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Abstract

This paper adapts a popular image quality measure
called structural similarity for high precision registration
based tracking while also introducing a simpler and faster
variant of the same. Further, these are evaluated com-
prehensively against existing measures using a unified ap-
proach to study registration based trackers that decom-
poses them into three constituent sub modules - appearance
model, state space model and search method. Several popu-
lar trackers in literature are broken down using this method
so that their contributions - as of this paper - are shown to
be limited to only one or two of these submodules.

An open source tracking framework is made available
that follows this decomposition closely through extensive
use of generic programming. It is used to perform all ex-
periments on four publicly available datasets so the results
are easily reproducible. This framework provides a conve-
nient interface to plug in a new method for any sub module
and combine it with existing methods for the other two. It
can also serve as a fast and flexible solution for practical
tracking needs due to its highly efficient implementation.

1. Introduction
Visual tracking is an important field in computer vi-

sion with diverse application domains including robotics,
surveillance, targeting systems, autonomous navigation and
augmented reality. Registration based tracking (RBT), also
known in literature as direct visual tracking [59, 53, 49, 47],
is a sub field thereof where the object is tracked by warp-
ing each image in a sequence to align the object patch with
the template. Trackers of this type are especially popular
in robotics and augmented reality applications both because
they estimate the object pose with greater precision and are
significantly faster than online learning and detection based
trackers (OLTs) [62].

However, OLTs are better suited to general purpose
tracking as RBTs are prone to failure when the object un-
dergoes significant appearance changes due to factors like
occlusions and lighting variations or when completely novel

views of the object are presented by deformations or large
pose changes. As a result, OLTs are more popular in lit-
erature and have been the subject of several recent studies
[40, 63, 36]. The scope of such studies is usually limited to
finding the trackers that work best under challenging condi-
tions by testing them on representative sequences with lit-
tle to no analysis provided regarding why specific trackers
work better than others for given challenges. This is un-
derstandable since such trackers differ widely in design and
have little in common that may be used to relate them to
each other and perform comparative analysis from a design
perspective.

As we show in this work, however, RBTs do not have this
drawback and can be decomposed into three sub modules
- appearance model (AM), state space model (SSM) and
search method (SM) (Sec. 2.2) - that makes their systematic
analysis feasible. Though this decomposition is somewhat
obvious and indeed has been observed before [64, 49], it
has never been explored systematically or used to improve
the study of this paradigm of tracking. It is the intent of this
work to fill this gap by unifying the myriad of contributions
made in this domain since the original Lucas Kanade (LK)
tracker was introduced [44].

Most of these works have presented novel ideas for
only one of these submodules while using existing meth-
ods, often selected arbitrarily, for the rest. For instance,
Hager & Belheumer [25], Shum & Szeliski[55], Baker &
Matthews[3] and Benhimane & Malis[8] all introduced new
variants of the Newton type SM used in [44] but only
tested these with SSD1 AM. Similarly, Dick et. al [19]
and Zhang et. al [71] only combined their stochastic SMs
with RSCV and SSD respectively. Conversely, Richa et. al
[48], Scandaroli et. al [53] and Dame et. al [17] introduced
SCV, MI and NCC as AMs but combined these only with
a single SM - ESM in the former and ICLK in the other
two. Even more recent works that use illumination mod-
els (ILM) (Sec. 2.2.1), including Bartoli [5, 6], Silvera &
Malis [57, 58, 60] and Silvera [56], have combined their re-
spective ILMs with only a single SM in each case. Finally,
most SMs and AMs have been tested with only one SSM -

1refer Sec. 2.2 for acronyms



either homography [8, 9, 17] or affine [3, 50]. In fact, Ben-
himane & Malis [8] mentioned that their SM only works
with SL(3) SSM though experiments (Sec. 4.4) showed
that it works equally well with others.

