
Modular Tracking Framework: A Unified Approach to Registration based
Tracking

Abhineet Singh, Martin Jagersand
Department of Computing Science

University of Alberta, Edmonton, Canada
asingh1@ualberta.ca, jag@cs.ualberta.ca

Abstract— This paper presents a modular, extensible and
highly efficient open source framework for registration based
tracking targeted at robotics applications. It is implemented
entirely in C++ and is designed from the ground up to easily
integrate with systems that support any of several major vision
and robotics libraries including OpenCV, ROS, ViSP and Eigen.
It is also faster and more precise than other existing systems.

To establish the theoretical basis for its design, a new
way to conceptualize registration based trackers is introduced
that decomposes them into three constituent sub modules -
Search Method, Appearance Model and State Space Model. In
the process, the seminal work by Baker & Matthews [17] is
extended with several important advances since its publication.

In addition to being a practical solution for fast and high
precision tracking, this system can also serve as a useful
research tool by allowing existing and new methods for any
of the sub modules to be studied better. When a new method
is introduced for one of these, the breakdown can help to
experimentally find the combination of methods for the others
that is optimum for it. By extensive use of generic programming,
the system makes it easy to plug in a new method for any of the
sub modules so that it can not only be tested comprehensively
with existing methods but also become immediately available
for deployment in any project that uses the framework.

I. INTRODUCTION

Fast and high precision visual tracking is crucial to the
success of several robotics applications like visual servoing
and autonomous navigation. In recent years, online learning
and detection based trackers have become popular [1], [2]
due to their robustness to changes in the object’s appearance
which makes them better suited to long term tracking.
Such trackers, however, are often unsuitable for robotics
applications for two reasons. Firstly, they are too slow
[3] to allow real time execution of tasks where multiple
trackers have to be run simultaneously or tracking is only
a small part of a larger system. Secondly, they are not
precise enough [3] to provide the exact object pose with
sub pixel alignment required for these tasks. As a result,
registration based trackers (Sec. II-B) are more suitable for
these applications as being several times faster and capable of
estimating higher degree-of-freedom (DOF) transformations
like affine and homography.

Though several major advances have been made in this
domain since the original Lucas Kanade (LK) tracker was
introduced almost thirty five years ago [4], efficient open
source implementations of recent trackers are surprisingly
difficult to find. In fact, the only such tracker offered by the

popular OpenCV library [5], uses a pyramidal implementa-
tion of the original algorithm [6]. Similarly, the ROS library
[7] currently does not have any package that implements
a modern registration based tracker. The XVision system
[8] did introduce a full tracking framework including a
video pipeline. However, it implements several variants of
the same algorithm [9] that only gives reasonable tracking
performance with low DOF motion. In addition, it is not
well documented and is quite difficult to install on modern
systems due to many obsolete dependencies. Even the fairly
recent MRPT library [10] includes only a version of the
original LK tracker apart from a low DOF particle filter based
tracker which is too imprecise and slow to be considered
relevant for our target applications.

In the absence of good open source implementations
of modern trackers, most robotics research groups either
use these out dated trackers or implement their own cus-
tom trackers. These, in turn, are often not made publicly
available or are tailored to suit very specific needs and
so require significant reprogramming to be useful for an
unrelated project. To address this need for a tracking library
targeted specifically at robotics applications, we introduce
Modular Tracking Framework (MTF)1 - a generic system
for registration based tracking that provides highly efficient
implementations for a large subset of trackers introduced in
literature to date and is designed to be easily extensible with
additional methods.

MTF conceptualizes a registration based tracker as being
composed of three semi independent sub modules - Search
Method (SM), Appearance Model (AM) and State Space
Model (SSM) - where the former is treated as a way to use
the functionality in the other two - through a well defined
interface - to solve the tracking problem. Such an approach
can help to address another urgent need in this field - to unify
the myriad of contributions made in the last three decades
so they can be better understood. When a new registration
based tracker is introduced in literature, it often contributes
to only one or two of these sub modules while using existing
methods for the rest. In such cases, this breakdown can
provide a model within which the contributions of the new
tracker can be clearly demarcated and thus studied better
[3], [11]. By following this decomposition closely through

1available at http://webdocs.cs.ualberta.ca/˜vis/mtf/

http://webdocs.cs.ualberta.ca/~vis/mtf/


extensive use of generic programming, MTF provides a
convenient interface to plug in a new method for any sub
module and test it against existing methods for the other two.
This will not only help to compare the new method against
existing ones in a more comprehensive way but also make
it immediately available to any project that uses MTF. To
facilitate the latter, MTF provides a simple ROS interface2

for seamless integration with robotics systems.
An existing system that is quite similar to MTF in

functionality is the template tracker module of the Visual
Servoing Platform (ViSP) library [12] that includes 4 SMs,
3 AMs and 6 SSMs though not all combinations work. MTF
offers several advantages over ViSP. Firstly, SMs and AMs
in ViSP are not implemented as independent modules, rather
each combination of methods has its own class. This makes
it difficult to add a new method for either of these sub
modules and combine it with existing methods for the others.
Secondly, MTF has several more AMs than ViSP as well
as three stochastic SMs - NN [13], Particle Filter [14] and
RANSAC [15]. Lastly, MTF is significantly faster than ViSP
- both ICLK and FCLK (Sec. II-C) with SSD/Homography
are nearly 30 times3 faster. This is mainly because MTF uses
the Eigen library - known to be one of the fastest [16] - for
all mathematical computations.

