gradient of the global dissimilarity criteria is given by
F(h)(x) = VyJ9(h)(x) = (G Ly,)(In(x)) VI5 (x + h(x)),  (5.5)
where the functiotd{ (i) is equal to

o _ 1 (0aPu(i)  pp(ia)
Linu(@) = 12 < Pru(i) ph(i2)> (5.6)

in the case of the mutual information, to

pi2(h) — pigpi (i1, h) + CRA(h) (ia — pa(h))
3 19[ v2(h)

L%Rh(i) = (5.7)
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in the case of the correlation ratio and to

=y (8 (552) -com((50) s

in the case of the cross correlation. This last case is especially simple since

g )
Gg* Leen = Lecns

so that no convolution is required.

This defines three functiod$ — H:
Fy(h) = (GpxLiy )7, 15(Id + h)) VIS (Id + h),
Fé(h) = (GpxLigy)(I{.I3(1d+h) VIS(Id +h),  (5.9)
Fgc(h) = L%th(lf, Ig(Id + h)) VIg(Id + h).

Proof : The only point that has not been proved is the fact that the funcfijn),
Fgn(h) and Fg(h) belong toH. This is a consequence of theorems 6.13, 6.25 and
6.31, respectively.0

It is worth clarifying how equation (5.5) is interpreted. The functiof : R?2 — R
is convolved with the 2D gaussidis and the result igvaluatedat the intensity pair
(I (x), I (x + h(x))). The value of the gradient at the potxtis then obtained by
multiplying this value by the gradient of the second image at the pointh(x). For
the global cross correlation, no convolution is required.

The case of the local criteria is very similar.

Theorem 5.2 The infinitesimal gradient of the local criteria is given by
F'(h)(x) = Vi J'(h)(x) = (Gy * (Gg * L)) (In(x),x) VIS (x +h(x)), (5.10)
where the functiod.. (i1, i2,%) is equal to

1 0o Py (1, %) B P (12, %)
o ) &Y

Py (i, x) Ph(i2, X)
in the case of the mutual information, to

MQ(h?X) - M2|1(i17 h, X) + CRl(hv X) (i2 - /~L2(h7 X))

L%\/II,h(LX) =

Lhny (i,x) = 5.12
crn (i) TG (x) va(, ) (®.12)
in the case of the correlation ratio, and to
Llcc,h(i,x> =
B v1,2(h, x) (il — M1(X)> _ccin <i2 - M2(h,X)>) 513
o (i ("t Py ) O
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in the case of the cross correlation. The case of the cross correlation is especially
simple since
l !
Gp* Lecn = Lechs

so that only the spatial convolution is necessary.

This defines three functiod$ — H:
Fl\l/ll(h) = (G’Y * Gﬁ * Lf\/ll,h)(li’a Ig(Id + h)a Id) VIQU(Id + h)?
Fép(h) = (GyxGpx Legy,)(I7, I5(Id + h),1d) VIZ(Id +h),  (5.14)
Fle(h) = (Gy*Lgey)(I7,I5(Id + h), Id) VIS (Id + h).

Proof : The fact thatF},, (h), Fix(h) and FL-(h) belong toH is a consequence of
theorems 6.41, 6.57 and 6.64, respectively.

It is worth clarifying how equation (5.10) is interpreted. The funcm_‘;p: R2xR" —

R is convolved with the 2D gaussia@njs for the first two variables (intensities) and the
nD gaussiarG, for the remaining» variables (spatial), and the resultagaluatedat

the point((I{(x), I (x + h(x))),x) of R? x R™. The value of the gradient at the
pointx is then obtained by multiplying this value by the gradient of the second image
at the pointx + h(x). For the local cross correlation, only the spatial convolution is
required.



Chapter 6

Properties of the Matching Terms

This chapter is devoted to showing that the gradients of the statistical criteria com-
puted in the previous chapter satisfy the Lipschitz-continuity conditions established in
Chapter 2, necessary to assert the well-posedness of the evolution equations.

6.1 Preliminary Results

We begin by some elementary results on Lipschitz-continuous functions that will be
used very often in the sequel.

Proposition 6.1 Let H be a Banach space and let us denote its nornj tjy,. Let
fi, i =1,2: H — R be two Lipschitz continuous functions. We have the following:

1. fi1 + fo is Lipschitz continuous.
2. If f; and f, are bounded then the produgt f» is Lipschitz continuous.

3. If fo > 0andif f; and f, are bounded, then the rati% is Lipschitz continuous.

Proof : We prove only 2 and 3. Léi andh’ be two vectors of+:

|f1(h) fa(h) — fi(h') fo(h')| =
|(fi(h) = fi(h")) fa(h) + fi(h')(fa(h) — fo(h)] <
(h)||f1(h) — fr(0)] + [f1(h')]]f2(h) — fo(h)],

from which point 2 above follows. Similarly

fih)  AM@)| [Ai(h) fo(b') — f2(h) ()] _
fa(h)  fo(h) f2(h) f2(h') B
|f1(h) = fi(h)[fa(h') + | f1 (D) [ fa(h) — fo(h')]
f2(h) f2(h')

| f2
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If fo > 0, there exists > 0 such thatf, > a. Hence

A A 1 o | |
)~ hE0| S @@ - AWILN) + 1AW)]LE) - L),

from which point 3 above follows.O

In the following, we will need the following definitions and notations.

Definition 6.1 We noteH; = [0, A] x H and’H, = [0, A]?> x H the Banach spaces
equipped with the normi§ z, h) ||+, = |z|+ ||h||z and||(z1, 22, h) ||, = |z1|+ 22|+
|h| , respectively.

We will use several times the following result.

Lemma 6.2 Let f : Ho — R be such thatz1, z2) — f(z1, 22, h) is Lipschitz con-
tinuous with a Lipschitz constait independent di and such thah — f(z1, 22, h)
is Lipschitz continuous with a Lipschitz constdntindependent ofz1, z2). Thenf is
Lipschitz continuous.

Proof : We have

| f (21, 22,h) = f(2], 25, h')| <
|f(21, 22, ) — (21, 25, )| + | (21, 25, h) — f(z1, 25, 0)] <
lp(l21 = 21] + |22 = 25]) + Ly|lh — W[y <
max(ly, Ly)(|z1 — 21| + [z2 — 25| + [[lh = B|| ).

In Section 6.3, we will need a slightly more general version of this lemma.

Lemma 6.3 Letf : [0, A2 x H xQ — R be such thafzy, z0) — f(21, 22, h, x) is
Lipschitz continuous with a Lipschitz constanindependent ok andh and such that
h — f(z1, 22, h, x) is Lipschitz continuous with a Lipschitz consténtindependent
of (21, 22, x). Thenf is Lipschitz continuous of), A} x H uniformly on(2.

Proof: Indeed,
|f<Zl,ZQ,h,X) - f(Zi,Zé,h,X/)’ <
|f(21,22,h,X) - f(ziazéahaxﬂ + |f(zia Zé,h,X) - f(zia Zéah,” <
lp(lz1 = 21| + |22 = 25) + Ly|h = bl <
max(ly, Lp)(21 — 2] + |z — | + [h— W) Vx e,

and the Lipschitz constamniax(l¢, L¢) is independent ok € Q. O
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6.2 Global Criteria

We show in this section the Lipschitz continuity of the gradients of the global criteria,
as defined in (5.9).

6.2.1 Mutual Information

We first prove that in the mutual information case, there is a neat separation in the
definition of the functionf” between its local and global dependency in the field
More precisely we have the following.

Proposition 6.4 The functiong, : R — R defined by

qn(i2) =
satisfies the following equation:
19

qn(i2) = a(iz,h) — 3

where the functio < a(iz, h) <

SBS

Proof : py is defined by

Plia) = /Q 95(I (x + h(x)) — in) dx,

hence

Pa(in) = 519 /Q (I3 (x + h(x)) — i2)gs(I5 (x + h(x)) — i) dx.

The functiona(iz, h) is equal to

| ] 186 009 (1 (x + 1) — ) dx
a(ig, h) = = 24 ; (6.1)

p /Qgﬁ(fg(x—i—h(x)) iy) dx

and the result follows from the fact th&f (x + h(x)) € [0, A]. O

A simple variation of the previous proof shows the truth of the following.

Proposition 6.5 The functionQy, : R? — R defined by

an) = 2R
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satisfies the following equation:
Qu(i) = AQ.B) - 2.
where function
156+ 1) Gl ) dx

/ Gp(In(x) —1) dx
Q

A(i,h) =

R

: (6.2)

satisfies) < A(i,h) < 4.

In the following, we will use the functiody, , (i) : R? — R defined as (see theorem

5.1)
Ly (i) = —@,(Qh(i) — gu(iz)) = —@,(A(i, h) —a(inh).  (6.3)

We then consider the resuyff;, of convolving Ly, ,, with G, i.e. the two functions
b:R x H — R defined as

b(Zg, h) = (gg * CL)(ZQ, h) = / 95(2’2 — ig)a(ig, h) dig, (64)
R
andB : R? x H — R defined as

B(z1,22,h) = (Ggx A)(z,h) = o Gp(z —1)A(i, h) di. (6.5)

We prove a series of propositions.

Proposition 6.6 The functionrR — R™ defined by, — b(22, h) is Lipschitz con-
tinuous with a Lipschitz constatftwhich is independent &f. Moreover, it is bounded
by 4.

B

Proof : The second part of the proposition follows from the fact that a(iz, h) <
% Vis € Randvh € H (proposition 6.4).

In order to prove the first part, we prove that the magnitude of the derivative of the
function is bounded independently lof Indeed

, 1| [*e° : o .
¥ eash)| = ‘ | = ia)gatea — inatia, )i

<

A [T ) SN
5/ |20 — i2|gg (22 — i2)dia.

The function on the right-hand side of the inequality is independenh aind
continuous on0, AJ, therefore upperbounded3



6.2 Global Criteria 91

Proposition 6.7 The functionh — b(z, h) : L?(Q) — R is Lipschitz continuous
onL?() with Lipschitz constant?, which is independent af, € [0, A].

Proof : We consider
b(z2,h1) — b(22, hy) = / 9p(z2 — i2) (a(iz, h1) — a(iz, ho)) dis (6.6)
R

According to equation (6.1);(i2, h) is the ratioN (i2, h)/D(io, h) of the two func-
tions
Nliah) = [ I56c+ hx))gs(75 (x + hix) — ) dx
Q

and
D(ig,h):/ﬂgﬁ(fg(ﬁh(x))—ig) dx.

We ignore the factot /5 which is irrelevant in the proof. We write

|b(22,h1) — b(22,ha)| <
/ (20 —i )|N(i2>h2>’ |D(i2,ha) — D(iz, hy)]
gJp2 T D(is, ) D(is, hy)

. D(i2,hy) [N (i, hy) — N(iz,hy)| .
/Rg,@(zzw) D(is, 1) D iz, Iiy) diz, (6.7)

dig+

and consider the first term of the right-hand side.
D(ia, he) — D(ig, h;) =
/Q (98(i2 — I3 (x + ha(x)) ) — gp(iz — I3 (x + hi(x)))) dx

We use the first order Taylor expansion with integral remainder ofthfunction gs.
This says that

1
906+ ) = g5(0) + | gfli+ta)do.
0
as the reader will easily verify. We can therefore write
gsliz — I3 (x + ha(x)) ) — gaiz — I3 (x + i (x))) =
1
(I3 (x + (%)) — I (x + hy(x))) / (i — (0I5 (x + ha(30)) +
0
(1-a) 5 (x + hi(x))) ) da
We use the fact thafy is Lipschitz continuous and write
|D(i2, ha) — D(iz, hy)| <
Lip(1g) [ (I~ hao)

1
/0 gp(iz — (@ I3 (x + ha(x)) + (1 - @) I (x + hi(x)))) da

) dx




92 Chapter 6: Properties of the Matching Terms

Schwarz inequality implies

| D(i2, ha) — D(ig, hy)| < Lip(I7)[[hy — hy||x

1
2

! 2
</Q (/0 gsliz — (@13 (x + ha(x)) + (1 - a) I§(x + hi(x)))) do‘) dX>
We introduce the function
T(i2, hl, h2> =

1|z'2— alf(x+hy(x)) + (1 —a)l§(x+hi(x)) )]
(L[ )

gﬁ(iz — (aI§(x + hy(x)) + (1 — ) Ig(x—f—hl(x)))) da)Q dX>§

We notice that

</Q (/0195“2 — (@13 (x + hy(x)) + (1 =) I (x + i (%)) ))da)2 dx>2

S T(i27hlah2)'

=

So far we have

. [N (i2,h)||D(i2, hy) — D(iz, hy)| .
- dio <
/Fegﬁ(z2 f2) D(ig,hy)D(ig, hy) 2=

EE sl ([ ana SR S ) (e
We study the function of; that is on the right-hand side of this inequality. First we
note that the function is well defined since no problems occur viskgnes to infinity
because "there are three gaussians in the numerator and two in the denominator”. We
then show that this function is bounded independently;cindhs, for all z; € [0, A].
We consider three cases:

19 <0
This is the case where
0 <lia] < [|ig =I5 (x + h;(x))] <lio—Al j=1,2
0 < ig] < iz — (ad3 (x + ha(x)) +
(1-a)If(x+h(x)] <lia—A 0<a<l

Hence

gpliz — A) < gplia — I3 (x + hj(x)))  <gp(ia) j=1,2
gpliz — A) < gpliz — (al3 (x + ha(x)) +
(1—a)I(x+hi(x)))) <gplia) 0<a<l
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This yields
0 |N(22 h2)| T‘(ig h1 hg)
_ . ) M M d <
/_oog‘*(z2 ) iy ) Dlig, hy) 12

0 . 2
1/2 o . 95(22) .
‘Q| .A/_OO gI@(ZQ 12)‘22 A‘ <gﬁ(i2 —.A)) dlg,

The integral on the right-hand side is well-defined and defines a continuous func-
tion of z5.

0<in<A

0< i — 15 (x + 1y () <A j=12
0 <|ig — (alg (x +ha(x)) + (1 —a)IJ(x+hi(x)))| <A 0<a<]1

Hence

gp(A) < gplia — I3 (x + h;(x)))  <gp(0) j=1,2
98(A) < gpliz — (al3(x + ha(x)) +
(1 - )l (x +hi(x)))) <gs(0) 0<a<l

This yields

A ’N(ZQ hg)’ T'(iQ h1 hg)
o 9 ) ) d <
/ 99022 = ) ) Dia, hy)

Ags(0)\? [ L
‘9’1/2 <gﬂ()> / gﬁ(22—12)d22,
0

95(A)
The integral on the right-hand side is convergent and defines a continuous func-
tion of zs.
i > A

This is the case where

0 <iz — A< dg— I5(x + hj(x)) <ip j=1,2
0<io— A< iy— (alf(x+ha(x)) +
(I1-a)I3(x+hi(x) <iz 0<a<l1

Hence

gp(i2) < gplia — I3 (x+hj(x))) <gplia—A) j=1,2
g5(i2) < gp(iz — (alf (x + ha(x)) +
(I -a)I5(x+hi(x))) <gplia—A) 0<a<l
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This yields
ee [N (i2, ha)| r(iz, hy, hy)
Zo — 1 dig <
/A 9ol ~ i2) D(iz,h1)D(iz,hy) =
. 2
‘Q|1/2A/ z9 — lig)iz (gﬁ(m ‘ A)> diz,
9s(i2)

The integral on the right-hand side is convergent and defines a continuous func-
tion of z5.

