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Abstract—Nonrigid registration of medical images is important
for a number of applications such as the creation of population av-
erages, atlas-based segmentation, or geometric correction of func-
tional magnetic resonance imaging (fMRI) images to name a few. In
recent years, a number of methods have been proposed to solve this
problem, one class of which involves maximizing a mutual informa-
tion (MI)-based objective function over a regular grid of splines.
This approach has produced good results but its computational
complexity is proportional to the compliance of the transformation
required to register the smallest structures in the image. Here, we
propose a method that permits the spatial adaptation of the trans-
formation’s compliance. This spatial adaptation allows us to re-
duce the number of degrees of freedom in the overall transforma-
tion, thus speeding up the process and improving its convergence
properties. To develop this method, we introduce several novel-
ties: 1) we rely on radially symmetric basis functions rather than
B-splines traditionally used to model the deformation field; 2) we
propose a metric to identify regions that are poorly registered and
over which the transformation needs to be improved; 3) we parti-
tion the global registration problem into several smaller ones; and
4) we introduce a new constraint scheme that allows us to produce
transformations that are topologically correct. We compare the ap-
proach we propose to more traditional ones and show that our new
algorithm compares favorably to those in current use.

Index Terms—Adaptive bases algorithm, mutual information,
nonrigid image registration.

I. INTRODUCTION

NONRIGID medical image registration, also known in the
literature as spatial normalization or warping, is often an

essential step in automated medical image analysis. A number
of methods have been proposed over the years to solve this
problem. For instance (a more complete review on the subject
can be found in [1]), Collins [2] proposes a technique in which
the overall transformation is obtained as a set of local affine
ones. Bajcsyet al. [3], [4] use an elastic model approach. Algo-
rithms based on viscous fluids are put forth by Christensen [5]
and Bro-Nielsen [6]. Thirion [7] uses a method called “demons”
that is similar to an optical flow approach for small displace-
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ments. Recently and following their success for rigid body
registration problems [8], [9], mutual information (MI)-based
methods have also been used for nonrigid registration prob-
lems. Meyer [10] relies on a technique based on thin-plate
splines in which an optimizer is used to adjust the position
of homolgous control points. Rueckert [11] and Studholme
[12], [13] use a similar approach but with B-splines. Although
implementations vary, these intensity-based techniques can be
viewed in an optimization framework in which the registration
problem consists of deforming a source image to “best”
match a target image under a chosen similarity measure.
Mathematically, this can be expressed as

(1)

in which

(2)

and is an intensity-based similarity measure (the cost func-
tion), a coordinate vector in , with being the dimension-
ality of the images, and

a deformation field that warps image ; thus, is what
is computed in the registration problem. As mentioned earlier,
a number of authors have proposed to use linear combinations
of B-splines placed on a regular grid to model the deforma-
tion field [11], [12], [14], [15]. Because the splines are
placed on a regular grid, the characteristics of the warping trans-
formation [e.g., the number of degrees of freedom (DOFs) it
possesses] does not vary spatially and we refer to this model
as being spatially invariant. The major disadvantage of this ap-
proach is that the computational complexity of the method is
proportional to the compliance (i.e., the number of basis func-
tions) of the transformation needed to register the smaller struc-
tures in the image. Many structures of interest in medical im-
ages, especially in the brain, are in the order of millimeters.
Deforming such structures requires placing basis functions at
approximately every couple of millimeters which can require
the optimization of a few hundred thousand basis function coef-
ficients. For example, registering two typical three–dimensional
(3-D) MR image volumes (256 256 128 pixels large) using
a 64 64 32 regular grid of splines generates a 393 216-di-
mensional search space. Finding an optimum in such a search
space is not only time consuming but difficult because of the
possibility of convergence to local optima. The work presented
here proposes a new approach to nonrigid image registration that
reduces the computational complexity and improves the conver-
gence properties of methods proposed so far. The new approach
is based on the idea that much can be gained if the compli-
cance of the transformation is adapted locally. We have derived

0278-0062/03$17.00 © 2003 IEEE



ROHDEet al.: ADAPTIVE BASES ALGORITHM FOR INTENSITY-BASED NONRIGID IMAGE REGISTRATION 1471

an approach that automatically identifies regions where the im-
ages are misregistered, and we focus on these regions only, thus
avoiding useless computations on regions that are already cor-
rectly registered. Moreover, to prevent the optimization process
from producing transformations that are physically incorrect,
we have developed a new, precise, and fast way of enforcing that
the Jacobian matrix of the deformation field remains uniformly
invertible throughout the domain of the images. Together, these
ideas were used to derive a new nonrigid registration algorithm
that we call the Adaptive Bases Registration Algorithm.