To summarize, following are our main contributions:
• Present a fast tracking library for robotics applications

that is also easy to extend due to its modular design.
• Provide a unifying formulation for registration based

tracking to establish the theoretical basis for its design.
– This can be seen as an extension of the framework

reported in [17] with newer methods.
Rest of this paper is organized as follows: Section II intro-
duces the mathematical basis for the design of MTF while
section III describes the class structure of MTF along with
specifications for important functions. Section IV presents
several SMs as examples of using the functionality described
in section III to implement the theory of section II. Finally,
section V presents a couple of use cases for MTF before
concluding in section VI with ideas for future extensions.

II. THEORETICAL BACKGROUND

A. Notation

Let It : R2 7→ R refer to an image captured at time
t treated as a smooth function of real values using sub
pixel interpolation [18] for non integral locations. The patch
corresponding to the tracked object’s location in It is denoted
by It(xt) ∈ RN where xt = [x1t, ...,xNt] with xkt =
[xkt, ykt]

T ∈ R2 being the Cartesian coordinates of pixel k.
Further, w(x,ps) : R2 × RS 7→ R2 denotes a warping

function of S parameters that represents the set of allowable
image motions of the tracked object by specifying the
deformations that can be applied to x0 to align It(xt) =
It(w(x0,pst)) with I0(x0). Examples of w include homog-
raphy, affine, similitude, isometry and translation [19].

2available at https://gitlab.com/vis/mtf_bridge
32400 vs 87 fps and 615 vs 22 fps respectively on an Intel Core i5 system

Finally f(I∗, Ic,pa) : RN ×RN ×RA 7→ R is a function
of A parameters that measures the similarity between two
patches - the reference or template patch I∗ and a candidate
patch Ic. Examples of f with A = 0 include sum of
squared differences (SSD) [9], sum of conditional variance
(SCV) [20], normalized cross correlation (NCC) [21], mutual
information (MI) [18] and cross cumulative residual entropy
(CCRE) [22]. So far, the only examples with A 6= 0, to the
best of our knowledge, are those with an illumination model
(ILM) [23], [24] where f is expressed as f(I∗, g(Ic,pa))
with g : RN × RA 7→ RN accounting for differences in
lighting conditions under which I0 and It were captured.

B. Registration based tracking

Using this notation, registration based tracking can be
formulated (Eq 1) as a search problem where the goal is
to find the optimal parameters pt = [pst,pat] ∈ RS+A

that maximize the similarity, measured by f , between the
target patch I∗ = I0(x0) and the warped image patch
Ic = It(w(x0,pt)), that is,

pt = argmax
ps,pa

f(I0(x0), It(w(x0,ps)),pa) (1)

As has been observed before [19], [22], this formulation
gives rise to an intuitive way to decompose the tracking task
into three modules - the similarity metric f , the warping
function w and the optimization approach. These can be
designed to be semi independent in the sense that any given
optimizer can be applied unchanged to several combinations
of methods for the other two modules which in turn interact
only through a well defined and consistent interface. In this
work, we refer to these respectively as AM, SSM and SM.

C. Gradient Descent and the Chain Rule

Though several types of SMs have been reported in litera-
ture, gradient descent based methods [4] are most widely
used due to their speed and simplicity. As mentioned in
[17], the LK tracker can be formulated in four different
ways depending on which image is searched for the warped
patch - I0 or It - and how ps is updated in each iteration
- additive or compositional. The four resultant formulations
are thus called Forward Additive (FALK) [4], Inverse Addi-
tive (IALK) [9], Forward Compositional (FCLK) [25] and
Inverse Compositional (ICLK) [26]. There is also a more
recent approach called Efficient Second order Minimization
(ESM) [27] that tries to make the best of both ICLK and
FCLK by using information from both I0 and It.

What all these methods have in common is that they solve
Eq 1 by estimating an incremental update ∆pt to the optimal
parameters pt−1 at time t − 1 using some variant of the
Newton method as:

∆pt = −Ĥ−1ĴT (2)

where Ĵ and Ĥ respectively are estimates for the Jacobian
J = ∂f/∂p and the Hessian H = ∂2f/∂p2 of f w.r.t. p. For
any formulation that seeks to decompose this class of trackers
(among others) in the aforementioned manner, the chain rule
for first and second order derivatives is indispensable and the

https://gitlab.com/vis/mtf_bridge


resultant decompositions for J and H are given by Eqs. 3 and
4 respectively, assuming A = 0 (or p = ps) for simplicity.

J =
∂f(I(w(p)))

∂p
=

∂f

∂I
∇I∂w

∂p
(3)

H =
∂I

∂p

T ∂2f

∂I2

∂I

∂p
+

∂f

∂I

∂2I

∂p2
(4)

with
∂I

∂p
= ∇I∂w

∂p
and

∂2I

∂p2
=

∂w

∂p

T

∇2I
∂w

∂p
+ ∇I∂

2w

∂p2
.

It follows that the AM computes terms involving I and f
(∇I, ∇2I, ∂f/∂I and ∂2f/∂I2 ) while the SSM computes
those with w (∂w/∂p, ∂2w/∂p2). Further, these generic
expressions do not give the whole scope of the decomposi-
tions since the exact forms of Ĵ and Ĥ as well as the way
these are split vary for different variants of LK. The reader is
referred to [17] for more details though formulations relevant
to the functions in MTF (Tables I and II), including several
extensions to [17], are also presented in the appendix.

D. Stochastic Search

A limitation of gradient descent type SMs is that they are
prone to getting stuck in local maxima of f especially when
the object’s appearance changes due to factors like occlu-
sions, motion blur or illumination variations. An alternative
approach to avoid this problem is to use stochastic search so
as to cover a larger portion of the search space of p. There
are currently three main categories of such methods in our
framework - particle filters (PF) [14], nearest neighbor (NN)
[13] and RANSAC [15].

