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MATHEMATICAL METHODS IN MEDICAL IMAGE
PROCESSING

SIGURD ANGENENT, ERIC PICHON, AND ALLEN TANNENBAUM

Abstract. In this paper, we describe some central mathematical problems
in medical imaging. The subject has been undergoing rapid changes driven
by better hardware and software. Much of the software is based on novel
methods utilizing geometric partial differential equations in conjunction with
standard signal/image processing techniques as well as computer graphics fa-
cilitating man/machine interactions. As part of this enterprise, researchers
have been trying to base biomedical engineering principles on rigorous mathe-
matical foundations for the development of software methods to be integrated
into complete therapy delivery systems. These systems support the more ef-
fective delivery of many image-guided procedures such as radiation therapy,
biopsy, and minimally invasive surgery. We will show how mathematics may
impact some of the main problems in this area, including image enhancement,
registration, and segmentation.
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1. Introduction

Medical imaging has been undergoing a revolution in the past decade with the
advent of faster, more accurate, and less invasive devices. This has driven the need
for corresponding software development, which in turn has provided a major impe-
tus for new algorithms in signal and image processing. Many of these algorithms
are based on partial differential equations and curvature driven flows, which will be
the main topics of this survey paper.

Mathematical models are the foundation of biomedical computing. Basing those
models on data extracted from images continues to be a fundamental technique for
achieving scientific progress in experimental, clinical, biomedical, and behavioral
research. Today, medical images are acquired by a range of techniques across all
biological scales which go far beyond the visible light photographs and microscope
images of the early 20th century. Modern medical images may be considered to be
geometrically arranged arrays of data samples which quantify such diverse physi-
cal phenomena as the time variation of hemoglobin deoxygenation during neuronal
metabolism or the diffusion of water molecules through and within tissue. The
broadening scope of imaging as a way to organize our observations of the biophys-
ical world has led to a dramatic increase in our ability to apply new processing
techniques and to combine multiple channels of data into sophisticated and com-
plex mathematical models of physiological function and dysfunction.

A key research area is the formulation of biomedical engineering principles based
on rigorous mathematical foundations in order to develop general-purpose software
methods that can be integrated into complete therapy delivery systems. Such
systems support the more effective delivery of many image-guided procedures such
as biopsy, minimally invasive surgery, and radiation therapy.

In order to understand the extensive role of imaging in the therapeutic process
and to appreciate the current usage of images before, during, and after treatment,
we focus our analysis on four main components of image-guided therapy (IGT)
and image-guided surgery (IGS): localization, targeting, monitoring, and control.
Specifically, in medical imaging we have four key problems:

(1) Segmentation - automated methods that create patient-specific models
of relevant anatomy from images;

(2) Registration - automated methods that align multiple data sets with each
other;

(3) Visualization - the technological environment in which image-guided pro-
cedures can be displayed;

(4) Simulation - softwares that can be used to rehearse and plan procedures,
evaluate access strategies, and simulate planned treatments.

In this paper, we will consider only the first two problem areas. However, it
is essential to note that in modern medical imaging, we need to integrate these
technologies into complete and coherent image-guided therapy delivery systems
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and validate these integrated systems using performance measures established in
particular application areas.

We should note that in this survey we touch upon only those aspects of the
mathematics of medical imaging reflecting the personal tastes (and prejudices) of
the authors. Indeed, we do not discuss a number of very important techniques,
such as wavelets, which have had a significant impact on imaging and signal pro-
cessing; see [59] and the references therein. Several articles and books are available
which describe various mathematical aspects of imaging processing, such as [66]
(segmentation), [83] (curve evolution), and [70], [87] (level set methods).

Finally, it is extremely important to note that all the mathematical algorithms
which we sketch lead to interactive procedures. This means that in each case
there is a human user in the loop (typically a clinical radiologist) who is the ultimate
judge of the utility of the procedure and who tunes the parameters either on- or
off-line. Nevertheless, there is a major need for further mathematical techniques
which lead to more automatic and easier-to-use medical procedures. We hope that
this paper may facilitate a dialogue between the mathematical and medical imaging
communities.

2. Outline

We briefly outline the subsequent sections of this paper.
Section 3 reviews some of the key imaging modalities. Each one has certain

advantages and disadvantages, and algorithms tuned to one device may not work
as well on another device. Understanding the basic physics of the given modality
is often very useful in forging the best algorithm.

In Section 4, we describe some of the relevant issues in computer vision and image
processing for the medical field as well as sketch some of the partial differential
equation (PDE) methods that researchers have proposed to deal with these issues.

Section 5 is the heart of this survey paper. Here we describe some of the main
mathematical and engineering problems connected with image processing in general
and medical imaging in particular. These include image smoothing, registration,
and segmentation (see Sections 5.1, 5.2, and 5.3). We show how geometric partial
differential equations and variational methods may be used to address some of these
problems as well as illustrate some of the various methodologies.

Finally, in Section 6, we summarize the survey as well as point out some possible
future research directions.

3. Medical imaging

3.1. Generalities. In 1895, Roentgen discovered X-rays and pioneered medical
imaging. His initial publication [82] contained a radiograph (i.e., an X-ray generated
photograph) of Mrs. Roentgen’s hand; see Figure 3.1(b). For the first time, it was
possible to visualize non-invasively (i.e., not through surgery) the interior of the
human body. The discovery was widely publicized in the popular press, and an
“X-ray mania” immediately seized Europe and the United States [30], [80]. Within
only a few months, public demonstrations were organized, commercial ventures
created and innumerable medical applications investigated; see Figure 3.1(a).The
field of radiography was born with a bang!1

1It was not understood at that time that X-rays are ionizing radiations and that high doses
are dangerous. Many enthusiastic experimenters died of radio-induced cancers.
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(b) First radiograph of
     Mrs. Roentgen’s hand.

Figure 3.1. X-ray radiography at the end of the 19th century.

Today, medical imaging is a routine and essential part of medicine. Pathologies
can be observed directly rather than inferred from symptoms. For example, a
physician can non-invasively monitor the healing of damaged tissue or the growth
of a brain tumor and determine an appropriate medical response. Medical imaging
techniques can also be used when planning or even while performing surgery. For
example, a neurosurgeon can determine the “best” path in which to insert a needle
and then verify in real time its position as it is being inserted.

3.2. Imaging Modalities. Imaging technology has improved considerably since
the end of the 19th century. Many different imaging techniques have been developed
and are in clinical use. Because they are based on different physical principles [41],
these techniques can be more or less suited to a particular organ or pathology. In
practice they are complementary in that they offer different insights into the same
underlying reality. In medical imaging, these different imaging techniques are called
modalities.

Anatomical modalities provide insight into the anatomical morphology. They
include radiography, ultrasonography or ultrasound (US, Section 3.2.1), computed
tomography (CT, Section 3.2.2), and magnetic resonance imagery (MRI, Section
3.2.3). There are several derived modalities that sometimes appear under a differ-
ent name, such as magnetic resonance angiography (MRA, from MRI), digital sub-
traction angiography (DSA, from X-rays), computed tomography angiography (CTA,
from CT), etc.

Functional modalities, on the other hand, depict the metabolism of the underly-
ing tissues or organs. They include the three nuclear medicine modalities, namely,
scintigraphy, single photon emission computed tomography (SPECT) and positron
emission tomography (PET, Section 3.2.4), as well as functional magnetic resonance
imagery (fMRI). This list is not exhaustive, as new techniques are being added every
few years as well [13]. Almost all images are now acquired digitally and integrated
in a computerized picture archiving and communication system (PACS).
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In our discussion below, we will give only very brief descriptions of some of the
most popular modalities. For more details, a very readable treatment (together
with the underlying physics) may be found in the book [43].

3.2.1. Ultrasonography (1960s). In this modality a transmitter sends high-frequency
sound waves into the body, where they bounce off the different tissues and organs to
produce distinctive patterns of echoes. These echoes are acquired by a receiver and
forwarded to a computer that translates them into an image on a screen. Because
ultrasound can distinguish subtle variations among soft, fluid-filled tissues, it is
particularly useful in imaging the abdomen. In contrast to X-rays, ultrasound does
not damage tissues with ionizing radiation. The great disadvantage of ultrasonog-
raphy is that it produces very noisy images. It may therefore be hard to distinguish
smaller features (such as cysts in breast imagery). Typically quite a bit of image
preprocessing is required. See Figure 3.2(a).

