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Nonrigid Image Registration

Gustavo K. RohdeStudent Member, IEERAkram Aldroubi, and Benoit M. Dawanf’Senior Member, IEEE

Abstract—Nonrigid registration of medical images is important ments. Recently and following their success for rigid body
for a number of applications such as the creation of population av- registration problems [8], [9], mutual information (MI)-based
erages, atlas-based segmentation, or geometric correction of func- methods have also been used for nonrigid registration prob-

tional magnetic resonance imaging (fMRI) images to name a few. In lems. Meyer [10] relies on a technique based on thin-plate
recent years, a number of methods have been proposed to solve this )

problem, one class of which involves maximizing amutual informa- SPIiN€s in which an optimizer is used to adjust the position
tion (MI)-based objective function over a regular grid of splines. Of homolgous control points. Rueckert [11] and Studholme

This approach has produced good results but its computational [12], [13] use a similar approach but with B-splines. Although
complexity is p_roportional tothe compliance of the.transformation implementations vary, these intensity-based technigues can be
required to register the smallest structures in the image. Here, we yjjewed in an optimization framework in which the registration
propose a method that permits the spatial adaptation of the trans- problem consists of deforming a source imdgjex) to “best”

formation’s compliance. This spatial adaptation allows us to re- tch at ti d h imilarit
duce the number of degrees of freedom in the overall transforma- match a target imagd (x) under a chosen similarity measure.

tion, thus speeding up the process and improving its convergence Mathematically, this can be expressed as

properties. To develop this methoq, we !ntroduee several novel- arg max F' (B(x’)./ A(x)./x’) 1)
ties: 1) we rely on radially symmetric basis functions rather than x/

B-splines traditionally used to model the deformation field; 2) we in which

propose a metric to identify regions that are poorly registered and

over which the transformation needs to be improved; 3) we parti- x' =x+ v(x) 2
tion the global registration problem into several smaller ones; and

4) we introduce a new constraint scheme that allows us to produce and F is an intensity-based similarity measure (the cost func-

transformations that are topologically correct. We compare the ap- tion), x a coordinate vector imd with d being the dimension-
proach we propose to more traditional ones and show that our new ality ’of the images, and '

algorithm compares favorably to those in current use.
Index Terms—Adaptive bases algorithm, mutual information, v(x) = {va(x), vy(x),v2(x), ..., va(x)}
nonrigid image registration. a deformation field that warps imad#(x); thus,v(x) is what
is computed in the registration problem. As mentioned earlier,
a number of authors have proposed to use linear combinations
o . . ~of B-splines placed on a regular grid to model the deforma-
ONRIGID medical image registration, also known in theion field v(x) [11], [12], [14], [15]. Because the splines are
literature as spatial normalization or warping, is often aflaced on a regular grid, the characteristics of the warping trans-
essential step in automated medical image analysis. A num ¥mation [e.g., the number of degrees of freedom (DOFs) it
of methods have been proposed over the years to solve higsesses] does not vary spatially and we refer to this model
problem. For instance (a more complete review on the subjegf being spatially invariant. The major disadvantage of this ap-
can be found in [1]), Collins [2] proposes a technique in whichroach is that the computational complexity of the method is
the overall transformation is obtained as a set of local aﬁlrpﬁoportionw to the compliance (i.e., the number of basis func-
ones. Bajcsgt al.[3], [4] use an elastic model approach. Algotions) of the transformation needed to register the smaller struc-
rithms based on viscous fluids are put forth by Christensen [glres in the image. Many structures of interest in medical im-
and Bro-Nielsen [6]. Thirion [7] uses a method called “demongges, especially in the brain, are in the order of millimeters.
that is similar to an optical flow approach for small displacepeforming such structures requires placing basis functions at
approximately every couple of millimeters which can require
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an approach that automatically identifies regions where the i * 7
ages are misregistered, and we focus on these regions only, 1 3 / \
avoiding useless computations on regions that are already ¢ \
rectly registered. Moreover, to prevent the optimization proce :
from producing transformations that are physically incorrec - /

we have developed a new, precise, and fast way of enforcing t L

the Jacobian matrix of the deformation field remains uniform(,*  ©5 o 05 1
invertible throughout the domain of the images. Together, the'_se 1
ideas were used to derive a new nonrigid registration algorithg'%'ius' e
that we call the Adaptive Bases Registration Algorithm.

The remainder of this paper is organized as follows. Sectiondith coefficientscy, . ..,cy € R? and a functiond: R? — R

describes the new method in detail, including the method fgiat ispositive definiteon R¢ in the following sense: for all sets

region of misregistration identification, our local deformationX = {x,,... xx} of finitely many distinct points, . .., xy

field optimization scheme, as well as our constraint schemg.R?, the matrix\/ = (p(xx —x%;))1<j.r<n iSpositive definite

Section Il presents results we have obtained with this algorithiphich guarantees the solvability of the system

and it includes a comparison with a regular grid approach. Sec- N

tion IV summarizes the main contributions of this paper and sug- Vi = ZCi‘I’(Xk -x;), 1<k<N. (4)

gests possible future work in this area. The appendix provides =1

details on the constraint scheme we propose. This property is important for registration problems for it guar-
antees that the model allows for the construction of any given de-

II. METHOD formation field solution prescribed by points placed at arbitrary
locations. In the context of nonrigid registration, this means

) o ) o _ that any deformation field specified at an arbitrary set of points

The goal in nonrigid registration is to generate & mapping fBraced on an irregular grid can be modeled. For this to be true,

lating any point in the domain of the source imafiéx) 08 the basis functions used to model the deformation field need

pointin the domain of the targetimagx). LetD := [0,1]° C o possess what is know as the universal interpolation property.

