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ABSTRACT

This paper presents a modular, extensible and highly efficient open source framework for registration
based tracking called Modular Tracking Framework (MTF). Targeted at robotics applications, it is
implemented entirely in C++ and designed from the ground up to easily integrate with systems that
support any of several major vision and robotics libraries including OpenCV, ROS, ViSP and Eigen.
It implements more methods, is faster, and more precise than other existing systems. Further, the the-
oretical basis for its design is a new way to conceptualize registration based trackers that decomposes
them into three constituent sub modules - Search Method (SM), Appearance Model (AM) and State
Space Model (SSM). In the process, we integrate many important advances published after Baker &
Matthews’ landmark work in 2004. In addition to being a practical solution for fast and high preci-
sion tracking, MTF can also serve as a useful research tool by allowing existing and new methods for
any of the sub modules to be studied better. When a new method is introduced for one of these, the
breakdown can help to experimentally find the combination of methods for the others that is optimum
for it. By extensive use of generic programming, MTF makes it easy to plug in a new method for any
of the sub modules so that it can not only be tested comprehensively with existing methods but also
become immediately available for deployment in any project that uses the framework. With 16 AMs,
11 SMs and 13 SSMs implemented already, MTF provides over 2000 distinct single layer trackers.
It also allows two or more of these to be combined together in several ways to create a practically
unlimited variety of novel multi layer trackers.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fast and high precision visual tracking is crucial to the suc-
cess of several robotics applications like visual servoing and
autonomous navigation. Image patch trackers are usually clas-
sified as either registration-based (RBT) or online learning and
detection based trackers (OLT). In recent years OLTs have be-
come popular (Wu et al., 2013; Kristan et al., 2015) due to their
robustness to changes in the object appearance. This makes
OLT suited to long term tracking. However, OLTs are nei-
ther precise, nor fast, and commonly estimate only 2 DOF
image translation or, adding scale, 3 DOF. RBTs (Sec. 2.2)

Abbreviations: MTF: Modular Tracking Framework; SM: Search
Method; AM: Appearance Model; SSM: State Space Model; ILM: ILumi-
nation Model; RBT: Registration-Based Tracker; OLT: Online Learning and
detection based Tracker; LK: Lucas Kanade; DOF: Degrees Of Freedom
∗∗Corresponding author: Tel.: +1-587-596-0470;

e-mail: asingh1@ualberta.ca (Abhineet Singh)

are often more suitable for robotics applications, being sev-
eral times faster and capable of estimating higher degrees-of-
freedom (DOF) transformations like 6 DOF affine and 8 DOF
homography to pixel precision. Using visual servoing or a cal-
ibrated camera, this allows precise full 6 DOF 3D translation
and rotation alignments in applications such as robot arm con-
trol and augmented reality.

Though several major advances have been made in this do-
main since the original Lucas Kanade (LK) tracker was intro-
duced almost thirty five years ago (Lucas and Kanade, 1981),
efficient open source implementations of recent trackers are sur-
prisingly difficult to find. In fact, the only such tracker offered
by the popular OpenCV library (Bradski, 2000), uses a pyra-
midal implementation of the original 1981 algorithm (Bouguet,
2000). Similarly, the more recent ROS library (Quigley et al.,
2009) currently does not have any package that implements a
modern RBT. The XVision system (Hager and Toyama, 1998)
did introduce a full tracking software framework including a
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video pipeline. However, it has not been updated for a long
time and mainly implements variants of Hager’s 1998 algorithm
(Hager and Belhumeur, 1998). Even the fairly recent MRPT li-
brary (Harris and Conrad, 2011) includes only a version of the
original LK tracker apart from a low DOF particle filter based
tracker that is too imprecise and slow to be considered rele-
vant for our target applications. The Visual Servoing Platform
(ViSP) library (Marchand et al., 2005) does provide somewhat
similar tracking functionality as the proposed framework but is
more limited, slower and not modular, hence harder to extend
with new AMs, SMs and SSMs (see Sec. 6).

To address the need for a tracking library targeted at high
DOF robotics and augmented reality applications, we introduce
Modular Tracking Framework (MTF) (Singh, 2018) - a generic
system for RBT that provides highly efficient implementations
for a large subset of trackers introduced in literature to date and
is designed to be easily extensible with additional methods, and
compatible with popular pachages such as ROS, OpenCV and
ViSP.

MTF conceptualizes an RBT as being composed of three
semi independent sub modules - Search Method (SM), Appear-
ance Model (AM) and State Space Model (SSM). SM is treated
here very generally as a way to use the functionality in AM and
SSM - through a well defined interface - to solve the tracking
problem. The three sub modules are semi-independent in the
sense that the functional specification of the interface between
them is general enough to allow any method implementing one
of these to be combined unchanged with many combinations of
methods for the other two.

Such an approach can help to address another urgent need in
this field - that of unifying the myriad of contributions made in
the last three decades so they can be better understood. When
a new RBT is published, it often contributes to only one or two
of these sub modules while using existing methods for the rest
(Singh et al., 2016, 2017). In such cases, the modular decompo-
sition can provide a way within which the contributions of the
new tracker can be clearly demarcated and thus studied better.
By following this decomposition closely through extensive use
of generic programming, MTF provides a convenient interface
to plug in a new method for any sub module and test it against
existing methods for the other two. This will not only help to
compare the new method against existing ones in a more com-
prehensive way but also make it immediately available to any
project that uses MTF. To facilitate the latter, MTF provides
a simple ROS interface for seamless integration with robotics
systems along with interfaces for Python and MATLAB to aid
its use in research applications.

Further, MTF is designed to allow two or more trackers to be
combined in several ways (Sec. 3) to create composite multi-
layer trackers that perform better than any of their constituents.
This approach has been shown to be promising (Zhang et al.,
2015; Singh et al., 2017; Singh, 2017) in creating trackers that
are robust to challenges like illumination changes, fast motion
and occlusions by combining the advantages provided by their
constituents. This is also a much easier way to improve track-
ing performance than designing new algorithms for individual
sub modules to handle specific challenges. An example of such

a composite tracker that can be considered as the current state
of the art in RBT is the LMES tracker (Singh, 2017) which has
a two layer composite Search Method (SM) created by using
LMS (Sec. 2.4) and ESM (Sec. 2.3) in cascade (Sec. 3.2) as
shown in Fig. 4. This tracker benefits from the larger search ra-
dius of stochastic SMs as well as the high precision of gradient
based SMs to offer superior performance over either.

To summarize, following are the main contributions of this
work:

• Provide a unifying formulation for RBT that can be seen
as an extension of the framework reported in Baker and
Matthews (2004) with newer methods.

• Present a fast tracking library for robotics applications that
is based on this formulation and is also easy to extend due
to its modular design.

– It currently has 16 AMs, 11 SMs and 13 SSMs im-
plemented (Fig. 3) and, since each combination of
these methods constitutes a distinct tracker, it can be
used to run over 2000 single layer trackers.

– Any two or more of these trackers can be combined
together in a multitude of ways (Sec. 3) to pro-
vide virtually unlimited opportunities to create novel
multi layer composite trackers.

This paper extends a preliminary version of this work (Singh
and Jagersand, 2017) by providing detailed function specifica-
tions for the main classes in MTF (Sec. 3), examples of existing
SMs recast to fit the proposed framework (Sec. 4), examples of
composite SMs (Sec. 3.2) and several extensions to the for-
mulation of Baker & Matthews (Baker and Matthews, 2004)
(appendix).