3.2.2. Computed Tomography (1970s). In computed tomography (CT), a number
of 2D radiographs are acquired by rotating the X-ray tube around the body of the
patient. (There are several different geometries for this.) The full 3D image can then
be reconstructed by computer from the 2D projections using the Radon transform
[40]. Thus CT is essentially a 3D version of X-ray radiography and therefore offers
high contrast between bone and soft tissue and low contrast between different soft
tissues. See Figure 3.2(b). A contrast agent (some chemical solution opaque to the
X-rays) can be injected into the patient in order to artificially increase the contrast
among the tissues of interest and so enhance image quality. Because CT is based on
multiple radiographs, the deleterious effects of ionizing radiation should be taken
into account (even though it is claimed that the dose is sufficiently low in modern
devices so that this is probably not a major health risk issue). A CT image can
be obtained within one breath hold, which makes CT the modality of choice for
imaging the thoracic cage.

3.2.3. Magnetic Resonance Imaging (1980s). This technique relies on the relax-
ation properties of magnetically excited hydrogen nuclei of water molecules in the
body. The patient under study is briefly exposed to a burst of radio-frequency en-
ergy, which, in the presence of a magnetic field, puts the nuclei in an elevated energy
state. As the molecules undergo their normal, microscopic tumbling, they shed this
energy into their surroundings in a process referred to as relaxation. Images are cre-
ated from the difference in relaxation rates in different tissues. This technique was
initially known as nuclear magnetic resonance (NMR), but the term “nuclear” was
removed to avoid any association with nuclear radiation.2 MRI utilizes strong mag-
netic fields and non-ionizing radiation in the radio frequency range and according
to current medical knowledge, is harmless to patients. Another advantage of MRI is
that soft tissue contrast is much better than with X-rays, leading to higher-quality
images, especially in brain and spinal cord scans. See Figure 3.2(c). Refinements
have been developed, such as functional MRI (fMRI), which measures temporal
variations (e.g., for detection of neural activity), and diffusion MRI, which mea-
sures the diffusion of water molecules in anisotropic tissues such as white matter in
the brain.

2The nuclei relevant to MRI exist whether the technique is applied or not.
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(a) Ultrasound (foetus). (b) Computed Tomography (brain, 2D 
     axial slice).

(c) Magnetic Resonance Imagery
     (brain, 2D axial slice).

(d) Positron Emission Tomography
     (brain, 2D axial slice).

Figure 3.2. Examples of different image modalities.

3.2.4. Positron Emission Tomography (1990s). The patient is injected with ra-
dioactive isotopes that emit particles called positrons (anti-electrons). When a
positron meets an electron, the collision produces a pair of gamma ray photons
having the same energy but moving in opposite directions. From the position and
delay between the photon pair on a receptor, the origin of the photons can be
determined. While MRI and CT can only detect anatomical changes, PET is a
functional modality that can be used to visualize pathologies at the much finer
molecular level. This is achieved by employing radioisotopes that have different
rates of intake for different tissues. For example, the change of regional blood flow
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in various anatomical structures (as a measure of the injected positron emitter)
can be visualized and relatively quantified. Since the patient has to be injected
with radioactive material, PET is relatively invasive. The radiation dose however
is similar to a CT scan. Image resolution may be poor and major preprocessing
may be necessary. See Figure 3.2(d).

4. Mathematics and imaging

Medical imaging needs highly trained technicians and clinicians to determine
the details of image acquisition (e.g., choice of modality, of patient position, of
an optional contrast agent, etc.), as well as to analyze the results. The dramatic
increase in availability, diversity, and resolution of medical imaging devices over the
last 50 years threatens to overwhelm these human experts.

For image analysis, modern image processing techniques have therefore become
indispensable. Artificial systems must be designed to analyze medical datasets
either in a partially or even a fully automatic manner. This is a challenging ap-
plication of the field known as artificial vision (see Section 4.1). Such algorithms
are based on mathematical models (see Section 4.2). In medical image analysis,
as in many practical mathematical applications, numerical simulations should be
regarded as the end product. The purpose of the mathematical analysis is to guar-
antee that the constructed algorithms will behave as desired.

4.1. Artificial Vision. Artificial Intelligence (AI) was initiated as a field in the
1950’s with the ambitious (and so-far unrealized) goal of creating artificial systems
with human-like intelligence.3 Whereas classical AI had been mostly concerned with
symbolic representation and reasoning, new subfields were created as researchers
embraced the complexity of the goal and realized the importance of sub-symbolic
information and perception. In particular, artificial vision [32, 44, 39, 91] emerged
in the 1970s with the more limited goal to mimic human vision with man-made
systems (in practice, computers).

Vision is such a basic aspect of human cognition that it may superficially ap-
pear somewhat trivial, but after decades of research the scientific understanding
of biological vision remains extremely fragmentary. To date, artificial vision has
produced important applications in medical imaging [18] as well as in other fields,
such as Earth observation, industrial automation, and robotics [91].

The human eye-brain system evolved over tens of millions of years, and at this
point no artificial system is as versatile and powerful for everyday tasks. In the
same way that a chess-playing program is not directly modelled after a human
player, many mathematical techniques are employed in artificial vision that do not
pretend to simulate biological vision. Artificial vision systems will therefore not
be set within the natural limits of human perception. For example, human vision
is inherently two dimensional.4 To accommodate this limitation, radiologists must
resort to visualizing only 2D planar slices of 3D medical images. An artificial system
is free of that limitation and can “see” the image in its entirety. Other advantages
are that artificial systems can work on very large image datasets, are fast, do not
suffer from fatigue, and produce repeatable results. Because artificial vision system
designers have so far been unsuccessful in incorporating high-level understanding

3The definition of “intelligence” is still very problematic.
4Stereoscopic vision does not allow us to see inside objects. It is sometimes described as “2.1

dimensional perception”.
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of real-life applications, artificial systems typically complement rather than replace
human experts.

4.2. Algorithms and PDEs. Many mathematical approaches have been investi-
gated for applications in artificial vision (e.g., fractals and self-similarity, wavelets,
pattern theory, stochastic point process, random graph theory; see [42]). In partic-
ular, methods based on partial differential equations (PDEs) have been extremely
popular in the past few years [20, 35]. Here we briefly outline the major concepts
involved in using PDEs for image processing.

As explained in detail in [17], one can think of an image as a map I : D → C;
i.e., to any point x in the domain D, I associates a “color” I(x) in a color space
C. For ease of presentation we will mainly restrict ourselves to the case of a two-
dimensional grayscale image which we can think of as a function from a domain
D = [0, 1] × [0, 1] ⊂ R

2 to the unit interval C = [0, 1].
The algorithms all involve solving the initial value problem for some PDE for

a given amount of time. The solution to this PDE can be either the image itself
at different stages of modification or some other object (such as a closed curve
delineating object boundaries) whose evolution is driven by the image.

For example, introducing an artificial time t, the image can be deformed accord-
ing to

(4.1)
∂I

∂t
= F[I],

where I(x, t) : D × [0, T ) → C is the evolving image, F is an operator which
characterizes the given algorithm, and the initial condition is the input image I0.
The processed image is the solution I(x, t) of the differential equation at time t.
The operator F usually is a differential operator, although its dependence on I may
also be nonlocal.

Similarly, one can evolve a closed curve Γ ⊂ D representing the boundaries of
some planar shape (Γ need not be connected and could have several components).
In this case, the operator F specifies the normal velocity of the curve that it deforms.
In many cases this normal velocity is a function of the curvature κ of Γ and of the
image I evaluated on Γ. A flow of the form

(4.2)
∂Γ
∂t

= F(I, κ)N

is obtained, where N is the unit normal to the curve Γ.
Very often, the deformation is obtained as the steepest descent for some energy

functional. For example, the energy

(4.3) E(I) =
1
2

∫
‖∇I‖2 dxdy

and its associated steepest descent, the heat equation,

(4.4)
∂I

∂t
= ∆I

correspond to the classical Gaussian smoothing (see Section 5.1.1).
The use of PDEs allows for the modelling of the crucial but poorly understood

interactions between top-down and bottom-up vision.5 In a variational framework,

5“Top-down” and “bottom-up” are loosely defined terms from computer science, computation
and neuroscience. The bottom-up approach can be characterized as searching for a general solution
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for example, an energy E is defined globally, while the corresponding operator F

will influence the image locally. Algorithms defined in terms of PDEs treat images
as continuous rather than discrete objects. This simplifies the formalism, which
becomes grid independent. On the other hand, models based on nonlinear PDEs
may be much harder to analyze and implement rigorously.

