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Abstract

We present a new class of deformable models, Meta-
Morphs, whose formulation integrates both shape and in-
terior texture. The model deformations are derived from
both boundary and region information based on a vari-
ational framework. This framework represents a general-
ization of previousparametricand implicit geometricde-
formable models, by incorporating model interior texture
information. The shape of the new model is represented im-
plicitly as an “image” in the higher dimensional space of
distance transforms. The interior texture is captured using
a nonparametric kernel-based approximation of the inten-
sity probability density function (p.d.f.) inside the model.
The deformations that the model can undergo are defined
using a space warping technique - the cubic B-spline based
Free Form Deformations (FFD). When using the models for
boundary finding in images, we derive the model dynam-
ics from an energy functional consisting of both edge en-
ergy terms and texture energy terms. This way, the mod-
els deform under the influence of forces derived from both
boundary and region information. A MetaMorph model can
be initialized far-away from the object boundary and effi-
ciently converge to an optimal solution. The proposed en-
ergy functional enables the model to pass small spurious
edges and prevents it from leaking through large bound-
ary gaps, hence makes the boundary finding robust to im-
age noise and inhomogeneity. We demonstrate the power
of our new models to segmentation applications, and vari-
ous examples on finding object boundaries in noisy images
with complex textures demonstrate the potential of the pro-
posed technique.

1. Introduction

Object boundary finding plays a fundamental role both
in computer vision and in medical image analysis. It is also
a challenging task due to the common presence of cluttered
objects, complex backgrounds, noise and intensity inhomo-
geneity in natural and medical images. To address these dif-

ficulties, deformable model based segmentation approaches
have been widely studied and used.

In parametricdeformable models [5, 9, 10, 16], para-
metric curves/surfaces are used to represent the model’s
shape. Starting from an initial estimate, a deformable model
evolves under the influence of both internal (e.g. smooth-
ness) and external (e.g. image) forces to converge to the
desired boundary of an image object. Traditionally, image
forces come primarily from edge (image gradient) informa-
tion. Such reliance on edge information, however, makes
the models sensitive to noise and highly dependent on the
initial estimate. In the past few years, there have been sig-
nificant efforts to integrate region information into paramet-
ric deformable models. In [13], local region analysis strate-
gies are introduced for Active Contour Models. However,
the optimization of the integrated energy function is mostly
heuristic. In [18], a generalized energy function that inte-
grates region growing and boundary-based deformations is
proposed. In this formulation, the parameters of the region
intensity statistics can not be updated simultaneously with
the boundary shape parameters so that the energy function
has to be minimized in an iterative way. In hybrid segmen-
tation frameworks proposed by [4, 8], a region based seg-
mentation module is used to get a rough binary mask of the
object of interest. Then this rough estimation of the object
can be used to initialize a deformable model, which will de-
form to fit edge features in the image using the gradient in-
formation. In these frameworks, the region information and
the boundary information are treated separately in differ-
ent energy minimization processes so that the integration
is still imperfect. As noted in [7], which uses active con-
tours for region tracking applications, the difficulty in cou-
pling region and boundary information is mostly due to the
fact that the set of image regions does not have a structure
of vector space, preventing us to use in a straightforward
manner gradient descent methods, especially when statisti-
cal features of a region (such as mean and variance of in-
tensity) are present. The authors turned to registration-like
energy criterion to circumvent this problem.

Another line of research on deformable models are the



implicit geometric models [3, 11, 12, 14, 17], which are
implemented in the level set based curve evolution frame-
work. In the Mumford and Shah model for segmentation
[11], an optimal piecewise smooth function is pursued to ap-
proximate an observed image, such that the function varies
smoothly within each region, and rapidly or discontinuously
across the boundaries of different regions. Solutions for the
reduced cases of this minimal partition problem have been
proposed in the level set framework [17]. In [12, 14], varia-
tional frameworks are proposed for image segmentation by
unifying boundary and region-based information sources,
and level set approaches are used to implement the resulting
PDE systems. However, all these frameworks assume piece-
wise constant, or Gaussian intensity distributions within
each partitioned region. This limits their power and robust-
ness in finding objects whose interiors have high noise level,
intensity inhomogeneity, and/or complex multi-modal in-
tensity distributions. Furthermore, the computational cost of
these level-set based implementations tends to be high.