The rest of this paper is organized as follows: Section 2 in-
troduces the mathematical basis for the design of MTF while
section 3 describes the class structure of MTF along with spec-
ifications for important functions. Section 4 presents several
SMs as examples of using the functionality described in section
3 to implement the theory of section 2. Section 5 presents sev-
eral use cases for MTF while section 6 provides performance
comparison of MTF with another existing library for RBT as
well as with state of the art OLTs. Finally, section 7 concludes
with promising avenues for future extensions to this work. The
paper includes more technical implementation details than typ-
ical in the literature. We feel this is important, as it ultimately
affects performance. Someone interested in the broad strokes
can read the technical sections cursorily. Someone just wanting
to use the implemented trackers can focus on sections 5 and 6,
while those aiming to do research in tracking systems mainly
benefit from the design sections 3 and 4.

2. Theoretical Background

2.1. Notation
Let It : R2 7→ R refer to an image captured at time t. It

is treated as a smooth function of real values using sub pixel
interpolation (Dame and Marchand, 2010) for non integer loca-
tions. The patch corresponding to the tracked object’s location
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Fig. 1. Two frames from a sequence showing the different components of
RBT. The grid of points x where pixel values are extracted are shown in
red. The function w warps the red grid on It to match (align with) the
template I0 as shown in the top left corners. For better visibility, the grid
is sampled at 25 × 25 though higher resolutions may be used in practice.

in It is denoted by It(xt) ∈ RN where xt = [x1t, ..., xNt] with
xkt = [xkt, ykt]T ∈ R2 being the Cartesian coordinates of pixel
k.

Further, w(x,ps) : R2 × RS 7→ R2 denotes a warping func-
tion of S parameters that represents the set of allowable image
motions of the tracked object by specifying the deformations
that can be applied to x0 to align It(xt) = It(w(x0,pst)) with
I0(x0). Examples of w include homography, affine, similitude,
isometry and translation (Szeliski, 2006).

Finally f (I∗, Ic,pa) : RN × RN × RA 7→ R is a function of A
parameters that measures the similarity between two patches
- the reference or template patch I∗ and a candidate patch
Ic. Examples of f with A = 0 include sum of squared dif-
ferences (SSD) (Hager and Belhumeur, 1998), sum of condi-
tional variance (SCV) (Richa et al., 2011), normalized cross
correlation (NCC) (Scandaroli et al., 2012), mutual informa-
tion (MI) (Dame and Marchand, 2010) and cross cumulative
residual entropy (CCRE) (Rogerio Richa, 2012). So far, the
only examples with A , 0, to the best of our knowledge, are
those with an illumination model (ILM) (Silveira and Malis,
2007; Bartoli, 2008) where f is expressed as f (I∗, g(Ic,pa))
with g : RN × RA 7→ RN accounting for differences in light-
ing conditions under which I0 and It were captured.

2.2. Registration based tracking

RBT aligns an image template I0 with the corresponding pix-
els in the current image It, see Fig 1. Mathematically, the goal
is to find a warp function w(p) that transform the pixel coordi-
nates to match the image patches. If perfect intensity constancy
was possible then I0 = It(w(p)). In real world videos, the ap-
pearance of the template will vary, so equality is not possible,
and one of several possible Appearance Modules - AM, denoted
with f above, are used for the similarity metric.

Using the notation in the last section, RBT can be formulated
(Eq. 1) as a search problem where the goal is to find the optimal
parameters pt = [pst,pat] ∈ RS +A that maximize the similarity,
measured by f , between the target patch I∗ = I0(x0) and the

Fig. 2. Decomposition of RBT showing the interaction between the resul-
tant sub modules

warped image patch Ic = It(w(x0,pt)), that is,

pt = argmax
ps,pa

f (I0(x0), It(w(x0,ps)),pa) (1)

As has been observed before (Szeliski, 2006; Rogerio Richa,
2012), this formulation gives rise to an intuitive way to decom-
pose the tracking task into three modules - the similarity metric
f , the warping function w and the optimization approach. We
refer to these respectively as Appearance Model- AM, State-
Space Model - SSM and Search Method - SM. These can be
designed to be semi independent in the sense that any given op-
timizer can be applied unchanged to several combinations of
methods for the other two modules which in turn interact only
through a well defined and consistent interface.

A pictorial representation of the meanings of various compo-
nents in this equation is shown in Fig. 1. As has been observed
before (Szeliski, 2006; Rogerio Richa, 2012), this formulation
gives rise to an intuitive way to decompose the tracking task
into three modules - the similarity metric f , the warping func-
tion w and the optimization approach. These can be designed
to be semi independent in the sense that any given optimizer
can be applied unchanged to several combinations of methods
for the other two modules which in turn interact only through a
well defined and consistent interface.

Fig. 2 shows the effective flow of information between the
three sub modules though in practice SM serves as the interface
between AM and SSM, which do not interact directly. Follow-
ing steps are performed for each frame It:

1. SM computes the optimum parameters for w and f and
passes these respectively to the SSM and AM.

2. SSM then warps the initial grid points x0 using these pa-
rameters and passes the resultant points w(x0,pst) to the
AM

3. AM extracts pixel values at these points and computes the
similarity of the resultant patch with the template using pat
which it then passes back to the SM.

4. SM uses this similarity to find the parameters pt+1 that
maximize it for the next frame It+1.

2.3. Gradient Descent and the Chain Rule
Though several types of SMs have been reported in literature,

gradient descent based methods (Lucas and Kanade, 1981) are
most widely used due to their speed and simplicity. As men-
tioned in (Baker and Matthews, 2004), the LK tracker can be



4

formulated in four different ways depending on which image is
searched for the warped patch - I0 or It - and how ps is updated
in each iteration - additive or compositional. The four resultant
formulations are thus called Forward Additive (FALK) (Lu-
cas and Kanade, 1981), Inverse Additive (IALK) (Hager and
Belhumeur, 1998), Forward Compositional (FCLK) (Shum
and Szeliski) and Inverse Compositional (ICLK) (Baker and
Matthews, 2001). There is also a more recent approach called
Efficient Second order Minimization (ESM) (Benhimane and
Malis, 2007) that tries to make the best of both ICLK and FCLK
by using information from both I0 and It.

What all these methods have in common is that they solve
Eq 1 by estimating an incremental update ∆pt to the optimal
parameters pt−1 at time t − 1 using some variant of the Newton
method as:

∆pt = −Ĥ−1ĴT (2)

where Ĵ and Ĥ respectively are estimates for the Jacobian
J = ∂ f /∂p and the Hessian H = ∂2 f /∂p2 of f w.r.t. p. For
any formulation that seeks to decompose this class of trackers
(among others) in the aforementioned manner, the chain rule
for first and second order derivatives is indispensable and the
resultant decompositions for J and H are given by Eqs. 3 and 4
respectively, assuming A = 0 (or p = ps) for simplicity.

J =
∂ f (I(w(p)))

∂p
=
∂ f
∂I
∇I
∂w
∂p

(3)

H =
∂I
∂p

T ∂2 f
∂I2

∂I
∂p

+
∂ f
∂I

∂2I
∂p2 (4)

with
∂I
∂p

= ∇I
∂w
∂p

and
∂2I
∂p2 =

∂w
∂p

T

∇2I
∂w
∂p

+ ∇I
∂2w
∂p2 . It fol-

lows that the AM computes terms involving I and f (∇I, ∇2I,
∂ f /∂I and ∂2 f /∂I2 ) while the SSM computes those with w
(∂w/∂p, ∂2w/∂p2). Further, these generic expressions do not
give the whole scope of the decompositions since the exact
forms of Ĵ and Ĥ as well as the way these are split vary for
different variants of LK. The reader is referred to (Baker and
Matthews, 2004) for more details though formulations relevant
to the functions in MTF (Tables 1 and 3), including several ex-
tensions to (Baker and Matthews, 2004), are also presented in
the appendix.