These SMs work by generating a set of random samples
for p and evaluating the goodness of each by some measure
of similarity with the template. Their performance thus
depends mostly on the number and quality of stochastic
samples used. While the former is limited only by the
available computational resources, the latter is a bit harder
to guarantee for a general SSM/AM. For methods that draw
samples from a Gaussian distribution, the quality thereof is
determined by the covariance matrix used and, to the best of
our knowledge, no widely accepted method exists to estimate
it in the general case. Most works either use heuristics or
perform extensive hand tuning to get acceptable results [14].

Given this, a reasonable way to decompose these meth-
ods to fit our framework is to delegate the responsibility
of generating the set of samples and estimating its mean
entirely to the SSM and AM while letting the latter evaluate
the suitability of each sample by providing the likelihood
of the corresponding patch. Since the definition of what
constitutes a good sample and how the mean of a sample
set is to be evaluated depends on the SSM/AM, as do any
heuristics for generating these samples (like the variance for
each component of p), such a decomposition ensures both
theoretical validity and good performance in practice.

III. SYSTEM DESIGN

As shown in the class diagram in Fig. 1, MTF closely
follows the decomposition described in the previous section

and has three abstract base classes corresponding to the three
sub modules - SearchMethod, AppearanceModel and
StateSpaceModel. 4 Of these, only SM is a generic class
that is templated on specializations of the other two classes.
A concrete tracker, defined as a particular combination of
the three sub modules, thus corresponds to a subclass of SM
that has been instantiated with subclasses of AM and SSM.

It may be noted that SM itself derives from a non generic
base class called TrackerBase for convenient creation
and interfacing of objects corresponding to heterogeneous
trackers, including those external to MTF, so that they can
be run simultaneously and their results combined to create
a tracker more robust than any of its components. Allowing
a diverse variety of trackers to integrate seamlessly is one
of the core design objectives of MTF and this is empha-
sized by having such trackers derive from a separate base
class called CompositeBase. Since individual registration
based trackers are well known to be prone to failures and
more than three decades of research has failed to make sig-
nificant improvements in this regard, the composite approach
seems to be one of the more promising ones [15]. MTF has
thus been designed to facilitate work in this direction.

A particular SM in our formulation is defined only by
its objective - to find the p that maximizes the similarity
measure defined by the AM. Thus, different implementations
of SM can cover a potentially wide range of methods that
have little in common. As a result, SM is the least specific
of these classes and only provides functions to initialize,
update and reset the tracker along with accessors to obtain
its current state. In fact, an SM is regarded in this framework
simply as one way to use the methods provided by the other
two sub modules to accomplish the above objective with the
idea being to abstract out as much computation from the
SM to the AM/SSM as possible so as to make for a general
purpose tracker. Therefore, this section describes only AM
and SSM in detail while some of the SMs currently available
in MTF are presented in the next section as examples of
using the functionality described here to carry out the search
in different ways.

Another consequence of this conceptual impreciseness of
SM is that a specific SM may use only a small subset of
the functionality provided by AM/SSM. For instance, gradient
descent type SMs do not use the random sampling functions
of SSM and conversely, stochastic SMs do not use the
differential functions required by the former. This has two
further implications. Firstly, the functionality set out in AM
and SSM is not fixed but can change depending on the
requirements of an SM, i.e. if a new SM is to be implemented
that requires some functionality not present in the current
specifications, the respective class can be extended to support
it - as long as such an extension makes logical sense within
the definition of that class. Secondly, it is not necessary
for all combinations of AMs and SSMs to support all
SMs. For instance a similarity measure does not need to be

4For brevity, these will be referred to as SM, AM and SSM respectively with
the font serving to distinguish the classes from the corresponding concepts.



AppearanceModel

TrackerBase

SearchMethod

StateSpaceModel

ImageBase

ProjectiveBase

SSDBase
MICCRE

SSD

SPSSSSIMNCC

ZNCCRSCV SCV NSSD LSCVLRSCV IALKFALK

FCLKPF
ESM

ICLK NN

AESM Transcaling

AffineIsometry

CornerHomographyTranslationLieHomography

Homography Similitude

StochasticSamplerPyramidalTracker

ParallelTracker

GridTracker

CascadeTracker

RKLT

CompositeBase

1

1

1

1*

1

1

1

1

1

1

1

LKLD

Spline TPS

RIU

FMaps

IlluminationModel

GB PGB RBF

1

1 LineTracker

PCA

SL3

Fig. 1. MTF Class Diagram showing all models currently implemented. Pure and partially abstract classes are respectively shown in red and green while
concrete classes are in black. Classes that are sub parts of AM and SSM are in yellow. Acronyms not defined in text: NSSD: Normalized SSD, ZNCC:
Zero mean NCC, RSCV: Reversed SCV, LSCV: Localized SCV, LRSCV: Localized RSCV, PCA: Principal Component Analysis [28], SSIM: Structural
Similarity[11], SPSS: Sum of Pixel wise SSIM[11], LKLD: Localized KL Divergence, RIU: Ratio Image Uniformity[29], GB: Gain and Bias[24], PGB:
Piecewise GB[23], RBF: Radial Basis Function[23], TPS: Thin Plate Splines[30], Spline:[31], SL3:[14], AESM: Additive ESM, RKLT:[15]

differentiable to be a valid AM as long as it is understood
that it cannot be used with SMs that require derivatives.

In the broadest sense, the division of functionality between
AM and SSM described next can be understood as AM being
responsible for everything to do with the image I , the
sampled patch I(x) and the similarity f computed using it
while SSM handles the actual points x at which the patch is
sampled along with the warping function w that defines it
in terms of the state parameters p.

A. AppearanceModel

This class can be divided into three main parts with each
defined as a set of variables dependent on I0 and It with
a corresponding initialize and update function for
each. The division is mainly conceptual and methods in
different parts are free to interact with each other in practice.
Table I presents a brief specification of some important
methods in AM.