To address the above limitations in previous efforts to
incorporate region information in deformable models, we
introduce in this paper a new class of deformable mod-
els, which we term “MetaMorphs”. The MetaMorph mod-
els possess both shape and interior texture, and integrate
boundary and region information coherently in a common
variational framework. The model shapes in our frame-
work are embedded in a higher dimensional space of dis-
tance transforms, thus represented by distance map “im-
ages”. The model deformations are efficiently parameter-
ized using the cubic B-spline based Free Form Deforma-
tions (FFD) [1, 2, 6]. The interior intensity statistics of the
models are captured using nonparametric kernel-based ap-
proximations, which can represent complex multi-modal
distributions. When finding object boundaries in images,
the dynamics of the MetaMorph models are derived from
an energy functional consisting of both edge/boundary en-
ergy terms and intensity/region energy terms. In our formu-
lation, both types of energy terms are differentiable with re-
spect to the model deformation parameters. This allows for
a unified gradient-descent based deformation parameter up-
dating paradigm using both boundary and region informa-
tion. During model evolution, the boundary and region en-
ergy terms will have complementary effects. They will aid
the model to grow/shrink and overcome local minima due to
small spurious edges inside the object, to prevent the model
from leaking at boundary gaps, and to enable the segmen-
tation of objects with intensity inhomogeneity and complex
interior statistics.

The remainder of the paper is organized as follows. In
section 2, we introduce the shape and texture representa-
tions of the MetaMorph models. In section 3, we derive the
MetaMorph model dynamics from both boundary and re-
gion information. In section 4, the overall model fitting al-

(1)

(2)
(a) (b) (c)

Figure 1. Shape representation and deformations of the
MetaMorph models. (1) The model shape. (2) The im-
plicit “image” representation of the model shape. (a) Ini-
tial model. (b) Example FFD control lattice deformation to
expand the model. (c) Another example of the free-form
model deformation given the control lattice deformation.

gorithm and experimental results are presented, and we con-
clude with discussions in section 5.

2. The MetaMorph Models

In this section, we present the shape and texture repre-
sentations of the MetaMorph deformable models, and de-
fine the model deformations.

2.1. The Model’s Shape Representation

The model’s shape is embedded implicitly in a higher di-
mensional space of distance transforms. The Euclidean dis-
tance transform is used to embed an evolving model as the
zero level set of a higher dimensional distance function. In
order to facilitate notation, we consider the 2D case. Let
Φ : Ω → R+ be a Lipschitz function that refers to the dis-
tance transform for the model shapeM. By definitionΩ is
bounded since it refers to the image domain. The shape de-
fines a partition of the domain: the region that is enclosed by
M, [RM], the background [Ω − RM], and on the model,
[∂RM] (In practice, we consider a narrow band around the
modelM in the image domain as∂RM). Given these def-
initions the following implicit shape representation is con-
sidered:

ΦM(x) =





0, x ∈ ∂RM
+ED(x,M) > 0, x ∈ RM
−ED(x,M) < 0, x ∈ [Ω−RM]

whereED(x,M) refers to the min Euclidean distance be-
tween the image pixel locationx = (x, y) and the model
M.

Such treatment makes the model shape representation an
“image”, which greatly facilitates the integration of bound-
ary and region information. It also provides a feature space



in which objective functions that are optimized using a gra-
dient descent method can be conveniently used. A sufficient
condition for convergence of the gradient descent meth-
ods requires continuous first derivatives. The considered
implicit representation satisfies such a condition. One can
prove that the gradient of the distance function is a unit vec-
tor in the normal direction of the shape. This property will
make our model evolution fast. Examples of this implicit
representation can be found in [Fig. (1).2]. This shape rep-
resentation in 3D is similarly defined in a volumetric em-
bedding space.