2.4. Stochastic Search

A limitation of gradient descent type SMs is that they are
prone to getting stuck in local maxima of f especially when
the object’s appearance changes due to factors like occlusions,
motion blur or illumination variations. An alternative approach
to avoid this problem is to use stochastic search so as to cover
a larger portion of the search space of p. There are currently
four main SMs in this category in MTF - particle filter (PF)
(Kwon et al., 2014), nearest neighbor (NN) (Dick et al., 2013),
least median of squares (LMS) (Rousseeuw, 1984) and random
sample consensus (RANSAC) (Zhang et al., 2015).

These SMs work by generating a set of random samples for
p and evaluating the goodness of each by some measure of
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Fig. 3. MTF Class Diagram showing all models currently implemented.
Pure and partially abstract classes are respectively shown in red and green
while concrete classes are in black. Classes that are sub parts of AM and
SSM are in yellow. The meanings of acronyms not defined in text can be
found in (Singh, 2017, 2018).

similarity with the template. NN and PF generate samples di-
rectly by drawing them from an appropriate Gaussian distribu-
tion while LMS and RANSAC obtain them indirectly by finding
the best fit parameters that explain the transformation between
two sets of corresponding points. The performance of these
SMs thus thus depends mostly on the number and quality of
stochastic samples used. While the former is limited only by
the available computational resources, the latter is a bit harder
to guarantee for a general SSM/AM. For methods that draw
samples from a Gaussian distribution, the quality thereof is de-
termined by the covariance matrix used and, to the best of our
knowledge, no widely accepted method exists to estimate it in
the general case. Most works either use heuristics or perform
extensive hand tuning to get acceptable results, sometimes even
using different values for each tested sequence (Kwon et al.,
2014).

Given this, a reasonable way to decompose these methods to
fit our framework is to delegate the responsibility of generat-
ing the set of samples and estimating its mean entirely to the
SSM and AM while letting the latter evaluate the suitability of
each sample by providing the likelihood of the corresponding
patch. Such a decomposition ensures both theoretical validity
and good performance in practice since the definition of what
constitutes a good sample and how the mean of a sample set is
to be evaluated depends on the SSM/AM, as do any heuristics
for generating these samples (like the variance for each compo-
nent of p).

3. System Design

3.1. Overview

As shown in the class diagram in Fig. 3, MTF closely
follows the decomposition described in the previous section
and has three abstract base classes corresponding to the three
sub modules - SearchMethod, AppearanceModel and
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StateSpaceModel. 1 Of these, only SM is a generic/tem-
plated class that is templated on specializations of the other two
classes. A concrete tracker, defined as a particular combination
of the three sub modules, thus corresponds to a subclass of SM
that has been instantiated with subclasses of AM and SSM.

A particular SM in this formulation is defined only by its
objective - to find the p that maximizes the similarity measure
defined by the AM. Thus, different implementations of SM can
cover a potentially wide range of methods that have little in
common. As a result, SM is the least specific of these classes
and only provides functions to initialize, update and reset the
tracker along with accessors to obtain its current state. In fact,
an SM is regarded in this framework simply as one way to use
the methods provided by the other two sub modules in order to
accomplish the above objective. The idea is to abstract out as
much computation from the SM to the AM/SSM as possible so
as to make for a general purpose tracker. Therefore, this section
describes only AM and SSM in detail while some of the SMs
currently available in MTF are presented in the next section as
examples of using the functionality described here to carry out
the search in different ways.

Another consequence of this conceptual impreciseness of SM
is that a specific SM may use only a small subset of the func-
tionality provided by AM/SSM. For instance, gradient descent
type SMs do not use the random sampling functions of SSM
and conversely, stochastic SMs do not use the derivative func-
tions required by the former. This has two further implications.
Firstly, the functionality set out in AM and SSM is not fixed but
can change depending on the requirements of an SM, i.e. if a
new SM is to be implemented that requires some functionality
not present in the current specifications, the respective class can
be extended to support it - as long as such an extension makes
logical sense within the definition of that class. Secondly, it is
not necessary for all combinations of AMs and SSMs to support
all SMs. For instance a similarity measure does not need to be
differentiable to be a valid AM as long as it is understood that
it cannot be used with SMs that require derivatives.

In the broadest sense, the division of functionality between
AM and SSM described next can be seen as AM being responsible
for everything to do with the image I, the sampled patch I(x)
and the similarity f computed using it, while SSM handles the
actual points x at which the patch is sampled along with the
warping function w that defines x in terms of x0 and ps.

3.2. Composite Tracking
It may be noted that SM itself derives from a non generic

base class called TrackerBase for convenient creation and
interfacing of objects corresponding to heterogeneous trackers,
including those external to MTF 2 , so that they can be run si-
multaneously and their results combined to create composite

1For brevity, these will be referred to as SM, AM and SSM respectively with
the font serving to distinguish the classes from the corresponding concepts.

2Several state of the art OLTs with publicly available C++ code - DSST
(Danelljan et al., 2016), KCF (Henriques et al., 2015), CMT (Nebehay and
Pflugfelder, 2015), Struck (Hare et al., 2016), TLD (Kalal et al., 2012), MIL
(Babenko et al., 2011), RCT (Zhang et al., 2012), FragTrack (Adam et al.,
2006), GOTURN (Held et al., 2016) - have already been integrated with MTF.

Stochastic
 SM

Gradient
 Descent

 SM

Fig. 4. A stochastic and gradient descent SM in cascade. The rough esti-
mate produced by the former is refined by the latter and then fed back to
the former to be used as the starting search point for the next frame.

trackers that are more robust than any of their components. Al-
lowing a diverse variety of trackers to integrate seamlessly is
one of the core design objectives of MTF and this is empha-
sized by having such composite trackers derive from a separate
base class called CompositeBasewhich in turn derives from
TrackerBase while also containing several instances of it.
Individual RBTs are well known to be prone to failures and
since more than three decades of research has failed to make
significant improvements in this regard (Singh et al., 2017), this
approach seems to be one of the more promising ones (Zhang
et al., 2015; Singh et al., 2017). MTF has thus been designed to
facilitate work in this direction.

Five composite trackers have currently been implemented:

• GridTracker: This corresponds to the stochastic SMs
based on indirect sampling mentioned in Sec. 2.4. This
uses a grid of (typically low DOF) trackers such that each
tracks a different sub patch within the tracked object. The
independent results of these trackers are then combined by
a robust estimator provided by the SSM to estimate the
best fit warp that gives the overall location of the patch.

• LineTracker: This identifies straight lines in the object
of interest and uses 2 DOF trackers to track multiple points
on each line. The outputs of these trackers are then used
to estimate the best fit line assuming linearity of points as
an invariant property under the warp that the object patch
has undergone. Constraints between different lines, such
as parallelism, can also be enforced to improve this esti-
mation further. By resetting the trackers to their expected
positions on these lines, any drift can be compensated for.