R, represent the domain of the imag@éx) and A(x), where - while it is known that radial basis functions possess this prop-

d is the dimensionality of the data sets, i#.= 2 for two-di- gty (see for instance [17]-[19]), it is not known whether or not

mensional (2-D) images, anid= 3 for volumetric images. Reg- g_gplines possess it. This lead us to use one of Wu’s compactly

istering images3(x) and A(x) is equivalent to finding the de- g pported positive definite radial basis functions to model the
formationv: D — D suchthatl 4+ v:D — D, wherel iS  {eformation field

the identity transformation, is a one to one onto continuous map ) %[l
w0 =0 (150)
S

Plot of the radial basis function whose equation is given in (6) with
gual to one. Left: in one dimension; right: in two dimensions.

A. Problem Statement

with continuous inverse (homeomorphism) and for which some x € R (5)
cost functionF'(A(x), B(x + v), v) is optimized. These con- _ .
. . with
straints on the transformation preserve the natural topology oft P )
the image, impeding the transformation from producing artifacts  ¢(r) = (1 =7)3(3r° +12r" 4+ 16r + 4) forr >0 (6)
known as “folding” and “tearing” of the image. Here, we havevhere(1 —r); = max(1 —r,0), s is a predetermined scale for
used compactly supported radial basis functions to model tthe basis function, aniit||,, is the usual Euclidean norm 6tf'.
deformationv, while the cost function optimized is the normal+ig. 1 shows a plot of this function in one and two dimensions.
ized MI (NMI) [16] between image®3(x + v) and A(x), al- There are several advantages in using a compactly supported
though the approach we propose is not limited to this particullaasis function such as (6) in registration problems. First, com-
similarity measure. In ourimplementation, the NMl is estimateplact support means that for each valuezofthe sum in (3)
using the joint histogram of the source and target images whidan be reduced to relatively few terms. This also means that
the value of image3(x) at an arbitrary point is evaluated usingunder many circumstances optimization can be confined to a
trilinear interpolation. The value of the NMl is always evaluatefinite part of the domain D, improving the computational effi-
over all the voxels belonging to the overlapping domain of ingiency of the overall method. Moreover, (6) and, therefore, (5)
agesB(x + v) and A(x). have been shown to posses$ continuity. Smoothness prop-
erties are important in registration problems since the first and
B. Local Deformation Fields and Radial Basis Functions  second derivatives of the deformation field are often used for

As previously stated, rather than modeling the deformatidie computation of the gradient, and sometimes Hessian, of the
field with a linear combination of cubic B-splines placed on 80St function with respect to the optimization parameters. These
regular grid as is usually done [11]-[15], we build our deformél,uar]tities are use_d in s_everal optimization algorithms applicable
tion field incrementally, region by region, focusing on regiont this type of registration problem, e.g., conjugate gradient de-
that are misregistered. The method by which we identify ttfent, or Newton methods.
relevant regions is detailed below but the total deformation fieléi Multiscal d Multi lution A h
v(x) is modeled as a linear combination of a set of basis func- uitiscale and hMultiresolution Approac
tions irregularly spaced over the image domain, i.e., The algorithm proposed here approaches the final deforma-

N tion field iteratively across scales and resolutions. Here, resolu-
v(x) = Z c;P(x — x;) (3) tion means the spatial resolution of the image while the scale is
P related to the transformation itself. A standard image pyramid is
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created to apply the algorithm at different resolutions. At eachgion at the current level or the images could be significantly

resolution, the scale of the transformation is adapted by modiisregistered at that location but the cost function is at a local

fying the region of support and the number of basis functionsxtremum. In either case, further gradient-based optimization in

The scale of the transformation is proportional to the bases’ this region is unlikely to be fruitful and we assume that it can be

gion of support (i.e., a large region of support leads to a transeglected.

formation at a large scale). Typically, the algorithm is initial- The algorithm we use for identifying regions over which to

ized on a low-resolution image with few basis functions havingpncentrate starts by evaluatig as described above. Once

large support. As the algorithm progresses to finer resolutiotigs is done, the individual componen®; of G are sorted in

and smaller scales, the region of support of the basis functiatexreasing order according to their magnit{j@g||. The center

is reduced. Following this approach, the final deformation fieldf the regions of misregistratiaty are chosen as the location of

is computed as the basis function for whickx; is above the selected threshold.