The remainder of this paper is organized as follows. Section II
describes the new method in detail, including the method for
region of misregistration identification, our local deformation
field optimization scheme, as well as our constraint scheme.
Section III presents results we have obtained with this algorithm
and it includes a comparison with a regular grid approach. Sec-
tion IV summarizes the main contributions of this paper and sug-
gests possible future work in this area. The appendix provides
details on the constraint scheme we propose.

II. M ETHOD

A. Problem Statement

The goal in nonrigid registration is to generate a mapping re-
lating any point in the domain of the source image to a
point in the domain of the target image . Let

, represent the domain of the images and , where
is the dimensionality of the data sets, i.e., for two-di-

mensional (2-D) images, and for volumetric images. Reg-
istering images and is equivalent to finding the de-
formation such that , where is
the identity transformation, is a one to one onto continuous map
with continuous inverse (homeomorphism) and for which some
cost function is optimized. These con-
straints on the transformation preserve the natural topology of
the image, impeding the transformation from producing artifacts
known as “folding” and “tearing” of the image. Here, we have
used compactly supported radial basis functions to model the
deformation , while the cost function optimized is the normal-
ized MI (NMI) [16] between images and , al-
though the approach we propose is not limited to this particular
similarity measure. In our implementation, the NMI is estimated
using the joint histogram of the source and target images while
the value of image at an arbitrary point is evaluated using
trilinear interpolation. The value of the NMI is always evaluated
over all the voxels belonging to the overlapping domain of im-
ages and .

B. Local Deformation Fields and Radial Basis Functions

As previously stated, rather than modeling the deformation
field with a linear combination of cubic B-splines placed on a
regular grid as is usually done [11]–[15], we build our deforma-
tion field incrementally, region by region, focusing on regions
that are misregistered. The method by which we identify the
relevant regions is detailed below but the total deformation field

is modeled as a linear combination of a set of basis func-
tions irregularly spaced over the image domain, i.e.,

(3)

Fig. 1. Plot of the radial basis function whose equation is given in (6) with
radius equal to one. Left: in one dimension; right: in two dimensions.

with coefficients and a function
that ispositive definiteon in the following sense: for all sets

of finitely many distinct points
in , the matrix is positive definite
which guarantees the solvability of the system

(4)

This property is important for registration problems for it guar-
antees that the model allows for the construction of any given de-
formation field solution prescribed by points placed at arbitrary
locations. In the context of nonrigid registration, this means
that any deformation field specified at an arbitrary set of points
placed on an irregular grid can be modeled. For this to be true,
the basis functions used to model the deformation field need
to possess what is know as the universal interpolation property.
While it is known that radial basis functions possess this prop-
erty (see for instance [17]–[19]), it is not known whether or not
B-splines possess it. This lead us to use one of Wu’s compactly
supported positive definite radial basis functions to model the
deformation field

(5)

with

(6)

where , is a predetermined scale for
the basis function, and is the usual Euclidean norm on .
Fig. 1 shows a plot of this function in one and two dimensions.

There are several advantages in using a compactly supported
basis function such as (6) in registration problems. First, com-
pact support means that for each value of, the sum in (3)
can be reduced to relatively few terms. This also means that
under many circumstances optimization can be confined to a
finite part of the domain D, improving the computational effi-
ciency of the overall method. Moreover, (6) and, therefore, (5)
have been shown to possess continuity. Smoothness prop-
erties are important in registration problems since the first and
second derivatives of the deformation field are often used for
the computation of the gradient, and sometimes Hessian, of the
cost function with respect to the optimization parameters. These
quantities are used in several optimization algorithms applicable
to this type of registration problem, e.g., conjugate gradient de-
scent, or Newton methods.