1) Image Operations: This part, abstracted into a separate
class called ImageBase, handles all pixel level operations
on the image I like extracting the patch I(x) using sub pixel
interpolation and computing its numerical gradient ∇I and
Hessian ∇2I.

Though AM bears a composition or ”has a” relationship
with ImageBase, in practice the latter is actually imple-
mented as a base class of the former to maintain simplicity of
the interface and allow a specializing class to efficiently over-
ride functions in both classes. Moreover, having a separate
class for pixel related operations means that AMs like SCV
and ZNCC that differ from SSD only in using a modified
version of I0 or It (thus deriving from SSDBase in Fig. 1),
can implement the corresponding mapping entirely within the
functions defined in ImageBase and be combined easily
with other AMs besides SSD.

2) Similarity Functions: This is the core of AM and han-
dles the computation of the similarity measure f(I∗, Ic,pa)
and its derivatives ∂f/∂I and ∂2f/∂I2 w.r.t. both I∗ and Ic.
It also provides interfacing functions to use inputs from SSM
to compute the derivatives of f w.r.t. SSM parameters using
the chain rule. As a notational convention, all interfacing
functions, including those in SSM, are prefixed with cmpt.

initializePixVals

initializeSimilarity

4:updateSimilarity

initializeDistFeat

initializeHess

initializeGrad

9:cmptDifferenceOfJacobians

5:updateInitGrad

7:cmptInitJacobian

8:cmptCurrJacobian

6:updateCurrGrad

11:cmptCurrHessian

10:cmptInitHessian

13:cmptSumOfHessians12:cmptSelfHessian

updateDistFeat

getDistFeat

initializePixGradinitializePixHess

1:updatePixVals 2:updatePixGrad

getCurrPixGrad

getCurrGrad
getInitGrad

3:updatePixHess

getCurrPixHess
getCurrPixVals

getInitPixValsgetInitPixHess getInitPixGrad

getSimilarity
getLikelihood

Fig. 2. Dependency relationships between various functions in AM: an
arrow pointing from A to B means that A depends on B. Color of a function
box denotes its type - green: initializing; red: updating; blue: interfacing and
yellow: accessor function. Shape of a function box represents the part of AM
it belongs to - rectangle: Image Operations; rounded rectangle: Similarity
Functions; ellipse: Distance Feature. The numbers attached to some of the
nodes refer Table I.

The functionality specific to pa is abstracted into a
separate class called IlluminationModel so it can be
combined with any AM to add photometric parameters [23],
[24] to it. This class provides functions to compute g(I,pa)
and its derivatives including ∂g/∂pa, ∂2g/∂pa

2, ∂g/∂I,
∂2g/∂I2 and ∂2g/∂I∂pa. These are called from within AM to
compute the respective derivatives w.r.t. f so that the concept
of ILM is transparent to the SM. It should be noted that AM
is designed to support f with arbitrary pa of which ILM is a
special case. It also supports learning to update the object’s
appearance, as present, for instance, in PCA [28].

Since several of the functions in this part of AM involve
common computations, there exist transitive dependency
relationships between them as depicted in Fig. 2 to avoid
repeating these computations when multiple quantities are
needed by the SM. What this means is that a function lower
down in the dependency hierarchy may delegate part of its
computations to any function higher up in the hierarchy so
that the latter must be called before calling the former if
correct results are to be expected.

3) Distance Feature: This part is designed specifically to
enable integration with the FLANN library [32] that is used



by the NN based SM. It provides two main functions:
1) A feature transform D(I1) : RN 7→ RK that maps the

pixel values extracted from a patch I1 into a feature
vector that contains the results of all computations in
f(I1, I2) that depend only on I1.

2) A highly optimized distance functor fD(ID1 , ID2 ) :
RK × RK 7→ R that computes a measure of the
distance or dissimilarity between I1 and I2 (typically
−f(I1, I2)) given the distance features ID1 = D(I1)
and ID2 = D(I2) as inputs.

The main idea behind the design of these two components
is to place as much computational load as possible on D
so that fD is as fast as possible with the premise that the
former is called mostly during initialization when the sample
dataset is to be built while the latter is called online to find
the best matches for a candidate patch in the dataset.

TABLE I
SPECIFICATIONS FOR IMPORTANT METHODS IN AM. IDS IN FIRST

COLUMN REFER FIG. 2
ID Inputs Output/Variable updated
1 xt It(xt)
2 xt ∇It
3 xt ∇2It
4 None f(I0, It)

5 None
∂f(I0, It)

∂I0

6 None
∂f(I0, It)

∂It

7
∂I0

∂ps

∂f(I0(p), It)

∂p
(Eq. 8)

8
∂It

∂ps

∂f(I0, It(p))

∂p
(Eq. 5, 6)

9
∂I0

∂ps
,
∂It

∂ps

∂f(I0, It(p))

∂p
−

∂f(I0(p), It)

∂p
(Eq. 11)

101 ∂I0

∂ps
,
∂2I0

∂ps
2

∂2f(I0(p), It)

∂p2

11
∂It

∂ps
,
∂2It

∂ps
2

∂2f(I0, It(p))

∂p2

12
∂It

∂ps
,
∂2It

∂ps
2

∂2f(It, It(p))

∂p2
(Eq. 13, 14)

13
∂I0

∂ps
,
∂2I0

∂ps
2

,
∂It

∂ps
,
∂2It

∂ps
2

∂2f(I0(p), It)

∂p2
+

∂2f(I0, It(p))

∂p2

1 Functions 10-13 have overloaded variants that omit the second term in Eq. 4, as

in Eq. 12, and so do not require
∂2I

∂ps
2

as input

B. StateSpaceModel

This class has a simpler internal state than AM and can
be described by only three main variables at any time t -
sampled grid points xt, corresponding corners xc

t and state
parameters pst. It may be noted (Fig. 1) that, though SSM
is designed to support any arbitrary w, most SSMs currently
implemented are subsets of the planar projective transform
and so derive from ProjectiveBase that abstracts out
the functionality common to these.