Such limited testing might not only give false indications
about a method’s capability but might also prevent it from
achieving its full potential. For instance, an AM that out-
performs others with a given SM might not do so with other
SMs and an SM may perform better with an AM other than
the one it is tested with. In such cases, our decomposition
can be used to experimentally find the optimal combina-
tion of methods for any contribution while also providing
novel insights about its workings. We demonstrate its prac-
tical applicability by comparing several existing methods
for these sub modules not only with each other but also
with two new AMs based on structural similarity (SSIM)
[69] that we introduce here and fit within this framework.

SSIM is a popular measure for evaluating the quality
of image compression algorithms by comparing the com-
pressed image with the original one. Since it measures the
information loss in the former - essentially a slightly dis-
torted or damaged version of the latter - it makes a suit-
able metric for comparing candidate warped patches with
the template to find the one with the minimum loss and thus
most likely to represent the same object. Further, it has been
designed to capture the perceptual similarity of images and
is known to be robust to illumination and contrast changes
[69]. It is reasonable, therefore, to expect it to perform well
for tracking under challenging conditions too. As such, it
has indeed been used for tracking before with particle fil-
ters [41, 68], gradient ascent [43] and hybrid [42] SMs. All
of these trackers, however, used imprecise SSMs with low
degrees of freedom (DOF) - estimating only translation and
scaling of the target patch. To the best of our knowledge,
no attempt has been made to use SSIM for high DOF RBT
within the LK framework [44]. This work aims to fill this
gap too.

To summarize, following are the main contributions of
this work:

• Adapt a popular image quality measure - SSIM - for
high precision RBT and introduce a simpler but faster
version called SPSS (Sec. 3).

• Evaluate these models comprehensively by comparing
against 8 existing AMs using 11 SMs and 7 SSMs.
Experiments are done using 4 large datasets with over
100,000 frames in all to ensure their statistical signifi-
cance.

• Compare low DOF RBTs against state of the art OLTs
to validate the suitability of the former for fast and high
precision tracking applications.

• Provide an open source tracking framework2 called
MTF [61] using which all results can be reproduced
and which, owing to its efficient C++ implementation,
can also serve as a practical tracking solution.

Rest of this paper is organized as follows - section 2 de-
scribes the decomposition, section 3 presents details about
SSIM and section 4 provides results and analysis.

2. Background
2.1. Notation

Let It : R2 7→ R refer to an image captured at time t
treated as a function of real values using sub pixel inter-
polation [16] for non integral locations. The patch corre-
sponding to the tracked object’s location in It is denoted
by It(xt) ∈ RN where xt = [x1t, ...,xNt] with xkt =
[xkt, ykt]

T ∈ R2 being the Cartesian coordinates of pixel
k. Further, w(x,ps) : R2 × RS 7→ R2 denotes a warping
function of S parameters that represents the set of allowable
image motions of the tracked object by specifying the defor-
mations that can be applied to x0 to align It(w(x0,pst))
with I0(x0). Finally f(I∗, Ic,pa) : RN × RN × RA 7→ R
is a function of A parameters that measures the similarity
between two patches - the reference or template patch I∗

and a candidate patch Ic. For brevity, It(w(x0,pst)) and
I0(x0) will also be denoted as It and I0 respectively.

2.2. Decomposing registration based tracking

Using this notation, RBT can be formulated as a search
problem whose aim is to find the optimal parameters pt =
[pst,pat] ∈ RS+A that maximize the similarity, given by
f , between I∗ = I0 and Ic = It, that is,

pt = argmax
ps,pa

f(I0(x0), It(w(x0,ps)),pa) (1)

This formulation gives rise to an intuitive way to decom-
pose the tracking task into three sub modules - the similar-
ity metric f , the warping function w and the optimization
approach. These can be designed to be semi independent in
the sense that any given optimizer can be applied unchanged
to several combinations of methods for the other two mod-
ules which in turn interact only through a well defined and
consistent interface. In this work, these sub modules are re-
spectively referred to as AM, SSM and SM. A more detailed
description with examples follows.