2.2. The Model’s Deformations

The deformations that MetaMorph models can undergo
are defined using a space warping technique, the Free Form
Deformations (FFD) [15]. The essence of FFD is to deform
an object by manipulating a regular control latticeF over-
laid on its volumetric embedding space. One of the main
advantages of the FFD technique is that it imposes implicit
smoothness constraints during deformation, since it guar-
anteesC1 continuity at control points andC2 continuity
everywhere else. Therefore there is no need for introduc-
ing computationally expensive regularization components
on the deformed shapes. Another advantage is that, since
FFD is a space warping technique, it integrates naturally
with the implicit model shape representation in a higher di-
mensional embedding space. In this paper, we consider an
Incremental Free Form Deformations (IFFD) formulation
using the cubic B-spline basis [6].

Let us consider a regular lattice of control points

Fm,n = (F x
m,n, F y

m,n); m = 1, ..., M, n = 1, ..., N

overlaid to a regionΓc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤
y ≤ Y } in the embedding space that encloses the model in
its object-centered coordinate system. Let us denote the ini-
tial configuration of the control lattice asF 0, and the de-
forming control lattice asF = F 0 + δF . Under these as-
sumptions, the incremental FFD parameters, which are also
the deformation parameters for the model, are the deforma-
tions of the control points in both directions(x, y):

q = {(δF x
m,n, δF y

m,n)}; (m,n) ∈ [1,M ]× [1, N ]

The deformed position of a pixelx = (x, y) given the de-
formation of the control lattice fromF 0 to F , is defined in
terms of a tensor product of Cubic B-spline polynomials:

D(q;x) = x + δD(q;x) =

3∑

k=0

3∑

l=0

Bk(u)Bl(v)

(F 0
i+k,j+l + δFi+k,j+l) (1)

wherei = b x
X · (M −1)c+1, j = b y

Y · (N −1)c+1. The
terms of the deformation component refer to:
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Figure 2. The Endocardium segmentation. (1) Initial
model. (2) Intermediate result. (3) Final converged result.
(a) The evolving model drawn in colored lines (blue or red)
on original image. (b) Interior of the evolving model. (c)
The intensity p.d.f of the model interior. The X axis is the
intensity value in the range of[0, 255] and the Y axis is the
probability value in the range of[0, 1]. (d) The image prob-
ability map based on the p.d.f of the model interior.

• δFi+l,j+l, (k, l) ∈ [0, 3] × [0, 3] are the deformations
of pixel x’s (sixteen) adjacent control points,

• Bk(u) is thekth basis function of a Cubic B-spine, de-
fined by:

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6

with u = x
X · (M − 1) − b x

X · (M − 1)c. Bl(v) is
similarly defined.

• δD(q;x) =
∑3

k=0

∑3
l=0 Bk(u)Bl(v)δFi+k,j+l is the

incremental deformation for pixelx.

One example for the model deformations is shown in
[Fig. (1)]. An initial model is shown in [Fig. (1).a], with reg-
ular control lattice. When its embedding space deforms due
to the deformation of the FFD control lattice as shown in
[Fig. (1).b], the model undergoes an expansion in its object-
centered coordinate system. [Fig. (1).c] shows another ex-
ample of free-form model deformation given the FFD con-
trol lattice deformation.

The extension of the models to account for deformations
in 3D is straightforward, by using control lattices in the 3D
space and a 3D tensor product of B-spline polynomials.

2.3. The Model’s Texture

Rather than using traditional statistical parameters (such
as mean and variance) to approximate the intensity distribu-
tion of the model interior, we model the distribution using



a nonparametric kernel-based method. The nonparametric
approximation is differentiable, more generic and can rep-
resent complex multi-modal intensity distributions.

Suppose the model is placed on an imageI, the image re-
gion bounded by current modelΦM isRM, then the prob-
ability of a pixel’s intensity valuei being consistent with
the model interior intensity can be derived using a Gaus-
sian kernel as:

P(i
∣∣ΦM) =

1
V (RM)

∫∫

RM

1√
2πσ

e
−(i−I(y))2

2σ2 dy (2)

whereV (RM) denotes the volume ofRM, andσ is a con-
stant specifying the width of the gaussian kernel.