5. Imaging problems

Medical images typically suffer from one or more of the following imperfections:
• low resolution (in the spatial and spectral domains),
• high level of noise,
• low contrast,
• geometric deformations,
• presence of imaging artifacts.

These imperfections can be inherent to the imaging modality (e.g., X-rays offer
low contrast for soft tissues, ultrasound produces very noisy images, and metallic
implants will cause imaging artifacts in MRI) or the result of a deliberate trade-off
during acquisition. For example, finer spatial sampling may be obtained through
a longer acquisition time. However, that would also increase the probability of
patient movement and thus blurring. In this paper, we will be interested only
in the processing and analysis of images, and we will not be concerned with the
challenging problem of designing optimal procedures for their acquisition.

Several tasks can be performed (semi)-automatically to support the eye-brain
system of medical practitioners. Smoothing (Section 5.1) is the problem of simpli-
fying the image while retaining important information. Registration (Section 5.2) is
the problem of fusing images of the same region acquired from different modalities
or putting in correspondence images of one patient at different times or of different
patients. Finally, segmentation (Section 5.3) is the problem of isolating anatomical
structures for quantitative shape analysis or visualization. The ideal clinical appli-
cation should be fast, robust with regards to image imperfections, simple to use,
and as automatic as possible. The ultimate goal of artificial vision is to imitate
human vision, which is intrinsically subjective.

Note that for ease of presentation, the techniques we present below are applied to
two-dimensional grayscale images. The majority of them, however, can be extended
to higher dimensions (e.g., vector-valued volumetric images).

5.1. Image Smoothing. Smoothing is the action of simplifying an image while
preserving important information. The goal is to reduce noise or useless details
without introducing too much distortion so as to simplify subsequent analysis.

It was realized that the process of smoothing is closely related to that of pyra-
miding, which led to the notion of scale space. This was introduced by Witkin [97]
and formalized in such works as [52, 46]. Basically, a scale space is a family of im-
ages {St | t ≥ 0} in which S0 = I is the original image and St, t > 0, represent the
different levels of smoothing for some parameter t. Larger values of t correspond
to more smoothing.

to a specific problem (e.g. obstacle avoidance) without using any specific assumptions. The top-
down approach refers to trying to find a specific solution to a general problem, such as structure
from motion, using specific assumptions (e.g., rigidity or smoothness).
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In Alvarez et al. [2], an axiomatic description of scale space was proposed. These
axioms, which describe many of the methods in use, require that the process T t

which computes the image St = T t[I] from I should have the following properties:
Causality / Semigroup: T 0[I] ≡ I and for all t, s ≥ 0, T t [T s[I]] = T t+s[I].

(In particular, if the image St has been computed, all further smoothed
images {Ss | s ≥ t} can be computed from St, and the original image is no
longer needed.)

Generator: The family St = T t[I] is the solution of an initial value problem
∂tS

t = A[St], in which A is a non-linear elliptic differential operator of
second order.

Comparison Principle: If S0
1(x) ≤ S0

2(x) for all x ∈ D, then T t[S0
1 ] ≤

T t[S0
2 ] pointwise on D. This property is closely related to the Maximum

Principle for parabolic PDEs.
Euclidean invariance: The generator A and the maps T t commute with

Euclidean transformations6 acting on the image S0.
The requirement that the generator A of the semigroup be an elliptic differential

operator may seem strong and even arbitrary at first, but it is argued in [2] that
the semigroup property, the Comparison Principle, and the requirement that A act
locally make this axiom quite natural. One should note that already in [52], it
is shown that in the linear case a scale space must be defined by the linear heat
equation. (See our discussion below.)

5.1.1. Naive, linear smoothing. If I : D → C is a given image which contains a
certain amount of noise, then the most straightforward way of removing this noise
is to approximate I by a mollified function S; i.e., one replaces the image function
I by the convolution Sσ = Gσ ∗ I, where

(5.1) Gσ(x) =
(
2πσ2

)n/2
e−‖x‖2/2σ2

is a Gaussian kernel with covariance the diagonal matrix σ2Id. This mollification
will smear out fluctuations in the image on scales of order σ and smaller. This
technique had been in use for quite a while before it was realized7 by Koenderink
[52] that the function S2σ = G2σ ∗ I satisfies the linear diffusion equation

(5.2)
∂St

∂t
= ∆St, S0 = I.

Thus, to smooth the image I the diffusion equation (5.2) is solved with initial data
S0 = I. The solution St at time t is then the smoothed image.

The method of smoothing images by solving the heat equation has the advantage
of simplicity. There are several effective ways of computing the solution St from a
given initial image S0 = I, e.g., using the fast Fourier transform. Linear Gaussian
smoothing is Euclidean invariant and satisfies the Comparison Principle. However,
in practice one finds that Gaussian smoothing blurs edges. For example, if the
initial image S0 = I is the characteristic function of some smoothly bounded set
Ω ⊂ D so that it represents a black and white image with no gray regions, then

6 Because an image is contained in a finite region D, the boundary conditions which must be
imposed to make the initial value problem ∂tSt = A[St] well-posed will generally keep the T t

from obeying Euclidean invariance even if the generator A does so.
7This was of course common knowledge among mathematicians and physicists for at least a cen-

tury. The fact that this was not immediately noticed shows how disjoint the imaging/engineering
and mathematics communities were.
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(a) Original brain MRI image. (b) Linear (Gaussian) smoothing. (c) Affine smoothing.

(d) Original (zoom). (e) Linear (Gaussian) smooth-
     ing (zoom).

(f) Affine smoothing (zoom).

Figure 5.1. Linear smoothing smears the edges.

for all but very small t > 0 the image St will resemble the original image in which
the sharp boundary ∂Ω has been replaced with a fuzzy region of varying shades of
gray. (See Section 5.3.1 for a discussion on edges in computer vision.)

Figure 5.1(a) is a typical MRI brain image. Specular noise is usually present in
such images, and so edge-preserving noise removal is essential. The result of Gauss-
ian smoothing implemented via the linear heat equation is shown in Figure 5.1(b).
The edges are visibly smeared. Note that even though 2D slices of the 3D image are
shown to accommodate human perception, the processing was actually performed
in 3D and not independently on each 2D slice.

We now discuss several methods which have been proposed to avoid this edge
blurring effect while smoothing images.

5.1.2. Anisotropic smoothing. Perona and Malik [74] replaced the linear heat equa-
tion with the non-linear diffusion equation

(5.3)
∂S

∂t
= div {g(|∇S|)∇S} =

∑
i,j

aij(∇S)∇2
ijS

with

aij(∇S) = g(|∇S|)δij +
g′(|∇S|)
|∇S| ∇iS∇jS.
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Here g is a non-negative function for which limp→∞ g(p) = 0. The idea is to slow
down the diffusion near edges, where the gradient |∇S| is large. (See Sections 5.3.1
and 5.3.2 for a description of edge detection techniques.)

The matrix aij of diffusion coefficients has two eigenvalues: one, λ‖, for the
eigenvector ∇S, and one, λ⊥, for all directions perpendicular to ∇S. They are

λ‖ = g(|∇S|) + g′(|∇S|)|∇S|, and λ⊥ = g(|∇S|).

While λ⊥ is always non-negative, λ‖ can change sign. Thus the initial value problem
is ill-posed if sg′(s) + g(s) < 0, i.e., if sg(s) is decreasing, and one actually wants
g(s) to vanish very quickly as s → ∞ (e.g., g(s) = e−s). Even if solutions St could
be constructed in the ill-posed regime, they would vary strongly and unpredictably
under tiny perturbations in the initial image S0 = I, while it is not clear if the
Comparison Principle would be satisfied.