C. Multiscale and Multiresolution Approach

The algorithm proposed here approaches the final deforma-
tion field iteratively across scales and resolutions. Here, resolu-
tion means the spatial resolution of the image while the scale is
related to the transformation itself. A standard image pyramid is
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created to apply the algorithm at different resolutions. At each
resolution, the scale of the transformation is adapted by modi-
fying the region of support and the number of basis functions.
The scale of the transformation is proportional to the bases’ re-
gion of support (i.e., a large region of support leads to a trans-
formation at a large scale). Typically, the algorithm is initial-
ized on a low-resolution image with few basis functions having
large support. As the algorithm progresses to finer resolutions
and smaller scales, the region of support of the basis functions
is reduced. Following this approach, the final deformation field
is computed as

(7)

with the total number of levels (in the remainder of this paper,
a level refers to a particular combination of scale and resolu-
tion). It should be noted that the universal interpolation prop-
erty discussed above holds only if all the basis functions have
the same scale. Here we model the overall deformation field as
a sum of deformation fields each computed at a different res-
olution and scale. Although the region of support for the basis
functions changes from scale to scale and from resolution to res-
olution, at a particular scale and resolution the deformation field
is computed with bases that have the same scale and region of
support.

D. Regions of Misregistration Identification

One of the key features of the algorithm we propose is to ad-
just the transformation only where it needs to be adjusted. This
requires identifying regions where the two images are not well
registered at the current level and adjusting the deformation field
over these regions. To achieve this, a local measure of misregis-
tration needs to be developed. The approach we have used is as
follows. When the algorithm moves from one level to another,
we first place basis functions on a regular grid and we model the
deformation field as

(8)

with the position of the basis functions ,their scale, and
the sum of the deformation fields obtained up to

level . This equation states that, when moving from one
level to the other, an additional set of basis functions temporarily
placed on a regular grid is used to model the deformation field;
we call this grid . Next, the gradient of the cost function

with respect to the basis function’s coef-
ficients is evaluated through finite differences. The value of

is then used to determine which regions in the images

and are most likely to be misregistered
at the current level. The idea behind usingto decide on re-
gions of mismatch is as follows: if the magnitude of the gradient
of the cost function with respect to the coefficientis large,
then the cost function is not at a minimum with respect to.
If the cost function is not at a minimum at the location corre-
sponding to then it is likely that the region where the corre-
sponding basis function is located is misregistered. Therefore,
registration in this particular area could be improved at the cur-
rent level. If, on the other hand, the magnitude of the gradient
with respect to coefficient is small, two situations are pos-
sible. Either the images are reasonably well registered over that

region at the current level or the images could be significantly
misregistered at that location but the cost function is at a local
extremum. In either case, further gradient-based optimization in
this region is unlikely to be fruitful and we assume that it can be
neglected.

The algorithm we use for identifying regions over which to
concentrate starts by evaluating as described above. Once
this is done, the individual components of are sorted in
decreasing order according to their magnitude . The center
of the regions of misregistration are chosen as the location of
the basis function for which is above the selected threshold.
Once a center is selected, the adjacent locations are eliminated
from the list; this is done to force regions of interest (ROIs) to
be disjoint (i.e., prevent overlap between these regions). This is
discussed further in the next section.

E. Local Optimization

Once ROIs have been identified, the local deformation fields
need to be computed. One possible approach would be to opti-
mize all the coefficients associated with the ROIs chosen in
the previous step simultaneously. This would amount to opti-
mizing the coefficients of basis functions scattered throughout
the image domain which would be akin to the approach recently
proposed by Schnabelet al. [20]. Here, however, we propose
a solution that allows us to reduce the dimensionality of the
optimization process by partitioning it. Given a location repre-
senting the center of a ROI and the current resolution and
scale , we choose eight locations arranged in the form
of a cube around as centers for the basis functions that will
be used for computing the deformation field associated with a
particular region of the image. For 2-D registrations a square
around the center location is used, in 3-D we use a cube. This
gives us the ability to build local deformations with eight DOFs
in 2-D and 24 DOFs in 3-D around location. The support of
the basis functions placed around locationis also . Note that
the value for is obtained from the support of the basis func-
tions used in the automatic ROI identification algorithm pre-
sented earlier. The local deformation field is thus adjusted at
the current scale and resolution. A steepest gradient descent al-
gorithm combined with the quadratic interpolation four-point
bracketing update method of line minimization is then applied
to the coefficients of the cube of basis functions under the fol-
lowing cost function:

in which

and

(9)

In these equations, the values represent the aforemen-
tioned cube of center locations, andis the number of regions
of mismatch identified at this level. Therefore, for each local
field, the set of coefficients must be optimized. Because
the ROIs are chosen in such a way that they do not overlap, the



ROHDEet al.: ADAPTIVE BASES ALGORITHM FOR INTENSITY-BASED NONRIGID IMAGE REGISTRATION 1473

Fig. 2. Graphical illustration of the sequence of steps through which the
algorithm goes at each level.

optimization of the set of coefficients can be done inde-

pendently of all other sets of coefficients , with .
Thus, we optimize (9) one region at a time. Fig. 2 illustrates the
operation of the algorithm.