In all three cases, the functions af appearing on the right-hand side are continuous,
independent oh; andhy, therefore upperbounded @ .A] by a constant independent

of h; andh,. Returning to inequality (6.8), we have proved that there existed a positive
constantC independent of; such that

|N(i2,h2)||D(i2, ha) — D(i2, hy)| .
—1 dio <
/gﬁ( 2= i) D(iz,hy)D(i, hy) 2=
C|h; —hs|lg Vzp€[0,A4 Vh;,hye H

A similar proof can be developed for the second term in the right-hand side of the
inequality (6.7). In conclusion we have proved that there existed a cordsfaintde-
pendent ofs such that

|b(Z2,h1) — b(ZQ,hQ)’ < L‘Zth — h2||H Vzg € [O,A] Vhy, ho, € H
O
Thus, we can state the following.
Proposition 6.8 The functiorb : H; — R is Lipschitz continuous.

Proof : The proof follows from propositions 6.6, 6.7 and lemma 62.

We now proceed with showing the same kind of properties for the funétion

Proposition 6.9 The function0, A]> — R* defined by(z1, 20) — B(z1, 22, h) is
Lipschitz continuous with a Lipschitz constéhtwvhich is independent éf. Moreover,
it is bounded by;.

Proof : The second part of the proposition follows from the fact that, i, € R?
andvh € H, we have (proposition 6.5):

0 < A(i,42,h) <

@ =

The first part follows the same pattern as the proof of proposition 6.6.
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Proposition 6.10 The functioth — B(z1, 22, h), H — R is Lipschitz continuous
with a Lipschitz constant?, which is independent dt1, z2) € [0, .A]%.

Proof . The proof follows the same pattern as the one of proposition 8.7.

Therefore we can state the following result.

Proposition 6.11 The functionB : Hy — R is Lipschitz continuous.

Proof : The proof follows of propositions 6.9, 6.10 and lemma 6[2.

From propositions 6.8, 6.11 and 6.1 we obtain the following.

Corollary 6.12 The function i}, : H, — R defined by(z1,29,h) —
—ﬁ(B(zl, z2,h) — b(z2,h)) is Lipschitz continuous and bounded by /3|€2|. We
note Lip( fy,) the corresponding Lipschitz constant.

We can now state the main result of this section:
Theorem 6.13 The functionFy), : H — H defined by

Fn(h) = fin(I17, 15 (Id + h), h) VI (Id + h) =
1
- @(B(Ii’, IS(Id + h),h) — b(I$(Id + h), h)) VIS (Id + h),
is Lipschitz continuous and bounded.

Proof: Boundedness comes from the fact thahd B are bounded (propositions 6.6
and 6.9, respectively) and th&f I{| is bounded. This implies thadt}, (h) € H =
L%(Q) Yh € H.

We consider théth component’ of F:

1

Fiai (h1)() = Fiji (b)) = — )

(S1Th — S2T»),
with

S; = B(I7(x),I3(x +h;(x)), h;) — b(I5 (x + h;(x)), hj)
T; = 017 (x+h;(x)),

andj = 1, 2. We continue with

i i 1
| Fyai (h1) (x) — Fyy (ha) (x)| < @051 = So|[Th| + [S2]|Ty — T2|)
Becaused; I§ is bounded,T;| < ||0;17]|~. Because of propositions 6.6 and 6.9,
|Sa] < 2%. Because); 1§ is Lipschitz continuous?; — 7| < Lip(0;15)|h1(x) —

hy (x)].
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Finally, because of corollary 6.12 and the fact thais Lipschitz continuous,
1S1 = Sa| < Lip(fi)) (Lip(13)[hi(x) — ha(x)| + [[hy — ha|x).
Collecting all terms we obtain
| Fyai (1) (%) = Figi (h2) (x)] < C*(|hu(x) — ha(x)| + |1 — hol|x),

for some positive constaiit?, i = 1,--- ,n. The last inequality yields, through the
application of Cauchy-Schwarz:

| Fxyy (1) — Fgy (h2) |5 < L% [[hy — ho|lg

for some positive constatit]. and this completes the proofl]

The following proposition will be needed later.
Proposition 6.14 The functiorQ2 — R" such thatx — F7,,(h(x)) satisfies

|Fiyrr(h(x)) — Fy;(h(y))| < K(Jx —y| + |h(x) — h(y)]),
for some constank” > 0.

Proof: We write

Fy(h(x)) = Fiy (h(y)) =
f(h(x))VI3 (x + h(x)) — fi;;(h(x)) VIS (y + h(y))+
(&) VIS (y +h(y)) — fi;(h(y))VIS (y + h(y)).

Hence

|Fxp(h(x)) = Fyp (h(y))] <
[f3rr ()| [VIF (x + h(x)) = VIS (y + h(y)) |+
VIS (y + h(y)I £ (h(x) = fi (B(¥))I-

Corollary 6.12 and the fact that the functioff§ 1§ and its first order derivative, are
Lipschitz continuous imply

[P (h(x)) = Fiy (h(y))] <
e Lin(VI7) (b = y1+ 1) b)) + V5 o Ll 160~ ()L

hence the resultd
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6.2.2 Correlation Ratio

We produce a simple expression@R?(h) in terms of the two image&’ andI and
use it to prove that the correlation ratio is Lipschitz continuous as a functibn f
the sequel, we drop the upper indgXWe begin with some estimates.

Lemma 6.15
0 < pia(h) = E[Xpg 3] |Q’/IQ (x + h(x)) dx < A (6.9)

B <wvz(h) = Var[Xg n]| =8+ 0(h) <+ A% (6.10)

where

_ L 5 (x x))? dx — L 5 (x x x2
h) = o | B+ ho)a <|Q|/QIQ( +h( ))d) RNCREN

Proof : Because of equation (4.4) we have
1
i (h /22 </ I (x + h(x )))dx> diy = / IS (x + h(x)) dx.
— €2 Ja
This yields the first part of the lemma. For the second part, we use equation (4.5):
v2(h) =
VaI'[X[a h / <‘Q|/ gg IQ X+ h( ))) dx> dig — ,U,Q(h)2,
and hence
1 2
Var([Xjg n] / IS (x + h(x))? dx — </ I3 (x + h(x)) dx) ,
i) €2 Jo

from which the upper and lower bounds of the lemma follaw.

We next take care di[Var[X g n| X 7]] with the following lemma.

Lemma 6.16
E[Var[X;; [ X77]] = |Q|/12 (x + h(x))2 dx — M(h),
where
M(h) = o F(x, xS (x + h(x))I§(x' + h(x")) dx dx/,
e L[ galin — I (x))galis — 7<)
gp\t1 — 171(X))gplt1 — 41 (X .
f(X X) ‘9’2/ p(i1) dzb

is such that/,, f(x,x/) dx = [, f(x,x/) dx' = ﬁ
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Proof : According to Table 4.1 we hawgy; (i1, h) = S(i1) — T?(i1) and

E[Var(X; n X1]] = / ooyt (i, W)plin) di,
R

&mzﬁﬁﬁgm%

with

and (i)
T(i) — . I'h(1 o h)
(21) RZ2 p(“) dZQ M2|1(7'17 )

It is straightforward to show that

Asmmmmﬁzﬂmaég@+mgya.

It is also straightforward to show that

. 1 . o o
T(i1) = W(h)/ﬂgﬁ(“ — I7(x))I§ (x + h(x)) dx,

and hence that

/R T2(i1)p(in) dir = |Ql| / (1) ( /Q 95(i1 — I7 (x))I§ (x + h(x)) dx>2 dis.

RD

We next write

2
([ gstin = 12600 6+ 1) ) =
/ 95(i1 — IT (x))I3 (x + h(x))gs (i — I7 (x) I§ (' + h(x')) dx dx,
QxQ
commute the integration with respectitowith that with respect t& andx’ to obtain
the result. O
We pursue with another lemma.

Lemma 6.17 The functionM : H — R defined in lemma 6.16 is bounded and
Lipschitz continuous.

Proof :  For the first part/M (h)| < A2 [, f(x,x/)dxdx’ = A%, according to
lemma 6.16. For the second part we compute

M| — Mhy] =
| rex) (Gt mG) I (4 ()
QxQ

g@+mgmyf+m@mymwh
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|MT[h;] — Mfhy]| <
- FOex) (15 (x + ha(x)) — IS (x + ha(x))| 15 (% + hy (X)) +
|19 (x" + hy (X)) — I (X" + ho(x))| I (x + ha(x))) dx dx'.

Becausdy is Lipschitz continuous and bounded

[Mhy] — Mhs]| <

(115 || oo Lip(13) / f(x,x') (|hi(x) — ha(x)] + |hy (x") — ho(x')]) dxdx’ =

IS ||oo Lip(I5)
H H ‘Q|p </ ’hl hg dX+/ ’hl Q(X/)dxl> =

2113 || oo Lip(I3) /
Ihy(x) — ha(x)] dx.
€

The previous to the last equality is obtained from lemma 6.16. Therefore we have from
Cauchy-Schwarz:

2|13 || oo Lip(15)
|Q|1/2

|MT[hi] — M[hy]| < [h1 —hal/x.

Lemma 6.18 The functiond? — R* defined by

1 1
h— / I3(x+h(x))dx and h— / IZ(x + h(x))? dx
Q] /o €2 Jo
are bounded and Lipschitz continuous.

Proof : Boundedness has been proved in lemma 6.15 for the first function. For the
second we have

|§12‘/ IS (x + h(x))? dx < A%
Q

Next, for Lipschitz continuity:

’!Slll/nlg(”hl(x)) dx — ’51)|/QI§(X+h2(X)) dx| <

oy L
Lip(1) 5 [ 1h10) = o) i,
€2 Ja
becausdy is Lipschitz, and hence (Cauchy-Schwarz):

L g 1 o Lip
"Q,/ﬂfz (x +hi(x)) dx—m/ﬂfz (x + ha(x)) dx‘ < |Q’(1/2)||h1 h | 1.
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Similarly (Cauchy-Schwarz),

‘512|/QI§’(X+111(X))2 alx—Klz,/ﬂfé’(xjthg(x))2 dx| <

ALip(I3)

2 ‘Q|1/2

[h1 — hal|g.

From this lemma, proposition 6.1 and lemma 6.15 we deduce the following.

Corollary 6.19 The function — R defined byh — Var[X/g 1] is Lipschitz
continuous.

We also prove the following.

Lemma 6.20 The functionH — R defined byh — E[Var[XIg7h|X§’f]] is
bounded and Lipschitz continuous.

Proof: This follows from lemmas 6.16, 6.17, and 6.18.

We can now prove the important intermediary result that the correlation ratio, as a
function of the fieldh, is Lipschitz continuous.

. . E[Var[XIg,h\X?a]]
Theorem 6.21 The functionf — R defined byh — —<—m—
g,

continuous.

is Lipschitz

Proof : This follows from proposition 6.1 and from lemmas 6.20, 6.15 and corollary
6.19. O

We pursue with another lemma.
Lemma 6.22 The functionfy = G * Ly : Ho — R, whereL{y is given by
equation (5.7), is equal to the following expression:

fea(21, 22,h) = ,Q|2(h) (42(h) — d(z1,h) + CR(h) (23 — pa(h)))

where

_ i Jo 95(in — I (%)) IS (x + h(x)) dx ;
d(z1,h) = /Rgﬁ( 1 1)< T g5 — 17(x) dx ) diy.
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Proof :  We use equation (5.7) and apply the convolution to it. The valu isf
obtained from:

d(z1,h) = / 9s(21 — i1) gy (i1, h) diy =
R

/Rgﬁ(pzéil_)il) </R i P (i )dzz> diy =

/R P < /Q I3 (x + h(x))gs(ir — I{ (x)) dX> din.

p(i1)

We next prove the following.

Lemma 6.23 The functiond : H; — R is bounded and Lipschitz continuous.

Proof : The proof of the first part uses exactly the same ideas as those of the second
part of proposition 6.7. For the second part, we first prove that the funétien- R,

h — d(z1, h) is Lipschitz continuous with a Lipschitz constaly that is indepen-

dent ofz; € [0,.4] and second prove that the functifh A] — R, z; — g7d is

upperbounded independentlylofe H. Indeed,

|d(21, hl) — d(zl, hg)’ <

Joga(in = I7 ()5 (x + b1 (x)) — I§ (x + ha(x)) | dx )
/gﬁ( g ( Jo 98(in = IT (x)) dx > s

Becausdy is Lipschitz continuous and of Schwarz inequality, we have

|d(z1,h1) — d(21,h2)| <

1

; [ gl — 1T (x))%dx)® |

Q|Lip(I5)|[hy — h — diy.

QILip(I5)|Ihy — by /R 95(:1 — i) ( B e | @

The function otz that appears on the right-hand side of this inequality does not depend
onh, is continuous and therefore bounded[onA].

We now notice that

Jogs(in — I7 (x))I5 (x + h(x)) dx\ .
821 ﬁ/ i1 — 21)gg(21 — 11) < ngﬁ(il —17(x)) dx > diq,

and, since

Jo 95(in — I (x))I5 (x + h(x)) dx
Jogsli—I00)dx =7
ol < / |21 — i1]ga(z1 — i1) diy.

821
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The right-hand side of this inequality is equal2t§ f0+°° z gg(z) dz, from where the
conclusion follows. O

This allows us to prove the following result.

Theorem 6.24 The functionfg, : H2 — R is Lipschitz continuous and bounded.

Proof : The denominatoj2|v2(h) is > 0 and bounded (lemma 6.15), and Lipschitz
continuous o and K (corollary 6.19).

The numerator is bounded beca@®(h) is bounded by 14 is bounded (lemma
6.23) anduz(h) is bounded (lemma 6.15).

The productus(h)CR(h) is Lipschitz continuous ori{ as the product of two
bounded Lipschitz continuous functions (proposition 6.1 and theorem 6.21). Hence
we have proved the boundednessg.

The functiond : H; — R is Lipschitz continuous (lemma 6.23).

The functionr : H; — R defined by(z2, h) — 2,CR/(h) is Lipschitz contin-
uous because of theorem 6.21 and

|220CR(h) — 2,CR(h')| =
22(CR(h) — CR(h')) + CR(h')(22 — 23)| <
A|CR(h) — CR(NW)| + |22 — 25].