2.2.1 Appearance Model

This is the image similarity metric defined by f in Eq. 1
that the SM uses to compare different warped patches from
It to find the closest match with I∗. It may be noted that

2available at http://webdocs.cs.ualberta.ca/∼vis/mtf/
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I∗ is not constrained to be fixed but may be updated dur-
ing tracking as in [50]. Examples of f with A = 0 include
sum of squared differences (SSD) [44, 4, 9], sum of con-
ditional variance (SCV) [48], reversed SCV (RSCV) [19],
normalized cross correlation (NCC) [53], mutual informa-
tion (MI) [20, 17] and cross cumulative residual entropy
(CCRE) [67, 49]. There has also been a recent extension to
SCV called LSCV [47] that claims to handle localized in-
tensity changes better. Finally, it has been shown [52] that
SSD performs better when applied to z-score [32] normal-
ized images which makes it equivalent to NCC. The resul-
tant formulation is considered here as a distinct AM called
Zero Mean NCC (ZNCC). These AMs can be divided into
2 categories - those that use some form of the L2 norm as f -
SSD, SCV, RSCV, LSCV and ZNCC - and those that do not
- MI, CCRE and NCC. The latter are henceforth called ro-
bust AMs after [49]. The two AMs introduced here - SSIM
and SPSS - too fall into this category.

To the best of our knowledge, the only AMs with A 6= 0
introduced thus far in literature are those with an illumina-
tion model (ILM), where f is expressed as f(I∗, g(Ic,pa))
with g : RN × RA 7→ RN accounting for differences in
lighting conditions under which I0 and It were captured.
These include gain & bias (GB) [5, 6] and piecewise gain
& bias (PGB) [57, 58, 60, 56] with the latter compris-
ing surface modeling with radial basis function (RBF) too.
Though there have also been AMs that incorporate online
learning [33, 50, 21], they are not compatible with all SMs
used here and so have not been tested.

2.2.2 State Space Model

This is the warping function w that represents the deforma-
tions that the tracked patch can undergo. It therefore defines
the set of allowable image motions of the corresponding ob-
ject and can be used to place constraints on the search space
of ps to make the optimization more robust or efficient. Be-
sides the DOF of allowed motion, SSM also includes the
actual parameterization of w. For instance, even though
both represent 8 DOF motion, SL(3) [9, 37] is considered
as a different SSM than standard homography [44, 4] that
uses actual entries of the corresponding matrix.

This work uses 7 SSMs including 5 from the standard
hierarchy of geometrical transformations [27, 64] - transla-
tion, isometry, similitude, affine and homography - along
with two alternative parameterizations of homography -
SL(3) and corner based (i.e. using x,y coordinates of the
bounding box corners). More complex SSMs to handle non
rigid objects have also been proposed in literature like thin
plate splines [10], basis splines [65] and quadric surfaces
[54]. However, these are not tested here as the datasets used
only feature rigid objects so these cannot be fairly evalu-
ated. Extensions like incorporation of 3D pose [14] and

camera parameters [66] to w are also excluded.

2.2.3 Search Method

This is the optimization procedure that searches for the
warped patch in It that best matches I∗. There have been
two main categories of SMs in literature - gradient de-
scent (GD) and stochastic search. The former category in-
cludes the four variants of the classic Lucas Kanade (LK)
tracker [44] - forward additive (FALK) [44], inverse addi-
tive (IALK) [25], forward compositional (FCLK) [64] and
inverse compositional (ICLK) [3] - that have been shown
[3, 4] to be equivalent to first order terms. Here, however,
we show experimental results (Sec. 4.4.3) proving that they
perform differently in practice. A more recent approach of
this type is the Efficient Second order Minimization (ESM)
[9] technique that uses gradients from both I0 and It to
make the best of ICLK and FCLK. Several extensions have
also been proposed to these SMs to handle specific chal-
lenges like motion blur [46], resolution degradation [31],
better Taylor series approximation [35] and optimal subset
selection [7]. Though these can be fit within our frame-
work, either as distinct SMs or as variants thereof, they are
not considered here for lack of space.