Using this nonparametric approximation, the intensity
distribution of the model interior gets updated automatically
while the model deforms. The initialization of the model
texture is flexible. We can either start with a small model in-
side the texture region to be segmented, or use supervised
learning to specify the desired texture a Priori. One example
of the model interior texture representation can be seen in
[Fig. (2)]. In the figure, we show the zero level set of the cur-
rent modelΦM in colored lines [Fig. (2).a], the model inte-
rior regionRM [Fig. (2).b], the probability density function
(p.d.f.) for the intensity of current model interiorP(i

∣∣ΦM)
for i = 0, ...255 [Fig. (2).c], and the probability map of ev-
ery pixel’s intensity in the image according to the model in-
terior distribution [Fig. (2).d].

3. The MetaMorph Dynamics

We demonstrate the MetaMorph model fitting dynamics
in the context object segmentation. However, the approach
is general and can be applied to many other computer vision
problems

In order to fit to the boundary of an object, the motion
of the model is driven by both gradient (edge) energy terms
and texture (intensity) energy terms derived from the im-
age. The overall energy functionalE consists of two parts –
the shape data termsES , and the intensity data termsEI :

E = ES + kEI (3)

wherek is a constant balancing the contribution of the two
parts. In our formulation, we are able to omit the model
smoothness term in traditional parametric or level-set based
deformable models, since this smoothness is implicit by us-
ing the Free Form Deformations. Next, we derive the shape
and intensity data terms respectively.

3.1. The Shape Data Terms

The gradient information is a very important source of
the image forces for a deformable model. We encode the
gradient information of an image using a “shape image”Φ,
which is derived from the un-signed distance transform of

(a) (b) (c)

Figure 4. The effect of small spurious edges inside the
object of interest (endocardium of the Left Ventricle) on the
“shape image”. (a) The original MR image. (b) The edge
map of the image. (c) The derived “shape image”, with
edges points drawn in yellow. Note the effect of the small
spurious edges on the “shape image” inside the object.

the edge map of the image. In [Fig. (4).c], we can see the
“shape image” of an example MR heart image.

To evolve a MetaMorph model toward image edges, we
define two shape data terms – an interior termESi

and a
boundary termESb

:

ES = ESi
+ aESb

(4)

3.1.1. The Interior Shape Data Term In the inte-
rior shape data term of the model, we aim to minimize the
Sum-of-Squared-Differences between the implicit shape
representation values in the model interior and the under-
lying “shape image” values at corresponding deformed
positions. This can be written as:

ESi =
1

V (RM)

∫∫

RM

(
ΦM(x)− Φ(D(q;x))

)2
dx (5)

During optimization, this term will deform the model along
the gradient direction of the underlying “shape image”.
Thus it will expand or shrink the model accordingly, serving
as a two-way balloon force without explicitly introducing
such forces, and making the attraction range of the model
large.

3.1.2. The Boundary Shape Data TermThe previous
interior shape term is good in attracting the model to-
ward boundary structures from far-away locations. How-
ever, when there are small spurious edges detected within
an object due to texture, the “shape image” inside the object
could differ in the surrounding areas of those small edges.
One such example can be seen in [Fig. (4).a-c]. To make
the model deformation more robust to such situations, we
consider a separated boundary shape data term, which al-
lows higher weights for pixels in a narrow band around the
model boundary∂RM.

ESb
=

1
V (∂RM)

∫∫

∂RM

(
Φ(D(q;x))

)2
dx (6)

Intuitively, this term will encourage the deformation that
maps the model boundary to the image edge locations where
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Figure 3. The boundary shape data term constraints at small gaps in the edge map. (a) Original Image. (b) The edge map, note the
small gap inside the red square region. (c) The “shape image”. (d) Zoom-in view of the region inside the red square. The numbers
are the “shape image” values at each pixel location. The red dots are edge points, the blue squares indicate a path favored by the
boundary term for a MetaMorph model.

the underlying “shape image” distance values are as small
(or as close to zero) as possible. In the shape energy func-
tional [Eqn. (4)], by setting the value of constanta > 1,
those model boundary pixels get higher weights.