• ParallelTracker: This one runs multiple trackers in
parallel to track the same patch and then combines their
outputs to produce a more robust estimate of the location
of the tracked object. Many methods may be used to com-
bine the locations produced by the different trackers, with
a simple example being to take the mean of the bounding
box corners.

• PyramidalTracker: This one builds a Gaussian im-
age pyramid (Bouguet, 2000) and then tracks each level of
the pyramid through a different instance of (usually) the
same tracker. The output of the tracker at level n, after
appropriate scaling, is used as starting point for the one at
level n + 1 .
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Fig. 5. Dependency relationships between various functions in AM: an ar-
row pointing from A to B means that A depends on B. Color of a function
box denotes its type - green: initializing; red: updating; blue: interfac-
ing and yellow: accessor function. Shape of a function box represents the
part of AM it belongs to - rectangle: Image Operations; rounded rectangle:
Similarity Functions; ellipse: Distance Feature. The numbers attached to
some of the nodes refer Table 1.

• CascadeTracker: This tracks the same patch using
multiple trackers too, but here the output of the tracker at
each layer of the cascade is used as the starting point for
the tracker at the next layer. The output of the last layer
is fed back to the first one to make a closed loop system.
Fig. 4 shows an example of this arrangement where two
SMs are used in cascade. The top-performing LMES is an
example (Sec. 6) of this.

Though not shown in Fig. 3, several of these composite
trackers also have specialized variants where all the constituent
trackers have the same AM and SSM and differ only in their
SM. Since all SMs derive from SM, this specialization makes it
possible for the constituent trackers to utilize the functionality
available in SM but not in TrackerBase in the ways that they
interact with and benefit from each other. TrackerBase is
designed to allow third party trackers including OLTs to inte-
grate with MTF and so does not include functions specific to
RBTs. An example of such a functionality is selective pixel
integration (Dellaert and Collins, 1999) which is used by the
RKLT tracker (Zhang et al., 2015) to filter out parts of the patch
that do not agree with the template due to partial occlusions or
localized illumination changes.

It is emphasized here that any two or more of the compos-
ite trackers can themselves be combined together in arbitrary
ways. For example, it is straightforward to create a cascade
tracker where each layer is itself a pyramidal tracker. It would
be equally easy to create a pyramidal tracker where each level
is tracked by a cascade tracker. Different levels of the pyramid
might even be tracked by different cascade arrangements just
as different layers of the cascade in the previous example might
differ in the number of pyramidal levels within the correspond-
ing trackers.

3.3. AppearanceModel
This class can be divided into three main parts with each de-

fined as a set of variables dependent on I0 and It with a cor-

Table 1. Specifications for important methods in AM. IDs in first
column refer Fig. 5

ID Inputs Output/Variable updated
1 xt It(xt)
2 xt ∇It
3 xt ∇2It
4 None f (I0, It)

5 None
∂ f (I0, It)
∂I0

6 None
∂ f (I0, It)

∂It

7
∂I0

∂ps

∂ f (I0(p), It)
∂p

(Eq. A.4)

8
∂It

∂ps

∂ f (I0, It(p))
∂p

(Eq. A.1, A.2)

9
∂I0

∂ps
,
∂It

∂ps

∂ f (I0, It(p))
∂p

−
∂ f (I0(p), It)

∂p
(Eq. A.7)

101 ∂I0

∂ps
,
∂2I0

∂ps2

∂2 f (I0(p), It)
∂p2

11
∂It

∂ps
,
∂2It

∂ps2

∂2 f (I0, It(p))
∂p2

12
∂It

∂ps
,
∂2It

∂ps2

∂2 f (It, It(p))
∂p2 (Eq. A.9, A.10)

13
∂I0

∂ps
,
∂2I0

∂ps2 ,
∂It

∂ps
,
∂2It

∂ps2

∂2 f (I0(p), It)
∂p2 +

∂2 f (I0, It(p))
∂p2

1 Functions 10-13 have overloaded variants that omit the second term in Eq.

4, as in Eq. A.8, and so do not require
∂2I
∂ps2 as input

Table 2. Specifications for important methods in ILM.
Function Inputs Output
update pa,∆pa p′a | g(g(It,pa),∆pa) =

g(It,p′a)
apply It,pa g(I,pa)
invert pa p′a | g(g(It,pa),p′a) = It

cmptParamJacobian
∂ f
∂g
, It,pa

∂ f
∂pa

cmptPixJacobian
∂ f
∂g
, It,pa

∂ f
∂It

cmptParamHessian* ∂2 f
∂g2 ,

∂ f
∂g
, It,pa

∂2 f
∂pa2

cmptPixHessian* ∂2 f
∂g2 ,

∂ f
∂g
, It,pa

∂2 f
∂It

2

cmptCrossHessian* ∂2 f
∂g2 ,

∂ f
∂g
, It,pa

∂2 f
∂It∂pa

* All Hessian functions have overloaded variants that omit the second terms in re-

spective expressions and so do not require
∂ f
∂g

as input

responding initialize and update function for each. The
division is mainly conceptual and methods in different parts are
free to interact with each other in practice. Table 1 presents a
brief specification of some important methods in AM.

3.3.1. Image Operations
This part, abstracted into a separate class called

ImageBase, handles all pixel level operations on It like
extracting the patch I(x) and computing its numerical gradient
∇I and Hessian ∇2I. It uses sub pixel interpolation so that these
quantities can be treated as continuous functions of x.

Though AM bears a composition or ”has a” relationship with
ImageBase, the latter is actually implemented as a base class
of the former to maintain simplicity of the interface and al-
low a specializing class to efficiently override functions in both
classes. Moreover, having a separate class for pixel related op-
erations means that AMs like SCV and ZNCC that differ from
SSD only in using a modified version of I0 or It (thus deriving
from SSDBase in Fig. 3), can implement the corresponding
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mapping entirely within the functions defined in ImageBase
and be combined easily with other AMs besides SSD.

3.3.2. Similarity Functions
This is the core of AM and handles the computation of the

similarity measure f (I∗, Ic,pa) and its derivatives ∂ f /∂I and
∂2 f /∂I2 w.r.t. both I∗ and Ic. It also provides interfacing func-
tions to use inputs from SSM to compute the derivatives of f
w.r.t. SSM parameters using the chain rule. As a notational
convention, all interfacing functions, including those in SSM,
are prefixed with cmpt.

The functionality specific to pa is abstracted into a sepa-
rate class called IlluminationModel so it can be com-
bined with any AM to add photometric parameters (Silveira
and Malis, 2007; Bartoli, 2008) to it. This class provides func-
tions to compute g(I,pa) and its derivatives including ∂g/∂pa,
∂2g/∂pa

2, ∂g/∂I, ∂2g/∂I2 and ∂2g/∂I∂pa. These are called
from within AM to compute the respective derivatives w.r.t. f
so that the concept of ILM is transparent to the SM. It should
be noted that AM is designed to support f with arbitrary pa of
which ILM is a special case. It also supports learning to update
the object’s appearance, as present, for instance, in PCA (Ross
et al., 2008).

Since several of the functions in this part of AM involve com-
mon computations, there exist transitive dependency relation-
ships between them (Fig. 5) to avoid repeating these compu-
tations when multiple quantities are needed by the SM. What
this means is that a function lower down in the dependency hi-
erarchy may delegate part of its computations to any function
higher up in the hierarchy so that the latter must be called before
calling the former if correct results are to be expected.