There are three main stochastic SMs in literature - ap-
proximate nearest neighbor (NN) [24, 19], particle filters
(PF) [30, 38, 39, 21, 37] and random sample consensus
(RANSAC) [12, 71]. Though less prone to getting stuck in
local maxima than GD, their performance depends largely
on the number and quality of random samples used and
tends to be rather jittery and unstable due to the limited
coverage of the search space. One approach to obtain bet-
ter precision is to combine them with GD methods [19, 71]
where results from the former are used as starting points for
the latter. Three such combinations have been tested here as
examples of hybrid or composite SMs - NN+ICLK (NNIC),
PF+FCLK (PFFC) and RANSAC+FCLK (RKLT).

3. Structural Similarity
SSIM was originally introduced [69] to assess the loss in

image quality incurred by compression methods like JPEG.
It has been very popular in this domain since it closely mir-
rors the approach adopted by the human visual system to
subjectively evaluate the quality of an image. SSIM be-
tween I0 and It is defined as a product of 3 components:

fssim =

(
2µtµ0 + C1

µ2t + µ20 + C1

)α (
2σtσ0 + C2

σ2
t + σ2

0 + C2

)β (
σt0 + C3

σtσ0 + C3

)γ
(2)

where µt is the mean and σt is the sample standard devia-
tion of It while σt0 is the sample covariance between It and
I0. The three components of fssim from left to right are re-
spectively used for luminance, contrast and structure com-



parison between the two patches. The positive constants
α, β, γ are used to assign relative weights to these compo-
nents while C1, C2, C3 are added to ensure their numerical
stability with small denominators. Here, as in most practi-
cal implementations [69, 41, 42, 43, 68], it is assumed that

α = β = γ = 1 and C3 =
C2

2
so that Eq. 2 simplifies to:

fssim =
(2µtµ0 + C1) (2σt0 + C2)

(µ2
t + µ2

0 + C1) (σ2
t + σ2

0 + C2)
(3)

3.1. Newton’s Method with SSIM

Using SSIM with NN and PF is straightforward since
these only need fssim to be computed between candidate
patches. However, GD SMs also require its derivatives as
they solve Eq 1 by estimating an incremental update ∆pt

to pt−1 using some variant of Newton’s method as:

∆pt = −Ĥ−1ĴT (4)

where Ĵ and Ĥ respectively are estimates for Jacobian J =
∂f/∂p and Hessian H = ∂2f/∂p2 of f w.r.t. p. These
can be further decomposed using chain rule as:

J =
∂f

∂I

∂I

∂p
=
∂f

∂I
∇I

∂w

∂p
(5)

H =
∂I

∂p

T ∂2f

∂I2
∂I

∂p
+
∂f

∂I

∂2I

∂p2
(6)

Of the right hand side terms in Eqs. 5 and 6, only ∂f/∂I and
∂2f/∂I2 depend on f so the relevant expressions for fssim
are presented below - general formulations corresponding
to J and H in Eqs. 7 and 8 respectively, followed by spe-
cializations for Ĵ and Ĥ used by specific SMs. Detailed
derivations are presented in the supplementary.

∂fssim

∂It
= f ′ =

2

cd

[(
aĪ0 − cf Īt

N − 1
+
µ0b− µtfd

N

)]
(7)

∂2fssim

∂It
2

=
2

cd

[
1

N
SN

(
4

N − 1

(
µ0Ī0 − µtf Īt

)
−

3µtd

2
f ′ −

fd

N

)
−

c

N − 1

(
3

2
f ′
T

Īt + fI
)]

(8)

with Īt = It−µt, a = 2µtµ0+C1, b = 2σt0+C2, c = µ2
t+

µ2
0+C1, d = σ2

t +σ2
0+C2, f = fssim and Sn (K) denoting

an n×k matrix formed by stacking the 1× k vector K into
rows. The form of ∂f/∂I used by the four variants of LK
is identical except that ICLK requires the differentiation to
be done w.r.t. I0 instead of It - the expressions for this
are trivial to derive since SSIM is symmetrical. ESM was
originally [9] formulated as using the mean of∇I0 and∇It
to compute J but, as this formulation is only applicable to
SSD, a generalized version [11, 53] is considered here that
uses the difference between FCLK and ICLK Jacobians.