Hence the numerator is also Lipschitz continuous and, from proposition 6.1/&g is
O

We finally obtain the main result of this section.
Theorem 6.25 The functionFgy : H — H defined by

Féa(h) = fEa(I7. 15 (1d + 1)) VI§ (Id + h)
is Lipschitz continuous and bounded.

Proof :  The boundedness follows from theorem 6.24 and the fact|Wiaf| is

bounded. It implies thatZs(h) € H Vh € H. The rest of the proof follows exactly

the same pattern as the proof of theorem 6.13 and uses theorem®%.24.

We finish this section with the following proposition.

Proposition 6.26 The functior2 — R" such thatx — FZ,,(h(x)) satisfies
[Fep(h(x)) — Fap(h(y))l < K(jx — y|+ [h(x) — h(y))),

for some constank” > 0.
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Proof: The proofis similar to that of proposition 6.14 and follows from theorem 6.24
and the fact that the function§, 15 and all its derivatives, are Lipschitz continuous.
O

6.2.3 Cross Correlation

The goal of this section is to prove the Lipschitz-continuity of the funcfi{p,(h
(equation (5.9)).

Lemma 6.27 The following inequalities are verified far, andv;.

0
g

A
B+ A%

M1
U1

VANVAN
IA A

Proof: We have

= i (S [ Ganx) —i) dx ) dirdis = = [ T(x)dx,  (6.12)
R \Q Jo Q[ Jo

and the first inequality follows from the fact th&t(x) € [0, .4]. Similarly, forv; we
have

111:/ 11< /GgIh x) —1) dx >d11d22—u1
re - \[Q

x)? dx — 1 7(x) dx :
54 602 ax— (g [ reoax) . 619

from which the second inequality follows:

Proposition 6.28 The functionH — R defined byh — wv;2(h) is bounded and
Lipschitz continuous.

Proof : We have

U172(h) = /(21—/11)( ,uQ Q|/G6 Ih )—l) dxdzlsz

-/ (/ — ) g5 (x) — i) diy

/ (i — 12(1)) g5(I5 (x + h(x)) — i2) d) dx

- ’Q|/ fix ) (I3 (x + h(x)) — p2(h)) dx,
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that is
vat) = i [ 1760 15 6x b)) dix g pa(h). (6.14)
12| Jo

Hence, we havé, »(h)| < A2, which proves the first part of the proposition. For the
second part, sincez(h) is Lipschitz continuous (lemma 6.18), it suffices to show the
Lipschitz continuity of the first term in the right-hand side. For this term, we have

i | [ 700 15 e ) = [ 1700 1564 o) i

Q

|512/Q|ff<x>! |15 (x + ha (x)) — I3 (x + ha(x))| dx
A Lip( 12
< AL / B () — ha(x) | dx

Hence (Cauchy-Schwarz)

|s12| ’ /me) I3 (x + hi(x)) dx — /Q 17 () I (x + ha(x)) dx

o ALip(I3)

= Tape |[hy — hol|g.

Theorem 6.29 The functionH — R defined byh — CC9(h) is bounded and
Lipschitz continuous.

Proof : CCY(h) is bounded by 1. The mappig— CC?(h) is Lipschitz because

we have
Ul,g(h)2
v1 ve(h)’

CCY(h) = (6.15)

with vy > 3 > 0 (proposition 6.27)y; »(h) bounded and Lipschitz (proposition 6.28),
va(h) Lipschitz (corollary 6.19) ands(h) > g (lemma 6.15), which allows us to
apply proposition 6.1.0

Theorem 6.30 The functionfd. : H, — R defined by

o i [ () - oo (255

is bounded and Lipschitz continuous.
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Proof : Taking into account the properties mentioned in the proof of the previ-
ous proposition, plus the boundedness and Lipschitz continui§@f(h) (propo-
sition 6.29) and ofi, (lemma 6.18), we see th#f. may be written as

fec(z1, 22, h) = fi(h) z1 + fo(h) 2o + f3(h),

where the functiondf — R f1, fo and f3 are Lipschitz continuous and bounded
(proposition 6.1). The result readily follows since

2 fi(h) — 2L (W) = |z (fi(bh) = fi(k)) + fi(l) (2 — 2]
< Alfih) = S0+ [ filloo |2 — 2
< ALip(f)n—Wlg + | fillo |z — 2l i=1.2.

Theorem 6.31 The functionF?,, : H — H, defined by
Fée(h) = f&c(I7,13(Id + h)) VI (Id + h)
is Lipschitz continuous and bounded.

Proof :  The boundedness follows from theorem 6.30 and the fact|Wiaf| is
bounded. It implies thatg(h) € H Vh € H. The rest of the proof follows exactly
the same pattern as the proof of theorem 6.13 and uses theorem®.30.

We finish this section with the following proposition.
Proposition 6.32 The functiorl2 — R" such thatx — F?,(h(x)) satisfies

[Fc(h(x)) — Fo(h(y))| < K(Jx = y| + [h(x) = h(y)]),
for some constank” > 0.

Proof: The proofis similar to that of proposition 6.14 and follows from theorem 6.30
and the fact that the function§, 15 and all its derivatives, are Lipschitz continuous.
O

6.3 Local Criteria

We now study the Lipschitz continuity of the gradients of the local criteria, as defined
in (5.14).
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The analysis of the local criteria follows pretty much directly from the analysis of
the global ones and from theorem 5.2. The main difference with the global case is that
we have an extra spatial dependency. In the next lemma we introduce a constant that
is needed in the sequel.

Lemma 6.33 Let dian{(2) be the diameter of the open bounded3et

diam(@) = sup_[x —y].

X, yEQ
We noteG, (diam(€2)) the valueinfy yco G (x — y) and define
G,(0)
Ko=—+——1"—. 6.16
? = G, (dam©) (6.10)

We say that

1
Gy (x —x0)=——dxg < Kqg Vxe€.
6=y o < K

Proof :  Sinceg,(x¢) = [, G(y — x0) dy, we haveg,(xq) > Q|G (diam(Q2)).
Therefore

1 1
600 g 0 < iy O i <
1
QIG, (dam(©)

x |Q]G,(0) = K.
Od

We notekq = |Q|G, (diam(€2)), i.e. the constant such thak € Q, G, (x) > kq.

6.3.1 Mutual Information

The functionsg, and@Qy, defined in propositions 6.4 and 6.5 are now functionsof
but the propositions are unchanged. The functiéiz, xo, h), the local version of
equation (6.1), is given by

1 | 186 00093 1 (x+ hi(x) = i2) G (x — )
a(i2,x0,h):5 Q ., (6.17)
[ 0150+ 1) — 2) G = x0)

while the functionA(i, h, %), the local version of equation (6.2), is given by

] / IS (x 4+ h(x))Ga(In(x) — i) G, (x — x¢) dx
A(i,h, xg) = =22 . (6.18)

s /QG[;(Ih(x) “ 1) Gy (x — xo) dx

Similarly, the functionZy,, (i) defined by equation (6.3) must be modified as follows:

Lf\/ll,h(i> XO) = _gi(A(L X0, h) - a(i27 X0, h))a (619)

v(x0)



6.3 Local Criteria 107

as well as the functioh of equation (6.4):

b(22,1,%) = (G * g5 * —)(22,h, x) =
G,
1

/Q/RGV(X —X0)gp(z2 — iz)gW(XO)a(i% X0, h) diz dxo, (6.20)

and the functionB of equation (6.5):

B(z,h,x) = (G, *Gg * é)(z,h,x) =
g

/ G (x — x0)G3(z — i) ——— A(i, x0. h) didxo. (6.21)
o Jr2 G+ (x0)
This being done, propositions 6.6 and 6.7 can be adapted to the present case as follows.

Proposition 6.34 The functionR — R defined byzs — (22, h, x) is Lipschitz
continuous with a Lipschitz consta&étwhich is independent &f andx. Moreover, it
is bounded by

Proof : We give the proof in this particular simple case to give the flavor of the ideas
which extend to the more complicated cases that come later.

The second part of the proposition follows from the fact that a(iz, h,x) <
% Viy € R andvh € H (local version of proposition 6.4) and lemma 6.33.

In order to prove the first part, we prove that the magnitude of the derivative of the
function is bounded independentlylafandx. Indeed

Oz, h,x)|

82’2 o

1 ) 1 . . .

B /Q/R(Z2 _ZQ)GW(X_XO)Q (Xo)gﬁ(z2 —ig)a(iz2, X0, h)diz dxo| <

v
AK, . o
ﬂQ / |22 — i2|gp(22 — i2) dia.
R

In order to derive the last inequality we have used the local version of proposition
6.4 and lemma 6.33. The function on the right-hand side of the last inequality is
independent oh andx and continuous ofv, A}, therefore bounded™

Proposition 6.35 The functionH — R defined byh — b(z3, h, x) is Lipschitz
continuous with a Lipschitz constahg which is independent af € R andx € (.

Proof : The proof is similar to that of proposition 6.71

We also have the following.
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Proposition 6.36 The function? — R defined byx — b(z2, h, x) is Lipschitz con-
tinuous uniformly on; .

Proof . Because of equation (6.20) and proposition 6.34 we have

|b(Z2, h7 X) - b(z% Yy,

h)| <
?/Q/R |G (x — x0) _G’Y(y_XO)|gﬁ(22_Z.2)d’L.2 dxo.

Gy (x0)

The proof of lemma 6.33 allows us to write
’6(227 h7 X.) - b(227 Yy, h)‘ <

A . .
TG )y Orx ) Gl e~ ) i

and therefore

ALip(G-)
= 5, diama) < Y

’b('sz ha X) - b(ZQa Y, h)
As a consequence of lemma 6.3 we can state the following.

Proposition 6.37 The functiorb : H; x @ — R is Lipschitz continuous of{; uni-
formly onQ.

Proof : The proof follows from lemma 6.3 and proposition 6.34 and 6.85.

Similarly we have the

Proposition 6.38 The functionQ? — R defined byx — B(z1, 22, h, x) is Lipschitz
continuous uniformly oft{s.

Proof : The proof is similar to that of proposition 6.36]

The following proposition is also needed.

Proposition 6.39 The functionB : Hs x £ — R is Lipschitz continuous oft{y
uniformly onQ2. It is bounded by;.

Proof: The proof is similar to that of proposition 6.37]

And therefore
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Corollary 6.40 The functionf,{,|| : Ha x Q — R defined by
(21,22, h,x) — —(B(z1, 22, h, x) — b(22, h, %))

is Lipschitz continuous of uniformly on{2 and bounded.
From this follows the local version of theorem 6.13
Theorem 6.41 The functionf},, : H — H defined by

Fin(h) = f{u(I7,15(Id + h),Id, h) VIS (Id + h) =

— (B(I7,I5(Id + h),1d, h) — b(I§ (Id 4+ h),Id, h)) VIS (Id + h)

is Lipschitz continuous and bounded.

Proof : Boundedness follows from corollary 6.40 and the fact {Raf§ | is bounded.
Itimplies thatF}y, (h) € H Vh € H.
We next consider théth componenti of Y,

Fji (hy)(x) — Fyp (ha) (x) = $iTy — ST,
with
Sj = —(BU7 (), 15 (x + h;(x)),hj,x) = b(I3 (x + h;(x)), hj, x))
Tj = 0il3(x+hj(x))j =12,
4 =1,2. We continue with
| Fi (1) (x) — Fyji (ha) ()] < [S1 — Sa[T1] + | Sa| [Ty — T

Because); I is bounded|T}| < ||0;I7||~. Because of propositions 6.34 and 6.39,
|Sa] < 2%. Because); IS is Lipschitz continuousT; — Ta| < Lip(9;1§)h;(x) —
hy(x)|. Finally, because of corollary 6.40 and the fact thats Lipschitz continuous,

|91 — S| < Lip(fig) (Lip(I§)[hy(x) — ha(x)| + [y — ha|5) .

The conclusion of the theorem follows from these inequalities through the same
procedures as in the proof of theorem 6.13.

We finish this section with the

Proposition 6.42 The functiorf2 — R™ such thatx — F%,;(h(x)) satisfies
|Fiyr(h(x)) — Fiyp(h(y))| < K(Jx — y| + [h(x) — h(y)]),

for some constank” > 0.

Proof : The proof is similar to that of proposition 6.14 and uses propositions 6.36
and 6.38. 0
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6.3.2 Correlation Ratio

In this case also, the proofs follow pretty much the same pattern as those in the global
case. In detail, the analog of lemma 6.15 is the

Lemma 6.43
0 < pa(h, x0) = 1/ (x+h(x)G,(x—x0)dx < A (6.22)
gv(XO) Q
B < va(h,xp) = B+ 60(h,x0) < B+ A%, (6.23)
where

8(h, xo) = gv(lx())/g I3 (x + h(x))’ G, (x — x0) dx—

(Qy(lxo)/g I9 (x + h(x)) G- (x — xo) dx> i . (6.24)

Proof : Because of equation (4.16) we have

y12(h, o) = /R iz (g(lx) /Q g5(iz — I (x + h(x))) G (x — x0) dx) diy =
1
Gy(x0)

This yields the first part of the lemma. For the second part, we use equation (4.17):

/Q IS (x + h(x))G,(x — x¢) dx.

(h XO =
< gg 19 — IQ (X + h( ))GV(X — Xo) dX) dig — ug(Xo,h)2,
and hence
1 o 2
vo(h,x¢) = B+ W/ﬂ IS (x +h(x))°G(x — x¢) dx—

<g(1x) | 186+ mx)) G (= 0 dx>2,

from which the upper and lower bounds of the lemma follaw.

We next take care di[Var[X ;g | X7](x0)] with the analog of lemma 6.16
Lemma 6.44

E[Var[X g n|X1](x0)] = ﬁ+g7(1x0)/9 I3 (x + h(x))*G (x — xo) dx—M(xo, h],
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where
Mxo,h] = f(x0,%, %) I3 (x + h(x))I5 (x' + h(x)) dx dx’,
QOx0
and
N Gy(x—x0)Gy (X' — x0) / gplin — I (x))gp(in — I7 (X)) .
pr— d
f 0, %,%) AENE s p(ir, xo) "
is such that
G~ (x' — xp)
/ d — Y
/Qf(xovx7x) X g’y(xﬂ)
G, (x —xq)
/ d / — 77
\/Qf(xoaxux) X g’y(XO)
and

f(xo,x,x")dxdx' = 1.
QxQ

Proof : According to Table 4.2 we hawg, (i1, h,x¢) = S(i1,%0) — T?(i1,%0) and

E[Var[Xjg n|X7s](x0)] —/U21(i17h,X0)P(i17X0)di1,
R

with
Ph Z1,227X0 di
117X0 12,
7’17X0

and

Ph 21,12,X0 . .