Conducting the optimization one region at a time reduces one
large optimization problem to a series of small ones with at most
24 parameters each. This strategy has one main advantage: by
decoupling the optimization of coefficients associated with dis-
joint regions into separate optimization problems, we eliminate
the possibility that undesirable effects such as noise and local
minima associated with optimization over one region do inter-
fere with optimization over other regions, thus leading to more
accurate results as will be illustrated further. Furthermore, this
strategy permits the parallelization of the algorithm.

F. Optimization Constraint Scheme

Previous attempts at constraining spline-based deformation
field models to produce consistent topological deformations can
be found in Rueckertet al. [11] or Studholmeet al. [13] where
the basic idea is to optimize the similarity measure while regu-
larizing the deformation field by minimizing its second deriva-
tive. While this technique can reduce folding artifacts, it does
not guarantee the positive definiteness of the Jacobian of the
transformation. Here we not only make explicit the relationship
between a smoothness constraint and the Jacobian of the defor-
mation field, but we derive precise bounds for the basis func-
tions coefficients in (3) that guarantee this positiveness. Con-
sider the following deformation field:

(10)

from , where is the number of levels utilized during
registration. Let

be the Jacobian of the transformation , where is the iden-
tity matrix and is the Jacobian matrix of the displacement
field . In the appendix, we prove that if the constraint

(11)

is satisfied, then the Jacobian remains positive. In other words,
for any given deformation field (10), a displacement field

can be added without violating the topology con-
straint as long as relationship (11) is satisfied for .
Relationship (11) can be used to design a number of possible
constraint schemes for registration procedures that use splines,
radial basis functions, or other types of bases. One possible

scheme is to compute after each level. Then (11)
can be used to compute bounds on the basis function coeffi-
cients composing the th displacement field. This,
however, would be computationally expensive since in our
registration algorithm the evaluation of for all
coordinates would have to be done explicitly through finite
differences. Another possible constraint scheme is to use (11) to
compute bounds for the basis function coefficients by assuming
worst-case estimates for . For example, if the
number of levels is fixeda priori, then (11) will be satisfied
if is positive for any value of .
Using the triangle inequality ,
we derive the bound

(12)

In practice, we use (12) to obtain the bounds for the basis
function’s coefficients at each level of the algorithm. At every
iteration, the value of the coefficients is computed and checked
against their upper limit. If this limit is exceeded the maximum
allowable value is substituted which, in effect, forces the dis-
placements to be compatible with our topological constraints.

G. Deformation Field Derivative Estimation

Since the use of the constraint scheme
described above requires a fast and accurate method for esti-
mating the partial derivatives of the deformation field. Because
at each level the displacement field is a linear combination
of basis functions, these partial derivatives can be directly com-
puted from the coefficients of the linear combination. Thus, a
constraint on the coefficients will translate into a constraint on
the lefthand side of (12). For example, for a one-dimensional
(1-D) deformation field

we have . Therefore, to
impose all we need is to impose

In practice, this can be achieved simply by verifying that the
constraint is not violated after each step of theoptimiza-
tion process. When the constraint is violated, the optimization
process is interrupted. Note that the aforementioned estimate is
crude (i.e., it is overconstraining) and sharper bounds can be ob-
tained by taking into account the spatial arrangement of the basis
functions (e.g., their regions of support and amount of overlap).
For instance, if it is known that the basis functions have the same
radius and are placed in such a way that the support of one does
not extend beyond the center of the next one, one can show that
the maximum value of the derivative of the deformation field
obeys the following inequality:

(13)

in which is a 1-D deformation field modeled by a linear combi-
nation of basis functions located atand with coefficients

and and radius .
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Fig. 3. The adaptive bases registration algorithm.

H. Summary of the Adaptive Bases Algorithm

Fig. 3 summarizes the algorithm we propose. At first, input
images and are downsampled to the lowest user-
specified resolution and a bounding box is computed from the
union of the foreground of both images. Initially,is set to
zero. The parameters needed by the algorithm are the number
of resolutions and the scales at which the transformation needs
to be computed at each resolution (the scales are specified by the
number of basis functions to be used when creating the regular
grid ; the lower the number of basis functions, the larger the
scale). At each resolution and scale, the region of support for
the basis functions is calculated as a constant times the distance
between two adjacent grid points in(in practice the constant
is between 1.5 and 2).