It is generally assumed [4, 9] that the second term of Eq.
6 is too costly to compute and too small near convergence to
matter and so is omitted to give the Gauss Newton Hessian:

Hgn =
∂I

∂p

T ∂2f

∂I2
∂I

∂p
(9)

Though Hgn works very well for SSD (and in fact even bet-
ter than H [4, 16]), it is well known [16, 53] to not perform
well with other AMs like MI, CCRE and NCC and we can
confirm that the latter is true for SSIM and SPSS too. For
these AMs, an approximation to H after convergence has to
be used instead by assuming perfect alignment between the
patches or Ic = I∗ . This approximation is here referred to
as the Self Hessian and, as this substitution can be made by
setting either Ic = I0 or I∗ = It, we get two forms which
are respectively deemed to be ICLK and FCLK Hessians:

Ĥic = H∗self =
∂I0

∂p

T ∂2f(I0, I0)

∂I2
∂I0

∂p
+
∂f(I0, I0)

∂I

∂2I0

∂p2
(10)

Ĥfc = Hc
self =

∂It

∂p

T ∂2f(It, It)

∂I2
∂It

∂p
+
∂f(It, It)

∂I

∂2It

∂p2
(11)

It is interesting to note that Hgn has the exact same
form as Hself for SSD (since ∂fssd(I0, I0)/∂I =
∂fssd(It, It)/∂I = 0) so it seems that interpreting Eq. 9
as the first order approximation of Eq. 6 for SSD as in
[4, 20, 16] is incorrect and it should instead be seen as a
special case of Hself . Setting I0 = It simplifies Eq. 8 to:

∂2fssim(It, It)

∂It
2 =

−2

c̄d̄

[
d̄

N2
+

c̄

N − 1
I
]

(12)

with c̄ = 2µ2
t + C1 and d̄ = 2σ2

t + C2. Finally, FALK and
IALK use the same form of ∂2f/∂I2 as FCLK while ESM
uses the sum of Ĥfc and Ĥic.

3.2. Simplifying SSIM with pixelwise operations

In the formulation described so far, SSIM has been com-
puted over the entire patch - i.e. µt, σt and σt0 have been
computed over all N pixels in It and I0. In its original
form [69], however, the expression in Eq. 3 was applied to
several corresponding sub windows within the two patches
- for instance 8 × 8 sub windows that are moved pixel-by-
pixel over the entire patch - and the mean of all resultant
scores taken as the overall similarity score. For tracking ap-
plications, such an approach is not only impracticable from
speed perspective, it presents another issue for GD SMs -
presence of insufficient texture in these small sub windows
may cause Eq. 4 to become ill posed if J and H are com-
puted for each sub window and then averaged.

As a result, the formulation used here considers only
one end of the spectrum of variation of size and number
of sub windows - a single sub window of the same size as
the patch. Now, if the other end of the spectrum is consid-
ered - N sub windows of size 1 × 1 each - then a different



AM is obtained that may provide some idea about the effect
of window wise operations while also being much simpler
and faster. The resultant model is termed as Sum of Pix-
elwise Structural Similarity or SPSS. When considered
pixel wise, σt and σt0 become null while µt becomes equal
to the pixel value itself so that Eq. 3 simplifies to:

fspss =

N∑
i=1

2It(xit)I0(xi0) + C1

It(xit)2 + I0(xi0)2 + C1
(13)

Similar to SSD, contributions from different pixels to
fspss are independent of each other so that each entry of
∂fspss/∂It has contribution only from the corresponding
pixel. This also holds true for each entry of the principal
diagonal of ∂2fspss/∂It

2 (which is a diagonal matrix). De-
noting the contributions of the ith pixel to fspss, ∂fspss/∂It
and ∂2fspss/∂It

2 respectively as fi, f ′i and f ′′i , we get:

f ′i =
2(I0(xi0)− It(xit)fi)

It(xit)2 + I0(xi0)2 + C1
(14)

f ′′i =
−2(fi + 3It(xit)f

′
i)

It(xit)2 + I0(xi0)2 + C1
(15)

f ′′i (It, It) =
−2

2It(xit)2 + C1
(16)

4. Results and Analysis
4.1. Datasets

Following four publicly available datasets have been
used to analyze the trackers:

1. Tracking for Manipulation Tasks (TMT) dataset [51]
that contains videos of some common tasks performed
at several speeds and under varying lighting condi-
tions. It has 109 sequences with 70592 frames.