3.3.3. Distance Feature
This part, implemented within AMDist, is designed specif-

ically to enable integration with the FLANN library (Muja and
Lowe, 2009) that is used by the NN based SM. It provides two
main functions:

• A feature transform D(I∗) : RN 7→ RK that maps the pixel
values extracted from a patch I∗ into a feature vector that
contains the results of all computations in f (I∗, Ic) that de-
pend only on I∗, and likewise for Ic. This transform is ap-
plied to all sampled patches during initialization and only
the resultant feature vectors are stored in the index. At
runtime, it is applied to Ic and the feature vector is passed
to the distance functor.

• A highly optimized distance functor fD(D(I∗),D(Ic)) :
RK × RK 7→ R that computes a measure of the distance
or dissimilarity between I∗ and Ic (typically the negative
of f (I∗, Ic)) given the distance features D(I∗) and D(Ic) as
inputs.

The main idea behind the design of these two components is
to place as much computational load as possible on D so that
the runtime speed of fD is maximized, with the premise that the
former is called mostly during initialization when the sample
dataset is to be built, while the latter is called online to find the
best matches for a candidate patch in the dataset. An optimal

Table 3. Specifications for important methods in SSM.
Function Inputs Output/Result
compositionalUpdate ∆ps pst = ps

′ | w(x,ps
′) =

w(w(x,∆ps),pst)

additiveUpdate ∆ps pst = pst + ∆ps

invertState ps p′s | w(w(x,ps),p′s) = x

cmptPixJacobian ∇It
∂It

∂ps

∣∣∣∣∣
ps=pst

(Eq. A.1)

cmptWarpedPixJacobian ∇It
∂It(w)
∂ps

∣∣∣∣∣
ps=ps0

(Eq. A.2, A.3)

cmptApproxPixJacobian ∇I0
∂It

∂pst
(approx) (Eq. A.5, A.6)

cmptPixHessian ∇It,∇
2It

∂2It

∂ps2

∣∣∣∣∣∣
ps=pst

(Eq. A.11)

cmptWarpedPixHessian ∇It,∇
2It

∂2It(w)
∂ps2

∣∣∣∣∣∣
ps=ps0

(Eq. A.12, A.13)

cmptApproxPixHessian ∇I0,∇
2I0

∂2It

∂pst2 (approx) (Eq. A.14)

design may involve a trade off between the size K of the feature
vector and the amount of computation performed in fD. For non
symmetrical AMs, i.e. where f (I∗, Ic) , f (Ic, I∗) (e.g. CCRE
and SCV), the feature vector may also include an indicator flag
so that fD can determine which of its arguments corresponds to
the D(I∗) and which to D(Ic). This is needed because FLANN
does not specify the order in which the arguments will be passed
to fD and examination of its code showed that this order varies
for each index type as well as for different calls to fD within the
same index.

3.4. StateSpaceModel

This class has a simpler internal state than AM and can be
described by only three main variables at any time t - sampled
grid points xt, corresponding corners xc

t and state parameters
pst. It may be noted (Fig. 3) that, though SSM is designed to
support any arbitrary w, most SSMs currently implemented are
subsets of the planar projective transform and so derive from
ProjectiveBase that abstracts out the functionality com-
mon to these.

Functions in SSM can be divided into two categories:

3.4.1. Warping Functions
This is the core of SSM and provides a function w to trans-

form a regularly spaced grid of points x0 representing the tar-
get patch into a warped patch xt = w(x0,pst) that captures the
tracked object’s motion in image space. It also allows for the
compositional inverse of w to be computed (invertState) to
support inverse SMs. Further, there are functions to compute
the derivatives of w w.r.t. both x and ps but, unlike AM, SSM
does not store these as state variables, rather their computation
is implicit in the interfacing functions that compute ∂I/∂ps and
∂2I/∂ps

2 using the chain rule. This design decision was made
for reasons of efficiency since ∂w/∂ps and ∂w/∂x are large and
often very sparse tensors. Computing these separately, thus, not
only wastes a lot of memory but is also very inefficient.

Finally, there are four ways to update the internal state: incre-
mentally using additive (additiveUpdate) or compositional
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(compositionalUpdate) formulations, or outright by provid-
ing either the state vector (setState) or the corresponding cor-
ners (setCorners) that define the current location of the patch.
There are no complex dependencies in SSM - the correct perfor-
mance of interfacing functions and accessors depends only on
one of the update functions being called every iteration. Table
3 lists the functionality of some important methods in this part.

3.4.2. Stochastic Sampler
This part is provided to support stochastic SMs and offers

following functionality to this end:

• generate small random incremental updates to ps
(generatePerturbation) by drawing these from a
zero mean normal distribution with either user provided
or heuristically estimated (estimateStateSigma) vari-
ance.

• generate stochastic state samples using the given
state transition model - currently random walk
(additiveRandomWalk) and first order auto regres-
sion (additiveAutoRegression1) are supported.
There are also compositional variants.

• estimate the mean of a set of samples of ps
(estimateMeanOfSamples)

• estimate the best fit ps from a set of original and warped
point pairs (estimateWarpFromPts) using a robust
method implemented within SSMEstimator - currently
RANSAC (Zhang et al., 2015) and LMS (Rousseeuw,
1984) are supported.

4. Search Methods

This section presents pseudo codes for several SMs currently
implemented in MTF to exemplify the usage of functions de-
scribed in the previous sections. Algorithms 1-5 illustrate how
MTF implements the many variants of gradient based SMs de-
veloped over the past 35 years (Baker and Matthews, 2004)
while Algorithms 6-8 illustrate stochastic SMs (Sec. 2.4). Fol-
lowing are some points and conventions to be noted:

• different algorithms make extensive references to portions
of each other not only to avoid redundancy but also to em-
phasize the parts they have in common.

• am and ssm respectively refer to instances of AM and SSM

(or rather of specializations thereof)

• am has direct access to the latest image in the sequence so
it is not passed explicitly in function calls - this is one of
the design features of AM to avoid the overhead of passing
the image repeatedly.

• several special cases like the optional use of the first order
Hessian (Eq. A.8), parameterization and online learning of
AM and iterative form of the update function are demon-
strated only in Alg. 1 but should be obvious by analogy
for other SMs too.

Algorithm 1 ICLK
1: function initialize(corners)
2: ssm.initialize(corners)
3: am.initializePixVals(ssm.getPts())
4: am.initializePixGrad(ssm.getPts())
5: am.initializeSimilarity()
6: am.initializeGrad()
7: am.initializeHess()
8: dI0 dps← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
9: if use first order hessian then

10: d2f dp2← am.cmptSelfHessian(dI0 dps)
11: else
12: am.initializePixHess(ssm.getPts())
13: d2I0 dps2← ssm.cmptInitPixHessian(

am.getInitPixHess(), am.getInitPixGrad())
14: d2f dp2← am.cmptSelfHessian(dI0 dps, d2I0 dps2)
15: end if
16: end function
17: function update
18: for i← 1,max iters do
19: am.updatePixVals(ssm.getPts())
20: am.updateSimilarity()
21: am.updateInitGrad()
22: df dp← am.cmptInitJacobian(dI0 dps)
23: delta p← −d2f dp2.inverse()∗df dp
24: delta ps← delta p.head(ssm.getStateSize())
25: delta pa← delta p.tail(am.getStateSize())
26: inv delta ps←ssm.invertState(delta ps)
27: inv delta pa←am.invertState(delta pa)
28: prev corners←ssm.getCorners()
29: ssm.compositionalUpdate(inv delta ps)
30: am.update(inv delta pa)
31: if ‖prev corners − ssm.getCorners()‖2 < ε then
32: break
33: end if
34: end for
35: am.updateModel(ssm.getPts())
36: return ssm.getCorners()
37: end function

• v.head(h) and v.tail(t) in Alg. 1 respectively refer to the
first h and last t elements in the h + t length vector v.