In spite of these objections, numerical experiments [74] have indicated that this
method actually does remove a significant amount of noise before edges are smeared
out very much.

5.1.3. Regularized Anisotropic Smoothing. Alvarez, Lions and Morel [3] proposed a
class of modifications of the Perona-Malik scheme which result in well-posed initial
value problems. They replaced (5.3) with

(5.4)
∂S

∂t
= h(|Gσ ∗ ∇S|) |∇S| div

∇S

|∇S| ,

which can be written as

(5.5)
∂S

∂t
= h(|Gσ ∗ ∇S|) |∇S|

∑
i,j

bij(∇S)∇2
ijS,

with

bij(∇S) =
|∇S|2δij −∇iS ∇jS

|∇S|3 .

Thus the stopping function g in (5.3) has been set equal to g(s) = 1/s, and a
new stopping function h is introduced. In addition, a smoothing kernel Gσ which
averages ∇S in a region of order σ is introduced. One could let Gσ be the standard
Gaussian (5.1), but other choices are possible. In the limiting case σ ↘ 0, in which
Gσ ∗ ∇S simply becomes ∇S, a PDE is obtained.

5.1.4. Level Set Flows. Level set methods for the implementation of curvature
driven flows were introduced by Osher and Sethian [71] and have proved to be
a powerful numerical technique with numerous applications; see [70, 87] and the
references therein.

Equation (5.4) can be rewritten in terms of the level sets of the image S. If S is
smooth, and if c is a regular value of St : D → C (in the sense of Sard’s Theorem),
then Γt(c) = {x ∈ D | St(x) = c} is a smooth curve in D. It is the boundary of the
region with gray level c or less. As time goes by, the curve Γt(c) will move about,
and as long as it is a smooth curve one can define its normal velocity V by choosing
any local parametrization Γ : [0, 1]× (t0, t1) → D and declaring V to be the normal
component of ∂tΓ.
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If the normal component is chosen to be in the direction of ∇S (rather than
−∇S), then

V = − ∂tS

|∇S| .

The curvature of the curve Γt(c) (also in the direction of ∇S) is

(5.6) κ = − div
∇S

|∇S| = −
S2

y Sxx − 2SxSy Sxy + S2
x Syy(

S2
x + S2

y

)3/2
.

Thus (5.4) can be rewritten as

V = h(|Gσ ∗ ∇S|)κ,

which in the special case h ≡ 1 reduces to the curve shortening equation8

(5.7) V = κ.

So if h ≡ 1 and if S : D × [0, T ) → C is a family of images which evolve by (5.4),
then the level sets Γt(c) evolve independently of each other.

This leads to the following simple recipe for noise removal: given an initial image
S0 = I, let it evolve so that its level curves (St)−1(c) satisfy the curve shortening
equation (5.7). For this to occur, the function S should satisfy the Alvarez-Lions-
Morel equation (5.4) with h ≡ 1, i.e.,

(5.8)
∂S

∂t
= |∇S|div

∇S

|∇S| =
S2

y Sxx − 2SxSy Sxy + S2
x Syy

S2
x + S2

y

.

It was shown by Evans and Spruck [25] and Chen, Giga and Goto [21] that, even
though this is a highly degenerate parabolic equation, a theory of viscosity solutions
can still be constructed.

The fact that level sets of a solution to (5.8) evolve independently of each other
turns out to be desirable in noise reduction, since it eliminates the edge blurring
effect of the linear smoothing method. E.g., if I is a characteristic function, then
St will also be a characteristic function for all t > 0.

The independent evolution of level sets also implies that besides obeying the
axioms of Alvarez, Lions and Morel [2] mentioned above, this method also satisfies
their axiom on:

Gray scale invariance: For any initial image S0 = I and any monotone
function φ : C → C, one has T t[φ ◦ I] = φ ◦ T t[I].

One can easily verify that (5.8) formally satisfies this axiom, and it can in fact be
rigorously proven to be true in the context of viscosity solutions. See [21, 25].

5.1.5. Affine Invariant Smoothing. There are several variations on curve shortening
which will yield comparable results. Given an initial image I : D → C, one can
smooth it by letting its level sets move with normal velocity given by some function
of their curvature,

(5.9) V = Φ(κ),

instead of directly setting V = κ as in curve shortening. Using (5.6), one can turn
the equation V = Φ(κ) into a PDE for S. If Φ : C → C is monotone, then the

8There is substantial literature on the evolution of immersed plane curves, or immersed curves
on surfaces by curve shortening and variants thereof. We refer to [24, 28, 33, 45, 96, 22], knowing
that this is a far-from-exhaustive list of references.
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resulting PDE for S will be degenerate parabolic, and existence and uniqueness of
viscosity solutions has been shown [21, 2].

A particularly interesting choice of Φ leads to affine curve shortening [1, 2, 86,
84, 85, 9],

(5.10) V = (κ)1/3

(where we agree to define (−κ)1/3 = −(κ)1/3).
While the evolution equation (5.9) is invariant under Euclidean transformations,

the affine curve shortening equation (5.10) has the additional property that it is
invariant under the action of the Special Affine group SL(2, R). If Γt is a family
of curves evolving by (5.10) and A ∈ SL(2, R), b ∈ R

2, then Γ̃t = A · Γt + b also
evolves by (5.10).

Non-linear smoothing filters based on mean curvature flows respect edges much
better than Gaussian smoothing; see Figure 5.1(c) for an example using the affine
filter. The affine smoothing filter was implemented based on a level set formulation
using the numerics suggested in [4].

5.1.6. Total Variation. Rudin et al. presented an algorithm for noise removal based
on the minimization of the total first variation of S, given by

(5.11)
∫

D

|∇S|dx.

(See [54] for the details and the references therein for related work on the total
variation method.) The minimization is performed under certain constraints and
boundary conditions (zero flow on the boundary). The constraints they employed
are zero mean value and given variance σ2 of the noise, but other constraints can
be considered as well. More precisely, if the noise is additive, the constraints are
given by

(5.12)
∫

D

Sdx =
∫

D

Idx,

∫
D

(S − I)2dx = 2σ2.

Noise removal according to this method proceeds by first choosing a value for the
parameter σ and then minimizing

∫
|∇S| subject to the constraints (5.12). For each

σ > 0 there exists a unique minimizer Sσ ∈ BV(D) satisfying the constraints.9 The
family of images {Sσ | σ > 0} does not form a scale space and does not satisfy the
axioms set forth by Alvarez et al. [2]. Furthermore, the smoothing parameter σ
does not measure the “length scale of smoothing” in the way the parameter t in
scale spaces does. Instead, the assumptions underlying this method of smoothing
are more statistical. One assumes that the given image I is actually an ideal image
to which a “noise term” N(x) has been added. The values N(x) at each x ∈ D are
assumed to be independently distributed random variables with average variance
σ2.

The Euler-Lagrange equation for this problem is

(5.13) div
(

∇S

|∇S|

)
= λ(S − I),

where λ is a Lagrange multiplier. In view of (5.6) we can write this as κ = −λ(S−I);
i.e., we can interpret (5.13) as a prescribed curvature problem for the level sets of
S. To find the minimizer of (5.11) with the constraints given by (5.12), start with

9BV(D) is the set of functions of bounded variation on D. See [31].
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the initial image S0 = I and modify it according to the L2 steepest descent flow
for (5.11) with the constraint (5.12), namely

(5.14)
∂S

∂t
= div

(
∇S

|∇S|

)
− λ(t)(S − I),

where λ(t) is chosen so as to preserve the second constraint in (5.12). The solution
to the variational problem is given when S achieves steady state. This computation
must be repeated ab initio for each new value of σ.

5.2. Image Registration. Image registration is the process of bringing two or
more images into spatial correspondence (aligning them). In the context of medical
imaging, image registration allows for the concurrent use of images taken with
different modalities (e.g., MRI and CT) at different times or with different patient
positions. In surgery, for example, images are acquired before (pre-operative), as
well as during (intra-operative) surgery. Because of time constraints, the real-
time intra-operative images have a lower resolution than the pre-operative images
obtained. Moreover, deformations which occur naturally during surgery make it
difficult to relate the high-resolution pre-operative image to the lower-resolution
intra-operative anatomy of the patient. Image registration attempts to help the
surgeon relate the two sets of images.

