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CNN Based Appearance Model with Approximate
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1 Introduction

Visual Object Tracking is an important module in a variety of applications, such as: surveillance,
human computer interaction, and visual servoing. The main goal is to compute the trajectory of the
object of interest given an initial bounding box for the object. 2D tracking is when the trajectory
of the object is computed in terms of camera coordinates.It has been heavily investigated in the
past decades, but in this project the main focus is on one of the techniques devised in[1] that is
Approximate Nearest Neighbour Tracking.

2 Background

2.1 Approximate Nearest Neighbour Tracking

In [1] a registration based tracker was introduced that utilizes approximate nearest neighbour
search for the part of updating the transformation parameters. It does that by having a table of
representative transformation updates, or what’s called a look-up table. Then warped templates are
computed according to this table while comparing it to the new frame to get the nearest one. This
is under the observation that if the distance between two warped templates T1(x) = T (wθ1(x)),
T2(x) = T (wθ2(x)) is small :

d(T1, T2) = ‖T1(R)− T2(R)‖22 (1)

Then the warp parameters θ1, θ2 are similar as well, where R is the set of pixel locations belonging
to the target.

The look-up table is constructed by introducing random perturbations to the original bounding box.
First the original bounding box is mapped to a unit square. Then ten random variables are sampled,
two are sampled from on Gaussian distribution those two resemble the translation added to the unit
square. The other eight random variables are sampled from another Gausian distribution and are
added to separate coordinates of the four corners of the unit square. Then a homography is computed
to map the unit square to its perturbed version. Thus transforming the original bounding box to
different randomly sampled perturbed versions. After constructing the lookup table the algorithm
proceeds as described in Algorithm 1.

The nearest neighbour search is done using randomized KD-tree or using priority search k-means
tree that helps in the speedup of the overall algorithm. In standard KD-trees they store high dimen-
sional data, and with each level the data is split into two cells by a hyperplane orthogonal to the
co-ordinates axes. The split is made at the median value of the dimension with greatest variance.
Then when a new query vector is searched in the tree, the query is compared with the partitioning
value in that level to know how to proceed with-in the tree. Traversing the tree continues until one
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Algorithm 1 NN-Tracking

1: Let θ1, .., θN be the set of feasible per frame updates.
2: vi←T ◦wθi(R) for i=1, .., N
3: θ̂ = θ∗0 , initializing it to identity warp
4: for each new frame It do:
5: set i to index of the nearest neighbour to It ◦ wθ̂ in v1, ..vN according to d.
6: θ̂ = θ̂ ◦ θ−1

i

of the leaf nodes is reached, which will be considered as the first candidate. But since the first
candidate isn’t necessarily the nearest neighbour, backtracking is used and other candidates are con-
sidered. In priority search technique the other nodes are considered based on their distance to the
query. When the search is terminated after a certain number of leaves are visited, an approximate
nearest neighbour is provided. In [6] the idea of using randomized KD-trees was suggested. Dif-
ferent tree structures are generated by randomly picking the dimension to split on from the first few
dimensions that have high variance. Then with each query those different trees are traversed simul-
taneously for candidates. In the same work the idea of using principal component analysis to rotate
the original data and align it with the co-ordinate axes was suggested. This way when the splitting
hyperplane is selected, as mentioned before orthogonal to the co-ordinate axes it can be selected
as the direction of high variance. But in [4] the priority search k-means tree idea is suggested that
was more effective than randomized KD-trees. The priority search k-means tree benefits from the
structure in the data by applying clustering, that gives it an advantage over randomized KD-trees. In
each level of the tree the data is partitioned to k nodes using k-means clustering.

After a nearest neighbour candidate is picked, to get higher precision algorithm 1 is followed by a
gradient based search algorithm to get finer precision. Mainly Inverse Compositional that’s mini-
mizing the Sum of Squared Difference (SSD) is utilized. That yields the final alignment with much
higher precision, and that tracker is termed as (NNIC). Finally instead of using one look-up table of
the representative warps, multiple tables are used in a hierarchical fashion each with a progressively
smaller warps. And each time a table is used it utilizes the partial alignment that was computed
using earlier tables and builds upon it.