Once a center is selected, the adjacent locations are eliminated
V() = vi(x) + ot v (x) () from the list; this is done to force regions of interest (ROIs) to

with M the total number of levels (in the remainder of this papébge disjoint (i.e., prevent overlap between these regions). This is

a level refers to a particular combination of scale and resoldiscussed further in the next section.

tion). It should be noted that the universal interpolation prop-

erty discussed above holds only if all the basis functions hafe Local Optimization

the same scale. Here we model the overall deformation field aOnce ROIs have been identified, the local deformation fields

a sum of deformation fields each computed at a different raseed to be computed. One possible approach would be to opti-

olution and scale. Although the region of support for the basisize all the coefficients; associated with the ROIs chosen in

functions changes from scale to scale and from resolution to rége previous step simultaneously. This would amount to opti-

olution, at a particular scale and resolution the deformation fietlizing the coefficients of basis functions scattered throughout

is computed with bases that have the same scale and regiokhefimage domain which would be akin to the approach recently

support. proposed by Schnabel al. [20]. Here, however, we propose
_ S - a solution that allows us to reduce the dimensionality of the
D. Regions of Misregistration Identification optimization process by partitioning it. Given a location repre-

One of the key features of the algorithm we propose is to a®enting the center of a RG¥ and the current resolution and
just the transformation only where it needs to be adjusted. Tis@ales, we choose eight |0C3t|0'36f1 _____ ; arranged in the form
requires identifying regions where the two images are not welf a cube arouna’ as centers for the baS|s functions that will
registered at the current level and adjusting the deformation fidde used for computing the deformation field associated with a
over these regions. To achieve this, a local measure of misregiarticular region of the image. For 2-D registrations a square
tration needs to be developed. The approach we have used iarasind the center locatiod is used, in 3-D we use a cube. This
follows. When the algorithm moves from one level to anothegjves us the ability to build local deformations with eight DOFs

we first place basis functions on a regular grid and we model the2-D and 24 DOFs in 3-D around locaties. The support of

deformation field as the basis functions placed around locatidris alsos. Note that
. the value fors is obtained from the support of the basis func-
X) =X+ Z vi(x +ch ), with k; = _’L (8) tions used in the automatic ROI identification algorithm pre-

sented earlier. The local deformation field is thus adjusted at
d the current scale and resolution. A steepest gradient descent al-

with x; the position of the basis functions; their scale, an
orithm combined with the quadratic interpolation four-point

m—1 . . .
—, vi(x) the sum of the deformation fields obtained up t
%vké_lin —(1.)This equation states that, when moving from on racketing update method of line minimization is then applied

level to the other, an additional set of basis functionstemporarf the coefficients of the cube of basis functions under the fol-
placed on a regular grid is used to model the deformation fiel wmg cost function:

we call this grid®. Next, the gradienG of the cost function F(A(x), B(x'),x)

NMI(A(x), B(d(x)) with respect to the basis function’s coefy, \which

ficientsc; is evaluated through finite differences. The value of

G is then used to determine which regions in the imades) e
m—1 . . . =X+ Z Vk + vnl )
andB (x + Y ,—; vi(x)) are most likely to be misregistered —
at the current level. The idea behind usi@gto decide on re-
gions of mismatch is as follows: if the magnitude of the gradleﬁﬂd
of the cost function with respect to the coefficientis large, J _ '
then the cost function is not at a minimum with respect to V(%) =Y cld(x - x). (9)
If the cost function is not at a minimum at the location corre- J=1i=1

sponding toc; then it is likely that the region where the corre-

sponding basis function is located is misregistered. Therefole these equations, the valme _____ represent the aforemen-
registration in this particular area could be improved at the cuiened cube of center locations, adds the number of regions
rent level. If, on the other hand, the magnitude of the gradienf mismatch identified at this level. Therefore, for each local
with respect to coefficient; is small, two situations are pos-field, the set of coef“ﬂments[1 8] must be optimized. Because
sible. Either the images are reasonably well registered over ttta# ROIs are chosen in such a way that they do not overlap, the
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1. Evaluate G IQme\;!eeSTW regons of ;g)a;:t;l;renée each region scheme is to CompUtH:-'Z?:l O‘z”oo after each |eye|_ Then (11) .
P, can be used to compute bounds on the basis function coeffi-
ilidE . s : : cientsc; composing the(n + 1)th displacement field. This,

e e Y however, would be computationally expensive since in our
cess e . il registration algorithm the evaluation p3"""_; «;(x)||__ for all
sesss Jue coordinatesx would have to be done explicitly through finite
'Y X differences. Another possible constraint scheme is to use (11) to

compute bounds for the basis function coefficients by assuming
Fig. 2. Graphical illustration of the sequence of steps through which thgorst-case estimates f.ﬁE? 1 a;(x)]|... For example, if the
; i . )
algorithm goes at each level. numberN of levels is fixeda priori, then (11) will be satisfied
_ if 1-33211, ol is positive fori any value of =1 N.
can be done inde- Using the triangle inequality > ; ailleoc < Yo llti]loo,

optimization of the set of coefﬁcient%{]
we derive the bound

...8]
pendently of all other sets of coefficie ]___8 , with j # L.
Thus, we optimize (9) one region at a time. Fig. 2 illustrates the max |l <A< L (12)
operation of the algorithm. =l N 3N