One additional advantage of the boundary shape data
term is that, at an edge with small gaps, this term will con-
strain the model to go along the “geodesic” path, which co-
incides with the smooth shortest path connecting the two
open ends of a gap. This behavior can be seen from [Fig.
(3)]. Note that at a small gap of the edge map, the bound-
ary term will favor a path with the smallest accumulative
distance values to the edge points.

3.2. The Intensity Data Terms

One of the most attractive aspects of our MetaMorph de-
formable models is that they possess interior texture, and
their deformations are influenced by forces derived from
image region information. This information is very impor-
tant to help the models out of local minima, and converge to
the true object boundaries. In [Fig. (4)], the spurious edges
both inside and around the object boundary degrade the re-
liability of the “shape image” and the shape data terms. Yet
the intensity probability map computed based on the inte-
rior texture of an initial model, as shown in [Fig. (2).1.d],
gives a pretty clear indication of the rough boundary of the
object. In another MR heart image shown in [Fig. (6).1.a], a
large portion of the object (Endocardium) boundary is miss-
ing during computation of the edge map, due to errors in
edge detection [Fig. (6).1.b]. Relying solely on the “shape
image” [Fig. (6).1.c] and shape data terms, a model would
have leaked through the large gap and mistakenly converged
to the outer epicardium boundary. In this situation, the in-
tensity probability maps [Fig. (6).2-4.d] computed based
on the model interior statistics become the key to optimal
model convergence.

(a) (b) (c) (d)

Figure 5. Deriving the “region of interest” intensity data
term. (a) The model shown (in yellow) on the original im-
age. (b) The intensity probability map based on the model
interior statistics. (c) The region of interest (ROI) derived
from the thresholded probability map. The threshold is the
mean probability over the entire image. (d) The “shape im-
age” encoding boundary information of the ROI.

In our framework, the intensity energy functionEI con-
sists of two intensity data terms – a “Region Of Interest”
(ROI) termEIr , and a Maximum Likelihood termEIm :

EI = EIr + bEIm (7)

3.2.1. The ROI Intensity Data Term In the “Region Of
Interest” (ROI) term, we aim to evolve the model toward the
boundary of current region of interest, which is determined
based on current model interior intensity distribution.

Given a modelM on imageI [Fig. (5).a], we first com-
pute the image intensity probability mapPI [Fig. (5).b],
based on the model interior intensity statistics (see section
2.3). Then a small threshold (typically the mean probabil-
ity over the entire image domain) is applied onPI to pro-
duce a binary imageBPI , in which pixels with probabili-
ties higher than the threshold have value 1. Morphological
operations are used to fill in small holes inBPI . We then
take the connected component on this binary image over-
lapping the model as current region of interest (ROI). Sup-
pose the binary mask of this ROI isBIr [Fig. (5).c], we en-
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Figure 6. Segmentation of the Endocardium of the Left
Ventricle in a MR image with a large portion of the ob-
ject boundary edge missing. (1.a) The original image. (1.b)
The edge map. (1.c) The “shape image”. (2) Initial model,
with zero level set model shape shown in blue. (3) Interme-
diate model, with zero level set model shape shown in red.
(4) converged model. (a) current model on the image. (b)
model interiors. (c) the interior intensity p.d.f.s. (d) inten-
sity probability maps.

code its boundary information by computing the “shape im-
age” ofBIr, which is the un-signed distance transform of
the region boundary [Fig. (5).d]. Denote this “shape image”
asΦr, the ROI intensity data term is defined as follows:

EIr =
1

V (RM)

∫∫

RM

(
ΦM(x)−Φr(D(q;x))

)2
dx (8)

This ROI intensity data term is the most effective in
countering the effect of small spurious edges inside the ob-
ject of interest (e.g. in Figs. (4,7). It also provides implicit
balloon forces to quickly deform the model toward object
boundary.