• flann in Alg. 6 is an instance of FLANN library (Muja and
Lowe, 2009) that can build an index from a set of samples
and search it for a new candidate.

• variables used to store the results of computations are
not described explicitly but their meanings should be
clear from their names and context. For instance, sam-
ple dataset and ssm perturbations used in Alg. 6 respec-
tively refer to n×K and n×S matrices, each of whose rows
contains the distance feature D (Sec. 3.3.3) and the SSM
state ps corresponding to one sample so that n = number
of samples.

• only one state transition model is shown in Alg. 7 though
several others are available too (Sec. 3.4.2).

• Alg. 8 shows only the GridTracker component of LMS
and RANSAC; the actual robust estimation using one of
these is performed in estimateWarpFromPts function
of SSM (Sec. 3.4.2).

• sampling resolution of ssm in Alg. 8 is set to be same as
the grid resolution and the function getRegion (c, s) in
line 6 returns the corners of a rectangular region of size s
with centroid c.
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Algorithm 2 FCLK
1: function initialize(corners)
2: lines 2-7 of Alg. 1
3: am.initializePixHess(ssm.getPts())
4: end function
5: function update
6: lines 19-20 of Alg. 1
7: am.updateCurrGrad()
8: am.updatePixGrad(ssm.getPts())
9: am.updatePixHess(ssm.getPts())

10: dIt dps← ssm.cmptWarpedPixJacobian(am.getCurrPixGrad())
11: d2It dps2← ssm.cmptWarpedPixHessian(

am.getCurrPixHess(), am.getCurrPixGrad())
12: df dp←am.cmptCurrJacobian(dIt dps)
13: d2f dp2←am.cmptSelfHessian(dIt dps, d2It dps2)
14: delta p← −d2f dp2.inverse()∗df dp
15: ssm.compositionalUpdate(delta p)
16: return ssm.getCorners()
17: end function

Algorithm 3 ESM
1: function initialize(corners)
2: lines 2-3 of Alg. 2
3: dI0 dps← ssm.cmptWarpedPixJacobian(am.getInitPixGrad())
4: d2f dp2 0← am.cmptSelfHessian(dI0 dps, d2I0 dps2)
5: end function
6: function update
7: lines 6-11 of Alg. 2
8: am.updateInitGrad()
9: df dp←am.cmptDifferenceOfJacobians(dI0 dps, dIt dps)

10: d2f dp2 t←am.cmptSelfHessian(dIt dps, d2It dps2)
11: d2f dp2←d2f dp2 0 + d2f dp2 t
12: lines 14-16 of Alg. 2
13: end function

Algorithm 4 IALK
1: function initialize(corners)
2: same as Alg. 2
3: end function
4: function update
5: lines 6-7 of Alg. 2
6: dIt dps← ssm.cmptApproxPixJacobian(am.getInitPixGrad())
7: d2It dps2← ssm.cmptApproxPixHessian(am.getInitPixHess(),

am.getInitPixGrad())
8: lines 12-14 of Alg. 2
9: ssm.additiveUpdate(delta p)

10: return ssm.getCorners()
11: end function

Algorithm 5 FALK
1: function initialize(corners)
2: same as Alg. 2
3: end function
4: function update
5: lines 6-9 of Alg. 2
6: dIt dps← ssm.cmptPixJacobian(am.getCurrPixGrad())
7: d2It dps2← ssm.cmptPixHessian(am.getCurrPixHess(),

am.getCurrPixGrad())
8: lines 8-10 of Alg. 4
9: end function

5. Use Cases

This section presents the following use cases for MTF in C++
style pseudo code:

• Track an object in an image sequence using a simple (Alg.
9) and a composite (Alg. 10) tracker.

• Estimate the trajectory of a UAV within a large satellite
image of an area from images it took while flying over
that area (Alg. 11).

• Create an image mosaic in real time from a video sequence
captured by a camera moving over different parts of the
planar scene to be stitched (Alg. 12).

Algorithm 6 NN
1: function initialize(corners)
2: lines 2-3 of Alg. 1
3: state sigma← ssm.estimateStateSigma()
4: ssm.initializeSampler(state sigma)
5: am.initializeDistFeat()
6: for sample id← 1, no of samples do
7: ssm updates.row(sample id)← ssm.generatePerturbation()
8: inv update←ssm.invertState(ssm updates.row(sample id))
9: ssm.compositionalUpdate(inv update)

10: am.updatePixVals(ssm.getPts())
11: am.updateDistFeat()
12: sample dataset.row(sample id)← am.getDistFeat()
13: ssm.compositionalUpdate(ssm updates.row(sample id))
14: end for
15: flann.buildIndex(sample dataset)
16: end function
17: function update
18: am.updatePixVals(ssm.getPts())
19: am.updateDistFeat()
20: nn sample id← flann.searchIndex(am.getDistFeat())
21: ssm.compositionalUpdate(ssm updates.row(nn sample id))
22: return ssm.getCorners()
23: end function

Algorithm 7 PF
1: function initialize(corners)
2: lines 2-4 of Alg. 6
3: am.initializeSimilarity()
4: for particle id← 1, no of particles do
5: particles[particle id].state← ssm.getState()
6: particles[particle id].weight← 1/no of particles
7: end for
8: end function
9: function update

10: for particle id← 1, no of particles do
11: particles[particle id].state← ssm.compositionalRandomWalk(
12: particles[particle id].state)
13: ssm.setState(particles[particle id].state)
14: am.updatePixVals(ssm.getPts())
15: am.updateSimilarity()
16: particles[particle id].weight←am.getLikelihood()
17: end for
18: normalize weights and resample the particles
19: mean state← ssm.estimateMeanOfSamples(particles);
20: ssm.setState(mean state)
21: return ssm.getCorners()
22: end function

Algorithm 8 LMS/RANSAC
1: function initialize(corners)
2: sub trackers← vector of 2 DOF sub patch trackers
3: ssm.initialize(corners)
4: curr pts← ssm.getPts()
5: for pt id← 1, no of pts do
6: sub patch corners← getRegion(curr pts[pt id], sub patch size)
7: sub trackers[pt id].initialize(sub patch corners)
8: end for
9: end function

10: function update
11: prev pts← curr pts
12: for pt id← 1, no of pts do
13: sub trackers[pt id].update()
14: curr pts[pt id]← getCentroid(sub trackers[pt id].getRegion())
15: end for
16: opt warp← ssm.estimateWarpFromPts(prev pts, curr pts)
17: warped corners← ssm.applyWarpToCorners(ssm.getCorners(), opt warp)
18: ssm.setCorners(warped corners)
19: lines 4-8 of Alg. 8
20: return ssm.getCorners()
21: end function

Algorithm 9 Object Tracking - Simple
1: using namespace mtf;
2: ICLK<SSD, Homography> tracker;
3: GaussianSmoothing pre proc(input.getFrame(), tracker.inputType());
4: tracker.initialize(pre proc.getFrame(), init location);
5: while input.update() do
6: pre proc.update(input.getFrame());
7: tracker.update(pre proc.getFrame());
8: new location← tracker.getRegion();
9: end while
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Algorithm 10 Object Tracking - Composite
1: PF<ZNCC, Affine> tracker1;
2: FCLK<SSIM, SL3> tracker2;
3: vector<TrackerBase*> trackers = {&tracker1, &tracker2};
4: CascadeTracker tracker(trackers);
5: lines 3-9 of Alg. 9