Conducting the optimization one region at a time reduces oneln practice, we use (12) to obtain the bounds for the basis
large optimization problem to a series of small ones with at mdsinction’s coefficients at each level of the algorithm. At every
24 parameters each. This strategy has one main advantageitdmation, the value of the coefficients is computed and checked
decoupling the optimization of coefficients associated with diggainst their upper limit. If this limit is exceeded the maximum
joint regions into separate optimization problems, we eliminagdiowable value is substituted which, in effect, forces the dis-
the possibility that undesirable effects such as noise and lopi#lcements to be compatible with our topological constraints.
minima associated with optimization over one region do inter-
fere with optimization over other regions, thus leading to mo®. Deformation Field Derivative Estimation
accurate results as will be illustrated further. Furthermore, th'SSinceai — Jacobian

. o _ (v;) the use of the constraint scheme
strategy permits the parallelization of the algorithm.

described above requires a fast and accurate method for esti-

o , mating the partial derivatives of the deformation field. Because

F. Optimization Constraint Scheme at each level the displacement field is a linear combination
Previous attempts at constraining spline-based deformatioibasis functions, these partial derivatives can be directly com-

field models to produce consistent topological deformations cpated from the coefficients of the linear combination. Thus, a

be found in Rueckert al.[11] or Studholmeet al.[13] where constraint on the coefficients will translate into a constraint on

the basic idea is to optimize the similarity measure while regthe lefthand side of (12). For example, for a one-dimensional

larizing the deformation field by minimizing its second deriva¢1-D) deformation field

tive. While this technique can reduce folding artifacts, it does M

not guarant.ee the positive definiteness of .th.e Jacobia}n of Fhe o(z) = Z ez — 1)

transformation. Here we not only make explicit the relationship

between a smoothness constraint and the Jacobian of the defor- o

mation field, but we derive precise bounds for the basis fung® havemaxex [v'(z)| < |[|¢'|| 22k—; |cx|. Therefore, to

tions coefficients; in (3) that guarantee this positiveness. CorfMPosemax;cx [v'(z)| < A all we need is to impose

k=1

sider the following deformation field: M
<.
T(x) =x+v1(X) + v2(x) + -+ - + V(%) (10) ;|Ck| ¢l
fromR3 — R3, whereN is the number of levels utilized during In practice, this can be achieved simply by verifying that the
registration. Let constraint is not violated after each step of theoptimiza-

tion process. When the constraint is violated, the optimization

1
lemsillo < 5 (1 -3

[Y7 o it = cil
T

J(T) =1+ a1(x) + ax(x) + -+ an(x) process is interrupted. Note that the aforementioned estimate is
be the Jacobian of the transformatiBfx), wherel is the iden- cr_ude (i.e.,it .iS o_verconstraining) and'sharper bounds can be 0'?-
tity matrix anda; (x) is the Jacobian matrix of the displacemerf@ined by taking into account the spatial arrangement of the basis
field v;(x). In the appendix, we prove that if the constraint ~ functions (e.qg., their regions of support and amount of overlap).
Forinstance, if it is known that the basis functions have the same
" radius and are placed in such a way that the support of one does
Z i ) 11) not extend beyond the center of the next one, one can show that
=t o0 the maximum value of the derivative of the deformation field
is satisfied, then the Jacobian remains positive. In other word$eys the following inequality:
for any given deformation field (10), a displacement field
vn+1(x) can be added without violating the topology con- max v/ (z)| < (13)
straint as long as relationship (11) is satisfiedifor: 1,..., N. v€[zi,mis1]
Relationship (11) can be used to design a number of possiliievhichv is a 1-D deformation field modeled by a linear combi-
constraint schemes for registration procedures that use splimejon of basis functions locatedmgtandz;.; with coefficients
radial basis functions, or other types of bases. One possibleaandc;,; and radius" = r; = r;41.
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Initialize A(x), B{x", ¥ st the lowest resoiution and scale.
Faor i=1... Number of resolutions.,
For J=1.... Number of scales at current resolution.
Create reguiar grid @ at current resolution and scale and
compute region of support for basis functions.
Identify regions of misregistration.
Qptimize sach region independently from each other
End for
Upsample A(X}, B0xX"), %
End for
Quput B(xyand x.

Fig. 3. The adaptive bases registration algorithm.

Fig. 4. From left to right, the source and target images used in the 2-D
. . simulated experiments.
H. Summary of the Adaptive Bases Algorithm

Fig. 3 summarizes the algorithm we propose. At first, inpt 250
imagesA(x) and B(x) are downsampled to the lowest user ;g0
specified resolution and a bounding box is computed from ti g ., /od_é/e_ —e—regular
union of the foreground of both images. Initially,is set to § ,,,o/)’? —s—adaptive
zero. The parameters needed by the algorithm are the num g 100 ”:n,.yr disjoint & parallel
of resolutions and the scales at which the transformation ne¢  so e — disjoint & serial
to be computed at each resolution (the scales are specified by T
number of basis functions to be used when creating the regt 1 2 3 456 7 8 910 11

grid ©; the lower the number of basis functions, the larger tt
scale). At each resolution and scale, the region of support tor
the basis functions is calculated as a constant times the distance

level

@

between two adjacent grid points@ (in practice the constant 0.5

is between 1.5 and 2). 04 1S B—pg o
- —e—regular
go3+—— : he—ow i

lll. RESULTS 5 mr‘ ” —n_a_d?p_t“e

g 0.2 T disjoint & parallel

A. Algorithms Comparisons: Simulated Data 3, disjoint & serial

As explained above, the adaptive basis registration algoritt

introduces three novel concepts to intensity-based image reg
tration. The first is an adaptation step, where at each level ol
the regions that are mismatched at the current scale are opu-
mized. Secondly, we propose optimizing disjoint regions one Q)

at a time, instead of jointly. Lastly, we also introduce a novelg. 5. Timing (a) and average (b) pixel error for various optimization
constraint scheme. The purpose of this section is to dem@abemes.