Zlaxo d/LQ = H2|1(7/1,h,X0).
’Ll,XU

It is straightforward to show that

/ S(i1,x0)p(i1,x0)diy = B+ / I§ (x + h(x))?G, (x — x¢) dx.
R

1
gv(XO) Q

It is also straightforward to show that

T(ir, x0) = L / gt — I7(x)) IS (x + h(x))G (x — x0) dx,

Gy (x0)p(i1,%0) Jo

and hence that

/T2(117X0>p(7:1,X0> dll =
R

2
gy(i(o)Q /R p(l (/Q gﬁ(il B If(X))Ig(X + h(X))G'y(X - XO) dX> dip. (6.25)

21)
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We next write

</Q ga(in = 17 ()5 (x + B(3x)) G (x — o) dx>2 _

[ gatis = I G0)S (x4 h()G (x - x0)
ga(in — IT () I (¢ + h(x)) G (%' — x0) dx i,

commute the integration with respectifowith that with respect te&x andx’ to obtain
the result. O

We continue with the analog of lemma 6.22:

Lemma 6.45 The functiombg = Gg x Lkg : Ha x Q — R, whereLLg s given by
equation (5.12), is equal to the following expression

2
gv (Xo) V9 (h, Xo)

(,ug(h, x0) — d(z1,h, x0) + CR!(h, x0) (22 — ,uQ(h,xo))> :

thR(Zh 22, h7 XO) ==

where

d(zl,h,Xo) =
i Ja 95(in — I (x))I5 (x + h(x)) G (x — x0) dx ’
/Rgﬁ( 1) ( Ja 95(in — I (x)) G~ (x — x0) dx ) di-

Proof : We use equation (5.12) and apply the convolution to it. The valuéisf
obtained from:

d(z1,h,x0) = / gp(z1 — 1) pg (i1, h, xo) diy =
R

/ m </ iQPh(i17i27X0)diQ> diy =
R p(i1,%0) R

gma ) 7 (x x i1 — 17 (x X —Xg) dx | di
R G~ (x0)p(i1,X0) </912( +h(x))gs(in — I7 (%)) G/( 0) d ) diy

from where the result follows ™

Our goal is to prove thafly = G, x hkg, a function fromH, x Q in R is Lipschitz
continuous irfHz uniformly on(2.

In order to prove this, it is sufficient to prove that the numerator and the denomi-
nator ofhlCR are bounded and Lipschitz continuougHh uniformly on¢2, and that the
denominator is strictly positive.

Indeed, we have the following
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Lemma6.46 Let N : Hs x Q — R be bounded and Lipschitz continuous7f
uniformly onQ. Let alsoD : Hy x @ — R™ be bounded, strictly positive, and
Lipschitz continuous ifi{; uniformly on(2. Then the functiok, * tHaox Q2 — R

is Lipschitz continuous ifti{o uniformly on(Q.

Proof: We form

(x )[Z’ h']  N(xo)[z,h]
et XO( Pl ] Dl i) ] <
/|N xo) | — N(xo0)[z, h|

xo [z h']
|N X0) [z hHD(xO)[z’ h'] — D(x0)[z, h]|

xo)[z’, W] D(x0)|z, h]

dxo+

dXO

According to the hypotheses, there exists- 0 such thate < D(x)[z, h]Vz, %o, h,
there existd{y > 0 such thai N (xo)|z, h]| < KnVz, x¢, h, and there existé y and
Lp such that

[N (x0)[z',h'] = N(xo)[z,h]| < Ly(|z — 2| + [|h — }'[|z) and
|D(x0)[z’, '] = D(xo)[2,h]| < Lp(|z — 2| + |h = h'|| ) V2,2, x0, b, b'.

We therefore have through Cauchy-Schwarz inequality:

N(x¢)[z,h'] N(xo)[z, h]
JRGESED (D(x(o[zx W]~ Do)l h]) x| <

C(lz - 2|+ |h = h'|g)

for some positive constaigt. O

We prove these properties for the numerator and the denominamé&of

Lemma 6.47 We have
|Q]diam(Q)8 < G (xo) v2(h, x0) < |Q|G,(0)(8 + A%)

Proof : The proof is a direct consequence of the definitioj ;) and of lemma
6.43. O

We then prove the following

Lemma 6.48 The functionH x @ — R* such that(h,xo) — G,(x¢) v2(h,x¢) is
Lipschitz continuous ii uniformly in€2.
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Lemma 6.49 The functioriHy x 2 — R such that
(z,h,%0) — pa(h,xo) — d(21,h, x0) + CR(h,x0) (22 — p2(h, %0)),
is bounded by.A.

Proof : This is becausé < CR(h,xp) < 1,0 < us(h,x9) < A, and, according to
lemma 6.45, becau$e< d(z;,h,xq) < A. O

At this point we can prove the following

Proposition 6.50 The functionQ? — R"™ such thatx — flCR(z,h,x) is Lipschitz
continuous uniformly irHs.

Proof: With the notations of lemma 6.46 we have
Gy x hipp(x) — Gy * hlpp(y)| <

N
G — e — 7
/{; ‘ V(X XO) ’Y(y XO)’ D(XO)[Z,h] X0
Because of lemmas 6.47 and 6.49 we have

|G7*hZCR( ) — Gy *hCR

|Q|d|am(Q /|G x —X0) — Gy(y —x0)| dxg <
BLI(G,)
dam()s X Y

hence the resultO
We also have the analog of lemmas 6.23, 6.18, and theorem 6.21.

Lemma 6.51 The functiond : H; x © — R is bounded and Lipschitz continuous in
‘H; uniformly in€Q.

Lemma 6.52 The functiondd x 2 — R defined by

1 ag
(h,xp) — W/S]IQ (x +h(x)) G,(x —xq) dx
and )
o 2
(h,xp) — W/{)IQ (x+h(x))” Gy(x —x¢) dx

are bounded and Lipschitz continuousAhuniformly in€2.
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Theorem 6.53 The functiond x 2 — R defined by
E[Var[XIg,h\X}f](Xo)]
UQ(ha XO)

(h,xq) —

is Lipschitz continuous i/ uniformly in€Q.

From which we deduce the

Theorem 6.54 The functiorf{, x 2 — R such that
(z,h,%0) — pa(h,xo) — d(21,h, x0) + CR(h,x0) (22 — p2(h, %0)),
is Lipschitz continuous ifi{ uniformly in€Q.

We can now prove the

Theorem 6.55 The functionfis : Ha x Q — R such that(z, h, x) — fig(z, h,x) is
Lipschitz continuous ift{, uniformly in2.

Proof : The proof is just an application of lemma 6.46f{g;. O

The combination of proposition 6.50 and theorem 6.55 yields the following

Theorem 6.56 The functionfir : Ha x Q — R such that(z, h, x) — fig(z, h,x) is
Lipschitz continuous.

And we can conclude with the following theorem and proposition.

Theorem 6.57 The functionFig : H — H defined by
Fep(h) = fer(I7, I3 (1d + h), Id)VIZ (Id + h)
is Lipschitz continuous and bounded.

Proof : The proof follows exactly the same pattern as the proof of theorem 6.41 and
uses theorem 6.550

Proposition 6.58 The functiorf2 — R" such thatx — F,,(h(x)) satisfies
[Fér(h(x)) — Fop(h(y))l < K(jx —y| + [h(x) = h(y))),
for some constank” > 0.

Proof : The proof is similar to that of proposition 6.26 and follows from theorem 6.56
and the fact that the functions, I§ and all its derivatives, are Lipschitz continuous.
]
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6.3.3 Cross Correlation

In this section we prove the Lipschitz-continuity of the mappiig— H defined by
Fl.(h) (equation (5.14)). The reasoning is completely analog to that of the global
case. We start with some estimates which guaranty that the varian¥e-of, is
strictly positive.

Lemma 6.59 Vx; € (2, the following inequalities are verified

0 < pi(xe) < A,
B < wvi(xo) < B+ A%

Proof :

o) = [ (g G0 =) G =) e ) i i —

1

I7(x) Gy(x —xp) dx (6.26
5 L 1700 Gl xo) i (6.26)
and the firstinequalities follow from the fact thigt(x) € [0, .A]. Similarly, foruv; (x),

we have

o1 (x0) :/RQ 2 <g7(1m)/gaﬂ(1h(x)—i) G (x — xo) dx>di1d¢2—uf(x0)=
1

I7 (x)? G (x — xq) dx—

(g7 /L 1760 Gx =) dx>2, 6.27)

from which the second inequalities followd

B+

gv(XO) Q

We now show the boundedness and Lipschitz-continuity of the covariance of
le,xo andX]gny7h.

Proposition 6.60 The functiond x @ — R defined by(h, x¢) — v 2(h,xq) is
bounded and Lipschitz continuousif uniformly in{2.

Proof : Indeed, we have
naltxo) = [ (i = i (xa)) 12 — palh x0)
R

1 . L
m /Q Gp(In(x) — i) Gy(x — x0) dx diy dis.

Hence

v1(h,x0) = g(lx) / ( 6= st 170 — ) d)
( ]2 alt xa)) (15 + ) i) dia) O (x — x0) dx,
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that is
1
N A
/Q(Ii’(x) — m1(x0)) (I (x + h(x)) — pa(h,x0)) G(x — xg) dx
— gjxd /Q I (x) I§ (x + h(x)) G~ (x — x0) dx — p1(x0) p2(h,xp). (6.28)

Thus we haveyxg € , |v12(h, x0)| < A%, which proves the first part of the propo-
sition. For the second part, singg(h, xg) is Lipschitz continuous uniformly i
(lemma 6.52), it suffices to show the Lipschitz continuity of the first term in the right-
hand side. For this term we have,

L g o
G~(x0) /QII (x) I3 (x + hy(x)) G, (x — x0) dx —
/Qli’(x) I (x + hy(x)) G+ (x — x0) dx
o UG () — I8+ o) G )
g’Y(XO) Q ! 2 1 2 2 . 0
< ALIF) Go(0) b | [ n(x) ~ o) s

Hence (by Cauchy-Schwarz):

1
Gy(x0)

1760 150+ 1) G (x = x0) dx -

/ 17 (%) I3 (x + ha(x)) Gy (x — x0) dx | < £ ||y — o1,
Q

where the constart is independent aky € . O

Theorem 6.61 The functionH x  — R defined byh, x) — CC!(h, x) is bounded
and Lipschitz continuous if, uniformly in{2.

Proof : The cross-correlation functiocBC! is bounded by 1. Moreover, we have

vl,g(h, X)2

I x) = 2 X)”
CC(h,x) v1(x) vo(h,x)’

(6.29)
with:

e v12(h,x) bounded and Lipschitz-continuous f# uniformly in Q (proposi-
tion 6.60).
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e vy(h, x) bounded and Lipschitz-continuous #h, uniformly in 2 (readily seen
from lemmas 6.15 and 6.52).

e v2(h,x) > 0 (lemma 6.15).
e v;(x) bounded and- 0 (lemma 6.59).

We may therefore apply proposition 6.1]

Theorem 6.62 The functiorH{s x 2 — R defined by
(217 22, ha X) g LlCC,h(Zla 22, X)
is bounded and Lipschitz continuoustif, uniformly in2.

Proof: We have

Locn(z1,22,%) = g;(i)
S () oo (2557

Taking into account the properties mentioned in the proof of proposition 6.61,
the boundedness and Lipschitz continuity @iC! (proposition 6.61) and ofi,
(lemma 6.52), plus the fact that,(x) > 0, we see thaLg ;, may be written as

Licn(21,22,%) = fi(h,x) 21 + fa(h,x) 22 + f3(h, %),

where the function#/ x Q@ — R f1, fo andfs are bounded and Lipschitz continuous
in H uniformly in €2, from where the result readily follows™

Theorem 6.63 The functionfse : Ha x @ — R, defined by

fé‘C(zv X) = (GW * LlCC,h) (Z7 X)
is bounded and Lipschitz continuous.

Proof : Indeed, letf : H2 x 2 — R be bounded by3; and Lipschitz continuous in
H> uniformly in ©2, of constantl. ; (these hypotheses are verified,bgqh according
to theorem 6.62). We have

/QG,Y(X—XO) (f(z,h,xo) —f(z',h’,xo)) dxg| <

G4(0) 19 Ly (lz — 2| + |h — B[ ),
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and
|Gy * f(z,h,x) — Gy x f(z,h,y)] <
/ |G (x —x0) — Gy(y —x0)||f(z,h,x0)| dxg < By Lip(G,)|Q| [x =y,

hence the result.
O

Theorem 6.64 The functionF: : H — H defined by
Fc(h) = fec(I7, I3 (1d + h), Id)VI5 (Id + h)
is Lipschitz continuous and bounded.

Proof : The proof follows exactly the same pattern as the proof of theorem 6.41 and
uses theorem 6.630

Proposition 6.65 The functiorf2 — R™ such thatx — F(h(x)) satisfies

|Fbe(h(x)) — Fée(h(y))| < K(lx — y| + [h(x) — h(y))),
for some constank” > 0.

Proof: The proofis similar to that of proposition 6.26 and follows from theorem 6.63
and the fact that the function§, 15 and all its derivatives, are Lipschitz continuous.
O
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Chapter 7

Numerical Schemes

This chapter describes the numerical schemes employed in discretizing the continu-
ous evolution equations (see equation (1.2) on page 39) for the different matching and
regularization operators. We use spatial difference schemes to evaluate differential
operators and an explicit forward discretization in time (Euler method). Parzen win-
dow estimates are computed by recursive filtering [31] of the discrete joint intensity
histogram. These elements are detailed in the following sections.

7.1 Regularization Operators

We begin by describing the schemes for the differential operators used for regulariza-
tion. We use a schematic notation for the description of the finite-difference schemes.
For instance, let us denote ty’* andh}’*, the componentg(= 1,2, 3) of Ah and

h at a grid point {, 7, k) in the discrete image domain. The voxel size in all directions

is assumed to be equal to one. A possible schemeAdi would be

L7 = a(hghd B bt R - 4 ), (7.1)
in the 2D casép = 1,2) and

Llp’]’k — a(h;fl’”k + h;—luk + h;)J—Lk + h;},y+l7k+

PR G R 6 i), (7.2)

int the 3D casép = 1, 2, 3), which we write schematically as
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1
1 1
- 1) -4] 1 y 1| -6] 1
L = and  Lik =
P P
1 1
hp X a
1
hp X a

respectively. In this notation, the tables represent the discrete grid and contain the
weights associated to each pixel (voxel). The weight is zero if the voxel is empty.
The function to which the grid corresponds is written at the bottom, together with
any global weight (for examplg, x « above means the grid is that bf, weighted
globally by o). In each table, the indekis assumed to increase from left to right
and the index from top to bottom, the center being the coordindteg). In the 3D

case, each of the three stacked tables represents a differentkindésich increases

in the bottom-up direction, the one in the middle being that of inde&lthough less
compact than the notations (7.1) and (7.2), these schematic representations have the
advantage of clearly showing the position of the weights within the neighborhood of
each voxel.

