
PCA based appearance model for tracking

Vincent Zhang

May 2, 2016

1 Abstract

In this project, we studied PCA based appearance model in visual tracking. We
implemented PCA AM module in MTF framework and attempted different ways
of formulating PCA. In the experiment sections, we demonstrate the tracking
performance of offline PCA when combined with different search methods. PCA
+ Forward Compositional has shown great tracking accuracy and robustness. It
indicates a good potential for online PCA method. In the end, we suggests the
future work in how we can use it with nearest neighbor to improve the accuracy.

2 PCA-based Appearance Model (AM)

Search method usually relies on a similarity metric which determines how close
a patch is from the template. This similarity is computed mostly directly from
image intensity, for example Sum of Squared Difference (SSD). It is very sen-
sitive to view point and illumination change. The idea of PCA-based AM is
to reduce this sensitivity by incorporating different appearance into the eigen
basis.

Let I denote the matrix of training images, the dimension is n× p, where n
is the number of pixels in an image, p is the number of images.

We assume the following pre-processing step for the rest of the paper: sub-
tract the mean image Imean from all images, denote the centered image as Ic.

There are two ways of constructing the PCA basis.

Approach I:

Compute covariance matrix cov(ITc Ic), apply eigen decomposition to it to get
the eigenvectors Y . Then we project Ic onto the eigenvector to get the image
basis: B = Ic ∗Y . Here Ic is n×p, Y is p×k, B is n×k, where k is the number
of eigen basis the we want to keep which is smaller than the number of training
images.

For a given new image, Inew, we subtract Imean from it, project it onto
eigen basis to get the coefficient ynew = BT Inew, where B ynew = Inew. This
coefficient ynew is used as the feature vector. Its length is only k < p. This
raises a concern in its practicality in tracking as a feature vector since it may
not contain enough information. It seems to be well addressed by the approach
II below.

1



Approach II:

Similar to approach I, except that instead of computing covariance matrix
cov(ITc Ic), we now do cov(IcI

T
c ). The truncated eigenvector B can be directly

used as the image basis. This is equivalent to doing SV D(Ic) = UΣV T . The
eigen basis has a dimension of up to the number of pixels. This means we have
a richer set of basis which may give better representation.

Similarity metric:

Once we have computed the basis, we may use it in two different ways as ex-
plained in this section:

2.0.1 Eigen coefficients as the feature:

Suppose we have two new images, I1, I2 and a template image IT . We first do
the mean subtraction Îi = Ii − Imean, i = 1, 2. then compute the coefficients
yi for each image by yi = BT Îi. We also compute the feature for the template
yT = BT ÎT .

SSD, NCC can both be applied to this feature vector. It turns out that using
coefficients is almost equivalent of using intensities.

We are showing here that the SSD score between similar patches will still be
similar with the eigen coefficients as the feature. Same thing can be shown
for NCC. This suggests that eigen coefficients are not a better metric than
pure SSD.

For example, for similar I1 and I2,

SSD(I1, IT ) − SSD(I2, IT ) =
∑

(I1 − IT )2 −
∑

(I2 − IT )2

SSD(y1, yT ) − SSD(y2, yT ) =
∑

(BT I1 −BT IT )2 −
∑

(BT I2 −BT IT )2

=
∑

(I1 − IT )TBBT ∗ (I1 − IT ) −∑
(I2 − IT )TBBT ∗ (I2 − IT )

= BBT
∑

(I1 − IT )2 −
∑

(I2 − IT )2

= BBT [SSD(I1, IT ) − SSD(I2, IT )]

where, BBT ≈ Identity.

2.0.2 Reconstruction error as similarity function

We use the basis to reconstruct the current patch and use the reconstruction
error (SSD) as the similarity

f = Ît −BBT Ît

where Ît denotes the mean subtracted image It − Imean at frame t.
This is often how PCA-based tracking is formulated in the literature [1, 2].
Note that there’s a similar formulation which is basically doing SSD between

the current patch and the reconstructed template:

f = Ît −BBT T̂

2



This template can either be T0 or Tt−1 (with mean image subtracted). We found
that Tt−1 yields better accuracy than T0, which makes sense since T0 only reflects
the old appearance. It is in fact almost the same as the reconstruction error
where we are doing Ît −BBT Ît, since It is similar to It−1 in most cases.

3 Experiments

The section is divided into three part, where PCA-based appearance model is
combined with other search methods.

The main goal is to figure out how PCA works in a perfect setting, where
the basis can be computed from the ground truth to accurately incorporates
the appearance information. This ”cheating” way allows us to evaluate the best
performance that can be achieved by PCA. Further work can be done to replace
the offline PCA computation with online PCA update.

For all three parts, the PCA uses a local basis where SVD is applied only on a
number of recent frames prior to the current one, instead of using all the possible
appearance. We found that global basis misleads the search in some occasions
since it is inherently biased towards the appearance that shows up more in the
sequence. If the current frame is of a rare appearance, the reconstruction error
will be fairly high and there may not present a good minimum.

I’m not including the tracking image sequence since it’s already presented
in the demo. The experiment is described below with some analysis on the
similarity plot and Jacobian/Hessian followed.

The two harder image sequences used in the demo are ”Acronic” and ”Bear”
sequence in the PAMI dataset.

3.1 PCA + Particle Filter

It works well for 3 DOF but not for higher DOF since the it’s highly sensitive
to the σ in the Gaussian noise model. Fine-tuning is often needed to adjust the
parameters to individual sequence.

3.2 PCA + IC

With gradient-based search methods like IC and FC, we can do higher-DOF
tracking.