2. Visual Tracking Dataset provided by UCSB [23] that
has 96 short sequences with a total of 6889 frames.
These are more challenging than TMT but also some-
what artificial as they were created to represent specific
challenges rather than realistic tasks.

3. LinTrack dataset [72] that has 3 long sequences with
a total of 12477 frames. These are more realistic than
those in UCSB but also more difficult to track.

4. A collection of 28 challenging planar tracking se-
quences from several significant works in literature
[37, 57, 58, 60, 56, 15, 45]. We call this the PAMI
dataset after [37] from where several of the sequences
originate. There are 16511 frames in all.

All of these datasets except PAMI have full pose (8 DOF)
ground truth data which makes them suitable for evaluating
high precision trackers that are the subject of this study. For
PAMI, this data was generated using a combination of very
high precision tracking and manual refinement [51].

4.2. Evaluation Measures

Alignment Error (EAL) [19] has been used as the met-
ric to compare tracking result with the ground truth since
it accounts for fine misalignments of pose better than other
measures like center location error and Jaccard index. A
tracker’s overall accuracy is measured through its success
rate (SR) which is defined as the fraction of total frames
where EAL is less than a threshold of tp pixels. Formally,
SR = |S|/|F | where S = {f i ∈ F : Ei

AL < tp}, F is the
set of all frames and Ei

AL is the error in the ith frame f i.
Since there are far too many sequences to present results

for each, an overall summary of performance is reported
instead by averaging the SR over all sequences in the four
datasets. In addition, to better utilize frames that follow a
tracker’s first failure in any sequence, we initialize track-
ers at 10 different evenly spaced frames in each sequence.
Therefore the SR plots represent accumulated tracking per-
formance over a total of |F | = 589380 frames, out of which
106469 are unique.

Finally, the SR is evaluated for several values of tp rang-
ing from 0 to 20 and the resulting SR vs. tp plot is studied
to get an overall idea of how precise and robust a tracker
is. As an alternative measure for robustness, reinitialization
tests [36] were also conducted where a tracker is reinitial-
ized after skipping 5 frames every time its EAL exceeds 20
and the number of such reinitialization is counted. Due to
space constraints, these results are presented in the supple-
mentary (available on MTF website).

4.3. Parameters Used

All results were generated using a fixed sampling reso-
lution of 50×50 irrespective the tracked object’s size. Input
images were smoothed using a Gaussian filter with a 5×5
kernel before being fed to the trackers. Iterative SMs were
allowed to perform a maximum of 30 iterations per frame
but only as long as the L2 norm of the change in bounding
box corners in each iteration exceeded 0.0001. Implementa-
tion details of NN, PF and RANSAC were taken from [19],
[37] and [71] respectively. NN was run with 1000 sam-
ples and PF with 500 particles. For RANSAC and RKLT, a
10×10 grid of sub patches was used and each sub patch was
tracked by a 2 DOF FCLK tracker with a sampling resolu-
tion of 25×25. As in [69], SSIM parameters are computed
as C1 = (K1L)2 and C2 = (K2L)2 with K1 = 0.01,
K2 = 0.03 and L = 255. Learning based trackers (Sec.
4.4.2) were run using default settings provided by their re-
spective authors. Speed tests were performed on a 4 GHz
Intel Core i7-4790K machine with 16 GB of RAM.

4.4. Results

The results presented in this section are organized into
three sections corresponding to the three sub modules. In
each, we present and analyze results comparing different
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Figure 1: Success rates for AMs using different SMs with Homography as well as for different SSMs using SSIM with ESM (bottom
right). Plot legends indicate areas under the respective curves. Best viewed on a high resolution screen.