III. RESULTS

A. Algorithms Comparisons: Simulated Data

As explained above, the adaptive basis registration algorithm
introduces three novel concepts to intensity-based image regis-
tration. The first is an adaptation step, where at each level only
the regions that are mismatched at the current scale are opti-
mized. Secondly, we propose optimizing disjoint regions one
at a time, instead of jointly. Lastly, we also introduce a novel
constraint scheme. The purpose of this section is to demon-
strate the effect of the adaptation step separately from the ef-
fects of disjoint optimization. To that end, four 2-D registra-
tion algorithms were implemented. The first treats the problem
with the conventional stationary approach described in [11],
[12], [14], and [15]. The second method referred to as the adap-
tive method (AM) uses the region of mismatch identification
algorithm presented earlier but the coefficients of all the basis
functions are optimized concurrently whether or not these basis
functions define overlapping regions. This approach is similar
to the methods investigated in [20] and [21]. The third method
implements our approach in which the algorithm operates on
disjoint regions. As described before, in this implementation re-
gions where the images are misregistered are first identified then
four basis functions are placed around each identified location
while making sure that regions over which the algorithm oper-
ates do not overlap. Here we optimize over all the basis func-
tions at once and we refer to this implementation as the adap-
tive disjoint parallel method (ADPM). The last algorithm is sim-
ilar to the third one except that we optimize over each disjoint
region in sequence. We refer to this algorithm as the adaptive
disjoint serial method (ADSM). The source and target images
used here are shown in Fig. 4. For this example the target image

Fig. 4. From left to right, the source and target images used in the 2-D
simulated experiments.

(a)

(b)

Fig. 5. Timing (a) and average (b) pixel error for various optimization
schemes.

was generated by applying a known transformation to the source
image. The deformation modified the image in three disjoint lo-
cations (around the eye, on the top of the cortex, and around
the hippocampus). It was built using the radial basis function

it is, thus, different from
the basis used to compute the deformation field that registers
the two images. The radius of the basis function used in gener-
ating the simulated warping function was 20 pixels. Gaussian
distributed noise was added to both images. When using the
ADSM or ADPM algorithms to register the source image to
the generated target image, we do not control the position of
the basis functions. These are placed automatically over regions
that have been identified as misregistered.

The four algorithms were set to span ten levels, starting with a
grid of basis functions of 10 10 up to a grid of 20 20. At the
end of each level, the system time as well as the error between
the current displacement field solution and the true displacement
field was computed. The plots of system time and deformation
field error for each algorithm are shown in Fig. 5. Several con-
clusions can be drawn from these experiments. First, the tradi-
tional method based on a regular grid is the slowest. As could be



ROHDEet al.: ADAPTIVE BASES ALGORITHM FOR INTENSITY-BASED NONRIGID IMAGE REGISTRATION 1475

Fig. 6. From left to right, registration results obtained with regular grid optimization, the AM, the ADPM, and the ADSM.

expected because the dimension of the search space is reduced,
the AM method speeds up the process. It also leads to an average
pixel error inferior to the one obtained with the traditional ap-
proach. The disjoint region optimization approach we propose
when performed simultaneously over all regions of mismatch is
the fastest but lead to accuracy numbers that are similar to the
numbers obtained with the AM. This suggests that the algorithm
does converge rapidly toward a local minimum. The best accu-
racy numbers we have obtained are with the ADSM although
it is slower than the ADPM. Note that the results presented in
this figure are only indicative of what can be achieved. Rela-
tive timing and accuracy numbers between methods depend on
both the images being registered and parameters being used (re-
sults presented in the next section on a series of 3-D volumes do
show more than a threefold gain in speed between the traditional
approach and the ADSM). In our experience, however, the tra-
ditional method is the least accurate and the slowest while the
ADSM method is, in general, the most accurate. This suggests
that optimizing the cost functions on small regions one at a time
rather than together reduces the overall process’ sensitivity to
local minima. As discussed before it is also worth noting that
the ADSM lends itself to parallelization which could improve
performance substantially. Fig. 6 illustrates visually differences
between the four algorithms. The results obtained with the tra-
ditional approach, the AM, and the ADPM appear very similar.
The ADSM is the only one that has been able to deform correctly
the ventricular region at the end of the hippocampus, indicating
that this approach permits focusing on small regions over which
the images are misregistered.