Registration has an extensive literature. Numerous approaches have been ex-
plored, ranging from statistics to computational fluid dynamics and various types
of warping methodologies. See [58, 93] for a detailed description of the field as well
as an extensive set of references, and [37, 76] for recent papers on the subject.

Registration typically proceeds in several steps. First, one decides how to mea-
sure similarity between images. One may include the similarity among pixel inten-
sity values, as well as the proximity of predefined image features such as implanted
fiducials or anatomical landmarks.10 Next, one looks for a transformation which
maximizes similarity when applied to one of the images. Often this transformation
is given as the solution of an optimization problem where the transformations to
be considered are constrained to be of a predetermined class C. In the case of rigid
registration (Section 5.2.1), C is the set of Euclidean transformations. Soft tissues
in the human body typically do not deform rigidly. For example, physical deforma-
tion of the brain occurs during neurosurgery as a result of swelling, cerebrospinal
fluid loss, hemorrhage and the intervention itself. Therefore a more realistic and
more challenging problem is elastic registration (Section 5.2.2), where C is the set
of smooth diffeomorphisms. Due to anatomical variability, non-rigid deformation
maps are also useful when comparing images from different patients.

5.2.1. Rigid Registration. Given some similarity measure S on images and two im-
ages I and J , the problem of rigid registration is to find a Euclidean transformation
T ∗x = Rx + a (with R ∈ SO(3, R) and a ∈ R

3) which maximizes the similarity
between I and T ∗(J), i.e.,

(5.15) T ∗ = maximizer of S(I, T (J)) over all Euclidean transformations T .

A number of standard multidimensional optimization techniques are available to
solve (5.15).

10Registration or alignment is most commonly achieved by marking identifiable points on the
patient with a tracked pointer and in the images. These points, often called fiducials, may be
anatomical or artificially attached landmarks, i.e., “implanted fiducials”.
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Many similarity measures have been investigated [73], e.g., the normalized cross
correlation

S(I, J) =
(I, J)L2

‖I‖L2‖J‖L2
.(5.16)

Information-theoretic similarity measures are also popular. By selecting a pixel
x at random with uniform probability from the domain D and computing the
corresponding grey value I(x), one can turn any image I into a random variable. If
we write pI for the probability density function of the random variable I and pIJ

for the joint probability density of I and J , then one can define the entropy of the
difference and the mutual information of two images I and J :

Sd(I, J) = inf

{∑
c

pK(c) log pK(c) | K = I − sJ, s ∈ R

}
(5.17)

Smi(I, J) =
∑
a,b

pIJ(a, b) log
pIJ(a, b)

pI(a)pJ(b)
.(5.18)

The normalized cross correlation (5.16) and the entropy of the difference (5.17)
are maximized when the intensities of the two images are linearly related. In con-
trast, the mutual information measure (5.18) assumes only that the co-occurrence
of the most probable values in the two images is maximized at registration. This re-
laxed assumption explains the success of mutual information in registration [57, 77].

5.2.2. Elastic Registration. In this section, we describe the use of optimal mass
transport for elastic registration. Optimal mass transport ideas have already been
used in computer vision to compare shapes [27] and have appeared in econometrics,
fluid dynamics, automatic control, transportation, statistical physics, shape opti-
mization, expert systems, and meteorology [79]. We outline below a method for
constructing an optimal elastic warp as introduced in [27, 62, 10]. We describe in
particular a numerical scheme for implementing such a warp for the purpose of elas-
tic registration following [38]. The idea is that the similarity between two images
is measured by their L2 Kantorovich-Wasserstein distance, and hence finding “the
best map” from one image to another then leads to an optimal transport problem.

In the approach of [38] one thinks of a grayscale image as a Borel measure11 µ
on some open domain D ⊂ R

d, where, for any E ⊂ D, the “amount of white” in the
image contained in E is given by µ(E). Given two images (D0, µ0) and (D1, µ1) one
considers all maps u : D0 → D1 which preserve the measures, i.e., which satisfy12

(5.19) u#(µ0) = µ1,

and one is required to find the map (if it exists) which minimizes the Monge-
Kantorovich transport functional (see the exact definition below). This optimal
transport problem was introduced by Gaspard Monge in 1781 when he posed the
question of moving a pile of soil from one site to another in a manner which mini-
mizes transportation cost. The problem was given a modern formulation by Kan-
torovich [49], and so now is known as the Monge-Kantorovich problem.

11 This can be physically motivated. For example, in some forms of MRI the image intensity
is the actual proton density.

12If X and Y are sets with σ-algebras M and N, and if f : X → Y is a measurable map, then
we write f#µ for the pushforward of any measure µ on (X, M); i.e., for any measurable E ⊂ Y

we define f#µ(E) = µ
(
f−1(E)

)
.
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More precisely, assuming that the cost of moving a mass m from x ∈ R
d to y ∈ R

d

is m · Φ(x,y), where Φ : R
d × R

d → R+ is called the cost function, Kantorovich
defined the cost of moving the measure µ0 to the measure µ1 by the map u : D0 →
D1 to be

(5.20) M(u) =
∫

D0

Φ(x, u(x)) dµ0(x).

The infimum of M(u) taken over all measure preserving u : (D0, µ0) → (D1, µ1)
is called the Kantorovich-Wasserstein distance between the measures µ0 and µ1.
The minimization of M(u) constitutes the mathematical formulation of the Monge-
Kantorovich optimal transport problem.

If the measures µi and Lebesgue measure dL are absolutely continuous with
respect to each other so that we can write dµi = mi(x)dL for certain strictly
positive densities mi ∈ L1(Di, dL), and if the map u is a diffeomorphism from D0

to D1, then the mass preservation property (5.19) is equivalent with

(5.21) m0(x) = det
(
Du(x)

)
· m1(u(x)) (for almost all x ∈ D0).

The Jacobian equation (5.21) implies that if a small region in D0 is mapped to a
larger region in D1, there must be a corresponding decrease in density in order to
comply with mass preservation. In other words, expanding an image darkens it.

The L2 Monge-Kantorovich problem corresponds to the cost function Φ(x,y) =
1
2 |x − y|2. A fundamental theoretical result for the L2 case [12, 29, 51] is that
there is a unique optimal mass-preserving u and that this u is characterized as the
gradient of a convex function p, i.e., u = ∇p. General results about existence and
uniqueness may be found in [6] and the references therein.

To reduce the Monge-Kantorovich cost M(u) of a map u0 : D0 → D1, in [38]
the authors consider a rearrangement of the points in the domain of the map in the
following sense: the initial map u0 is replaced by a family of maps ut for which one
has ut ◦st = u0 for some family of diffeomorphisms st : D0 → D0. If the initial map
u0 sends the measure µ0 to µ1, and if the diffeomorphisms st preserve the measure
µ0, then the maps ut = u0 ◦ (st)−1 will also send µ0 to µ1.

Any sufficiently smooth family of diffeomorphisms st : D0 → D0 is determined
by its velocity field, defined by ∂ts

t = vt ◦ st.
If ut is any family of maps, then, assuming ut

#µ0 = µ1 for all t, one has

(5.22)
d
dt

M(ut) =
∫

D0

〈
Φx(x, ut(x)), vt(x)

〉
dµ0(x).

The steepest descent is achieved by a family st ∈ Diff1
µ0

(D0), whose velocity is
given by

(5.23) vt = − 1
m0(x)

P
(
Φx(x, ut(x))

)
.

Here P is the Helmholtz projection, which extracts the divergence-free part of vector
fields on D0; i.e., for any vector field w on D one has w = P[w] + ∇p.

From u0 = ut ◦ st one gets the transport equation

(5.24)
∂ut

∂t
+ vt · ∇ut = 0
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where the velocity field is given by (5.23). In [8] it is shown that the initial value
problem (5.23), (5.24) has short time existence for C1,α initial data u0, and a theory
of global weak solutions in the style of Kantorovich is developed.

