4 #include "AppearanceModel.h" 12 double _k1,
double _k2);
17 typedef double ElementType;
18 typedef double ResultType;
19 SSIMDist(
const string &_name,
const double _c1,
const double _c2) :
20 AMDist(_name), c1(_c1), c2(_c2){}
21 double operator()(
const double* a,
const double* b,
22 size_t size,
double worst_dist = -1)
const override;
34 SSIM(
const ParamType *ssim_params =
nullptr,
const int _n_channels = 1);
36 double getLikelihood()
const override;
39 void initializeSimilarity()
override;
40 void initializeGrad()
override;
46 void updateSimilarity(
bool prereq_only =
true)
override;
47 void updateInitGrad()
override;
49 void updateCurrGrad()
override;
51 void cmptInitHessian(MatrixXd &init_hessian,
const MatrixXd &init_pix_jacobian)
override;
52 void cmptCurrHessian(MatrixXd &curr_hessian,
const MatrixXd &curr_pix_jacobian)
override;
54 void cmptInitHessian(MatrixXd &init_hessian,
const MatrixXd &init_pix_jacobian,
55 const MatrixXd &init_pix_hessian)
override;
56 void cmptCurrHessian(MatrixXd &curr_hessian,
const MatrixXd &curr_pix_jacobian,
57 const MatrixXd &curr_pix_hessian)
override;
59 void cmptSelfHessian(MatrixXd &self_hessian,
const MatrixXd &curr_pix_jacobian)
override;
60 void cmptSelfHessian(MatrixXd &self_hessian,
const MatrixXd &curr_pix_jacobian,
61 const MatrixXd &curr_pix_hessian)
override{
62 cmptSelfHessian(self_hessian, curr_pix_jacobian);
66 const DistType* getDistFunc()
override{
67 return new DistType(name, c1, c2);
69 void updateDistFeat(
double* feat_addr)
override;
70 void initializeDistFeat()
override;
71 void updateDistFeat()
override;
72 const double* getDistFeat()
override{
return curr_feat_vec.data(); }
73 unsigned int getDistFeatSize()
override;
89 VectorXd init_pix_vals_cntr, curr_pix_vals_cntr;
91 RowVectorXd init_grad_vec, curr_grad_vec;
92 double init_grad_scal, curr_grad_scal;
94 VectorXd curr_feat_vec;
double curr_pix_mean
mean, variance and standard deviation of the current pixel values
Definition: SSIM.h:81
Definition: AMParams.h:12
void initializeHess() override
even though the Hessian of the error norm w.r.t.
Definition: SSIM.h:41
Distance functor for FLANN.
Definition: AppearanceModel.h:40
Similarity function that indicates how well a candidate warped patch matches the template.
Definition: AppearanceModel.h:63
double init_pix_mean
mean, variance and standard deviation of the initial pixel values
Definition: SSIM.h:79