2.2 Representation Learning for Tracking

The algorithm presented above uses direct pixel intensities in all of the similarity metrics whether
in the nearest neighbour search or in the final inverse compositional alignment. This fact makes
it prone to errors due to illumination changes and small variations in the appearance. Even with
utilizing different similarity metrics instead of the SSD that can be more robust to illumination
changes like Normalized Cross Correlation (NCC), it’s still prone to errors in some scenarios.
In this project investigating different feature transforms that can alleviate illumination changes
problem is performed. Mainly feature maps from pretrained Convolutional Nueral Networks(CNN)
is going to be utilized as a non-linear feature transform. Those feature maps generated should
provide more robustness to different variations instead of the direct pixel intensities. Convolutional
Neural Networks learn representative filters in its convolutional layers. These representations
become more complex structured and more specific to the task being trained for as we go deeper in
the network. If the pretraining of the network is done over a large training set of natural images that
includes different objects, the network will get to learn a more generalized representation that can
be used in other scenarios. The concept of transfer learning is to take those pretrained networks that
have learned general representations to utilize it in other specific domains like the object tracking
problem.

In [10] a detailed study of feature maps that are generated by pretrained convolutional neural net-
works is presented. Three main observations were presented in their work. The first observation is
the activated feature maps are sparse and localised and are correlated to locations of semantic ob-
jects. The second observation is that some of these feature maps will be noisy and irrelevant to the
task of discriminating a certain object from background. That’s why in their work they suggested
a selection method for feature maps that will benefit more the task at hand. Final observation is
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that different layers in the network incorporate different information, so higher layers capture se-
mantic concepts on object categories while lower ones capture discriminative features that can help
discriminate foreground from background.

2.3 Modular Tracking Framework

In [8] a detailed description of the modular tracking framework is presented. It mainly incorporates
three main modules that are generally present in registration based trackers. The first module is the
appearance model that will be responsible to provide a way to measure similarity between different
images. The second one is state space model that determines how many degrees of freedom (a.k.a
what is the transformation) computed between different images of the tracked object. Finally the
search method defines the way to search for the optimum warp parameters for the tracker. The
tracker is formulated as:

Pt = argmax
p

f(I∗, It(W (x, p))) (2)

Where I∗ is the target patch, It is the current frame, x is the set of coordinate pixels, p is the
transformation parameters, and W (x, p) is the warping of pixel coordinates. Then the f function
is the similarity metric that is the appearance model. The p determines the state space model used.
Finally the method used to maximize the above equation is the search method.

The current framework has the approximate nearest neighbour search as one of the search methods
that can be utilized with different appearance models. The best appearance model that’s used with
this search method is the zero normalized cross correlation (ZNCC). ZNCC appearance model is able
to cope with some variations in the illumination, which makes it more robust than sum of squared
difference(SSD) appearance model. The framework also supports utilizing cascaded trackers, to
be able to implement the complete (NNIC) algorithm. MTF also supports various other functions,
such as a complete evaluation tool where success rate plots can be generated to compare different
trackers. It also has a diagnostic tool to investigate the effectiveness of different appearance models,
by plotting how the similarity metric changes with different perturbations on the transformation
parameters.