0

100

200

300

400

500

600

700

Sp
ee

d 
in

 F
P

S

 

 
SSIM
NCC
MI
SPSS
SSD
ZNCC
CCRE
SCV
RSCV

0

5

10

15

20

25

 

 

PFESM

Figure 2: Speeds of ESM and PF with homography. Solid and
dotted lines show the means and standard deviations respectively.

methods for the respective sub module.

4.4.1 Appearance Models

Fig. 1 shows the SR curves for all AMs using different SMs
and homography SSM with plot legends also indicating the
areas under the respective curves which are equivalent [13]
to the average SR over this range of tp. Fig. 2 shows the
speeds of these AMs with ESM and PF as representatives
of GD and stochastic SMs respectively. LSCV is excluded
to reduce clutter as it was found to perform very similarly
to SCV. Its results are in the supplementary instead along
with those for the ILMs. Further, RANSAC and RKLT do
not include CCRE and MI results since both are far too slow
for 100 of them to be run simultaneously in real time. Also,
both perform very poorly with these SMs, probably because
the small sub patches used there [71] do not have sufficient
information to be represented well by the joint histograms
employed by these AMs.

Several observations can be made here. Firstly, NCC
is the best performer with all SMs except IALK and NN
- IALK performs poorly with all robust AMs (Sec. 4.4.3)
while NN performs best with MI. Nevertheless, SSIM is
usually equivalent to NCC or a close second showing that
the latter is among the best AMs known. Also, as expected,
SSIM is much better than SPSS with all SMs, with the latter
only managing to match the performance of SSD on aver-
age. Further, though ZNCC is claimed to be equivalent to
NCC [52] and also has a wider basin of convergence due to
its SSD like formulation, it usually does not perform as well
as NCC.

Secondly, in spite of being the most sophisticated and
computationally expensive AM, CCRE is the worst per-
former with GD SMs and even MI is only slightly better
than SSD on average. However, MI and CCRE are actually
the best performing AMs with NN and MI is so with NNIC
too. This shows that their poor performance with GD SMs

is likely to be due to their narrower basin of convergence
rather than an inherent weakness in the AMs themselves.
This also explains MI’s significant lead over CCRE with
these SMs though the two differ only in the latter using a cu-
mulative joint histogram. It seems likely that the additional
complexity of CCRE along with the resultant invariance to
appearance changes further reduces its basin of convergence
[17]. This discrepancy in performance between GD and
stochastic SMs demonstrates the inadequacy of evaluating
an AM with only one SM.

Thirdly, SCV outperforms RSCV with both inverse GD
SMs - ICLK and IALK - though the reverse is true with
both the forward ones - FCLK and FALK. This pattern also
holds for stochastic and composite SMs - SCV is better with
NN/NNIC where samples are generated from I0 but worse
with PF/PFFC where these come from It. Also, their per-
formance is very similar with ESM where information from
both I0 and It is used. This is probably because SCV per-
forms likelihood substitution with I0 [48] while RSCV does
so with It [19]. Fourthly, the separation between AMs is
narrower with RANSAC than other SMs as this SM depends
more on the number of sub patches used than on the tracker
used for each. Conversely, PF shows maximum variation
between AMs, thus indicating its strong reliance on f .

Finally, SPSS is not much faster than SSIM with either
SM though it has lower computational complexity. This is
partly due to SSIM finding convergence in fewer iterations
with GD SMs and partly due to the way Eigen [1] optimizes
matrix multiplications, many of which are used for comput-
ing fssim and its derivatives while those of fspss have to be
computed pixel by pixel. The same holds for SSD too.