PCA + IC works better than SSD in 8 DOF tracking in that it tracks the
object for a longer time. But it still fails later in the tracking sequence. It is
possible that by incorporating the PCA basis into the template (we use BBTT
instead of T ), we are introducing some error to the Jacobian ∂f

∂T
∂T
∂p . This error

accumulates which causes the tracker to fail.

3.3 PCA + FC

It works extremely well. In most test sequences, it was able to track accurately
all the time. The only exception is that it failed due to a sudden large illumina-
tion change, but I could not reproduce it. This kind of change is hard for other
types of tracker and we found that only trackers specifically designed for this
particular change works consistently, such as lscv [3]. Further testing on more

3



sequence and dataset is needed to find a case where PCA + FC consistently
fails.

Again, we’re attributing the performance to the Jacobian ∂f
∂I

∂I
∂p , which now

does not depend on the basis (strictly speaking, it does, since ∂f
∂I includes BBT ,

but not as much as it affect IC). In the meantime, the basis is making the
template more robust which leads to a much better performance than SSD.

3.4 Analysis

We first look into how the similarity function changes as the tracked patch moves
on x and y axis, shown in Fig. 2. This plot is generated from the first frame of
the book sequence ’nl bookI s3’: 1.

We see that the similarity metric is very similar between SSD and PCA.
PCA has a slightly steeper gradient which may leads to faster convergence
speed. Note that for a through analysis, it needs to be shown for the frame
where ssd fails to better understand the difference. I haven’t got the time but
plan to implement later.

Figure 1: Frame 0

We also verified that the Jacobian was correctly implemented by comparing
with numerical Jacobian, shown in Figure 3. They almost completely overlap
which shows the correctness of the implementation.

As an attempt to figure out why IC did not work as well as FC. we looked
into the Hessian, which is shown in Figure 4. We mainly look at two curves
here: the solid red line ’Std2’ and the solid cyan line ’InitSelf2’. They refer to
the true Hessian, as described in Eq.(4) in [4] and initial self hessians described

4



(a) Similarity Plot with x translation

(b) Similarity Plot with y translation

Figure 2: Similarity Plot with translation

5



(a) Jacobian under x translation

(b) Jacobian under y translation

Figure 3: Jacobian under translation

6



in Eq. (14), respectively. We can see two things here: 1. From the equation,
the initial self hessian depends heavily on the template I0, which is changed into
BBT Î0 in PCA. This difference may introduces error. 2. For SSD + FC/IC, the
true hessian can be approximated with the initial hessian which usually yields
good performance. At translation Tx = 0, true hessian is in fact equal to the
approximated hessian, which can be found also in the plot. However, for IC,
it’s not equal anymore, since we are using BBT Î0 to approximate it, where true
Hessian at Tx = 0 is using Î0. FC+PCA on the other hand, does not suffer
from this inaccuracy.

(a) Hessian of PCA

(b) Hessian of SSD

Figure 4: Hessian

7



4 What’s up next?

1. Online PCA:
Implement online PCA update to replace the offline computation

2. Benchmark IC vs FC:
Conduct quantitative analysis on IC vs FC to understand the difference
when combined with PCA method

3. NNIC+PCA:
PCA + particle filter has been implemented in IVT. But no one has applied
it with NN as search method.

A reflection on NNIC approach is that the NN is done simply by SSD
on intensity. To make this step more accurate, we can introduce PCA
reconstruction error. Concretely, we keep an online eigen basis which is
computed by the new image and previous few images in the history. Then
for NN, we simply choose the one that gives the lowest reconstruction
error instead of the one that gives lowest SSD. For testing, we can start
with offline basis. For each frame, I store a basis based on this frame and
the frames before it. We tested that doing an SVD on a 2500 by 50 matrix
in eigen library takes about 0.1 seconds. So the run time performance will
be okay. The hypothesis is that this NN+PCA+IC approach will yield
better tracking performance by adding more accuracy to NN and more
robustness to IC. We can then compare PCA+NNIC with PCA+FC.

4. Wait, are we ignoring eigenvalues ?
Existing approaches in the literature only take advantage of PCA by keep-
ing a fixed amount of eigen vectors. We are ignoring a potentially impor-
tant factor: the eigen values. It should show the distinction between
high-frequency and low frequency component. Also it can tell us about
the confidence of each eigen vector in its power to reconstruct the origi-
nal image. An open question that I would specifically like to explore is,
when using PCA, instead of just combining the basis to reconstruct the
image, can we use them separately, in a probabilistic setting? What if we
implement a Bayesian framework in use with nearest neighbor where we
search for neighbors for each basis image and decide which one, or which
subset of the basis vectors to use to achieve better performance as the ap-
pearance changes? This idea is inspired by discussion with Martin today
about choosing proper eigen basis on-the-fly.

References

[1] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incre-
mental learning for robust visual tracking. International Journal of Com-
puter Vision, 77(1-3):125–141, 2008.

[2] Michael J Black and Allan D Jepson. Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation. Interna-
tional Journal of Computer Vision, 26(1):63–84, 1998.

8



[3] R. Richa, M. Souza, G. Scandaroli, E. Comunello, and A. von Wangenheim.
Direct visual tracking under extreme illumination variations using the sum
of conditional variance. In 2014 IEEE International Conference on Image
Processing (ICIP), pages 373–377, Oct 2014.

[4] Abhineet Singh and Martin Jägersand. Modular tracking framework: A
unified approach to registration based tracking. CoRR, abs/1602.09130,
2016.

9


	Abstract
	 PCA-based Appearance Model (AM) 
	Eigen coefficients as the feature:
	Reconstruction error as similarity function


	Experiments
	PCA + Particle Filter
	PCA + IC
	PCA + FC
	Analysis

	What's up next?