B. Algorithms Comparisons: Real Data

In this section we evaluate the performance of the Adaptive
Bases Registration Algorithm we propose on a series of 3-D MR
data sets. The program was written in the C++ programming lan-
guage, and all experiments were run on an IBM compatible PC,
with an Intel Pentium 4 processor (1.7 GHz) running Windows
ME.

For the purpose of comparison, we have also implemented a
method which is similar in nature to the methods used in [11],
[12], [14], [15], except for the additional constraint scheme used
in our method. Both programs were built by compiling iden-
tical codes, with the exception that the identification of misreg-
istered regions was turned off for the second program leading
to a gradient descent optimization of the cost function (5) using
a spatially invariant model for the deformation field. The data
used in this set of experiments were 11 MRI volumes. The MR
brain images used here were obtained with high-resolution 3-D

TABLE I
FINAL VALUE OF COST FUNCTION (NMI) AND TOTAL TIME TAKEN TO

ACHIEVE REGISTRATION(SECONDS) BY THE ADAPTIVE ALGORITHM

TABLE II
FINAL VALUE OF COST FUNCTION (NMI) AND TOTAL TIME TAKEN TO

ACHIEVE REGISTRATION(SECONDS) BY THE TRADITIONAL APPROACH

SPGR pulse sequences (FOV 2424 cm, 256 256, 1.3-mm
thickness, 0-mm gap, ms, flip angle ,

ms, ms, 128 slices). We have used a
set of 11 volumes and the task was to register ten volumes to the
11th one chosen as the target image for all registrations, by using
both registration algorithms. The parameters used with both al-
gorithms were identical. Six levels were used, with the radius of
the basis functions varying from about 200 mm (withof size
2 2 2) to about 6 mm (with of size 17 17 15). For both
algorithms, the optimization of any set of basis functions was
halted when improvements of at least 0.0005 in the cost function
could not be detected. In this set of experiments, we have used
the NMI [16] computed from the joint histogram of the overlap-
ping regions between the two image volumes as the cost func-
tion. The NMI is computed from the joint histogram of the entire
overlapping area between the two image volumes even though
we only alter small regions of the deformation field. We have
used 32 bins to generate the joint histograms and a two-point fi-
nite difference formula to compute the gradient of the cost func-
tion. The number of bins was chosen experimentally as a good
compromise between speed and accuracy on a few volumes and
then kept constant for the entire study. Although we could have
changed the number of bins in the histogram when moving from
one resolution to the other we have chosen no to do it to avoid
having to specify another set of parameters. Prior to applying
our algorithm, each volume was registered to the target volume
using a nine DOFs transformation computed with an indepen-
dent implementation of an MI-based method similar to the one
proposed by Maes [8].

The time required for each registration for both algorithms as
well as the final value of the cost function are given in Tables I
and II. These tables show that, on average, the adaptive bases
algorithm is about 3.5 times faster than the more traditional ap-
proach for this set of experiments. For every registration, the



1476 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 7. Representative slices of atlases constructed through nonrigid registration with both adaptive and nonadaptive approaches. From left to right: average after
nonrigid registration using nonadaptive approach, average constructed after registration using adaptive approach, and target image.

adaptive bases approach is at least twice as fast as its nonadap-
tive counterpart. Moreover, Tables I and II also show that for
every registration, the adaptive bases registration algorithm is at
least as accurate, or more, as measured by the final value of the
cost function, than the traditional approach. The average final
value for the cost function for the registrations which used the
adaptive approach was 1.239, while it is 1.218 for the nonadap-
tive approach.

To further assess the quality of the registrations, for one
cannot always use the cost function itself to assess the quality
of the results, we also show the average brains computed
through registration using both approaches. These are shown
in Fig. 7. In this figure, the leftmost image is the average com-
puted after nonrigid registration with the traditional approach.
The middle image is the average computed after nonrigid
registration with the approach we propose. The target image is
also shown on the right. The average computed after nonrigid
registration with the new approach is visibly sharper than
the average computed after registration with the traditional
approach, indicating that, overall, the new approach succeeded
in matching the target image better than the traditional one.