4.4.2 State Space Models

Results in this section follow a slightly different format
from the other two due to the difference in the motivations
for using low DOF SSMs - they are more robust due to
reduced search space and faster due to the gradients of w
being less expensive to compute. Limiting the DOF also
makes them directly comparable to OLTs which too have
low DOF. As a result, 2 DOF RBTs were also tested with
8 state of the art OLTs [36] - DSST [18], KCF [29], CMT
[45], RCT [70], TLD [34], Struck [26], FRG [2] and GO-
TURN [28]. Lastly, in order to make the evaluations fair,
lower DOF ground truth has been used for all accuracy re-
sults in this section. This was generated for each SSM using
least squares optimization to find the warp parameters that,
when applied to the initial bounding box, will produces a
warped box whose EAL with respect to the 8 DOF ground
truth is as small as it is possible to achieve given the con-
straints of that SSM.

Fig. 3 shows the results of these tests in terms of both
accuracy and speed. As expected, all the OLTs have low
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Figure 3: Success Rates for SSIM using translation as well as for 8 OLTs. The former are shown with solid lines and the latter in dashed
lines. The speed plot on the right has logarithmic scaling on the x axis for clarity though actual figures are also shown.

SR for smaller tp since they are less precise in general [36].
What is more interesting, however, is that none of them,
with the exception of DSST and perhaps Struck, managed
to surpass the best RBTs even for larger tp. The superior-
ity of DSST and Struck over other OLTs is consistent with
results on VOT dataset [36]. However, the very poor perfor-
mance of GOTURN [28], which is one of the best trackers
on that dataset, indicates a fundamental difference in the
challenges involved in the two paradigms of tracking. The
speed plot shows another reason why OLTs are not suitable
for high speed tracking applications - they are 10 to 30 times
slower than RBTs except PF and RANSAC that are not im-
plemented efficiently yet. It is not surprising that tracking
based SLAM systems like SVO [22] use registration based
trackers as they need to track hundreds of patches per frame.

To conclude the analysis in this section, we tested the
performance of different SSMs against each other and the
results are reported in the bottom right subplot of Fig. 1 us-
ing ESM with SSIM. Contrary to expectations, lower DOF
SSMs are not better except perhaps affine and similitude
that have slightly higher SR than homography for larger tp.
In fact, the SR curves of all low DOF SSMs approach those
of homography as tp increases which does indicate their
higher robustness - though not as precise as homography,
they tend to be more resistant to complete failure. Also, all
three parameterizations of homography have almost identi-
cal performance, with their plots showing near perfect over-
lap. This suggests that the theoretical justification [9] for
using ESM only with SL(3) has little practical significance.

4.4.3 Search Methods

SR plots comparing different SMs for each AM are pre-
sented in the supplementary to save space as they contain
the same data as Fig. 1. First fact to observe is that the
four variants of LK do not perform identically. Though

FCLK and FALK are indeed evenly matched, both ICLK
and IALK are significantly worse, with ICLK being notably
better than IALK. This is especially true for CCRE where it
outperforms both additive SMs. This contradicts the equiv-
alence between these variants that was reported in [4] and
justified there using both theoretical analysis and experi-
mental results. The latter, however, were only performed
on synthetic images and even the former used several ap-
proximations. Therefore, it is perhaps not surprising that
this equivalence does not hold under real world conditions.

Secondly, ESM fails to outperform FCLK for any AM
except SCV and ZNCC and even there it does not lead by
much. This fact too emerges in contradiction to the theo-
retical analysis in [9] where ESM was shown to have sec-
ond order convergence and so should be better than first or-
der methods like FCLK. Thirdly, both additive LK variants,
and especially IALK, fare worse against compositional ones
when using robust AMs compared to SSD-like AMs. This
is probably because the Hessian after convergence approach
used for extending Newton’s method to these AMs does not
make as much sense for additive formulations [16]. Lastly,
PFFC is the best performing SM followed by NNIC and
RKLT which proves the efficacy of composite SMs.

5. Conclusions
We presented two new similarity measures for registra-

tion based tracking and also formulated a novel way to de-
compose trackers in this domain into three sub modules.
We tested many different combinations of methods for each
sub module to gain interesting insights into their strengths
and weaknesses. Several surprising results were obtained
that proved previously published theoretical analysis to be
somewhat inaccurate in practice, thus demonstrating the
usefulness of this approach. Finally, the open source track-
ing framework used for generating these results was made
publicly available so these can be easily reproduced.
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