7.1.1 The Linearized Elasticity Operator

In this section, we describe our numerical schemes for computing the linearized elas-
ticity operator:
A=c((Ah+ (1-£V(V-h)). (7.3)

Our schemes are based on a first order Taylor expansion of (7.3 Foe, it
yields the following scheme:

AY = + + :

h1><£ th(lfg) h2><

Ayl = + +
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Similarly, forn = 3 we obtain:

1 -1 1
1 1 -1
i ok 1| -6] 1 1| -2] 1
AP = + + + :
1 -1 1
1 1 -1
hy x € h1 x (1—2¢€) hy x $(1—€) hg x 1(1—¢)
1
1
-1
1 1 1 -1
i gk 11 -6] 1 -2
AP = + + +
1 1 —1 1
-1
1
1
ho x & ha x (1 —=¢€) hyx $(1—-¢) hy x $(1—¢€)
and
-1
1 1 -1 1
1
1
gk 1| —6 1 —2
A" = + + +
1
1
1 1 1 -1
-1

hg x & hg x (1 =€) hi x 2(1—¢) hy x 2(1—€)



126 Chapter 7: Numerical Schemes

7.1.2 The Nagel-Enkelmann Operator
2D case

Our implementation corresponds to the scheme proposed by Alvarez et al [5]. Let now
A = div(T; Dh), where
a b
T = .

The scheme is the following, far= 1, 2:

A _ 1 1 . -1 1 n 1 1 . 1] -1
=
%a hp %a hp
1 1
1 -1 1 -1
+ * + *
1 1
%c hp %c hp
1 1
1 -1 1 -1
+ * + *
1 1
ib hyp 1p hyp
1 1
1 -1 1 -1
— * — *
1 1
b hyp b hyp

3D case

This scheme generalizes readily to the 3D case. In order to write explicitly the 3D
scheme in a compact way, we take profit of the very simple form of this scheme to
introduce a more compact notation. We shall write

1
Sa hp

wherex™ indicates the direction defined by the voxels with non-null weights, starting
at the center. With this notation, we write the 2D Nagel-Enkelmann operator above as

Ay = 8Si(a,x") + Si(a,27) + Si(e,y") + Si(e,y)
+ Si(b,xty") + Si(b,x7y") — Si(b,ay”) — Si(byzy").
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In the 3D case, we have
C

a b
Tlf = b d e 5
c e f

and the corresponding scheme is, ot 1, 2, 3,

ik _ _ ~

APt = Si(a,2") + Si(a,z7) + Si(d,y") + Si(d,y™) + Si(f,2") +

S%(fa'Zi) + S%(b,erer) + S%(bvxiyi) - S%(b,l‘ yi) - Si(b7x7y+)
+ Si(e,x"2") + Si(e,x727) — Si(e,2"27) — Si(e,x7z2")

+ Si(e,y™2") + Si(e,y727) — Si(e,y"27) — Si(e,y~27).

7.2 Dissimilarity Terms

This section discusses implementation issues concerning the three global matching
functions £y, (h), Fgx(h) and F-(h) as defined in (5.9) on page 85, and the local
matching functionFéC(h) as defined in (5.14) on page 86. The remaining two func-
tions will be treated in section 7.3. The reason for this separation is that the global
functions andr-(h) can be computed as direct estimations of their respective defi-
nitions, while i}, (h) and Fi:x(h) require two convolutions, which makes them very
hard to implement with limited memaory.

By observing their respective definitions, it appears that some specific operations
are required to implement the global functions dffg(h). These operations are the
following.

e Convolutions
The convolutions by a Gaussian kernel are approximated by recursive filtering
using the smoothing operator introduced by Deriche [31]. Given a discrete 1D
input sequence(n),n = 1, ..., M, its convolution by the smoothing operator
So(n) =k (a|n| + 1) eIl is calculated efficiently as (see [31]):
y(n) = (Sa x z)(n) = y1(n) + y2(n),
where
yi(n) = k(z(n) + e (a—1)az(n-1))
+2e y(n—1) — e 2y (n —2),

yo(n) = k(e (a+az(n+l) — e *a(n+2))

+2e @ y(n+1) — e 2 yo(n+2).

The normalization constaktis chosen by requiring th#{ Sa(t) dt = 1, which
yieldsk = a/4. This scheme is very efficient since the number of operations
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required is independent of the smoothing parametdrhe smoothing filter can
be readily generalized to dimensions by defining the separable fillénx) =

H?:l Sa ().
We can determine an optimal value®to approximate a Gaussian of variance
3. Requiring thatG5(t) and S, (t) have the samé? norm yields the relation

o= 10 ~18/f

VT
while minimizing theL? norm of (G(t) — Sa(t)) yields
o~ 1.695/+/1.

As showed by Alvarez et al. in [2], the recursive procedure above can be seen
as a numerical implementation of the heat equation. The convolutio$i,by
presents the advantage of being computable exactly by a recursive filter of order
two, giving very precise results and fast computations.

By computing the derivative of,,(¢),
Sl(t) = —i a3t ealtl

we obtain a derivative filter of which a recursive realization can be similarly
obtained:

y(n) = (S, 2)(n) = (Sa*2)(n) = =7 a® e*(y1(n) +y2(n)),

where now
y(n) = z(n—1)+2e*y1(n—-1) — e 2 y1(n — 2),
yo(n) = ax(n+1) + 2e Y ya(n+1) — e 2 ya(n + 2).

Interpolation

Terms of the forniV I (x + h(x)) are calculated as follows. Convolution bf

with the derivative filter is used to compute the component¥ &f on Q7%
Then their value for an arbitrary position (not necessarily on the grid) is com-
puted using a trilinear interpolation scheme, defined as follows. fLls the
function to be evaluated & + =, j + y, k + z), where (, 7, k) is a point on the
grid and(z, y, 2) € [0, 1]3. We set

£, 4, k), = fi+1, j, k),
V3— f@G+1, j+1, k), =f(i, 7+1, k),

(%Jak"i_l) (Z+1 ],k-i-l)

f( f(

V7— fli+1, j+1, k+1), i, 7+ 1, k+1).
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Then the valugf (i + =, j + y, k + 2) is estimated as

V=n(l-2)1-y)(1—-2) + Vaz(1—-9y)(1-2)
Vsay(l—z) +Va(l—2)y(1—2)+
Vi(l-z)(1-y)z + Vsz(l—y)z+
Vizyz + V3 (1—2)yz=.

The same interpolation scheme is used for estimating the vallfg »f- h(x)).

e Density estimation

Parzen density estimates are obtained by smoothing the discrete joint histogram
of intensities. To describe this procedure, we define the piecewise constant func-
tionv : Q — [0, N]? C N? by quantification ol (x) into N +1 intensity levels
(bins):

CI7 () ©.07 on o
v(x) = ( ) =9
[¢I5(x +h(x))] (NN on Qwa
where¢ = N/ A, |-| denotes the floor operatorRi", i.e. the functioR*t — N

suchthaz| = max{n € N:n <z}, and{Qy i} x)eo,n2 is a partition of(2.
We then compute, setting = ¢23,

Puli) = |19| /Q Go(In(x) — i) dx
_i / X X~ —
=167 L G (€0 =) dx= 5 [ G0 - i) ax

C N N
-G ZZ/ Gy (k — Cin,l — Cig) dx

N N
=D 0l/19] Gk — Cin, 1 — Cia) = ¢ (H » G) (C),

H being the discrete joint histogram. The convolution is performed by recursive
filtering as described above. Note that this way of compulipds quite efficient
since only one pass on the images is required, followed by the convolution.

These basic tools being described, we now state pseudo-algorithms of the way the
different matching functions are computed.
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Algorithm 7.1 (£, (h))

e EstimateP, (i) and its marginals.

° EstimateLﬁ,”,h(i) (equation (5.6) on page 84) using centered finite-differences
for the derivatives.

e Estimatefy, (i,h) = Gg x L}, ,,(i) by recursive smoothing.

e Estimatef}), (h)(x) = fij (In(x),h) VI (x + h(x)).

Algorithm 7.2 (Fg (h))

e EstimateP;, (i) and its marginals.

e Estimatejiz(h), v2(h), pg)1 (71, h) and CRY(h) using equations (4.3), (4.4),
(4.5), (4.10) and table 4.1, on pages 66-68. Here the integrals are estimated
by finite sums on the intervd, A].

e EstimateLiy, (i) (equation (5.7) on page 84).
o Estimatefdg(i, h) = G5 x Ly, (1) by recursive smoothing.

o EstimateFZq(h)(x) = fa(In(x), h) VIS(x + h(x)).

Algorithm 7.3 (Fg.(h))

e Estimate the valuegs(h) andvz(h) using equations (6.9), (6.10) and (6.11)
on page 97 and the valugs, v1,v; 2(h) andCC?(h) using equations (6.12),
(6.13), (6.14) and (6.15) on pages 103-104.

o EstimateL%C’h(i) (equation (5.8) on page 85).

o EstimateFgc(h)(x) = Ly, (In(x)) VIS (x + h(x)).

Algorithm 7.4 (FL(h))

e Estimate the functioryj, (x) using equation (4.13) on page 68, the functions
w2 (h, x) andvs (h, x) using equations (6.22), (6.23) and (6.24) on page 110 and
the functionsy; (x), v (x),v1.2(h,x) and CC!(h,x) using equations (6.26),
(6.27), (6.28) and (6.29) on pages 116-117. These estimations are computed by
convolutions using recursive filtering.
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e Estimate(G, * Llccyh)(i, x) (see equation (5.13) on page 85) as:

(G % L) (1,%) = (G % f1)(x) i + (G % f2)(x) i + (G % f3) (),

where 5 (h.x)
o —<4 0120, X
N0 = G o) )’
_ 2CCl(h,x)
f2(X) - g'Y(X) ’U2(h,X)7
A = = (£ 1160 + f2(x) pz(h,x) ).

e EstimateF{c(h)(x) = (G4 * Lecy) (Tn(x), %) VIS (x + h(x)).

Note that algorithm 7.4 is similar to the algorithm proposed by Cachier and Pennec
in [21], modulo the adding of a positive multiple gfin all the denominators. This
factor is crucial for the Lipschitz-continuity dfé.(h).

7.3 Approximate Implementations of F},, (h) and Fi:5(h)

This section discusses the implementation of the functigiggh) and F:x(h), de-

fined in theorem 5.2 on page 86. These two functions are much more difficult to
compute than those of the previous section. The reason for this is that they involve
two convolutions, one with respect to the intensity varidl@dad the other with respect

to the space variable. A possible way to implement them would be to estimate the
functionsL{vH’h andLlCRyh, and then “smooth” these functions, e.g. by recursive filter-
ing. The problem is that this would require a dense data structure of dimdmsioh)

for Lgy, and(n + 2) for Ly, .. With 3D images, it becomes extremely difficult to
maintain these four and five-dimensional structures due to memory space limitations,
not counting the computational effort of smoothing them, which has to be done at each
iteration of the minimization flow. Our implementations rely on using directly the “un-
smoothed” versions dfy,, ,, andLtg ,, i-€. on eliminating both convolutions. We note

the two functions obtained}, (h) and F5(h). Their implementation is described in
more detail in the following sections.

7.3.1 Mutual Information

We define Yy, (h) by eliminating the convolutions in the definition &, (h). It
remains to estimate the functioﬁw’h(lf,lg(ld + h),Id), which is done using
equations (6.17), (6.18) and (6.19), starting on page 106. Note that clearly, since
all the denominators involved are strictly positive and bounded, the funhtien-

Ly n(I7, 15 (Id + h),1d) is also Lipschitz-continuous, and therefore sdg (h).
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Note however that the integrals involved can no longer be approximated by recursive
filtering. The filtering becomes non-stationary. We therefore propose the following
algorithm.

Algorithm 7.5 (E,, (h))

¢ Estimate for eacly on the discrete grid the value @fI§ (y+h(y)),y, h) using
equation (6.17) on page 106, approximating the integrals by a finite sum on a
sufficiently largé neighborhood aroungl.

e Estimate in a similar way the value of(I¢(y), I5(y + h(y)),y,h) using
equation (6.18) on page 106, 6f(x) using equation (4.13) on page 68 and
of Liy w(I7(y), I (y + h(y)), y) using equation (6.19) on page 106.

o EstimateFyy, (h)(y) = Liy ,(I7 (y), I (y + h(y)),y) VIS(y + h(y)).

7.3.2 Correlation Ratio

Similarly to the previous case, we eliminate the two convolutions in the definition
of Fix(h). It remains to estimate the functioﬁ:@ah(lf,fg(ld + h),Id), where
w21 (71, h, xo) is given by (see lemma 6.45 on page 112):

/Qgg(il — I{(x)) I3 (x + h(x)) G, (x — x¢) dx

/ gs(i1 — I7 (x)) G (x — xq) dx
Q

N2|1(i13 h,xp) = (7.4)

However, there is still another difficulty in this case. The vaIu@RI“(h,x), which

is needed in the computation Df:Rh, requires itself a convolution with respect to the
intensity variable (see e.g. the proof of lemma 6.44 and in particular equation (6.25) on
page 111). For this reason, we make another approximation, namely that of replacing

U2|1(i17hax) . .
R!(h = B
CR'(h, x) /R oa(h ) p(i1) dix

in the definition ofZ{.g ,,, by the function

7}2‘1 (ila h) X)

91 (il, h, X) = UQ(h X)

(7.5)

where the functiom,; (i1, h, x) is given by (see the proof of lemma 6.44 on page 111):

’U2\l<i17hvx) = S(ilahv)() - /’L2|1(i17hax)2' (76)

In practice we use = 5 and a neighborhood of sizZé x 19.
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The functionS(i;, h, x) is given by

1

S ) 7h7 =
(Zl XO) p(ll,Xo)

/ i3 Pu(i) dig
R
[ 9stin = 1700) 156 hx)) Gy o 0

:ﬂ+
/Q g5(in — I (%)) Go(x — x0) dx

(7.7)

With these approximations, we define

= L) — 1
Lern(i; x) TG (x) 0a(hx)
(:U’Q(h) X) - /'LQ‘l(ila h7 X) + 91 (/il) h7 X) (22 - ,U‘Q(h7 X)))7 (78)
and

FEg(h) = Legn(I7, 15 (Id + h),1d) VIS (Id + h).

Again, we notice that the Lipschitz-continuity E%R(h) is preserved. We also have
in this case a non-stationary filtering process. We therefore propose the following
algorithm.

Algorithm 7.6 (Fg(h))

¢ Estimate for eacly on the discrete grid the value 6f (y) using equation (4.13)
on page 68, ofiz(h,y) andwvy(h,y) using equations (6.22), (6.23) and (6.24)
on page 110, ob(I{(y), h,y) using equation (7.7), and @k, (17 (y), h,y)
using equation (7.4), approximating the integrals by a finite sum on a sufficiently
large? neighborhood aroung.

e Estimatevy; (/7 (y), h,y) using equation (7.6)¢:(I7(y),h,y) using equa-
tion (7.5), andLig 1, (17 (y), I§ (y + h(y)), y) using equation (7.8).

e EstimateF{(h)(y) = Lig,(I7 (), IS (y + h(y)),y) VIS (y + h(y)).