For image registration, it is natural to take Φ(x,y) = 1
2 |x − y|2 and D0 = D1

to be a rectangle. Extensive numerical computations show that the solution to the
unregularized flow converges to a limiting map for a large choice of measures and
initial maps. Indeed, in this case, we can write the minimizing flow in the following
“nonlocal” form:

(5.25)
∂ut

∂t
= − 1

m0

{
ut + ∇(−∆)−1 div(ut)

}
· ∇ut.

The technique has been mathematically justified in [8] to which we refer the
reader for all of the relevant details.

5.2.3. Optimal Warping. Typically in elastic registration, one wants to see an ex-
plicit warping which smoothly deforms one image into the other. This can easily
be done using the solution of the Monge-Kantorovich problem. Thus, we assume
now that we have applied our gradient descent process as described above and that
it has converged to the Monge-Kantorovich mapping ũMK .

Following the work of [10, 62] (see also [29]), we consider the following related
problem:

inf
∫ ∫ 1

0

m(t, x)‖v(t, x)‖2 dt dx

over all time varying densities m and velocity fields v satisfying
∂m

∂t
+ div(mv) = 0,(5.26)

m(0, ·) = m0, m(1, ·) = m1.(5.27)

It is shown in [10, 62] that this infimum is attained for some mmin and vmin and
that it is equal to the L2 Kantorovich-Wasserstein distance between µ0 = m0dL

and µ1 = m1dL. Further, the flow X = X(x, t) corresponding to the minimizing
velocity field vmin via

X(x, 0) = x, Xt = vmin ◦ X

is given simply as

(5.28) X(x, t) = x + t (ũMK(x) − x).

Note that when t = 0, X is the identity map and when t = 1, it is the solution ũMK

to the Monge-Kantorovich problem. This analysis provides appropriate justification
for using (5.28) to define our continuous warping map X between the densities m0

and m1.
This warping is illustrated on MR heart images, Figure 5.2. Since the images

have some black areas where the intensity is zero, and since the intensities define
the densities in the Monge-Kantorovich registration procedure, we typically replace
m0 by some small perturbation m0 +ε for 0 < ε 
 1 to ensure that we have strictly
positive densities. Full details may be found in [98]. We should note that the type
of mixed L2/Wasserstein distance functionals which appear in [98] were introduced
in [11].

Specifically, two MR images of a heart are given at different phases of the cardiac
cycle. In each image the white part is the blood pool of the left ventricle. The circu-
lar gray part is the myocardium. Since the deformation of this muscular structure is
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(a) Original Diastolic MR 
     Image.

(b) Intermediate Warp: t = .2 (c) Intermediate Warp: t = .4

(d) Intermediate Warp: t = .6 (e) Intermediate Warp: t = .8 (f) Original Systolic MR Im-
     age.

Figure 5.2. Optimal Warping of Myocardium from Diastolic
to Systolic in Cardiac Cycle. These static images become
much more vivid when viewed as a short animation. (Available at
http://www.bme.gatech.edu/groups/minerva/publications/papers/medicalBAMS2005.html).

of great interest, we mask the blood pool and consider only the optimal warp of the
myocardium in the sense described above. Figure 5.2(a) is a diastolic image, and
Figure 5.2(f) is a systolic image.13 These are the only data given. Figures 5.2(b)
to Figure 5.2(e) show the warping using the Monge-Kantorovich technique between
these two images. These images offer a very plausible deformation of the heart
as it undergoes its diastole/systole cyle. This is remarkable considering the fact
that they were all artificially created by the Monge-Kantorovich technique. The
plausibility of the deformation demonstrates the quality of the resulting warping.

5.3. Image Segmentation. When looking at an image, a human observer cannot
help seeing structures which often may be identified with objects. However, digital
images as the raw retinal input of local intensities are not structured. Segmentation
is the process of creating a structured visual representation from an unstructured
one. The problem was first studied in the 1920s by psychologists of the Gestalt

13Diastolic refers to the relaxation of the heart muscle, while systolic refers to the contraction
of the muscle.

http://www.bme.gatech.edu/groups/minerva/publications/papers/medicalBAMS2005.html
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school (see Kohler [53] and the references therein) and later by psychophysicists [48,
95].14 In its modern formulation, image segmentation is the problem of partitioning
an image into homogeneous regions that are semantically meaningful, i.e., that
correspond to objects we can identify. Segmentation is not concerned with actually
determining what the partitions are. In that sense, it is a lower level problem than
object recognition.

In the context of medical imaging, these regions have to be anatomically mean-
ingful. A typical example is partitioning an MRI image of the brain into the white
and gray matter. Since it replaces continuous intensities with discrete labels, seg-
mentation can be seen as an extreme form of smoothing/information reduction.
Segmentation is also related to registration in the sense that if an atlas15 can be
perfectly registered to a dataset at hand, then the registered atlas labels are the
segmentation. Segmentation is useful for visualization,16 allows for quantitative
shape analysis, and provides an indispensable anatomical framework for virtually
any subsequent automatic analysis.

Indeed, segmentation is perhaps the central problem of artificial vision, and
accordingly many approaches have been proposed (for a nice survey of modern
segmentation methods, see the monograph [66]). There are basically two dual
approaches. In the first, one can start by considering the whole image to be the
object of interest and then refining this initial guess. These “split and merge”
techniques can be thought of as somewhat analogous to the top-down processes of
human vision. In the other approach, one starts from one point assumed to be inside
the object and adds other points until the region encompasses the object. Those
are the “region growing” techniques and bear some resemblance to the bottom-up
processes of biological vision.

The dual problem to segmentation is that of determining the boundaries of the
segmented homogeneous regions. This approach has been popular for some time,
since it allows one to build upon the well-investigated problem of edge detection
(Section 5.3.1). Difficulties arise with this approach because noise can be respon-
sible for spurious edges. Another major difficulty is that local edges need to be
connected into topologically correct region boundaries. To address these issues, it
was proposed to set the topology of the boundary to that of a sphere and then
deform the geometry in a variational framework to match the edges. In 2D, the
boundary is a closed curve, and this approach was named snakes (Section 5.3.2).
Improvements of the technique include geometric active contours (Section 5.3.3)
and conformal active contours (Section 5.3.4). All these techniques are generically
referred to as active contours. Finally, as described in [66], most segmentation
methods can be set in the elegant mathematical framework proposed by Mumford
and Shah [68] (Section 5.3.7).

5.3.1. Edge detectors. Consider the ideal case of a bright object O on a dark back-
ground. The physical object is represented by its projections on the image I. The
characteristic function 1O of the object is the ideal segmentation, and since the

14Segmentation was called “perceptual grouping” by the Gestaltists. The idea was to study
the preferences of human beings for the grouping of sets of shapes arranged in the visual field.

15An image from a typical patient that has been manually segmented by some human expert.
16As discussed previously, human vision is inherently two dimensional. In order to “see” an

organ we therefore have to resort to visualizing its outside boundary. Determining this boundary
is equivalent to segmenting the organ.
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object is contrasted on the background, the variations of the intensity I are large
on the boundary ∂O. It is therefore natural to characterize the boundary ∂O as
the locus of points where the norm of the gradient |∇I| is large. In fact, if ∂O is
piecewise smooth, then |∇I| is a singular measure whose support is exactly ∂O.

This is the approach taken in the 60’s and 70’s by Roberts [81] and Sobel [90], who
proposed slightly different discrete convolution masks to approximate the gradient
of digital images. Disadvantages with these approaches are that edges are not
precisely localized and may be corrupted by noise. See Figure 5.3(b) is the result
of a Sobel edge detector on a medical image. Note the thickness of the boundary of
the heart ventricle as well as the presence of “spurious edges” due to noise. Canny
[14] proposed to add a smoothing pre-processing step (to reduce the influence of
the noise) as well as a thinning post-processing phase (to ensure that the edges are
uniquely localized). See [26] for a survey and evaluation of edge detectors using
gradient techniques.

A slightly different approach initially motivated by psychophysics was proposed
by Marr and Hildreth [61, 60] where edges are defined as the zeros of ∆Gσ ∗ I, the
Laplacian of a smooth version of the image. One can give a heuristic justification
by assuming that the edges are smooth curves; more precisely, assume that near an

(a) Original image. (b) Sobel edge detector. (c) Marr edge detector.