3.2.2. The Maximum Likelihood Intensity Data Term
The previous ROI intensity term is very efficient to deform
the model toward object boundary when the model is still
far-away. When the model gets close to the boundary, how-
ever, the ROI derived may become less reliable due to grad-
ual intensity changes in the boundary areas. To achieve bet-
ter convergence, we design another Maximum Likelihood
(ML) intensity data term that constrains the model to de-
form toward areas where the pixel probabilities of belong-
ing to the model interior intensity distribution are high. This
ML term is formalized by maximizing the log-likelihood of
pixel intensities in a narrow band around the model after de-

formation:

EIm = − 1
V (∂RM)

∫∫
∂RM logP(I(D(q;x))

∣∣ΦM)dx

= − 1
V (∂RM)

∫∫
∂RM

[
log 1

V (RM)
+ log 1√

2πσ

+log
∫∫
RM e

−(I(D(q;x))−I(y))2

2σ2 dy
]
dx (9)

During model evolution, when the model is still far away
from object boundary, this ML term generates very little
forces to influence the model deformation. When the model
gets close to object boundary, however, the ML term gen-
erates significant forces to prevent the model from leaking
through large gaps (e.g. in Fig. 6), and help the model to
converge to the true object boundary.

3.3. Model Evolution

In our formulations above, both shape data terms and
intensity data terms are differentiable with respect to the
model deformation parametersq, thus a unified gradient-
descent based parameter updating scheme can be derived
using both boundary and region information. Based on the
definitions of the energy functions, one can derive the fol-
lowing evolution equation for each elementqi in the model
deformation parametersq:

∂E

∂qi
=

(∂ESi

∂qi
+ a

∂ESb

∂qi

)
+ k

(∂EIr

∂qi
+ b

∂EIm

∂qi

)
(10)

• The motion due to the shape data terms are:

∂ESi

∂qi
=

1

V (RM)

∫∫

RM
2
(
ΦM(x)− Φ(D(q;x))

)·
(−∇Φ(D(q;x)) · ∂

∂qi
D(q;x)

)
dx

∂ESb

∂qi
=

1

V (∂RM)

∫∫

∂RM
2Φ(D(q;x))·

(∇Φ(D(q;x)) · ∂

∂qi
D(q;x)

)
dx

• And the motion due to the intensity data terms are:

∂EIr

∂qi
=

1

V (RM)

∫∫

RM
2
(
ΦM(x)− Φr(D(q;x))

)·
(−∇Φr(D(q;x)) · ∂

∂qi
D(q;x)

)
dx

∂EIm

∂qi
= − 1

V (∂RM)

∫∫

∂RM

[( ∫∫

RM
e
−(I(D(q;x))−I(y))2

2σ2 dy
)−1

∫∫

RM
e
−(I(D(q;x))−I(y))2

2σ2 · (− (I(D(q;x))− I(y))

σ2
·

(∇I(D(q;x)) · ∂

∂qi
D(q;x)

)
)dy

]
dx

In the above formulas, the partial derivatives with respect to
the deformation (FFD) parameters,∂

∂qi
D(q;x), can be eas-

ily derived from the model deformation formula forD(q;x)
[Eqn. (1)]. Details are given in the Appendix.



4. The Model Fitting Algorithm and Experi-
mental Results

The overall model fitting algorithm consists of the fol-
lowing steps:

1. Initialize the deformation parametersq to beq0, which
indicates no deformation.

2. Compute ∂E
∂qi

for each elementqi in the deformation
parametersq.

3. Update the parametersq′i = qi − λ · ∂E
∂qi

.

4. Using the new parameters, compute the new model
M′ = D(q′;M).

5. Update the model. LetM = M′, re-compute the im-
plicit representation of the modelΦM, and the new
partitions of the image domain by the new model:
[RM], [Ω−RM], and [∂RM]. Also re-initialize a reg-
ular FFD control lattice to cover the new model, and
update the “region of interest” shape imageφr based
on the new model interior.

6. Repeat steps 1-5 until convergence.

In the algorithm, after each iteration, both shape and in-
terior intensity statistics of the model get updated based on
the model dynamics, and deformation parameters get re-
initialized for the new model. This allows continuous, both
large-scale and small-scale deformations for the model to
converge to the energy minimum.