strate the effect of the adaptation step separately from the ef-

fects of disjoint optimization. To that end, four 2-D registrawas generated by applying a known transformation to the source
tion algorithms were implemented. The first treats the probleimage. The deformation modified the image in three disjoint lo-
with the conventional stationary approach described in [1ations (around the eye, on the top of the cortex, and around
[12], [14], and [15]. The second method referred to as the adape hippocampus). It was built using the radial basis function
tive method (AM) uses the region of mismatch identificatiog(r) = (1 —r)* + (4r +1), for r > 0; itis, thus, different from
algorithm presented earlier but the coefficients of all the baglse basis used to compute the deformation field that registers
functions are optimized concurrently whether or not these baslig two images. The radius of the basis function used in gener-
functions define overlapping regions. This approach is similating the simulated warping function was 20 pixels. Gaussian
to the methods investigated in [20] and [21]. The third methatistributed noise was added to both images. When using the
implements our approach in which the algorithm operates &bSM or ADPM algorithms to register the source image to
disjoint regions. As described before, in this implementation réhe generated target image, we do not control the position of
gions where the images are misregistered are first identified thtbe basis functions. These are placed automatically over regions
four basis functions are placed around each identified locatitrat have been identified as misregistered.

while making sure that regions over which the algorithm oper- The four algorithms were set to span ten levels, starting with a
ates do not overlap. Here we optimize over all the basis furgrid of basis functions of 18 10 up to a grid of 26« 20. At the
tions at once and we refer to this implementation as the adamd of each level, the system time as well as the error between
tive disjoint parallel method (ADPM). The last algorithm is simthe current displacement field solution and the true displacement
ilar to the third one except that we optimize over each disjoifield was computed. The plots of system time and deformation
region in sequence. We refer to this algorithm as the adaptield error for each algorithm are shown in Fig. 5. Several con-
disjoint serial method (ADSM). The source and target imagetusions can be drawn from these experiments. First, the tradi-
used here are shown in Fig. 4. For this example the target imdipmal method based on a regular grid is the slowest. As could be

172 3 4 5 6 7 8 9 10 MN1

level
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Fig. 6. From left to right, registration results obtained with regular grid optimization, the AM, the ADPM, and the ADSM.

expected because the dimension of the search space is reduced, TABLE |
the AM method speeds up the process. It also leads to an averagBNAL VALUE OF COSTFUNCTION (NMI) AND TOTAL TIME TAKEN TO
. . . . . L. ACHIEVE REGISTRATION (SECONDS) BY THE ADAPTIVE ALGORITHM
pixel error inferior to the one obtained with the traditional ap-
proach. The disjoint region optimization approach we propo 1 2 3 4 | 5 6 | 7 |8 9 | 10
when performed simultaneously over all regions of mismatch__Time [9773 9781 10058 [9869 |10155 | 9928 |9862 9802|9950 [10165
the fastest but lead to accuracy numbers that are similar to __NM!__[125 123 1242 ]124|1242]123]1.25]125]123 [1228
numbers obtained with the AM. This suggests that the algorithm TABLE Il
does converge rapidly toward a local minimum. The best accu- pa. vaLue oF CostFUNCTION (NMI) AND TOTAL TIME TAKEN TO
racy numbers we have obtained are with the ADSM although AcHIEVE REGISTRATION (SECONDS BY THE TRADITIONAL APPROACH
it is slower than the ADPM. Note that the results presented in TR T T TR T e T T TS
this figure are only indicative of what can be achieved. Relam s ts st st
tive timing and accuracy numbers between methods depend efga— 217 126 [2n | 122 | eE 1217 122 120 1eTs
both the images being registered and parameters being used (re=
sults presented in the next section on a series of 3-D volumesgGR pulse sequences (FOV 224 cm, 256x 256, 1.3-mm
show more than a threefold gain in speed between the traditiofiitkness, 0-mm gapl'E = 1.9 ms, flip angle= 20 deg,
approach and the ADSM). In our experience, however, the traf = 450 ms, TR = 11.9 ms, 128 slices). We have used a
ditional method is the least accurate and the slowest while &t of 11 volumes and the task was to register ten volumes to the
ADSM method is, in general, the most accurate. This suggesteh one chosen as the targetimage for all registrations, by using
that optimizing the cost functions on small regions one at a tinggth registration algorithms. The parameters used with both al-
rather than together reduces the overall process’ sensitivityd@rithms were identical. Six levels were used, with the radius of
local minima. As discussed before it is also worth noting thme basis functions Varying from about 200 mm (V\ﬁ‘lh)f size
the ADSM lends itself to parallelization which could improvepx 2 x 2) to about 6 mm (witl® of size 17x 17 x 15). For both
performance substantially. Fig. 6 illustrates visually differenceggorithms, the optimization of any set of basis functions was
between the four algorithms. The results obtained with the trigalted when improvements of at least 0.0005 in the cost function
ditional approach, the AM, and the ADPM appear very similagould not be detected. In this set of experiments, we have used
The ADSMis the only one that has been able to deform correctlye NMI [16] computed from the joint histogram of the overlap-
the ventricular region at the end of the hippocampus, indicatifghg regions between the two image volumes as the cost func-
that this approach permits focusing on small regions over whigbn. The NMlI is computed from the joint histogram of the entire
the images are misregistered. overlapping area between the two image volumes even though
) ) we only alter small regions of the deformation field. We have