Finally, note that the smallest radius of the basis functions
used in the registrations described above was about 6 mm. Fur-
ther improvements in accuracy can be achieved by adding more
levels, which use radial basis functions with even smaller radii.
Fig. 8 shows an example of a registration achieved using seven
levels of the adaptive bases registration algorithm, with radial
basis function ranging in radius from about 200 mm to 3 mm.
The images clearly show that the adaptive bases registration al-
gorithm is capable of producing high-quality matches, even for
the smallest visible structures.

C. Atlas-Based Segmentation Results

The accuracy of the adaptive bases algorithm for nonrigid
registration problems was assessed quantitatively by means of

Fig. 8. Representative slices of an example registration using the adaptive grid
registration algorithm. From left to right: The source image, the source image
resampled to match the target image, and the target image.

an atlas-based segmentation task. ROIs (whole brain, eyes and
optic nerves, and spine) were manually delineated in the atlas
used in Section III-B and binary masks were created. The re-
gions were chosen because these present a range of difficulty
with the whole brain contours being the easiest and the optic
nerves the most difficult. The deformation fields between the
atlas and the ten other volumes were computed and used to
project the masks from the atlas onto each of the remaining vol-
umes. Contours were manually drawn on a few slices chosen at
random in each volume (four slices/volume/structure). Manual
contours and contours obtained automatically were then com-
pared using an accepted similarity index defined as two times
the number of pixels in the intersection of the contours divided
by the sum of the number of pixels within each contour [22].
This index varies between zero (complete disagreement) and
one (complete agreement) and is sensitive to both displacement
and differences in size and shape. Table III lists mean values for
the similarity index for each structure. It is customarily accepted
that a value of the similarity index above 0.80 indicates a very
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TABLE III
AVERAGE VALUES OFS FOR A NUMBER OF STRUCTURES

Fig. 9. Illustrative contours obtained automatically with our algorithms by
deforming templates in the atlas.

good agreement between contours. Our results are well above
this value except for the eyes. The major source of errors is the
optic nerve which is a thin and elongated structure. Because of
the size of this structure, an error of a few pixels reduces the
value of the similarity index considerably. Fig. 9 shows a few
representative examples of contours that have been obtained au-
tomatically.

D. Constraint Scheme Demonstration

We now demonstrate the effect of the constraint scheme pre-
sented earlier on a 3-D registration problem. Fig. 10 shows rep-
resentative slices of the source image and the target image

used in this demonstration. We have used our algorithm
together with the constraint scheme described above to register
image to image . We have repeated the experiment
four times, each with a different value for. The total number of
levels used was 6, while the last level used a gridwith 17
17 15 center locations. Fig. 11 shows the registration results

for each value of in (12). The results shown in Fig. 11
were generated with equal to (from left to right): 0.3, 0.2, 0.1,
and 0.05. Note that the results look identical in nearly all of the
regions of the slices shown in Fig. 11. The same has been vi-
sually confirmed for all the other slices in these images. Dif-
ferences can be noticed mainly around the mouth. The bottom
row of Fig. 11 displays the mouth region for each output image.

Fig. 10. Images used in constraint scheme demonstration. Left: source image
B(x). Right: target imageA(x).

As can be seen by focusing on the bottom left corner of these
images, the results generated with does not satisfy the
topological constraint for it produces folding. The folding effect
becomes decreasingly noticeable as the threshold used is low-
ered. Using (12) our theory predicts a value of or
less for . From Fig. 11 one can verify that the folding
effect completely disappears in the result image generated with

, confirming what has been theoretically predicted.

IV. DISCUSSION

Over the years, nonrigid registration using NMI and B-splines
placed on a regular grid has been shown to be both accurate and
robust. In this paper, we present an approach which, while in-
spired by existing work, presents several novel elements. First,
we do not rely on basis functions placed on a regular grid. This
allows us to adjust the deformation field only where it needs
to be adjusted at the current scale and resolution. By doing so
we reduce the dimension of the search space, thus speeding up
the process. We simplify the process further by computing local
deformations on disjoint regions. By doing so we transform one
large optimization process into a series of smaller ones with at
most 24 DOFs (in 3-D). While it is possible to show theoreti-
cally that the global optimum reached when optimizing over the
entire region is the same as the one reached when optimizing
over smaller, separate, regions when the cost function is sepa-
rable (as would be the case if we were using the L2 norm), we
have not been able to prove the same with a nonseparable cost
function such as MI without making stationarity assumptions
that may not always be verified in practice [23]. There is, there-
fore, no theoretical guarantee that by optimizing on separate re-
gions we will be able to reach the global optimum. In practice,
however, the various local minima in the MI cost function limit
the ability of numerical algorithms commonly used to solve the
nonrigid registration problem to reach this optimum. Our results
show that by optimizing on small separate regions in series we
reduce the effect of local minima and reach solutions that are
better than solutions arrived at when trying to solve the problem
globally.