Functions in SSM can be divided into two categories:
1) Warping Functions: This is the core of SSM and

provides a function w to transform a regularly spaced grid of
points x0 representing the target patch into a warped patch
xt = w(x0,pst) that captures the tracked object’s motion
in image space. It also allows for the compositional inverse

of w to be computed (invertState) to support inverse
SMs. Further, there are functions to compute the derivatives
of w w.r.t. both x and ps but, unlike AM, SSM does not store
these as state variables, rather their computation is implicit in
the interfacing functions that compute ∂I/∂ps and ∂2I/∂ps

2

using chain rule. This design decision was made for reasons
of efficiency since ∂w/∂ps and ∂w/∂x are large and often
very sparse tensors and computing these separately not only
wastes a lot of memory but is also very computationally
inefficient.

Finally, there are four ways to update the internal state: in-
crementally using additive (additiveUpdate) or compo-
sitional (compositionalUpdate) formulations, or out-
right by providing either the state vector (setState) or
the corresponding corners (setCorners) that define the
current location of the patch. There are no complex de-
pendencies in SSM - the correct performance of interfacing
functions and accessors depends only on one of the update
functions being called every iteration. Table II lists the
functionality of some important methods in this part.

TABLE II
SPECIFICATIONS FOR IMPORTANT METHODS IN SSM.

Function Inputs Output/Result
compositionalUpdate ∆ps pst = ps

′ | w(x,ps
′) =

w(w(x,∆ps),pst)

additiveUpdate ∆ps pst = pst + ∆ps

invertState ps p′s | w(w(x,ps),p′s) = x

cmptPixJacobian ∇It
∂It

∂ps

∣∣∣∣
ps=pst

(Eq. 5)

cmptWarpedPixJacobian ∇It
∂It(w)

∂ps

∣∣∣∣
ps=ps0

(Eq. 6, 7)

cmptApproxPixJacobian ∇I0
∂It

∂pst
(approx) (Eq. 9, 10)

cmptPixHessian ∇It,∇2It
∂2It

∂ps
2

∣∣∣∣∣
ps=pst

(Eq. 15)

cmptWarpedPixHessian ∇It,∇2It
∂2It(w)

∂ps
2

∣∣∣∣∣
ps=ps0

(Eq. 16, 17)

cmptApproxPixHessian ∇I0,∇2I0
∂2It

∂pst
2

(approx) (Eq. 18)

2) Stochastic Sampler: This part is provided to support
stochastic SMs and offers following functionality to this end:

1) generate small random incremental updates to
ps (generatePerturbation) by drawing
these from a zero mean normal distribution with
either user provided or heuristically estimated
(estimateStateSigma) variance.

2) generate stochastic state samples using the given
state transition model - currently random walk
(additiveRandomWalk) and first order auto re-
gression (additiveAutoRegression1) are sup-
ported. There are also compositional variants.

3) estimate the mean of a set of samples of ps

(estimateMeanOfSamples)
4) estimate the best fit ps from a set of original and

warped point pairs (estimateWarpFromPts) using
a robust method - currently RANSAC [15] and Least
Median of Squares [33] are supported.



IV. EXAMPLES OF SEARCH METHODS

This section presents pseudo codes for several SMs to
exemplify the usage of functions described in the previous
section. Following are some points/conventions to be noted:

1) am and ssm respectively refer to instances of AM and
SSM (or rather of specializations thereof)

2) only one iteration of the update function is shown
and A = 0 has been assumed for simplicity

3) the procedure for using first order Hessian (Eq. 12) is
demonstrated only for ICLK but should be obvious for
other relevant methods too

4) different algorithms refer each other to save space and
emphasize the parts they have in common

5) flann in NN is an instance of FLANN library [32] that
can build an index from a set of samples and search it
for a new candidate

6) variables used to store the results of computations are
not described explicitly but their meaning should be
clear from their names and context

7) only one state transition model is shown in PF though
several are available (Sec. III-B.2)

Algorithm 1 ICLK
1: function initialize(corners)
2: ssm.initialize(corners)
3: am.initializePixVals(ssm.getPts())
4: am.initializePixGrad(ssm.getPts())
5: am.initializeSimilarity()
6: am.initializeGrad()
7: am.initializeHess()
8: pix jacobian← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
9: if use second order hess then

10: am.initializePixHess(ssm.getPts())
11: pix hessian← ssm.cmptInitPixHessian(

am.getInitPixHess(), am.getInitPixGrad())
12: hessian←am.cmptSelfHessian(pix jacobian, pix hessian)
13: else
14: hessian←am.cmptSelfHessian(pix jacobian)
15: end if
16: end function
17: function update
18: am.updatePixVals(ssm.getPts())
19: am.updateSimilarity()
20: am.updateInitGrad()
21: pix jacobian← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
22: jacobian←am.cmptInitJacobian(pix jacobian)
23: ssm update ← −hessian.inverse()∗jacobian
24: inv update←ssm.invertState(ssm update)
25: ssm.compositionalUpdate(inv update)
26: return ssm.getCorners()
27: end function

V. USE CASES

This section presents two simple use cases for MTF:
1) Track an object in an image sequence (Algorithm 6)
2) Estimate the trajectory of a UAV in a large satellite

image from images it took while flying over the region
covered in the map (Algorithm 7).