7.3.3 Parallel Implementation

Algorithms 7.5 and 7.6 are very well adapted to parallelization, as they both describe
a non-stationary filtering procedure. The operations required for compﬁfj,p(gl)
andF5(h) at each voxel are defined from the knowledge of the functigngg and

h in a relatively large neighborhood around it.

2In practice we use = 5 and a neighborhood of siZé x 19.
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We have implemented these two algorithms using the MPI library for parallel exe-
cution using a cluster a¥,, processors. A master-slave architecture is used, i.e. one of
the processors handles a certain amount of global work, and distributes local work to
the remainingV,, — 1 processors. The distributed work is the computatioﬁ,@af(h)
and FéR(h) at each iteration. The remaining operations (mainly the computation of
the regularization term and the time-step update) are handled by the master processor.
The execution flows for the master processor and for a slave processor are illustrated
in figures 7.1 and 7.2. It is assumed that all the processors have access to the data
corresponding td{, I§ andh at each iteration. This is achieved in practice by special
synchronization routines of the MPI library. With this architecture and using a clus-
ter of 24 processors, we have achieved 15 times faster execution times than with the

sequential version.

Do initialization work

Give N, voxels to treat ‘
to each of theV,, — 1
slave processors ‘

—{Wait for the results of the next free proces}sor

1
1
1
1
1
1
1
1
1
1
1
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1
1
1
1
1
1
1
1
1
1
1
:
1
Yes : Do global work
j for the iteration
1
1
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Have
all the voxels
been treate

X Is this
Give the next\V,, voxels the last No
to treat to the current iteration?
free processor
Yes
Computation of Iy, (h) and Fl, (h) Output result
End

Figure 7.1: Execution flow for the master processor in the parallel implementation of
the matching flow.
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Wait for the next

; task: a set
of N, voxels

to treat

Apply algorithm
7.50r 7.6 to each
of the voxels

Is the
minimization
over?
to treat

End

Figure 7.2: Execution flow for each slave processor in the parallel implementation of

the matching flow.






Chapter 8

Determining Parameters

This chapter discusses the way in which the different parameters of the algorithms
are determined, particularly the smoothing parameter for the Parzen window estimates.

The matching algorithms use the following parameters.

e ~: This parameter is fixed to 5 with a local window size of 19x19 for the mutual
information and the correlation ratio. For the cross correlation, the value of this
parameter does not affect the computation time. This important property is due
the fact that the local statistics are calculated using the recursive smoothing filter.
Thanks to this property, we have conducted some experiments with different
values of this parameter, which have shown that the algorithms are not very
sensitive to it. This is the reason why we have fixed it for the mutual information
and the correlation ratio. Qualitatively speaking, the local window has to be
large enough for the statistics to be significant, and small enough to account for
non-stationarities of the density. The value chosen has given good results in
practice.

e (3. This is the smoothing parameter for the Parzen estimates. Unlike the param-
eter, determining a good value for this parameter is crucial for the matching
results. The determination of this parameter is discussed in more detail in the
next section.

e «. This parameter determines the weight given to the regularization term in the
energy functional. Since the range of the different matching functions varies
considerably, we replace this parameter by another one, aoseth that

a=Ck,

wherek is given by
t = ||F(ho) ™,
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hg being the initial field and"” any of the matching functions.

e o: This is the scale parameter. We adopt a multi-resolution approach, smooth-
ing the images at each stage by a small amount. Within each stage of the
multi-resolution pyramid, the parameteris fixed to a small value, typically
0.25 voxels.

Besides these global parameters, one extra parameter is needed for each family of
regularization operators.

e ¢ This is the parameter controlling the behavior of the linearized elasticity op-
erator. For{ close to 1, the Laplacian operator becomes dominant, while the
operatorV(div(h)) becomes dominant f@rclose to zero. Two experiments in
the next chapter show qualitatively the behavior of the elasticity operator with
respect to that of the Laplacian. In practice, we fix the valugtof0.5, giving
thus the same weight to both operators.

e \: This is the parameter controlling the anisotropic behavior of the Nagel-
Enkelmann tensor. We adopt the method proposed by Alvarez et al. [6]. Given
s, which in practice is fixed to 0.1, we take the valuexafuch that

A
S = /O H|v[f|(2’) dz

whereH|y 7| (2) is the normalized histogram ¢¥ I7|.

8.1 Determining the Smoothing Parameter

The parametefs of the gaussian kernel is determined automatically. A very large
amount of literature has been published on the problem of determining an adequate
value for 8 (we refer to [17] for a recent comprehensive study on non-parametric
density estimation, containing many references to the forementioned literature).

We adopt a cross-validation method technique based on an empirical maximum
likelihood method. We notéi, } a set ofm intensity pair samplesi(= 1...m) and
take the value off which maximizes the empirical likelihood:
L(B) = [T Ponir)

k=1

where )
P (ix) = > Galip —is)

TR S
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andny is the number of data samples for whigh= i;.

We present two examples of the determinationgoby maximization of the
empirical likelihood. Figures 8.1 and 8.2 show the value of the empirical likelihood of
the estimated density as a function of the parameter two different images. Note
how different the optimal values are for these two examples.

The parameteg for the joint intensity function is taken as m@i, 32), whereg;
(resp.f39) is the optimal value obtained by maximization of the empirical likelihood
for I{ (resp.f9).
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Figure 8.1: Density estimation: example of using maximization of the empirical like-

lihood. The curve in the second row shows the value of the empirical likelihood of
the estimated density, as a function of the parame@tehich attains a maximum for

6 ~ 8. The bottom row presents the raw histogram of the image on the left, and its
smoothed version with the optimal value®bn the right.
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Figure 8.2: Density estimation: second example using maximization of the empirical
likelihood. The curve in the second row shows the value of the empirical likelihood as
a function of the parameter, which reaches a maximum for~ 30. The bottom row
presents the raw histogram of the image on the left, and its smoothed version with the
optimal value of3 on the right.
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Chapter 9

Experimental Results

This chapter presents experimental results for all the described algorithms using both
real and synthetic data. Examples include 2D images for applications in computer
vision and 3D images concerning different medical image modalities.

9.1 Classification

We present a total of eight experiments. The six dissimilarity criteria and the two
regularization operators are tested. Both 2D and 3D problems are included. Some
of the experiments are completely synthetic, some others are completely real and yet
some others are partly synthetic. Table 9.1 on the following page summarizes how
each of these categories are represented in the eight experiments shown. We use the
following abbreviations to refer to the three global criteria: GMI, GCR, GCC, the three
local criteria: LMI, LCR, LCC and the two regularization operators: LE (linearized
elasticity) and AD (anisotropic diffusion using the Nagel-Enkelmann tensor).

9.2 Description of the Experiments

Similarity measure used . GML
Intensity transformation . known.
Geometric transformation : unknown.
Experiment 9.1 Regularization used . LE, AD.
Parameters : a = 10, number of scales = 3.
Computation time : ~ 3 minutes.
Matching program . MatchPDE.

Related figures ©9.1-94.
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Experiment: | 9.1/ 9.2/ 9.3/ 9.4] 9.5/ 9.6/ 9.7 9.8

2D ° ° ° ° °
SD [ ] [ J [

Known geometric transformation ° °

Known intensity transformation| e ° °
Global mutual information ° ° °

Global correlation ratio ° °
Global cross correlation ° °
Local mutual information °

Local correlation ratio °

Local cross correlation ° °
Linearized elasticity . o o . o o
Anisotropic diffusion ° ° ° °

Table 9.1: Summary of the characteristics of each of the experiments.

Comments:

This experiment shows the behavior of the two different families of regularization
operators. Figure 9.1 shows on the first row the imagden the left) and; (on the
right), and on the second row the imabe> (Id + h*), whereh* is the displacement
field obtained with linearized elasticity (on the left) and anisotropic diffusion (on the
right). The displacement fields are shown in figure 9.2. Figure 9.3 shows the result
obtained with the linearized elasticity operator with a value afose to% on the

left, and close td on the right. Finally, 9.4 shows the determinant of the Jacobian of
(Id + h*), whereh* is the field of figure 9.3 on the left. The interest in this function

is that if it is everywhere positive, then the transformation functior: Id + h*(x)

is invertible. This is the case for all the displacement fields shown in this experiment.
This experiment shows

Similarity measure used . GCR.
Intensity transformation : unknown.
Geometric transformation : unknown.
Experiment 9.2 Regularization . LE.
Parameters : a = 20, number of scales: 3.
Computation time : ~ 10 minutes.
Matching program :  MatchPDE.

Related figures : 9.5-9.8.
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Figure 9.1: Experiment showing the behavior of the two regularization operators. See
explanation of experiment 9.1 on page 143.
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146

Figure 9.2: Displacement field obtained with linearized elasticity (left) and anisotropic

diffusion (right).
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Figure 9.3: Displacement field obtained with linearized elasticity with a valug of

close to

(left), and close to one (right).
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Figure 9.4: Determinant of the Jacobian(®é + h*), for the displacement field of
figure 9.3 on the left.
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Comments:

This experiment shows matching of a 2D plane extracted from a 3D proton-density
image (PD) a similar T2-weighted 2D plane. An artificial warp was applied to the

T2-weighted 2D plane. The deformation is well recovered using global correlation
ratio.

Figure 9.5: Proton density image matching against T2-weighted MRI.
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Figure 9.6: Deformation field recovered in the experiment of figure 9.5.

Figure 9.7: Components of the deformation field recovered in the experiment of figure

9.5.
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Figure 9.8: Determinant of the Jacobian of the deformation field recovered in the
experiment of figure 9.5.

Similarity measure used : LMI, LCR.
Intensity transformation : known.
Geometric transformation : known.
Experiment 9.3 Regularization : LE.
Parameters : a = 10, number of scales: 2.
Computation time : ~ 30 minutes (12 processors).
Matching program :  mpi9pde
Related figures ; 9.9-9.13.

Comments:

This experiment shows the result of the local mutual information and local correlation
ratio on synthetic data. The reference and target image where both taken from the
same 2D plane in a MRI data volume. The reference imageas then transformed in

the following way (©|_ is the size of the domain in thedirection):

J (z,y) =sin (27 J(x,y)) — cos (%r' (m + ¥, ))

and then linearly renormalized i, 1]. Notice that the effect of this manipulation
produces a bias in the intensities of the reference image which resembles the real image
modality of experiment 9.4, plus a sort of spatial bias. A non-rigid smooth deformation
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was then applied to the target image. As expected, the global algorithms failed to align
these two images, due to the severe non-stationarity in the intensity distributions.

Figure 9.9: Matching with local mutual information and correlation ratio. Reference
image (left), deformed image (right).

Figure 9.10: Realigned image and its superposition with the reference image in the
experiment of figure 9.9.

Similarity measure . GMI

Intensity transformation . unknown

Geometric transformation : unknown
Experiment 9.4 Regularization . LE.

Parameters a=10,Ny=14

Computation time : 25 minutes

Command line . MatchPDE3D

Related figure : 9.4,
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20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

Figure 9.11: Components of the deformation field applied in the experiment of figure

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

Figure 9.12: Components of the deformation field recovered in the experiment of fig-
ure 9.9.
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Figure 9.13: Determinant of the Jacobian for the deformation field recovered in the
experiment of figure 9.9.

Comments:

This example shows an experiment with real MR data of the brain of a macaque mon-
key. The reference image is a T1-weighted anatomical volume and the target image
is a functional, mion contrast MRI (fMRI). The contrast in this modality is related to
blood oxygenation level. The figure shows the result of the global algorithms. Notice
that the alignment of main axis of the volume has been corrected.

Similarity measure ;. LCC
Intensity transformation :unknown
Geometric transformation : unknown
Experiment 9.5 Regularization : LE.
Parameters : a = 10, number of scales: 4.
Computation time : 25 minutes
Command line :  MatchPDE3D
Related figure . 9.15.

Comments:

Matching of T2-weighted anatomical MRI against EPI functional MRI, using local
cross correlation. We obtain deformations of an amplitude up to 5 voxels, mostly in
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Figure 9.14: Global mutual information with fMRI data. Top row: reference anatom-
ical MRI. Middle row: initial fMRI volume. Bottom row: final (corrected) fMRI
volume. The two columns show two different points in the volumes.
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the phase-encoding direction (horizontal axis of the lower-right view). This solution
seems consistent with previous results obtained by Kybiéy&haz et al. [49] on the
same dataset.

Figure 9.15: Matching of T2-weighted anatomical MRI against EPI functional MR,
using local cross correlation (images are courtesy of Jan Kybic, data provided by Arto
Nirkko, Inselspital Bern). Top row: reference and deformed image. Bottom row :
reference and realigned image.

Similarity measure : LMI, LCR
Intensity transformation :unknown
Geometric transformation : unknown

Experiment 9.6 Regularization . LE.
Parameters : a = 10, number of scales: 1.
Computation time 30 minutes (24 processors).
Command line :  mpi9pde.

Related figure : 9.16.
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Comments:

Our next experiment shows the result of the local algorithms with real 3D MR data.
The reference image is a T1 weighted anatomical MRI of a human brain. The target
image is an MRI from the same patient which is acquired using a special magnetic
field gradient as part of the process of obtaining an image of the water diffusion tensor
at each point. Notice that the intensities in this modality are qualitatively close to our
simulated experiment. The estimated deformation field has a domjramhponent,

a property which is physically coherent with the applied gradient. B&itrandCR
yielded similar results in this case.

Figure 9.16: Matching of anatomical vs diffusion-tensor-related MRI, using local mu-
tual information and correlation ratio.
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Similarity measure
Intensity transformation
Geometric transformation
Regularization
Parameters

Computation time
Command line

Related figures

Experiment 9.7

Comments:

GMI
known.
unknown.

LE, AD.

: o = 10, number of scales: 5.

25 minutes.
MatchPDE.
9.17-9.20.

This experiment shows a real stereo pair in which the intensities in one of the images
were atrtificially transformed using a sine function. The matching is performed using

global mutual information.

Figure 9.17: Sterao matching using global mutual information.

Similarity measure
Intensity transformation
Geometric transformation
Regularization
Parameters

Computation time
Command line

Related figures

Experiment 9.8

Comments:

LCC, GCC.
unknown.
unknown.
LE, AD.

. o = 10, number of scales: 3.

3 minutes.
MatchPDE
9.21, 9.25.

This last experiment shows the use of the global and local cross correlation r criteria
to perform template matching of human faces. In this case the illuminating conditions
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Figure 9.18: Deformed image with the displacement field obtained, and its superposi-
tion with the reference image.