The method we have used to identify ROIs is not the only
one possible but in our experience it is robust and reliable. In
[24], we did try to use the local correlation as an index of re-
gional misregistration but we found the current strategy to be
superior. The method we use to select misregistered regions in-
volves a threshold whose value is set experimentally. Chosen too
high, some regions at a particular resolution and scale could be
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Fig. 11. Each row from left to right: registration results obtained with� = 0:3, � = 0:2, � = 0:1, and= 0:05. Bottom row are zoomed in versions of the
images on top row.

skipped and may not be recoverable at the next level. Chosen too
low, many regions will be optimized at the current scale when
they could be better registered at the next one. At the time of
writing we have not studied the effect of this threshold on the
registration accuracy. We also did not investigate the possibility
of changing the number of bins in the joint histogram when
moving from one resolution to the other to take into account
the change in pixel numbers on the images when their spatial
resolution is changed. It is possible that convergence properties
of the algorithm could be improved by doing so.

Since we published earlier versions of this paper [24], [25]
others have also proposed techniques by which the compliance
of the transformation could be adapted within a B-spline frame-
work [20], [21]. The approach these authors use is to fix the
coefficients of the B-splines whose region of support have been
labeled as passive. Criteria used to identify passive regions
include local statistical measures such as the joint entropy or
the gradient measure we introduced in [25]. The constraint
scheme we propose to guarantee the topological correctness
of the overall transformation is another novelty we introduce.
Constraints proposed in the literature are somewhat ad hoc,
attempting to limit the folding problem by adding a smoothness
constraint to the cost function. The method we propose here
explicitly enforces the correctness of the transformation and our
experimental results have verified our theoretical predictions.
The results we have shown demonstrate that when using basis
functions with the same supports the method we propose is both
more accurate and faster than a method relying on a regular
grid. Although the accuracy of nonrigid registration algorithms
is difficult to assess, we have shown that the value of the final
similarity measure is larger with our method than with a more
traditional approach. We have also shown qualitatively that
the accuracy of the registration is better with our approach by
comparing the sharpness of average volumes. Quantitatively,
we have shown that our algorithm, when used for atlas-based
segmentation tasks, produces results that are comparable to
those obtained manually. As is the case for all intensity-based

algorithms, the main limitation of our approach is the lack of
a priori and anatomical information that can lead to erroneous
deformation. This is particularly true in the cortical area where
nothing prevents the algorithm to match sulci that do not
correspond to each other. Addressing this problem will require
adding constraints in a way similar to the approach proposed
by Hellier et al. [26].

APPENDIX

Let be the Ja-
cobian of in (10), is the identity matrix, and the
Jacobian matrix of the displacement field . If

(here is the usual
-norm), then it is well known that exists and is

given by the Neuman series

(14)

Moreover, we have

(15)

Since exists for all , we conclude that
for . Moreover, since 1) the

mapping that takes the vector space of (3 3)
matrices into is continuous; 2) ; and 3)
is a connected set, it follows that (if
switches sign, the continuity would imply that must
become null for some matrix contradicting the fact that
has an inverse).

Let , and . For ,
exists, and we write as

. Thus, is invertible if and only if
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is invertible and . Using (14), it
follows that exists if and as before

remains positive since it is the product of positive values. But
using (15) together with a well known norm inequality we get

(16)

Thus assuming , if
, then remains positive. Equivalently, does not

change sign if . This last condition
gives a bound for in terms of . By induction,
we obtain that

(17)

is sufficient for to be invertible, and
for to remain positive. Therefore, to satisfy the topolog-
ical constraint on the displacement field , it is sufficient to
enforce (17) for all possible coordinates. This can be achieved
by restricting the range of the coefficients of the radial bases
functions used in modeling the displacement field . How-
ever, computing the operator norm of matrix during
optimization is cumbersome for it involves the computation of
eigenvalues. To avoid computing operator norms , we
can use the infinity norm , which can
be computed cheaply from the coefficientsin (3). Using the
well known matrix relation together with a
simple calculation that yields , we obtain that
if (11) is satisfied for then (17) is satisfied.
Thus, for any given deformation field

a displacement field can be added without violating
the topology constraint.
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