Algorithm 11 UAV Trajectory Estimation in Satellite Image
1: ESM<MI, Similitude> tracker;
2: uav img corners←getFrameCorners(input.getFrame());
3: tracker.initialize(satellite img, init uav location);
4: curr uav location←tracker.getRegion();
5: while input.update() do
6: tracker.initialize(input.getFrame(), uav img corners);
7: tracker.setRegion(curr uav location);
8: tracker.update(satellite img);
9: curr uav location←tracker.getRegion();

10: end while

Algorithm 12 Online Image Mosaicing
1: FALK<MCNCC, Isometry> tracker;
2: mos img← writePixelsToImage(input.getFrame(), init mos location, mos size);
3: mos location← init mos location;
4: while input.update() do
5: temp img← writePixelsToImage(input.getFrame(), mos location, mos size);
6: tracker.initialize(temp img, mos location);
7: tracker.update(mos img);
8: mos location← tracker.getRegion();
9: mos img← writePixelsToImage(input.getFrame(), mos location, mos size);

10: end while

Visual illustrations for all of these can be found in the demon-
strations video on MTF website (Singh, 2018). Following are
details regarding variables and functions used in these algo-
rithms that assist the reader in understanding them better:

• MTF comes with an input module with wrappers for im-
age capturing functions in OpenCV, ViSP and XVision. It
is represented here by input and is assumed to have been
initialized with the appropriate source.

• Raw images acquired by the input module can optionally
be passed to the preprocessing module that provides wrap-
pers for OpenCV image filtering and conversion functions.
An example of this is GaussianSmoothing in Alg. 9.

• Though only five combinations of SM, AM and SSM are
shown here, these can be replaced by virtually any combi-
nation of methods in Fig. 3.

• MTF also has a set of general utility functions for image
and warping related operations. The following have been
used in Alg. 11 and 12:

– getFrameCorners(image) returns a 2 × 4 matrix
containing the corners of image and is thus used
when the entire image is to be considered as the
tracked region.

– writePixelsToImage(patch, corners, size) writes
the pixel values in patch to an image with dimensions
size within the region bounded by corners.

• init mos location in Alg. 12 is the user specified location
of the first frame in the sequence within the mosaic im-
age of size mos size. This is typically the center of the
mosaic though can be elsewhere depending on the actual
sequence.
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Fig. 6. ViSP vs MTF average tracker speeds for all combinations of SMs
and AMs supported by ViSP. MTF and ViSP results are shown in solid and
dotted lines respectively. Note that logarithmic scaling has been used on the
x axis for better visibility of ViSP bars though the actual figures are also
shown. Speedup provided by MTF is shown in the legends. Results were
generated on a 4 GHz Intel Core i7-4790K machine with 32 GB RAM.

6. Performance

An existing system that is functionally similar to MTF is the
template tracker module of the ViSP library (Marchand et al.,
2005). It provides 4 SMs, 3 AMs and 6 SSMs though not all
combinations work. MTF offers several advantages over ViSP.
Firstly, SMs and AMs in ViSP are not implemented as indepen-
dent modules; rather, each combination of methods has its own
class. This makes it difficult to add a new method for either of
these sub modules and combine it with existing methods for the
others. Secondly, MTF has several more AMs, one more GD
based SM as well as four stochastic SMs. It also allows multi-
ple SMs to be combined effortlessly to create novel composite
SMs. Thirdly, MTF is significantly faster than ViSP. As shown
in fig. 6, MTF is usually more than an order of magnitude faster,
with its speed being over 20 times higher than ViSP on aver-
age. This is mainly because MTF uses the Eigen library (Jacob
et al., a) for all mathematical computations and this is known
to be one of the fastest (Jacob et al., b). Lastly, ViSP trackers
are significantly buggy and only completed about 70% of the
tested sequences. This section is concluded with a comparison
of MTF trackers with 8 state of the art OLTs (Kristan et al.,
2016) to validate the suitability of the former for robotics ap-
plications. Results are shown in Fig. 7. These were generated
using four large publicly available datasets with over 100,000
frames in all to ensure their statistical significance. The track-
ing performance is evaluated using success rate which is the
fraction of total frames where the tracking error is less than a
given threshold. Tracking error is measured using alignment
error (Roy et al., 2015) that accounts for fine misalignments of
pose better than conventional measures like Jaccard index or
center location error. More details about the datasets and the
evaluation methodology can be found in (Singh et al., 2017;
Singh, 2017).

As expected, all the OLTs have far lower SR than both 2 and
8 DOF RBTs for smaller tp since they are less precise in gen-
eral (Kristan et al., 2016). They do close the gap as tp increases
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Fig. 7. Comparing OLTs with 2 and 8 DOF RBTs in terms of both accuracy and speed. OLTs are shown in dashed lines while 2 and 8 DOF RBTs are
in dotted and solid lines respectively. Accuracy is measured by the tracking success rates (SR) for a range of error thresholds (tp) over 4 large datasets
with more than 100000 frames. OLTs and 2 DOF RBTs were evaluated against 2 DOF ground truth for fairness. Legends in the SR plots show the areas
under the respective curves. Speed plot on the right has logarithmic scaling on the x axis for clarity though actual figures are also shown. Original C++
implementations were used for all OLTs. More details about the evaluation methodology and the meanings of several acronyms can be found in (Singh
et al., 2017; Singh, 2017).

but none manage to surpass even the best 2 DOF RBTs, which
themselves are notably worse than the 8 DOF ones. This dif-
ference is even larger if OLTs and 2 DOF RBTs are evaluated
against the full pose ground truth which is more indicative of
the motions that need to be tracked in real tasks. Though the
superiority of DSST and Struck over other OLTs is consistent
with VOT results (Kristan et al., 2016), the very poor perfor-
mance of GOTURN (Held et al., 2016), which is one of the
best trackers there, indicates a fundamental difference in the
challenges involved within the two paradigms of tracking. The
speed plot shows another reason why OLTs are not suitable for
high speed tracking applications - they are 10 to 30 times slower
than the faster RBTs.

7. Conclusions and Future Work

This paper presented MTF, a modular and extensible open
source framework for RBT. It provides highly efficient C++
implementations for several well established trackers that will
hopefully address practical tracking needs of the wider robotics
community. To this end, it has been designed to integrate well
with popular libraries like ROS, OpenCV and ViSP so it can be
easily used with existing as well as future projects that require
fast trackers. A novel method to decompose RBTs into sub
modules was also formulated that facilitates the separat study
of appearance models, state space, and search methods.

MTF is still a work in progress and offers several promis-
ing avenues of future extensions for each of the sub modules.
This includes novel composite SMs especially those that, like
GridTracker, run a large number of relatively simple track-
ers simultaneously and combine their outputs to deduce the
state of the tracked patch with greater precision and robustness
than any single tracker can possibly provide. A contribution
in this direction is the LineTracker (Fig. 3) (Singh, 2017).
More generally a variety of multiple-view constraints, e.g. pro-

jective invariants, could be used to constrain and stabilize mul-
tiple individual MTF trackers.