B. Algorithms Comparisons: Real Data used 32 bins to generate the joint histograms and a two-point fi-

In this section we evaluate the performance of the Adaptivite difference formula to compute the gradient of the cost func-
Bases Registration Algorithm we propose on a series of 3-D MRn. The number of bins was chosen experimentally as a good
data sets. The program was written in the C++ programming lasempromise between speed and accuracy on a few volumes and
guage, and all experiments were run on an IBM compatible Pien kept constant for the entire study. Although we could have
with an Intel Pentium 4 processor (1.7 GHz) running Windowshanged the number of bins in the histogram when moving from
ME. one resolution to the other we have chosen no to do it to avoid

For the purpose of comparison, we have also implementetiaving to specify another set of parameters. Prior to applying
method which is similar in nature to the methods used in [11dur algorithm, each volume was registered to the target volume
[12], [14], [15], except for the additional constraint scheme usesing a nine DOFs transformation computed with an indepen-
in our method. Both programs were built by compiling idendent implementation of an MI-based method similar to the one
tical codes, with the exception that the identification of misregproposed by Maes [8].
istered regions was turned off for the second program leadingThe time required for each registration for both algorithms as
to a gradient descent optimization of the cost function (5) usimgell as the final value of the cost function are given in Tables |
a spatially invariant model for the deformation field. The datand Il. These tables show that, on average, the adaptive bases
used in this set of experiments were 11 MRI volumes. The M&gorithm is about 3.5 times faster than the more traditional ap-
brain images used here were obtained with high-resolution 3gboach for this set of experiments. For every registration, the
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Fig. 7. Representative slices of atlases constructed through nonrigid registration with both adaptive and nonadaptive approaches. Friomdeértmeafter
nonrigid registration using nonadaptive approach, average constructed after registration using adaptive approach, and target image.

adaptive bases approach is at least twice as fast as its nonas
tive counterpart. Moreover, Tables | and Il also show that fc
every registration, the adaptive bases registration algorithm is
least as accurate, or more, as measured by the final value of
cost function, than the traditional approach. The average fir
value for the cost function for the registrations which used tt
adaptive approach was 1.239, while it is 1.218 for the nonade
tive approach.

To further assess the quality of the registrations, for or
cannot always use the cost function itself to assess the qua
of the results, we also show the average brains comput
through registration using both approaches. These are shc
in Fig. 7. In this figure, the leftmost image is the average com-

e ; ; ; i ig. 8. Representative slices of an example registration using the adaptive grid
puted after nonrigid registration with the traditional approacﬁe istration algorithm. From left to right: The source image, the source image

The middle image is the average computed after nonrig@gampled to match the target image, and the target image.
registration with the approach we propose. The target image is

aIS(_J sho_wn on the right. The average _comp_uted after nonrl%lﬁ atlas-based segmentation task. ROIs (whole brain, eyes and
registration with the new approach is visibly sharper than

; . . . oPtic nerves, and spine) were manually delineated in the atlas
the average computed after registration with the traditiona . : .
sgd in Section IlI-B and binary masks were created. The re-

approach, indicating that, overall, the new approach succeeéi‘e e
inpr?mtchin the tar get image better than the[:Paditional one, J'0Ns Were chosen because these present a range of difficulty

Finall r?ote tha?the sn?allest radius of the basis functibV\éith the whole brain contours being the easiest and the optic
used in ¥r,1e registrations described above was about 6 mm I_[|]1erves the most difficult. The deformation fields between the

. . . . allas and the ten other volumes were computed and used to
ther improvements in accuracy can be achieved by adding magre. -

g . ; . . roject the masks from the atlas onto each of the remaining vol-
levels, which use radial basis functions with even smaller radil. :

i ; ; ) . umes. Contours were manually drawn on a few slices chosen at
Fig. 8 shows an example of a registration achieved using seven ; .
levels of the adaptive bases registration algorithm. with rad.ra}ndom in each volume (four slices/volume/structure). Manual
basis function rarrl) ing in radiusgfrom aboutgzoo m;n 3 mn(?ontours and contours obtained automatically were then com-

. ging : . . pPared using an accepted similarity index defined as two times
The images clearly show that the adaptive bases reg|strat|ontﬁ -

gorithm is capable of producing high-quality matches, even le number of pixels in the intersection of the contours divided
the smallest visible structures ' By the sum of the number of pixels within each contour [22].