It should be noted that MTF comes with an input module
with wrappers for image capturing functions in OpenCV,
ViSP and XVision as well as a preprocessing module with
wrappers for OpenCV image filtering functions. Raw images
acquired by the former need to be passed to the latter before
they can be passed to the tracker. GaussianSmoothing

Algorithm 2 FCLK
1: function initialize(corners)
2: lines 2-7 of Algorithm 1
3: am.initializePixHess(ssm.getPts())
4: end function
5: function update
6: lines 18-19 of Algorithm 1
7: am.updateCurrGrad()
8: am.updatePixGrad(ssm.getPts())
9: am.updatePixHess(ssm.getPts())

10: pix jacobian← ssm.cmptWarpedPixJacobian(am.getCurrPixGrad())
11: pix hessian← ssm.cmptWarpedPixHessian(

am.getCurrPixHess(), am.getCurrPixGrad())
12: jacobian←am.cmptCurrJacobian(pix jacobian)
13: hessian ←am.cmptSelfHessian(pix jacobian, pix hessian)
14: ssm update ← −hessian.inverse()∗jacobian
15: ssm.compositionalUpdate(ssm update)
16: return ssm.getCorners()
17: end function

Algorithm 3 ESM
1: function initialize(corners)
2: lines 2-3 of Algorithm 2
3: init pix jacobian← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
4: init hessian←am.cmptSelfHessian(pix jacobian, pix hessian)
5: end function
6: function update
7: lines 6-11 of Algorithm 2
8: am.updateInitGrad()
9: jacobian←am.cmptDifferenceOfJacobians(init pix jacobian, pix jacobian)

10: curr hessian ←am.cmptSelfHessian(pix jacobian, pix hessian)
11: hessian ←init hessian + curr hessian
12: lines 14-16 of Algorithm 2
13: end function

Algorithm 4 NN
1: function initialize(corners)
2: lines 2-3 of Algorithm 1
3: state sigma← ssm.estimateStateSigma()
4: ssm.initializeSampler(state sigma)
5: am.initializeDistFeat()
6: for sample id ← 1, no of samples do
7: ssm updates.row(sample id) ← ssm.generatePerturbation()
8: inv update ←ssm.invertState(ssm updates.row(sample id))
9: ssm.compositionalUpdate(inv update)

10: am.updatePixVals(ssm.getPts())
11: am.updateDistFeat()
12: sample dataset.row(sample id) ← am.getDistFeat()
13: ssm.compositionalUpdate(ssm updates.row(sample id))
14: end for
15: flann.buildIndex(sample dataset)
16: end function
17: function update
18: am.updatePixVals(ssm.getPts())
19: am.updateDistFeat()
20: nn sample id ← flann.searchIndex(am.getDistFeat())
21: ssm.compositionalUpdate(ssm updates.row(nn sample id))
22: return ssm.getCorners()
23: end function

Algorithm 5 PF
1: function initialize(corners)
2: lines 2-4 of Algorithm 4
3: am.initializeSimilarity()
4: for particle id ← 1, no of particles do
5: particles[particle id].state ← ssm.getState()
6: particles[particle id].weight ← 1/no of particles
7: end for
8: end function
9: function update

10: for particle id ← 1, no of particles do
11: particles[particle id].state ← ssm.compositionalRandomWalk(
12: particles[particle id].state)
13: ssm.setState(particles[particle id].state)
14: am.updatePixVals(ssm.getPts())
15: am.updateSimilarity()
16: particles[particle id].weight ←am.getLikelihood()
17: end for
18: normalize weights and resample the particles
19: mean state ← ssm.estimateMeanOfSamples(particles);
20: ssm.setState(mean state)
21: return ssm.getCorners()
22: end function



Algorithm 6 Track an Object
using namespace mtf;
FCLK<SSD, Homography> tracker;
GaussianSmoothing pre proc(input.getFrame(), tracker.inputType());
tracker.initialize(pre proc.getFrame(), init location);
while input.update() do

pre proc.update(input.getFrame());
tracker.update(pre proc.getFrame());
new location ← tracker.getRegion();

end while

Algorithm 7 Estimate UAV Trajectory in Satellite Image
ESM<MI, Similitude> uav tracker;
uav img corners←getFrameCorners(input.getFrame());
GaussianSmoothing satellite pre proc(satellite img, uav tracker.inputType());
GaussianSmoothing uav pre proc(input.getFrame(), uav tracker.inputType());
uav tracker.initialize(satellite pre proc.getFrame(), init uav location);
curr uav location←uav tracker.getRegion();
while input.update() do

uav pre proc.update(input.getFrame());
uav tracker.initialize(uav pre proc.getFrame(), uav img corners);
uav tracker.setRegion(curr uav location);
uav tracker.update(satellite pre proc.getFrame());
curr uav location←uav tracker.getRegion();

end while

used in the algorithms is an example of the latter while the
former is assumed to have been initialized with the appropri-
ate input source. Also, though only a couple of combinations
of SM, AM and SSM are shown here, these can be replaced
by virtually any combination of methods. Finally, Algorithm
7 assumes that UAV images have approximately the same
size as the corresponding region in the satellite image. Due
to space limitations, experimental tracking results are not
included here - these are available in [3] and [11].

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a modular and extensible open source
framework for registration based tracking that provides
highly efficient C++ implementations for several well estab-
lished trackers that will hopefully address practical tracking
needs of the wider robotics community. It also formulated a
novel method to decompose registration based trackers into
sub modules and extended a previously published unifying
formulation to account for more recent developments.

MTF is still a work in progress with several promising
avenues of future extensions including novel composite SMs,
incorporating better parameterization as well as deep learning
in AMs, addition of non rigid SSMs and using motion
learning to generate better stochastic samples for SSMs.