Figure 5.3. Result of two edge detectors on a heart MRI image.

edge the image is of the form

(5.29) I(x) = ϕ

(
S(x)

ε

)
,

where S is a smooth function with |∇S| = O(1)
which vanishes on the edge, ε is a small parameter
proportional to the width of the edge, and ϕ :
R → [0, 1] is a smooth increasing function with
limits ϕ± = limt→±∞ ϕ(t). t

ϕ(t)

The function ϕ describes the profile of I transverse to its level sets. We will
assume that the graph of ϕ has exactly one inflection point.

The assumption (5.29) implies ∇I = ϕ′(S/ε)∇S, while the second derivative
∇2I is given by

(5.30) ∇2I =
ϕ′′(S/ε)

ε2
∇S ⊗∇S +

ϕ′(S/ε)
ε

∇2S.

Thus ∇2I will have eigenvalues of moderate size (O(ε−1)) in the direction per-
pendicular to ∇I, while the second derivative in the direction of the gradient will
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change from a large O(ε−2) positive value to a large negative value as one crosses
from small I to large I values.

From this discussion of ∇2I, it seems reasonable to define the edges to be the
locus of points where |∇I| is large and where either (∇I)T · ∇2I · ∇I or ∆I or
det∇2I changes sign. The quantity (∇I)T ·∇2I ·∇I vanishes at x ∈ D if the graph
of the function I restricted to the normal line to the level set of I passing through
x has an inflection point at x (assuming ∇I(x) �= �0). In general, zeros of ∆I and
det∇2I do not have a similar description, but since the first term in (5.30) will
dominate when ε is small, both (∇I)T · ∇2I · ∇I and det∇2I will tend to vanish
at almost the same places.

Computation of second derivatives is numerically awkward, so one prefers to
work with a smoothed out version of the image, such as Gσ ∗ I instead of I itself.

See Figure 5.3(c) for the result of the Marr edge detector. In these images the
edge is located precisely at the zeroes of the Laplacian (a thin white curve).

While it is now understood that these local edge detectors cannot be used directly
for the detection of object boundaries (local edges would need to be connected in a
topologically correct boundary), these techniques proved instrumental in designing
the active contour models described below and are still being investigated [36, 7].

5.3.2. Snakes. A first step toward automated boundary detection was taken by
Witkin, Kass and Terzopoulos [56] and later by a number of researchers (see [23]
and the references therein). Given an image I : D ⊂ R

2 → C, they subject an
initial parametrized curve Γ : [0, 1] → D to a steepest descent flow for an energy
functional of the form17

(5.31) E(Γ) =
∫ 1

0

{
1
2
w1(p)|Γpp|2 +

1
2
w2(p)|Γp|2 + W (Γ(p))

}
dp.

The first two terms control the smoothness of the active contour Γ. The contour
interacts with the image through the potential function W : D → R which is chosen
to be small near the edges and large everywhere else (it is a decreasing function of
some edge detector). For example one could take:

(5.32) W (x) =
1

1 + ‖∇Gσ ∗ I(x)‖2
.

Minimizing E will therefore attract Γ toward the edges. The gradient flow is the
fourth order non-linear parabolic equation

(5.33)
∂Γ
∂t

= − (w2(p)Γpp)pp + (w1(p)Γp)p + ∇W (Γ(p, t)).

This approach gives reasonable results. See [64] for a survey of snakes in medical
image analysis. One limitation however is that the active contour or snake cannot
change topology; i.e., it starts out being a topological circle, and it will always
remain a topological circle and will not be able to break up into two or more pieces,
even if the image would contain two unconnected objects and this would give a more
natural description of the edges. Special ad hoc procedures have been developed in
order to handle splitting and merging [63].

17We present Cohen’s [23] version of the energy.
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5.3.3. Geometric Active Contours. Another disadvantage of the snake method is
that it explicitly involves the parametrization of the active contour Γ, while there
is no obvious relation between the parametrization of the contour and the geometry
of the objects to be captured. Geometric models have been developed by [15, 78]
to address this issue.

As in the snake framework, one deforms the active contour Γ by a velocity which
is essentially defined by a curvature term and a constant inflationary term weighted
by a stopping function W . By formulating everything in terms of quantities which
are invariant under reparametrization (such as the curvature and normal velocity
of Γ), one obtains an algorithm which does not depend on the parametrization of
the contour. In particular, it can be implemented using level sets.

More specifically, the model of [15, 78] is given by

(5.34) V = W (x)(κ + c),

where both the velocity V and the curvature κ are measured using the inward
normal N for Γ. Here, as previously, W is small at edges and large everywhere else,
and c is a constant, called the inflationary parameter. When c is positive, it helps
push the contour through concavities and can speed up the segmentation process.
When it is negative, it allows expanding “bubbles”, i.e., contours which expand
rather than contract to the desired boundaries. We should note that there is no
canonical choice for the constant c, which has to be determined experimentally.

In practice Γ is deformed using the Osher-Sethian level set method descibed
in Section 5.1.4. One represents the curve Γt as the zero level set of a function
Φ : D × R

+ → R,

(5.35) Γt = {x ∈ D : Φ(x, t) = 0}.

For a given normal velocity field, the defining function Φ is then the solution of
the Hamilton-Jacobi equation

∂Φ
∂t

+ V
∣∣∇Φ

∣∣ = 0,

which can be analyzed using viscosity theory [55].
Geometric active contours have the advantage that they allow for topological

changes (splitting and merging) of the active contour Γ. The main problem with
this model is that the desired edges are not steady states for the flow (5.34). The
effect of the factor W (x) is merely to slow the evolution of Γt down as it approaches
an edge, but it is not the case that the Γt will eventually converge to anything like
the sought-for edge as t → ∞. Some kind of artificial intervention is required to
stop the evolution when Γt is close to an edge.

5.3.4. Conformal Active Contours. In [50, 16], the authors propose a novel tech-
nique that is both geometric and variational. In their approach one defines a Rie-
mannian metric gW on D from a given image I : D → R by conformally changing
the standard Euclidean metric to

(5.36) gW = W (x)2
∥∥dx

∥∥2
.

Here W is defined as above in (5.32). The length of a curve in this metric is

(5.37) LW (Γ) =
∫

Γ

W (Γ(s)) ds.
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Curves which minimize this length will prefer to be in regions where W is small,
which is exactly where one would expect to find the edges. So, to find edges,
one should minimize the W -weighted length of a closed curve Γ rather than some
“energy” of Γ (which depends on a parametrization of the curve).

To minimize LW (Γ), one computes a gradient flow in the L2 sense. Since the
first variation of this length functional is given by

dLW (Γ)
dt

= −
∫

Γ

V
{
Wκ − N · ∇W

}
ds,

where V is the normal velocity measured in the Euclidean metric and N is the
Euclidean unit normal, the corresponding L2 gradient flow is

(5.38) Vconf = Wκ − N · ∇W.

Note that this is not quite the curve-shortening flow in the sense of [33, 34] on
R

2 given the Riemannian manifold structure defined by the conformally Euclidean
metric gW . Indeed, a simple computation shows that in that case one would have

(5.39) V = W−2
(
Wκ − N · ∇W

)
.

Thus the term “geodesic active contour” used in [16] is a bit of a misnomer, and so
we prefer the term “conformal active contour” as in [50].

Contemplation of the conformal active contours leads to another interpretation
of the concept “edge”. Using the landscape metaphor one can describe the graph
of W as a plateau (where |∇I| is small) in which a canyon has been carved (where
|∇I| is large). The edge is to be found at the bottom of the canyon. Now if W
is a Morse function, then one expects the “bottom of the canyon” to consist of
local minima of W alternated by saddle points. The saddle points are connected
to the minima by their unstable manifolds for the gradient flow of W (the ODE
x′ = −∇W (x)). Together these unstable manifolds form one or more closed curves
which one may regard as the edges which are to be found.

Γt

Figure 5.4. A conformal active contour among unstable manifolds.