This index varies between zero (complete disagreement) and
one (complete agreement) and is sensitive to both displacement
and differences in size and shape. Table Il lists mean values for
The accuracy of the adaptive bases algorithm for nonrigide similarity index for each structure. Itis customarily accepted
registration problems was assessed quantitatively by meanshadt a value of the similarity index above 0.80 indicates a very

C. Atlas-Based Segmentation Results
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TABLE Il
AVERAGE VALUES OF .S FOR A NUMBER OF STRUCTURES

Volume 1 21 3] 4 5|6 |78 9|10

WhoeHead | 097 |096]|056( 096 | 097 |097|097| 097 | 0% | 086
Spine 093092(093[092]093082|/091|086|092| 092
LeftEye 091 09| 09|08 | 09 |085|085|092| 091|082
Right Eye 089 |085( 081|088 | 09 [082|085|089| 092 | 0.82

Fig. 10. Images used in constraint scheme demonstration. Left: source image
B(x). Right: target imagei(x).

As can be seen by focusing on the bottom left corner of these
images, the results generated witk= 0.3 does not satisfy the
topological constraint for it produces folding. The folding effect
becomes decreasingly noticeable as the threshold used is low-
ered. Using (12) our theory predicts a value\o& 0.0556 or

less forN = 6. From Fig. 11 one can verify that the folding
effect completely disappears in the result image generated with
A = 0.05, confirming what has been theoretically predicted.

IV. DISCUSSION

Over the years, nonrigid registration using NMI and B-splines
placed on a regular grid has been shown to be both accurate and
robust. In this paper, we present an approach which, while in-
spired by existing work, presents several novel elements. First,
we do not rely on basis functions placed on a regular grid. This
allows us to adjust the deformation field only where it needs
to be adjusted at the current scale and resolution. By doing so
Fig. 9. lllustrative contours obtained automatically with our algorithms bwe reduce the dimension of the search space, thus speeding up
deforming templates in the atlas. the process. We simplify the process further by computing local

deformations on disjoint regions. By doing so we transform one
good agreement between contours. Our results are well abgyge optimization process into a series of smaller ones with at
this value except for the eyes. The major source of errors is th@st 24 DOFs (in 3-D). While it is possible to show theoreti-
optic nerve which is a thin and elongated structure. Becauseggfly that the global optimum reached when optimizing over the
the size of this structure, an error of a few pixels reduces tgfitire region is the same as the one reached when optimizing
value of the similarity index considerably. Fig. 9 shows a fewver smaller, separate, regions when the cost function is sepa-
representative examples of contours that have been obtainedrgbte (as would be the case if we were using the L2 norm), we

tomatically. have not been able to prove the same with a nonseparable cost
. i function such as Ml without making stationarity assumptions
D. Constraint Scheme Demonstration that may not always be verified in practice [23]. There is, there-

We now demonstrate the effect of the constraint scheme pfere, no theoretical guarantee that by optimizing on separate re-
sented earlier on a 3-D registration problem. Fig. 10 shows rgpens we will be able to reach the global optimum. In practice,
resentative slices of the source imdgjex) and the target image however, the various local minima in the Ml cost function limit
A(x) used in this demonstration. We have used our algorithtime ability of numerical algorithms commonly used to solve the
together with the constraint scheme described above to registenrigid registration problem to reach this optimum. Our results
image B(x) to imageA(x). We have repeated the experimenshow that by optimizing on small separate regions in series we
four times, each with a different value far The total number of reduce the effect of local minima and reach solutions that are
levels used was 6, while the last level used a @ridiith 17 x  better than solutions arrived at when trying to solve the problem
17 x 15 center locations. Fig. 11 shows the registration resutifobally.

T B(x) for each value oh in (12). The results shown in Fig. 11 The method we have used to identify ROIs is not the only
were generated with equal to (from left to right): 0.3, 0.2, 0.1, one possible but in our experience it is robust and reliable. In
and 0.05. Note that the results look identical in nearly all of tH@4], we did try to use the local correlation as an index of re-
regions of the slices shown in Fig. 11. The same has been gienal misregistration but we found the current strategy to be
sually confirmed for all the other slices in these images. Disuperior. The method we use to select misregistered regions in-
ferences can be noticed mainly around the mouth. The bottewlves a threshold whose value is set experimentally. Chosen too
row of Fig. 11 displays the mouth region for each output imagkigh, some regions at a particular resolution and scale could be
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Fig. 11. Each row from left to right: registration results obtained wite= 0.3, A = 0.2, A = 0.1, and= 0.05. Bottom row are zoomed in versions of the
images on top row.

skipped and may not be recoverable at the next level. Chosenadgorithms, the main limitation of our approach is the lack of
low, many regions will be optimized at the current scale whempriori and anatomical information that can lead to erroneous
they could be better registered at the next one. At the time @éformation. This is particularly true in the cortical area where
writing we have not studied the effect of this threshold on theothing prevents the algorithm to match sulci that do not
registration accuracy. We also did not investigate the possibilitprrespond to each other. Addressing this problem will require
of changing the number of bins in the joint histogram wheadding constraints in a way similar to the approach proposed
moving from one resolution to the other to take into accoubty Hellier et al. [26].
the change in pixel numbers on the images when their spatial
resolution is changed. It is possible that convergence properties APPENDIX
of the algorithm could be improved by doing so.