One of the most potentially beneficial ways to improve AMs
is the incorporation of online learning to update the template.
As mentioned in Sec. 3.3, MTF is designed to support this
and two related AMs - DFM (Siam, 2015) and PCA (Ross et al.,
2008) - are already implemented that respectively utilize offline
and online learning. However, more powerful learning meth-
ods should be implemented, for example utilizing deep neural
networks. ILMs can also be extended with better parameter-
ization that can account for other sources of variations in the
appearance of the object patch such as motion blur and oc-
clusion. Another promising extension is the ability to handle
depth information from 3D cameras like Kinect whose increas-
ing ubiquity may make this the easiest way to improve tracking
performance.

SSMs can be improved by using motion learning from anno-
tated sequences to generate better stochastic samples. As men-
tioned in Sec. 2.4, the performance of stochastic SMs depends
largely on the quality of samples so any progress in this di-
rection should definitely be worthwhile. Further, addition of
non rigid SSMs that can go beyond the basic planar projec-
tive transforms will be a useful extension albeit with some-
what limited application domain. Similarly, SSMs that support
3D motion estimation are needed to complement the aforemen-
tioned depth information processing support in AMs. Finally,
improvements can be made to the implementations of existing
methods to make them more practically useful. For instance,
slower methods like PF, MI, CCRE, NGF and GridTracker
can be efficiently parallelized.

Appendix A. Ĵ and Ĥ for different variants of LK

Appendix A.1. Jacobian
Denoting w(x,ps) with w(p) for conciseness (A = 0 and x is

constant in this context) and letting p̂t denote an estimate of pt
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to which an incremental update is sought, the formulations for
Ĵ used by FALK and FCLK are:

Ĵ f a =
∂ f
∂Ic

∣∣∣∣∣
Ic=It(w(p̂t))

∇It|x=w(p̂t)
∂w
∂p

∣∣∣∣∣
p=p̂t

(A.1)

Ĵ f c =
∂ f
∂Ic

∣∣∣∣∣
Ic=It(w(p̂t))

∇It(w)|x=x0

∂w
∂p

∣∣∣∣∣
p=p0

(A.2)

where ∇It(w) in Eq. A.2 refers to the gradient of It warped
using p̂t, i.e. It is first warped back to the coordinate frame of
I0 using w(p̂t) to obtain It(w) whose gradient is then computed
at x = x0. It can be further expanded (Baker and Matthews,
2004) as:

∇It(w)|x=x0 = ∇It|x=w(p̂t)
∂w
∂x

∣∣∣∣∣
p=p̂t

(A.3)

Since ∇It is usually the most computationally intensive part of
J f c and J f a, the so called inverse methods approximate this with
the gradient of ∇I0 for efficiency as this only needs to be com-
puted once. The specific expressions for these methods are:

Ĵic =
∂ f
∂I∗

∣∣∣∣∣
I∗=I0(x0)

∇I0|x=x0

∂w
∂p

∣∣∣∣∣
p=p0

(A.4)

Ĵia =
∂ f
∂Ic

∣∣∣∣∣
Ic=It(w(p̂t))

∇I0|x=x0

∂w
∂x

−1
∣∣∣∣∣∣
p=p̂t

∂w
∂p

∣∣∣∣∣
p=p̂t

(A.5)

where the middle two terms in Eq. A.5 are derived from Eqs.
A.1 and A.3 by assuming (Hager and Belhumeur, 1998) that
w(p̂t) perfectly aligns It with I0, i.e. It(w) = I0 so that

∇It(w) = ∇I0 (A.6)

In its original paper (Benhimane and Malis, 2007), ESM was
formulated as using the mean of the pixel gradients ∇I0 and
∇It(w) to compute J but, as this formulation is only applicable
to SSD, we consider a generalized version (Brooks and Arbel,
2010; Scandaroli et al., 2012) that uses the difference between
FCLK and ICLK Jacobians:

Ĵesm = Ĵ f c − Ĵic (A.7)

Appendix A.2. Hessian
For clarity and brevity, evaluation points for the various terms

have been omitted in the equations that follow as being obvious
from analogy with the previous section.

It is generally assumed (Baker and Matthews, 2004; Benhi-
mane and Malis, 2007) that the second term of Eq. 4 is too
costly to compute and too small near convergence to matter and
so is omitted to give the so called Gauss Newton Hessian

Hgn =
∂I
∂p

T ∂2 f
∂I2

∂I
∂p

(A.8)

Though Hgn works very well for SSD (and in fact even bet-
ter than H (Baker and Matthews, 2004; Dame and Marchand,
2010)), it is well known (Dame and Marchand, 2010; Scan-
daroli et al., 2012) to not work well with other AMs like MI,

CCRE and NCC for which an approximation to the Hessian af-
ter convergence has to be used by assuming perfect alignment
or It(w(p̂t)) = I0(x0). We refer to the resultant approximation
as the Self Hessian Hsel f and, as this substitution can be made
by setting either Ic = I0(x0) or I∗ = It(w(p̂t)), we get two forms
which are respectively deemed to be the Hessians for ICLK and
FCLK:

Ĥic = H∗sel f =
∂I0

∂p

T ∂2 f (I0, I0)
∂I2

∂I0

∂p
+
∂ f (I0, I0)

∂I
∂2I0

∂p2 (A.9)

Ĥ f c = Hc
sel f =

∂It

∂p

T ∂2 f (It, It)
∂I2

∂It

∂p
+
∂ f (It, It)

∂I
∂2It

∂p2 (A.10)

It is interesting to note that Hgn has the exact same form as Hsel f

for SSD (since
∂ fssd(I0, I0)

∂I
=
∂ fssd(It, It)

∂I
= 0) so it seems that

interpreting Eq. A.8 as the first order approximation of Eq. 4,
as in (Baker and Matthews, 2004; Dame and Marchand, 2010),
is incorrect and it should instead be seen as a special case of
Hsel f .

Ĥ f a differs from Ĥ f c only in the way
∂2It

∂p2 and
∂It

∂p
are com-

puted for the two as given in Eqs. A.11 and A.12 respectively.

∂2It

∂p2 ( f a) =
∂w
∂p

T

∇2It
∂w
∂p

+ ∇It
∂2w
∂p2 (A.11)

∂2It

∂p2 ( f c) =
∂w
∂p

T

∇2It(w)
∂w
∂p

+ ∇It(w)
∂2w
∂p2 (A.12)

where ∇2It(w) can be expanded by differentiating Eq. A.3 as:

∇2It(w) =
∂w
∂x

T

∇2It
∂w
∂x

+ ∇It
∂2w
∂x2 (A.13)

Ĥia is identical to Ĥ f a except that ∇I0 and ∇2I0 are used to
approximate ∇It and ∇2It. The expression for the former is in
Eq. A.5 while that for the latter can be derived by differentiating
both sides of Eq. A.3 after substituting Eq. A.6:

∇2I0 =
∂w
∂x

T

∇2It
∂w
∂x

+ ∇It
∂2w
∂x2

which gives:

∇2It(ia) =

(
∂w
∂x

−1)T [
∇2I0 − ∇It

∂2w
∂x2

]
∂w
∂x

−1

=

(
∂w
∂x

−1)T [
∇2I0 −

(
∇I0

∂w
∂x

−1) ∂2w
∂x2

]
∂w
∂x

−1

(A.14)

where the second equality again follows from Eq. A.3 and A.6.
Finally, the ESM Hessian corresponding to the Jacobian in Eq.
A.7 is the sum of FCLK and ICLK Hessians:

Ĥesm = Ĥ f c + Ĥic (A.15)
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