3 Proposed Method

The proposed method is to utilize feature maps from convolutional neural networks with the ap-
proximate nearest neighbour tracking algorithm. The algorithm is implemented as part of the MTF
framework. The feature maps extracted are implemented as a new appearance model inside that
framework. Two variations on it is investigated whether to use SSD on the feature maps or ZNCC
instead. The current implementation for feature maps (FMaps) appearance model doesn’t support
computing Jacobian or Hessian matrix, thus it can’t be utilized with gradient based search methods.
It only supports working with stochastic methods like NN, but it can be extended to work with gra-
dient based methods. Mainly two pretrained networks on imagenet are used, the VGG-F [7] network
that’s the lightweight version of the original VGG network, and Googlenet[9]. The reason for pick-
ing those two network is to have a computationally efficient solution to feature extraction. Mainly
the initial layers are utilized, since those are the ones that have general purpose representations that
aren’t dependant on the categories that the network was trained on. Both network structures are
shown in Table 1. Using VGG-F proved to be a bad choice as shown in the experiments section,
since it has very large stride and filter size in the first convolution layer thus it has a high down-
sampling factor from the beginning. This proved to affect the nearest neighbour search method,
as it gives the features more invariance to the transformations than needed. Thus will degrade the
search method that’s trying to find the optimum warp parameters. But with Googlenet this problem
is alleviated, and both feature maps from first and second layer can be used. Note that the output
from the convolution followed by a rectified linear unit(ReLu) is used. That’s why this is termed as
a nonlinear transformation. The feature maps from the second layer have more complex representa-
tion than the ones from the first layer, and it is shown in the experiments section that it gave better
results than the first layer.
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VGG-F Googlenet
Convolution-1 K: 7, S:2, P:3, # Chs: 64 K:11, S:4, P:0, # Chs: 64

Nonlinear Activation-1 ReLu ReLu
LRN-1 α: 0.0005, β: 0.75 α: 0.0001, β: 0.75
Pool-1 Max, K:3 , S: 2 Max, K:3 , S: 2

Convolution-11 - K:1, S:1, P:0, # Chs: 64
Nonlinear Activation-11 - ReLu

Convolution-2 K: 5, S:1, P:2, # Chs: 256 K: 3, S:1, P:1, # Chs: 192
Nonlinear Activation-2 ReLu ReLu

Table 1: Initial Layers for VGG-F, and Googlenet that are used for feature extraction

Small modifications that proved to be of great value for the robustness and efficiency of the tracker,
is to truncate the network after the intial conolution layers. Thus the network doesn’t need a fixed
size input, and wouldn’t need resizing of the input as they act as fully convolutional ones. Also the
usage of normalization on the input patch from the tracker with the mean computed on Imagenet
proved to be important. Since the network was trained over normalized images from the Imagenet
dataset. Another aspect that is the usage of local response normalization layer with-in the network,
when used it was shown experimentally that there was no need to apply ZNCC on the output feature
maps anymore, and SSD was sufficient. Local response normalization was suggested in [3], and was
utilized in the Googlenet network. Equation 3 shows how the normalization is applied , aix,y is the
value of the feature in location (x, y) that was obtained from kernel i. The summation is done over
the feature from neighbouring kernels, and k, n, α, β are parameters set for the LRN.

bix,y =
aix,y(

k + α

(
min(N−1,i+n/2)∑
j=max(o,i−n/2)

(aix,y)
2

))β (3)

Since the feature maps provided from the network can have large number of channels (a.k.a filters),
a feature selection method has to be utilized. For the current implementation the number of feature
maps to be selected is a parameter to set. But implementing principal component analysis as a
way for feature selection is currently investigated. Also for computing the Jacobian of the feature
maps to use it with gradient search methods, equation 4 shows the chain rule used to compute the
derivative of the similarity metric with respect to warp parameters but for feature maps taken from
only the first convolution layer for simplicity. S denotes the similarity metric used that can be SSD
or ZNCC or any other measure, F denotes the feature map, I denote the original intensities, W is
the warping function and P are the warp parameters. All of these aren’t going to change from one
appearance model to another, except the part of computing the Jacobian of the feature maps with
respect to original pixel intensities, and that the similarity function is derived now with respect to
the feature maps. The equation for computing the Jacobian ∂F

∂I is provided in equation 5, this matrix
is of dimensions FxN where F = f2.c, N = n2 and f, n, c, k are spatial size of feature map,
spatial size of input, number of channels for the feature maps, and kernel size respectively. These
partial derivatives are going to be the weights of the filter applied on the original intensity values.
But it hasn’t been implemented yet in the current appearance model, since the Jacobian matrix is of
large dimensions other ways to compute the derivative is still under research for future work on the
project.