Comparing (5.38) to the evolution of the geometric active contour (5.34), we
see that we have the new term −N · ∇W , the normal component of −∇W . If the
contour Γt were to evolve only by V = −N ·∇W , then it would simply be deformed
by the gradient flow of W . If W is a Morse function, then one can use the λ-
lemma from dynamical systems [72, 65] to show that for a generic choice of initial
contour the Γt will converge to the union of unstable manifolds “at the bottom
of the canyon”, possibly with multiplicity more than one. The curvature term in
(5.34) counteracts this possible doubling up and guarantees that Γt will converge
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smoothly to some curve which is a smoothed out version of the heteroclinic chain
in Figure 5.4.

5.3.5. Conformal Area Minimizing Flows. Typically, in order to get expanding bub-
bles, an inflationary term is added in the model (5.38) as in (5.34). Many times
segmentations are more easily performed by seeding the image with bubbles rather
than contracting snakes. The conformal active contours will not allow this, since
very small curves will simply shrink to points under the flow (5.38). To get a curve
evolution which will force small bubbles to expand and converge toward the edges,
it is convenient to subtract a weighted area term from the length functional LW ,
namely

AW (Γ) =
∫

RΓ

W (x)dx

where dx is 2D Lebesgue measure and RΓ is the region enclosed by the contour Γ.
The first variation of this weighted area is [89, 88, 75]):

(5.40)
d
dt

AW (Γt) = −
∫

Γt

W (Γ(s))V ds

where, as before, V is the normal velocity of Γt measured with the inward normal.
The functional which one now tries to minimize is

(5.41) EW (Γ) = LW (Γ) + cAW (Γ),

where c ∈ R is a constant called the inflationary parameter.
To obtain steepest descent for EW one sets

(5.42) Vact = Vconf + cW =
(
κ + c

)
W (x) − N · ∇W.

For c = 1 this is a conformal length/area miminizing flow (see [88]). As in the
model of [15, 78] the inflationary parameter c may be chosen as positive (snake or
inward moving flow) or negative (bubble or outward moving flow).

In practice, for expanding flows (negative c, weighted area maximizing flow), one
expands the bubble just using the inflationary part

V = cW

until the active contour is sufficiently large and then “turns on” the conformal
part Vconf which brings the contour to its final position. Again as in [15, 78], the

(a) Initial active contour. (b) Evolving active contour. (c) Steady state.

Figure 5.5. Ventricle segmentation in MRI heart image via
shrinking conformal active contour.
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(a) Two initial bubbles. (b) Evolving active contours.

(c) Merging of active contours. (d) Steady state.

Figure 5.6. Myocardium segmentation in MRI heart image with
two merging expanding conformal active contours.

curvature part of Vact also acts to regularize the flow. Finally, there is a detailed
mathematical analysis of (5.42) in [50] as well as extensions to the 3 dimensional
space, in which case the curvature κ is replaced by the mean curvature H in Equa-
tion (5.42).

5.3.6. Examples of Segmentation via Conformal Active Contours. This technique
can also be implemented in the level set framework to allow for the splitting and
merging of evolving curves. Figure 5.5 shows the ventricle of an MR image of the
heart being captured by a conformal active contour Vconf . We can also demonstrate
topological changes. In Figure 5.6, we show two bubbles, which are evolved by the
full flow Vact with c < 0 and which merge to capture the myocardium of the same
image. Conformal active contours can be employed for the segmentation of images
from many modalities. In Figure 5.7, the contour of a cyst was successfully captured
in an ultrasound image. This again used the full flow Vact with c < 0. Because that
modality is particularly noisy, the image had been pre-smoothed using the affine
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(a) Three initial active contours. (b) Merging of active contours.

(c) Evolving active contour. (d) Steady state.

Figure 5.7. Cyst segmentation in ultrasound breast image with
three merging expanding conformal active contours.

curve shortening non-linear filter (see Section 5.1.5). In Figure 5.8, the contracting
active contour splits to capture two disconnected osseous regions on a CT image.

5.3.7. Mumford-Shah Framework. Mumford and Shah [69] define segmentation as
a joint smoothing and edge detection problem. In their framework, given an image
I(x) : D ⊂ R

2 → C, the goal is to find a set of discontinuities K ⊂ D and a
piecewise smooth image S(x) on D \ K that minimize

(5.43) EI(S, K) =
∫

D\K

{
‖∇S‖2 + (I − S)2

}
dx + L(K),

where L(K) is the Euclidean length or, more generally, the 1-dimensional Hausdorff
measure of K.

The first term ensures that any minimizer S is smooth (except across edges),
while the second term ensures that minimizers approximate I. The last term will
cause the set K to be regular. It is interesting to note, as argued in the book
[66], that many segmentation algorithms (including some of the most common)
can be formulated in the Mumford-Shah framework. Further the Mumford-Shah
functional can be given a very natural Bayesian interpretation [67].

The functional itself is very difficult to analyze mathematically even though
there have been some interesting results. The book [66] gives a very nice survey on
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(a) Initial active contour. (b) Evolving active contour.

(c) Evolving active contour. (d) Splitting of active contour and 
     steady state.

Figure 5.8. Bone segmentation in CT image with splitting
shrinking conformal active contour.

the mathematical results concerning the Mumford-Shah functional. For example,
Ambrosio [5] has found a weak solution to the problem in the class of Special
Bounded Variation functions. The functional itself has influenced several different
segmentation techniques, some connected with active contours, including [94, 19].

6. Conclusion

In this paper, we sketched some of the fundamental concepts of medical image
processing. It is important to emphasize that none of these problem areas has
been satisfactorily solved, and all of the algorithms we have described are open
to considerable improvement. In particular, segmentation remains a rather ad hoc
procedure, with the best results being obtained via interactive programs with con-
siderable input from the user.

Nevertheless, progress has been made in the field of automatic analysis of med-
ical images over the last few years thanks to improvements in hardware, acquisi-
tion methods, signal processing techniques, and of course mathematics. Curvature
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driven flows have proven to be an excellent tool for a number of image processing
tasks and have definitely had a major impact on the technology base. Several algo-
rithms based on partial differential equation methods have been incorporated into
clinical software and are available in open software packages such as the National
Library of Medicine Insight Segmentation and Registration Toolkit (ITK) [47] and
the 3D Slicer of the Harvard Medical School [92]. These projects are very important
in disseminating both standard and new mathematical methods in medical imaging
to the broader community.

The mathematical challenges in medical imaging are still considerable, and the
necessary techniques touch just about every major branch of mathematics. In
summary, we can use all the help we can get!
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53. W. Köhler, Gestalt psychology today, American Psychologist 14 (1959), 727–734.
54. S. Osher L. I. Rudin and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Physica D 60 (1992), 259–268.
55. H. Ishii M. G. Crandall and P. L. Lions, User’s guide to viscosity solutions of second order

partial differential equations, Bulletin of the American Mathematical Society 27 (1992), 1–67.
MR1118699 (92j:35050)

56. A. Witkin M. Kass and D. Terzopoulos, Snakes: active contour models, Int. Journal of Com-
puter Vision 1 (1987), 321–331.

57. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image
registration by maximization of mutual information, IEEE Transactions on Medical Imaging
16 (1997), no. 2, 187–198.

58. J. Maintz and M. Viergever, A survey of medical image registration, Medical Image Analysis
2 (1998), no. 1, 1–36.

59. S. Mallat, A wavelet tour of signal processing, Academic Press, San Diego, CA, 1998.
MR1614527 (99m:94012)

60. D. Marr, Vision, Freeman, San Francisco, 1982.
61. D. Marr and E. Hildreth, Theory of edge detection, Proc. Royal Soc. Lond. B (1980), no. 207,

187–217.
62. R. McCann, A convexity theory for interacting gases and equilibrium crystals, Ph.D. Thesis,

Princeton University, 1994.
63. T. McInerney and D. Terzopoulos, Topologically adaptable snakes, Int. Conf. on Computer

Vision (Cambridge, MA), June 1995, pp. 840–845.
64. , Deformable models in medical image analysis: a survey, Medical Image Analysis 1

(1996), no. 2, 91–108.
65. J. Milnor, Morse theory, Princeton University Press, 1963. MR0163331 (29:634)
66. J-M. Morel and S. Solimini, Variational methods in image segmentation, Birkhäuser, Boston,
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