APPENDIX: Ĵ AND Ĥ FOR DIFFERENT VARIANTS OF LK
A. Jacobian

Denoting w(x,ps) with w(p) for conciseness (A = 0
and x is constant in this context) and letting p̂t denote an
estimate of pt to which an incremental update is sought, the
formulations for Ĵ used by FALK and FCLK are:

Ĵfa =
∂f

∂Ic

∣∣∣∣
Ic=It(w(p̂t))

∇It|x=w(p̂t)

∂w

∂p

∣∣∣∣
p=p̂t

(5)

Ĵfc =
∂f

∂Ic

∣∣∣∣
Ic=It(w(p̂t))

∇It(w)|x=x0

∂w

∂p

∣∣∣∣
p=p0

(6)

where ∇It(w) in Eq. 6 refers to the gradient of It warped
using p̂t, i.e. It is first warped back to the coordinate frame

of I0 using w(p̂t) to obtain It(w) whose gradient is then
computed at x = x0. It can be further expanded [17] as:

∇It(w)|x=x0
= ∇It|x=w(p̂t)

∂w

∂x

∣∣∣∣
p=p̂t

(7)

Since ∇It is usually the most computationally intensive part
of Jfc and Jfa, the so called inverse methods approximate
this with the gradient of ∇I0 for efficiency as this only
needs to be computed once. The specific expressions for
these methods are:

Ĵic =
∂f

∂I∗

∣∣∣∣
I∗=I0(x0)

∇I0|x=x0

∂w

∂p

∣∣∣∣
p=p0

(8)

Ĵia =
∂f

∂Ic

∣∣∣∣
Ic=It(w(p̂t))

∇I0|x=x0

∂w

∂x

−1∣∣∣∣
p=p̂t

∂w

∂p

∣∣∣∣
p=p̂t

(9)
where the middle two terms in Eq. 9 are derived from Eqs.
5 and 7 by assuming [9] that w(p̂t) perfectly aligns It with
I0, i.e. It(w) = I0 so that

∇It(w) = ∇I0 (10)

In its original paper [27], ESM was formulated as using the
mean of the pixel gradients ∇I0 and ∇It(w) to compute J
but, as this formulation is only applicable to SSD, we con-
sider a generalized version [34], [21] that uses the difference
between FCLK and ICLK Jacobians:

Ĵesm = Ĵfc − Ĵic (11)

B. Hessian

For clarity and brevity, evaluation points for the various
terms have been omitted in the equations that follow as being
obvious from analogy with the previous section.

It is generally assumed [17], [27] that the second term of
Eq. 4 is too costly to compute and too small near convergence
to matter and so is omitted to give the so called Gauss
Newton Hessian

Hgn =
∂I

∂p

T ∂2f

∂I2

∂I

∂p
(12)

Though Hgn works very well for SSD (and in fact even
better than H [17], [18]), it is well known [18], [21] to not
work well with other AMs like MI, CCRE and NCC for
which an approximation to the Hessian after convergence has
to be used by assuming perfect alignment or It(w(p̂t)) =
I0(x0). We refer to the resultant approximation as the Self
Hessian Hself and, as this substitution can be made by
setting either Ic = I0(x0) or I∗ = It(w(p̂t)), we get two
forms which are respectively deemed to be the Hessians for
ICLK and FCLK:

Ĥic = H∗self =
∂I0
∂p

T ∂2f(I0, I0)

∂I2

∂I0
∂p

+
∂f(I0, I0)

∂I

∂2I0
∂p2

(13)

Ĥfc = Hc
self =

∂It
∂p

T ∂2f(It, It)

∂I2

∂It
∂p

+
∂f(It, It)

∂I

∂2It
∂p2

(14)



It is interesting to note that Hgn has the exact same form

as Hself for SSD (since
∂fssd(I0, I0)

∂I
=

∂fssd(It, It)

∂I
=

0) so it seems that interpreting Eq. 12 as the first order
approximation of Eq. 4, as in [17], [18], is incorrect and
it should instead be seen as a special case of Hself .

Ĥfa differs from Ĥfc only in the way
∂2It
∂p2

and
∂It
∂p

are

computed for the two as given in Eqs. 15 and 16 respectively.

∂2It
∂p2

(fa) =
∂w

∂p

T

∇2It
∂w

∂p
+∇It

∂2w

∂p2
(15)

∂2It
∂p2

(fc) =
∂w

∂p

T

∇2It(w)
∂w

∂p
+∇It(w)

∂2w

∂p2
(16)

where ∇2It(w) can be expanded by differentiating Eq. 7 as:

∇2It(w) =
∂w

∂x

T

∇2It
∂w

∂x
+∇It

∂2w

∂x2
(17)

Ĥia is identical to Ĥfa except that ∇I0 and ∇2I0 are
used to approximate ∇It and ∇2It. The expression for the
former is in Eq. 9 while that for the latter can be derived by
differentiating both sides of Eq. 7 after substituting Eq. 10:

∇2I0 =
∂w

∂x

T

∇2It
∂w

∂x
+∇It

∂2w

∂x2

which gives:

∇2It(ia) =

(
∂w

∂x

−1)T [
∇2I0 −∇It

∂2w

∂x2

]
∂w

∂x

−1

=

(
∂w

∂x

−1)T [
∇2I0 −

(
∇I0

∂w

∂x

−1) ∂2w

∂x2

]
∂w

∂x

−1

(18)

where the second equality again follows from Eq. 7 and 10.
Finally, the ESM Hessian corresponding to the Jacobian in
Eq. 11 is the sum of FCLK and ICLK Hessians:

Ĥesm = Ĥfc + Ĥic (19)

REFERENCES

[1] Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A Bench-
mark,” in CVPR, June 2013, pp. 2411–2418.

[2] M. J. L. A. Kristan, Matej et al., “The Visual Object Tracking
VOT2015 Challenge Results,” in Proceedings of the IEEE ICCV
Workshops, 2015, pp. 1–23.

[3] A. Singh, A. Roy, X. Zhang, and M. Jagersand, “Modular Decom-
position and Analysis of Registration based Trackers,” in CRV, June
2016.