Figure 9.19: Components of the obtained deformation field in the experiment of figure
9.17.
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Figure 9.20: Determinant of the Jacobian for the obtained deformation field in the
experiment of figure 9.17.

are the same in both photographs. If different, the local algorithms should be used.
The different albedos of the two skins create a “multimodal” situation and the trans-
formation is truly non rigid due to the different shapes of the noses and mouths. Notice
the excellent matching of the different features. This result was obtained completely
automatically with the same sets of parameters as the rest of the experiments, using
global mutual information.
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Figure 9.21: Human template matching. Reference (left) and target (right) images.

Figure 9.22: Reference image and deformed target image using the obtained deforma-
tion field in the experiment of figure 9.21.
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Figure 9.23: Some corresponding points using the obtained deformation field in the

experiment of figure 9.21.

20 40 60 80 100 120 140 160 180 200 220

20 40 60 80 100 120 140 160 180 200 220

Figure 9.24: Components of the obtained deformation field in the experiment of figure
9.21.
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1.8
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Figure 9.25: Determinant of the Jacobian for the obtained deformation field in the
experiment of figure 9.21.



Appendix A

Other Applications

The gradients of the statistical similarity measures studied in the previous chapters may
be used in other contexts where the same criteria are applicable. In this appendix we
focus on two such applications, namely image segmentation by entropy minimization
(Section A.1) and diffeomorphic matching (Section A.2). The goal is more to give
the flavour of how the gradients are used in these contexts than to propose specific
methods.

A.1 Entropy Minimization for Image Segmentation

The minimization of the entropy associated to an image yields an algorithm which can
be viewed as a mean-shift process [29], useful for segmentation purposes. Although
we restrict the discussion to global entropy in order to keep it as simple as possible, it
can be generalized to the local case in a straightforward manner, yielding an algorithm
which is very close to bilateral filtering [82]. The experimental results are shown using
the local version of the energy.

Given an image (we restrict to the scalar cabe)? — R, we may associate it
a random variable;, whose values are notécand whose samples are given by the
values ofl (x), for x € Q. The probability density oX; may be estimated by

P(i) = ﬁ Jo GaI(x) — i) di,

this definition being in agreement with the usual property

Jg P(i) di = ﬁ Jo JRGsI(x) —i)di dx=1.
1

The entropy ofX; is given by

Ent(X;) = — [ P(i) log(P(i)) di.
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This quantity is now viewed as a functional hfand the segmentation problem may
be defined as finding the functidri : 2 — R satisfying

I = Ent(I
= argmin En{(7).

Clearly the global minimum is attained for a constant image, but rather than adding
a data-attachment term, we use the non-convexity of this energy to find the closest
local minimum, starting with the initial imagg as first estimate. Computing the first
variation of EntI), we have

OENt(I + eJ)

Oe = Jr(1 +1og(P(i))) [ G (x) —1) J(x) dx di

e=0
= Jo (Gﬂ* ];((;))) J(x) dx.
—_——

Vit (Ent(1))

At the steady statéyy; (Ent(/)) = 0 and thus, necessarilylla,,%) = 0foralli € R.
Now since we have

P 1 . Jo I(x) Ga(I(x) —1) dx
P(i) ~ B2 JoGaI(x)—i)dx )’
we may try to solve the minimization problem by introducing time and a differentiable

function] : RT x Q — R, and defining the solution as the steady state of the initial
value problem

oI B Jo I(t,x) Ga(I(t,x) — I(t,y)) dx
o (by) = 1(ty) =5 fQGB 0 Ty WeEe
1(0,-) = Io(-).

The second term on the right-hand side of the evolution equation is a weighted mean
around the image intensity 3t Using an explicit time discretization with time-
step equal to one, the resulting algorithm describes a mean-shift process [29]. Fig-
ures A.1, A.2 and A.3 show the results obtained by applying this procedure to two
different images. The results are shown with the local version of the algorithm so that
two parameters must be specified,; controlling the size of the local window, and

08, the smoothing parameter of the Parzen window estimate. The results shown are
obtained after convergence for the specified parameters.

A.2 Diffeomorphic Matching

The contents of this section is described in more detail in Chefd’hotel et al. [23]. The
gradients of the statistical criteria computed in Chapter 5 may be used in the context
of the template matching equations introduced by Christensen [26] and recently gen-
eralized by Trou@ [84]. (We also refer to the work of Miller and Younes [58], who
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Figure A.1: Segmentation example: From left to right: original image, noisy image,

result withoc = 1, 3 = 5.

Figure A.2: Segmentation example: From left to right: original image, noisy image,
result witho = 5, 8 = 5.

describe a general framework related to this type of approach). In this context, the un-
known is considered to be the transformatipa: Id + h, rather than the displacement
field h. The matching problem is then solved by constructing a one-parameter family
of diffeomorphismsp(t) (0 < ¢t < oo) and takingg(oc) as the solution. This family

of diffeomorphisms is constructed as the solution to the initial value problem

9 _Dé-v,  $(0)=1d,
ot (A1)

where is a smoothing kernel which ensures the appropriate regularity of the time-
dependent vector field and F, is the gradient of the similarity criterion, i.e. may

be replaced by one of the matching functions that we have studied (Equations (5.9)
and (5.14) at the end of Chapter 5). Intuitively, one can construct this family by consid-
ering at each iteratioh the deformed templatg’ = Ig o ¢* and computing’f;|¢:m
betweenl7 and I§’. After the regularization which yields" = ¢ » F} and for a
sufficiently smallét, the transformatiodd + 6t v* is a diffeomorphism. Composing

& (by right-composition) with this transformation gives an efficient scheme which is
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Figure A.3: Segmentation example: From left to right: original image, result with
o=20.5,03=05.

consistent with the continuous flow A.1:
P = ¢F o (Id + 6t o).
In summary, we have the following algorithm.
1. Setk =0, ¢° = Id.
2. SetIgh = Ig o ¢~
3. Setv® = Fo(17, 15 k)|h:0 for some statistical criterion “crit”.
4. Setv* = 9 « b* (letting for instance) be a Gaussian kernel).
5. Setg*t! = ¢F o (Id + ot v*).
6. Setk = k + 1 and go to step 2.

Figures A.4 to A.7 show the result of applying this algorithm for two different criteria,
namely local mutual information and local cross correlation. The first experiment
(Figure A.4) is the same as Experiment 9.3, using local mutual information. As shown
in the figure, the applied displacements are well recovered.

Figures A.5, A.6 and A.7 show results obtained with the local cross correlation
criterion in conjunction with the algorithm described above. Three different random
smooth deformations are applied to an inverse recovery echo planar image of the brain
of a macaque monkey. This deformed image is superimposed in green over the anatom-
ical MRI of the same monkey (in magenta). As shown in the figures, large displace-
ments are consistently recovered with this approach.
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Figure A.4: Diffeomorphic matching using local mutual information. First row: refer-
ence and target images. Second row: corrected target image (left) and its superposition
with the reference image (right). Third and fourth rows: horizontal and vertical com-
ponents of the estimated (left) and true (right) deformations fields (iso-level 3.4 is
outlined).



168 Appendix A: Other Applications

Figure A.5: Diffeomorphic matching using local cross correlation. Left: first random
smooth deformation used as initial state. Right: deformed template after convergence
of the algorithm.

Figure A.6: Diffeomorphic matching using local cross correlation. Left: second ran-
dom smooth deformation used as initial state. Right: deformed template after conver-
gence of the algorithm.
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Figure A.7: Diffeomorphic matching using local cross correlation. Left: third random
smooth deformation used as initial state. Right: deformed template after convergence
of the algorithm.






Appendix B

Library Description

The algorithms described in this work are programmed in C++. They form a part of a
complete library providing the basic tools and methods within a coherent framework.
This chapter is intended as a description for this library which is composed of about
120 classes and a total of more than 15000 lines of code. The global philosophy of the
entire library is to provide tools allowing the user to program a in a few lines a great
variety of image processing applications. This is the reason why it is accompanied by
a large numbers of small examples in the form of stand-alone executables, which at
the same time illustrate the use of the specific classes they use and perform a useful
task. The idea is that the same building blocks may be used in other applications, and
actually the matching algorithms described in this thesis are high-level blocks using
many of these low-level components.

B.1 General Remarks

All the source code is templated to abstract arrays and written in the source header.
This presents the advantage of being completely accessible and at the same time guar-
antees optimum performance through in-lining. The only external library that is need
in X11, the graphics library in unix systems.

There are mainly three different types of containers, adapted to different uses. The
first type is just a basic 3D array. The second type, derives from the first type and
adds the capability to access any coordinates, so that it actually behaves like an infinite
array. The class Image derives from this type of array, basically adding input-output
routines and common basic image manipulation routines. The final type of array is
an array adopted for PDE, and is actually a graph. The library contains a graphic
visualization tool called Xhandler. The numerical schemes are isolated from all the
aspects pertaining to the type of container in which the data is stored. They are in the
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end he most important part of a PDE code so having the scheme isolated from all the
rest presents the advantage of making it completely stand alone.

B.2 C++ Listing: Global Mathching Functions

This section contains the listing for the computation of the three global matching func-
tions. They use the basic tools provided by the C++ library described at the begining
of this appendix.

B.2.1 Mutual Information

TexC++Code/MutuallnfodEdl:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/
#ifndef MUTUALINFO _DE_DI_H
#define MUTUALINFO _DE_DI_H

#include <ImageH>
#include <GeneralMetricH>
10
template<class array>
struct MutualinfodEdl : public GeneralMetriezarray> {

Image<float> dist, Dist;
float criter, norm betg int NG;

virtual "MutualinfodEd() {}

MutuallnfodEdI ( const array & 11, const array & 12,
const float betaArg = 10.0, 20
const int ng = 256 ) : betgbetaArg, NG(ng) {
distSetSiz¢l1.dimx(),11.dimy(),|1.dimz());

}

void Init ( const array & 11, const array & 12) {
Dist.SetSizéNG,NG);

Image<float,const NeumannBG H, Hy, Dist, P, h, hy, hl, p;

H.SetSizéNG,NG); Hy.SetSizéNG,NG); Dist.SetSiz¢éNG,NG); 30
P.SetSiz¢éNG,NG);

h.SetSizéNG); hy.SetSizéNG); hl.SetSizéNG);

p.SetSizéNG);
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H=double(0); Map(11,x) H((int)I1[x],(int)I2[x])++;
H.SelfRecSmoothZeroB@®Get3;
float sH=0.0; Map(H,x) sH += H[x]; H /= sH;

MapY(H.y) {
float sum = 0;
MapX(H,x) {
sum += H(x,y);
I
h(y) = sum
}

MapX(H,x) {
float sum = O;
MapY(H.y) {
sum += H(x,y);

}
hl(x) = sum

}

MapXY(H,x,y) Hy(x,y) = (H(x,y+1)—H(x,y—1))/2.0;
Map(h,y) hy(y) = (h(y+1)—h(y—1))/2.0;

Map(P,x) P[x] = H[x] ? Hy[x] / H[X] : Hy[x];
Map(p,x) pX] = h[x] ? hy[x] / h[x] : hy[x];

MapXY (Dist,x,y) Dist(x,y) = P(x,y) — p(y);
Dist.SelfRecSmoothZeroB@Get3;

float s1 = 0;
MapXY(H,x,y) if(H(x,y)) sl += H(x,y) * log(H(x,y)/(h1(x)*h(y)));

criter = —s1;

norm = O;

Map(I1,x) {
const float val = Dist(I1[x],I12[X]) ;
distx] = val
norm += val * val;

}

norm /= 11.sizg);
dist /= —I1.sizg);

float operator() (const int x, const int y, const int z=0) const {

40
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return dist(x,y,z);

float operator[] (const int x) { return distx]; }
float E() const { return criter, }
int SaveHconst char *nam¢ const {

Image<float> mi(distdomair()); mi = criter,
return mi.SavelNRname;

float GetNorn{() const { return norm }
double AbsMax) const { return distAbsMax); }
Image<float> & Ima) { return dist }

1

#endif

B.2.2 Correlation Ratio

TexC++Code/CorrelRatiodEdI:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/
#ifndef CORRELRATIO.DE_DI_H
#define CORRELRATIO.DE_DI_H

#include <ImageH>
#include <SecondOrderRecFiltdd>
#include <ExponentialMaskd>

#include <GeneralMetricH>

template<class array>
struct CorrelRatiodEd| :public GeneralMetriecarray> {

Image<float> dist;
float criter, norm float betg int NG;

virtual “CorrelRatiodEd]) {}

CorrelRatiodEdI( const array & 11, const array & 12,

90
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const float betaArg = 10.0,

const int ng = 256 ) : betgbetaArg, NG(ng) {

distSetSiz¢l1.dimx(),11.dimy(),|1.dimz());
}

void Init ( const array & 11, const array & 12) {

Image<float> H,Dist,h,V,S0S1,S2
H.SetSizéNG,NG); Dist.SetSizéNG,NG);
h.SetSizéNG); V.SetSiz¢NG);

S0SetSizéNG); S1SetSizéNG); S2SetSizéNG);

typedef SecondOrderRecFilter; F
ExponentialMask float> M(bet3;

H = double(0); Map(11,x) H((int)I1[x],(int)I2[x])++;

MapY(H,y) F:Apply(M,&H(0,y),&H(0,y),H.dimx(),1);
MapX(H,x) F:Apply(M,&H(x,0),&H(x,0),H.dimy(),H.dimx());

float sH=0.0; Map(H,x) sH += H[x]; H /= sH;

MapX(H,x) {
float s0=0.0,s1=0.0,s2=0.0;
MapY(H.y) {
sO += H(x,y);
sl += HXxy) *y;
s2+= HXy) *y *y;
I3
Sax) = s
Six) = sI,
S2Ax) = s2,
}

Map(h,x) {
float mean= SQx] ? S1x])/SOx] : 0.0;

float var = mean? SZx]/SOx] — mearimean:0.0;

h[x] = mean
V[x] = var,

}

float 12mearr0; Map(h,x) 12mean+= S1[x];
float sum2 = 0; Map(S2x) sum2 += SZx];
float Varl2 = sum2 — [2meartl2mean

float EVarl2l1 = 0;

Map(V,x) EVarl2l1 += V[x]*SOx];

float CR = 1.0 — EVarl2l1/Varl2;

MapXY (Dist,x,y) Dist(x,y) = y—h(x) + (CR-1.0) * (y—I2mean);
MapY(Disty) F::Apply(M,&Dist(0,y),&Dist(0,y),Dist.dimx(),1);
MapX(Dist,x) F::Apply(M,&Dist(x,0),&Dist(x,0),

30

40

50

60

70



176

Appendix B: Library Description

1

Dist.dimy(),Dist.dimx());
Map(Dist,x) Dist[x] *= —2.0/Varl2;

criter = 0;

Map(I1,x) {
const float val = Dist(11[x],12[x]);
distx] = val,
norm += val

}

criter = —CR;
norm /= I1.sizg);
dist /= —I1.siz€);

template <class point>
float operator() (const point &m) const {

return dist(m.x,m.y);