Since we published earlier versions of this paper [24], [25] -&t J(T) = I+ ai(x) + az(x) + --- + an(x) be the Ja-
others have also proposed techniques by which the compliaf@ian of'(x) in (10), L is the identity matrix, and;(x) the
of the transformation could be adapted within a B-spline framé@cobian matrix of the displacement fiate(x). If |||, =

work [20], [21]. The approach these authors use is to fix trgglpuy” _1 lleayll, < 1 (herellyll, = ,/Zf’zlyg is the usual
coefficients of the B-splines whose region of support have beﬁa-nofm) then it is well known thatl + 1)~ exists and is
labeled as passive. Criteria used to identify passive regio ’

. e e §A§en by the Neuman series

include local statistical measures such as the joint entropy “or

the gradient measure we introduced in [25]. The constraint 1 = m . m
i (IT+a) =) (-)"af

scheme we propose to guarantee the topological correctness

of the overall transformation is another novelty we introduce. m=0 ) ,

Constraints proposed in the literature are somewhat ad hoc, =Il-a+oj—--Fay—---. (14)

attempting to limit the folding problem by adding a smoothneggoreover, we have

constraint to the cost function. The method we propose here I

explicitly enforces the correctness of the transformation and our < H([ + al)—l Hop < W (15)
2 — [l

experimental results have verified our theoretical predictions. I+ ||al||op2
The results we have shown demonstrate that when using b%ﬁiﬁce(I +a1) "V exists forallas ||, < 1, we conclude that
functions with the same supports the method we propose is bQt o “tllop, ' :

more accurate and faster than a method relying on a regu F(I + 1) # 0 for ”alHom < 1. Moreover, since 1) the
grid. Although the accuracy of nonrigid registration algorithmg]"’lpf:”ngc.leJ“(I + o) t.hat tak.es the vectf)r spadé; of (3x 3)
is difficult to assess, we have shown that the value of the ﬁn_rglatrlces IntaR is contlnuous, Hlet 1> 0;and 3)_”0‘1”01)2 <1
similarity measure is larger with our method than with a mor'é"‘_‘Connm_:teOI set, it fo'_IOV‘_’S tmt(lfo‘l) > 0 (if det(I+a)
traditional approach. We have also shown qualitatively th§fVitches sign, the continuity would imply thétt(I+a:) must
the accuracy of the registration is better with our approach B§come nullfor some matrix; contradicting the fact that-a,
comparing the sharpness of average volumes. Quantitativélys an inverse).

we have shown that our algorithm, when used for atlas-based-€t A1 = I+ a1, andAy = Ay + as. For||aall,,, <1,
segmentation tasks, produces results that are comparableifd = (I + al)_l exists, and we writel, asAs = Ay +ay =
those obtained manually. As is the case for all intensity-basﬂd(I+A1_1a2). Thus, A, is invertible if and only ifI+A1_1a2

op2
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is invertible andA; ' = (I + A7 'as)~'AT'. Using (14), it 6]
follows thatA; ! exists if | A7 as||,p, < 1 and as before
det Ay = det Ay (T4 AT ay) = det Ay det(T+ AT ag) 7]

remains positive since it is the product of positive values. But (€]
using (15) together with a well known norm inequality we get
(9]

el
= T

A7 el < [ATY] (16)

[l

opa opa

lop, 101

Thus assumingja ||, < 1, if [laz|l,,, (1 = [lasll,,,) " <

1, thendet A, remains positive. Equivalentlyet A, does not
change sign if|az||,,, < 1 — [laill,,,- This last condition
gives a bound foflaz,,, in terms Ofn”oz1||op2. By induction,  [11]
we obtain that

(12]

llontallyp, <1-— Zai forn=1,...,N—1 (17)
=1

op2
is sufficientforAy = I4+aq+as+- - +ay tobeinvertible,and 13!
for det Ay to remain positive. Therefore, to satisfy the topolog-
ical constraint on the displacement fialgd(x), it is sufficient to
enforce (17) for all possible coordinatesThis can be achieved [14]
by restricting the range of the coefficients of the radial bases
functions used in modeling the displacement fieJ@x). How-  [15]
ever, computing the operator nof;||,,,, of matrixa; during
optimization is cumbersome for it involves the computation of
eigenvalues. To avoid computing operator notfas||,,, , we
can use the infinity nornja| _ := maxy, » |@m.»|, Which can
be computed cheaply from the coefficiertsin (3). Using the
well known matrix relation||«l|,,, < |||, together with a
simple calculation that yieldgx||, < 3 ||«|.,, we obtain that
if (11) is satisfied forn = 1,..., N — 1 then (17) is satisfied.
Thus, for any given deformation field

(16]
(17]

(18]

(9]

T(x)=1+ Z vi(x)

a displacement field y 11 (x) can be added without violating
the topology constraint.

(20]
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