[4] B. D. Lucas and T. Kanade, “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision,” in 7th International Joint
Conference on Artificial intelligence, vol. 2, 1981, pp. 674–679.

[5] G. Bradski, “OpenCV,” Dr. Dobb’s Journal of Software Tools, 2000.
[6] J.-Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade

Feature Tracker: Description of the Algorithm,” Intel Corporation
Microprocessor Research Labs, Tech. Rep., 2000.

[7] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[8] G. D. Hager and K. Toyama, “Xvision: A portable substrate for real-
time vision applications,” Computer Vision and Image Understanding,
vol. 69, no. 1, pp. 23–37, 1998.

[9] G. D. Hager and P. N. Belhumeur, “Efficient Region Tracking With
Parametric Models of Geometry and Illumination,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 10, pp.
1025–1039, October 1998.

[10] A. Harris and J. Conrad, “Survey of popular robotics simulators,
frameworks, and toolkits,” in Southeastcon, 2011 Proceedings of IEEE,
March 2011, pp. 243–249.

[11] A. Singh and M. Jagersand, “Unifying Registration based Tracking:
A Case Study with Structural Similarity,” 2016, arXiv:1607.04673
[cs.CV].

[12] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
Robotics Automation Magazine, IEEE, vol. 12, no. 4, pp. 40–52, Dec
2005.

[13] T. Dick, C. Perez, M. Jagersand, and A. Shademan, “Realtime
Registration-Based Tracking via Approximate Nearest Neighbour
Search,” in Proceedings of Robotics: Science and Systems, Berlin,
Germany, June 2013.

[14] J. Kwon, H. S. Lee, F. C. Park, and K. M. Lee, “A geometric
particle filter for template-based visual tracking,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 36, no. 4, pp. 625–
643, 2014.

[15] X. Zhang, A. Singh, and M. Jagersand, “RKLT: 8 DOF real-time robust
video tracking combing coarse RANSAC features and accurate fast
template registration,” in CRV. IEEE, 2015, pp. 70–77.

[16] “Eigen Benchmark,” http://eigen.tuxfamily.org/index.php?title=
Benchmark, accessed: 2016-02-27.

[17] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” IJCV, vol. 56, no. 3, pp. 221–255, Feb 2004.

[18] A. Dame, “A unified direct approach for visual servoing and visual
tracking using mutual information,” Ph.D. dissertation, University of
Rennes, 2010.

[19] R. Szeliski, “Image Alignment and Stitching: A Tutorial,” Foundations
and Trends in Computer Graphics and Vision, vol. 2, no. 1, pp. 1–104,
January 2006.

[20] R. Richa, R. Sznitman, R. Taylor, and G. Hager, “Visual tracking using
the sum of conditional variance,” in IROS, IEEE/RSJ International
Conference on, Sept 2011, pp. 2953–2958.

[21] G. G. Scandaroli, M. Meilland, and R. Richa, “Improving NCC-based
Direct Visual Tracking,” in ECCV. Springer, 2012, pp. 442–455.

[22] G. H. Rogerio Richa, Raphael Sznitman, “Robust Similarity Measures
for Gradient-based Direct Visual Tracking,” CIRL, Tech. Rep., June
2012.

[23] G. Silveira and E. Malis, “Real-time visual tracking under arbitrary
illumination changes,” in CVPR. IEEE Conference on, 2007, pp. 1–6.

[24] A. Bartoli, “Groupwise geometric and photometric direct image regis-
tration,” PAMI, IEEE Transactions on, vol. 30, no. 12, pp. 2098–2108,
2008.

[25] H.-Y. Shum and R. Szeliski, “Construction of Panoramic Image
Mosaics with Global and Local Alignment,” IJCV, vol. 36, no. 2,
pp. 101–130.

[26] S. Baker and I. Matthews, “Equivalence and efficiency of image
alignment algorithms,” in CVPR, IEEE Conference on, vol. 1, 2001,
pp. I–1090–I–1097 vol.1.

[27] S. Benhimane and E. Malis, “Homography-based 2D Visual Tracking
and Servoing,” Int. J. Rob. Res., vol. 26, no. 7, pp. 661–676, July
2007.

[28] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental Learning
for Robust Visual Tracking,” IJCV, vol. 77, no. 1-3, pp. 125–141, May
2008.

[29] R. P. Woods, S. R. Cherry, and J. C. Mazziotta, “Rapid automated
algorithm for aligning and reslicing PET images,” J. Comput. Assist.
Tomogr., vol. 16, no. 4, pp. 620–633, July 1992.

[30] F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations,” PAMI, IEEE Transactions on, no. 6, pp.
567–585, 1989.

[31] R. Szeliski and J. Coughlan, “Spline-based image registration,” IJCV,
vol. 22, no. 3, pp. 199–218, 1997.

[32] M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration.” VISAPP (1), vol. 2, pp. 331–
340, 2009.

[33] P. J. Rousseeuw, “Least Median of Squares Regression,” J. Am. Stat.
Assoc., vol. 79, no. 388, pp. 871–880, 1984.

[34] R. Brooks and T. Arbel, “Generalizing Inverse Compositional and
ESM Image Alignment,” IJCV, vol. 87, no. 3, pp. 191–212, May 2010.

http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org/index.php?title=Benchmark

	Introduction
	Theoretical Background
	Notation
	Registration based tracking
	Gradient Descent and the Chain Rule
	Stochastic Search

	System Design
	AppearanceModel
	Image Operations
	Similarity Functions
	Distance Feature

	StateSpaceModel
	Warping Functions
	Stochastic Sampler


	Examples of Search Methods
	Use Cases
	Conclusions and Future Work
	Jacobian
	Hessian

	References