In order to achieve good performance, the three weight
factors,k, a andb in the energy functional (see [Eqn. (10)])
need to be assigned with care. In the current protocol we
use, we always assign higher weights to data terms consist-
ing of model boundary pixels, i.e. the boundary shape data
termESb

and the Maximum Likelihood intensity data term
EIm . Thus we seta > 1, b > 1. The weighting factor be-
tween the shape terms and intensity terms,k, is determined
by a confidence measure,Ce, of the computed edge map. To
decide this confidence value, we compute the “region of in-
terest” (see section 3.2.1) after initializing a model, thenCe

is determined by the complexity of the original image gradi-
ent or edge map in this ROI. The confidence value is low if
there are high gradient and edges inside the region; the value
is high, otherwise. Then we set the value for the weighting
factork = 1

Ce
.

Some examples of using our MetaMorph models and the
weighting factors described above for boundary finding in
images have been shown in [Fig. (2)] and [Fig. (6)]. In [Fig.
(7)], we show another example in which we segment the En-
docardium of the left ventricle in a noisy tagged MR heart
image. Note that, due to the tagging lines and intensity inho-
mogeneity, the detected edges of the object are fragmented,
and there are spurious small edges inside the region. In this
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(a) (b) (c) (d)
Figure 7. The tagged MR heart image. (1.a) The origi-
nal image. (1.b) The edge map. (1.c) The edge points over-
laid on original image. (1.d) The “shape image”. (2) Ini-
tial model. (3) Intermediate result. (4) Final model (after
50 iterations). (2-4)(a) The evolving model. (2-4)(b) The
model interior. (2-4)(c) The model interior intensity proba-
bility density. (2-4)(d) The intensity probability map of the
image based on the p.d.f in (c).

(a) (b) (c) (d) (e)
Figure 8. Boundary finding in the pepper image. (a) Orig-
inal image, with initial model drawn in blue. (b) The shape
image derived from edge map, with edges drawn in yellow.
(c) The intensity probability map derived based on model
interior statistics. (d) Region of Interest (ROI) extracted. (e)
Final segmentation result.

case, the integration of both shape and texture information
is critical in helping the model out of local minima.

On natural images, we show an example using the pep-
per image in [Fig. (8)]. Starting from a small model initial-
ized inside the object, the model quickly deforms to the ob-
ject boundary. In this example, a low weight is given to the
interior shape data term due to the spurious edges inside the
“region of interest”. High weights are given to both bound-
ary shape term and maximum likelihood intensity term so
that the converged model is optimized on the boundary.

The MetaMorph model evolution is computationally ef-
ficient, due to our use of the FFD parameterization of the



model deformations. For all the examples shown, the seg-
mentation process takes less than200ms to converge on a
2Ghz PC station.

5. Conclusions

In this paper, we have presented a new class of de-
formable models, MetaMorphs, which possess both bound-
ary shape and interior intensity statistics. In our framework,
boundary and region information are coupled coherently to
drive the deformations of the models toward object bound-
aries. This framework represents a generalization of previ-
ousparametricandgeometricdeformable models, to take
into account model interior texture information. It does not
require learning statistical shape and appearance modelsa
priori , but the model deformations are constrained such that
interior statistics of the models after deformation are consis-
tent with the statistics learned from the past history of the
model interiors. The algorithm can be straightforwardly ap-
plied in 3D, and can handle efficiently the merging of mul-
tiple models that are evolving simultaneously.

In our future work, we will conduct more principled and
quantitative study in assigning the weight factors between
the energy function components, and validate the segmen-
tation results. We will also extend the framework to deal
with large-scale textures, using gabor filters and other re-
lated techniques.

Appendix

We can analytically derive the partial derivatives
∂

∂qi
D(q;x) for the incremental B-spline FFD parame-

ters inq:

δFm,n = (δF x
m,n, δF y

m,n); m = 1, ..., M, n = 1, ..., N

Without loss of generality, one can consider the(m,n)th
control point and its deformations in both directions. Then,
from the definition for the deformationsD(q;x), the fol-
lowing relations hold:

∂ δD(q;x)

∂δF x
m,n

=





[
Bm−i(u) Bn−j(v)

0

]
,0 ≤ m− i, n− j ≤ 3

0, otherwise

∂ δD(q;x)

∂δF y
m,n

=





[
0

Bm−i(u) Bn−j(v)

]
,0 ≤ m− i, n− j ≤ 3

0, otherwise
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