}

float operator() (const int x, const int y,const int z=0) const {

return dist(x,y,2);

}

float E() const { return criter; }
int SaveHconst char *namg const {

Image<float> cr(distdomair()); cr = criter;
return cr.SavelNRnamg;

}

float GetNorn{() const { return norm }
double AbsMax) const { return distAbsMax(); }

Image<float> & Ima() { return dist }

#endif
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B.2.3 Cross Correlation

TexC++Code/CrossCorreldEdI:

/*

Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002

*

#ifndef CCGCOMPARISONH
#define CCGCOMPARISONH

#include <ImageH>
#include <GeneralMetricH>

template<class array>
struct CrossCorreldEdl public GeneralMetriearray> {

Image<float> dist
float criter, norm
float betg

public:

virtual “CrossCorreldEd) {}

CrossCorreldEd|( const array & 11, const array & 12,

const float betaArg= 10) :

betgbetaArg {
distSetSizél1.dimx(),11.dimy(),I1.dimz());

void Init ( const array & 11, const array & 12) {

typedef float real

Domain Omega= I1.domain();

float m1=0, v1=0, m2=0, v2=0, v12=0;
Map(Omegax) {

const real il = I1[x];

const real i2 = 12[x];

ml +=il; m2 += i2;

vl +=il1 *il; v2 +=i2 * i2;

vl2 += il * i2;
}
ml /= Omegasizg); m2 /= Omegasizg);
vl = beta+ vl / Omegasizd) — ml * mi;
v2 = beta+ v2 / Omegasizd) — m2 * m2,
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v12 = v12 /| Omegasizd) — ml * m2

const float f1 =v12/ (v2 * vl);
criter =v12 * f1; 50
const float f2 = —criter / v2;

const float f3 —(f2 * m2 + f1 * ml;

Map(Omegax) {
disfx] = 2.0 * (1 * I11[x] + f2 * 12[x] + 3 );

}

criter = —criter;
dist /= —Omegasizg);
} 60

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter; }
int SaveHconst char *namg const {

Image<float> cc(distdomair()); cc = criter; 70
return cc.SavelNRnamg;

}

double AbsMax) const { return distAbsMax(); }

Image<float> & Ima() { return dist }

1
#endif

B.3 C++ Listing: Local Mathching Functions

This section contains the listing for the computation of the three local matching func-
tions. They use the basic tools provided by the C++ library described at the begining
of this appendix.
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B.3.1 Mutual Information

TexC++Code/LocalMIdEdI:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/

#ifndef MILCOMPARISON_H
#define MILCOMPARISON_H

#include <ImageH>
#include <GeneralMetricH>

template<class array>
struct MILComparison :public GeneralMetriecarray> {

typedef Image<float> Function Function disimi;
float criter, norm float sigma betg

static const int ws = 19;

static const int hws = 9;

public:
virtual “MILComparisorf) {}
MILComparison( const array & |1, const array & 12,
const float sigmaArg = 5, const float betaArg = 10) :

sigmgsigmaArg, betgbetaArg {

distSetSiz¢l1.dimx(),11.dimy(),|1.dimz());
mi.SetSizél1.dimx(),I1.dimy(),I1.dimz());

void Init ( const array & 11, constarray & 12 ) {
Domain Omega= I1.domain();

Function GR300), R(ws,ws);
Map(GB,x) GB[x] = ( 1.0/sqr{2*M_PI*betabetg *
exp(—x*x/(2*betabety) );
MapXY(R,x,y) R(x,y) = ( 1.0/(2*M_PI*betabetg *
exp(—((x—hw9*(x—hws) +

(y—hws)*(y—hws))/(2*sigma'sigm3) );

criter = 0; norm = 0; int pixel=0;
MapY(Omegay) {
const int yy = y—hws
MapX(Omegax) {

10

20

30

40



180

Appendix B: Library Description

}

const int Xxx = x—hws

const float ii = I1[pixel];

const float jj = 12[pixel];

float S1=0,W1=0,S2=0,W2=0,W3=0;
int count0;

MapY(R,Y) {
const int py = yy+Y;
MapX(R,X) {
const int px = Xx+X;
const floati = I1(px,py);
const floatj = 12(px,py);

const float wl = GB[abgint(i—ii))];
const float w2 = GB[abgint(j—jj))];
const float wx = R[count++];
const float ww2 = w2 * wx;

const float wwl = ww2 * wi,;
S1+=j * wwl;

S2 += | * ww2;

W1 += wwi;

W2 += ww2;

W3 += wl * wx;

}
const floatdi = (S1/ W1 — S2/ W2) / W3;

const float mix = (W1 — W2) / W3;

mi[pixel] = mix;
disfpixel++] = —di;
criter += mix;
norm +=di * di;

criter /= Omegasizd);

norm

/= Omegasizg);

float e (const int x, const int y, const int z=0) const {

float operator() (const int x, const int y, const int z=0) const {

return mi(x,y,z);

return dist(x,y,z);

float E() const { return criter; }

int SaveHconst char *namg const { return mi.SavelNRnamsg; }

double AbsMax) const { return distAbsMax(); }
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Function & Ima() { return dist }

1
#endif

B.3.2 Correlation Ratio

TexC++Code/LocalCRdEdI:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/

#ifndef CRLCOMPARISONH
#define CRLCOMPARISONH

#include <ImageH>
#include <GeneralMetricH>

template<class array>
struct CRLComparison :public GeneralMetriearray> {

typedef Image<float> Function Function disfcr;
float criter, norm float sigma betg Betg
static const int ws = 19;
static const int hws = 9;
public:

virtual "CRLComparisof) {}

CRLComparison( const array & 11, const array & 12,

const float sigmaArg = 5, const float betaArg = 20) :

sigmgsigmaArg, betdbetaArg, BetgbetaArgbetaArg {

distSetSiz¢l1.dimx(),11.dimy(),|1.dimz());
cr.SetSiz¢l1.dimx(),11.dimy(),11.dimz());

void Init ( const array & 11, constarray & 12 ) {
Domain Omega= I1.domain();

Function GR300), R(ws,ws);
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Map(GB,x) GB[x] = ( 1.0/sgr{2*M_PI*beta&betg *
exp(—x*x/(2*betabetq) ); 40
MapXY(R,x,y) R(x,y) = ( 1.0/(2*M_PI*betabetg *
exp(—((x—hw9*(x—hws) +
(y—hwg*(y—hws))/(2*sigma'sigm3) );

criter = 0; norm = 0; int pixel=0;
MapY(Omegay) {
const int yy = y—hws
MapX(Omegax) {
const int Xxx = x—hws

const float ii = I1[pixel]; 50
const float jj = 12[pixel];
float S1=0,W1=0,S2=0,W2=0,S3=0,W3=0,S4-0,W4=0;
int count0;
MapY(R,Y) {
const int py = yy+Y;
MapX(R,X) {
const int px = Xx+X;
const floati = 11(px,py);
const floatj = 12(px,py);
const float wl = R[count++]; 60

const float w2 = w1 * GB[abgint(i—ii))];
S1 += wil¥; W1 += wi;
S2 += wl**j; W2 += wl,
S3 += w2; W3 += w2;
S4 += w2*; W4 += wz;

}
}
const float mu2 = SIWI1;
const float var2 = Beta+ S2W2 — mu2 * mu2
const float mu21 = S3IWS3; 70

const float var21 = Beta+ S4W4 — mu2l* mu2Z
const float thetal= var21/ var2
const float di = (

2.0/ var2* ( mu2 — mu2l + thetal* (jj — mu2 ) );
distpixel++] = di;
criter += thetal
norm += di*di;

80
criter /= Omegasizd);
norm /= Omegasizg);

float e (const int x, const int y, const int z=0) const {

return cr(x,y,z);
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}

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter; }

int SaveHconst char *namg const { return cr.SavelNRnamg; }
double AbsMax) const { return distAbsMax); }

Function & Ima() { return dist }

1
#endif

B.3.3 Cross Correlation

TexC++Code/AutoCorreldEdI:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/

#ifndef CCLCOMPARISONH
#define CCLCOMPARISONH

#include <ImageH>
#include <GeneralMetricH>

template<class array>
struct CLComparison :public GeneralMetriecarray> {

Image<float> distcc;
float criter, norn

float sigma beta

public:
virtual "CLComparisof) {}

CLComparisofconst array & 11, const array & 12,

const float sigmaArg = 20, const float betaArg= 1e—13) :

sigmésigmaArg, betdbetaArg {

distSetSizél1.dimx(),11.dimy(),I1.dimz());
cc.SetSiz¢l1.dimx(),11.dimy(),11.dimz());
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void Init ( const array & 11, const array & 12) { 30
typedef float realt

Image<float>
mul(l1.domair()), mu11l.domair()),
v1(l1.domair()), v2(I1.domair)),
v12(l11.domain()), f1(11.domair()),
f2(I11.domain()), f3(11.domair());

Map(I1,x) { 40
const real il = I1[x];
const real i2 = 12[x];

mullx] = il; vi[x] i1 *i1;
muZx] = i2; v12x] = i1 * i2;
V2[X] =2 * i2;

mulSelfRecSmoothZeroB@igm3g; v1.SelfRecSmoothZeroBGigm3;
mu2 SelfRecSmoothZeroB@igm3g; v2.SelfRecSmoothZeroBGigm3; 50
v12 SelfRecSmoothZeroBGigm3;

criter = 0;

Map(vl,x) {
constreal ul = mulx];
constreal u2 = muZx];

const real vvl v1[x] + beta— ul * ul,
const real vv2 v2[x] + beta— u2 * uz
const real w12 = v12x] — ul * u2 60

const real ff1 = w12/ (vl * w2);
constreal CC = wv12 * ff1;

constreal ff2 = — CC /[ w2,

const real ff3 = — (ff2 * u2 + ff1 * ul);

fi[x] = ffl; f2[x] = ff2; f3[x] = ff3;
cgdx] = —CC;
criter += —CC;
} 70

f1.SelfRecSmoothZeroBGigm3;
f2.SelfRecSmoothZeroBGigm3;
f3.SelfRecSmoothZeroBGigm3;

norm = O;
Map(f1,x) {
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const floatval = 2.0 * ( f1[x] * I1[x] +

f2[x] * 12[x] +

f3[x] ) ; 80
disx] = —val

norm += val * val;

float e (const int x, const int y, const int z=0) const {

return co(x,y,2);
} 90

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter, }

int SaveHconst char *namg const { return cc.SavelNRnamg; }

double AbsMax) const { return distAbsMax(); } 100
Image<float> & Ima() { return dist }

1
#endif

B.4 C++ Listing: 2D Matching Flow

This section contains the listing for a generic 2D matching flow using the six matching
functions described. Only the 2D case is illustrated.

TexC++Code/MatchFlow:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/
#ifndef MATCH_FLOW_H
#define MATCH_FLOW_H

#include <ImageH>

#include <XhandlerH>

#include <Schemedi> 10
#include <ImageMetricH>
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typedef Image<float> image

struct Handler {
bool stog Handlef) : stogfalse) {}
void StogXhandler *xw) { stop=true; }

b

template <classreal bool visuakfalse bool verbosefalse> 20
struct MatchFlow {

Xhandler X Handler H
MatchFlow() { X.SetButtor§3,&H,&Handler::Stojy; }

void operator () ( const image &l10, const image &120,
image &u, image &v,
const real sigma const real alpha
real dt int iter, const char metric) {
30
image 11 12, 12w, dispx dispy, 12x, 12y;
110 >> 11 >> 12 >> 12w >> dispx >> dispy >> 12x >> 12y;

11 = I1o; 11.Smootl{1.695/sigm3;
12 = 120; 12.Smootl{1.695/sigm3;
I12x = 120; 12x.Smoott{1.695/sigmal,0);
12y = 120; 12y.Smoott{1.695/sigma0,1);

float dto=0, criter = 0, Oldcriter = O;

40
ImageMetriscimage> D(11,12,metric);
D.Init(11,12);

const float lambda= D.AbsMax);
float C = alpha* lambda
dto = dt / C;

Rmagdit,iter) {

MapXY(12w,x,y) 12w(x,y) = 12(x+u(x,y),y+Vv(x,y)); S0
D.Init(11,12w);

int p=0;
MapXY (dispxx,y) {
const double di = —D(x,y);
const Schemes::Vector
Elas = Schemes::Elasticify,v,x,y,0.8);
dispqp] = di * 12x(x+u(x,y),y+v(x,y)) + C * Elasx;
dispy[p] = di * 12y(x+u(x,y),y+v(x,y)) + C * Elasy;
p++;

60
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Oldcriter = criter,
criter = 0;

Map(u,x) {

const float du = dispXx] * dto;
const float dv = dispy[x] * dto;

float & uu = ux];

float & w = V[X];
criter += uu * uu + vv * vv;
uu += du;

w += dv;

}

criter /= 11.sizg);

if (verbosg printf("%.13\n" criten);

if (visual) X(12w);
if (H.stop return;

}

#endif

70

80

B.5 C++ Listing: Main Program and Multiscale Handling

This section contains the listing for the main matching program, including multiscale

handling.
TexC++Code/MatchPDE:

/*
Author : Gerardo Hermosillo
Copyright (c) INRIA 1997 - 2002
*/

#include <ImageH>
#include <UsageH>
#include <MatchFlowH>
#include <MultiScaleH>

typedef Image<float> image
typedef MatchFlowkfloat,true,true> Matcher

int main(int argg char **argy) {
char *nl, *n2; float alpha int Nzoom

float sigma=0.25, dt; int iter;
char *metric

10



188 Appendix B: Library Description

Usage Call( argg argy, "I1 12 dt iter alpha Nzoom metric" , 20
nl, n2, dt iter, alphg Nzoom metric);

Call(); image 1INzoom+1], 12[Nzoom+1], u[Nzoom+1], v[Nzoom+1];
11[0]=nZ; I12[0]=n2;

11[0]>>u[0]>>V[0]; u[0]=Vv[0]=0.0;

for( int zoom = 1; zoom < Nzoom+1; zoom ++ ) {
30
MultiScale::Zoom( 11[zoom-1], I1[zoon] );
MultiScale::Zoom( 12[zoom-1], 12[zoon );
MultiScale::Zoom( u[zoom-1], u[zoon] );
MultiScale::Zoom( v[zoom-1], v[zoon] );

}

for( int zoom = Nzoom zoom >= 0; zoom —— ) {

Matcher M 40
M ( I11]zoom,I2[zoon,u[zoon],v[zoon],sigmaalphadt,iter,metric );

if ( zoom) {
MultiScale::DeZoom( u[zoon], u[zoom-1] );
MultiScale::DeZoom( v[zoon], v[zoom-1] );
u[zoom-1] *= 2.0;
v[zoom-1] *= 2.0;

50
u[0].SaveINR"U.inr* ); v[0].SavelNR"V.inr" );
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