J =
∂S

∂F

∂F

∂I
∇I ∂W

∂P
(4)

∂F

∂I
=


∂y111
∂x11

∂y111
∂x12

. . . ∂y111
∂x1k

0 . . . ∂y111
∂xk1

. . . ∂y111
∂xkk

0 . . .
...

. . .
∂yffc

∂x11

∂yffc

∂x12
. . .

∂yffc

∂x1k
0 . . .

∂yffc

∂xk1
. . .

∂yffc

∂xkk
0 . . .

 (5)
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Figure 1: Images from different sequences in TMT and UCSB datasets

4 Experimental Setup

4.1 Datasets

Two datasets (TMT UCSB) are used throughout the evaluation of FMaps with NN, and is com-
pared against using plain SSD appearance model or ZNCC with the same search method. Tracking
Manipulation Task (TMT) dataset [5] has different manipulation tasks performed by robot or hu-
man, it has 109 sequences with 70592 total number of frames. The visual tracking dataset that’s
from UCSB[2] has 96 sequences with 6889 total number of frames. Figure 1 shows snapshots from
different sequences. Both datasets provide different challenges to the tracking like illumination
changes, viewpoint changes, occlusions and motion blur.
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Figure 2: Success Plots for Fmaps with VGG-F against ZNCC and SSD

Figure 3: Success Plots for Fmaps with Googlenet for Conv1 and Conv2 against ZNCC

4.2 Experiments

The first set of experiments are run on TMT and UCSB with FMaps extracted form the VGG-F
network that we discussed its architecture before. Comparison between feature maps from the first
convolution layer with ZNCC applied on it (FMaps), SSD, and ZNCC is conducted. The success
plots is shown in figure 2, success plot show the percentage of the dataset that has been succesfully
tracked for varying error thresholds. This thresholding is done on the average error on the corner
points of the output bounding box and ground-truth. The plots show although FMaps is better than
plain SSD, but it hasn’t provided any improvement over ZNCC. That’s due to the fact as we men-
tioned before that VGG-F wasn’t a suitable architecture to use, since it had a large downsampling
factor from its initial layer and that degraded the nearest neighbour tracker.

The second set of experiments are run on TMT and UCSB again but with FMaps extracted from the
Googlenet for both first (FMaps-Conv1) and second (FMaps-Conv2) convolution layers. Note that
in fact the feature maps are extracted after the activation layer (ReLu) so Conv1 denote the output
from Nonlinear Activation-1 that followed the Conv1 layer. The same goes for Conv2 feature maps.
In figure 3 it’s clear that FMaps-Conv2 is performing much better than FMaps-Conv1, and is almost
similar to ZNCC or a little better with higher error thresholds. The second layer provides more
representative features of the ouput, but at the same time without having large downsampling factor
that could lead to problems as with VGG-F.
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Another experiment to validate whether the appearance model can be used with gradient based
method, is to run the diagnostic tool on it. The diagnostic tool will allow to generate different trans-
formations for each parameter in the homography, then plot how the similarity metric is changing.
It can also show how the numerical jacobian is changing as well. A good appearance model will
have a distinguished peak in its similarity measure at location zero where no transformations is hap-
pening, and will generally have a smooth curve to make the convergence to the maximum easier.
Figure 4 shows these plots for the eight different parameters of the homography, it’s shown that
the appearance model does show a clear peak at the optimum, though the peak can have multiple
location not only at zero with some of the parameters. This can be due to the pooling that introduces
some translation invariance. But since they’re all pretty close to the zero location it can still be used
as an appearance model with gradient based search methods. For qualitative results see the attached
videos on different TMT datasets, and another one with live camera feed with illumination changes.

5 Conclusion and Future Work

Extracting feature maps from convolutional neural networks and using it as an appearance model
while applying SSD on it instead of raw intensity values proved to be robust to illumination changes.
It hasn’t been shown yet that it can cope better with transformations and viewpoint changes, but it’s
comparable to ZNCC. But for future work we can make the appearance model work with gradient
based methods like inverse compositional (IC), and use the cascaded NNIC tracker that should be
more robust to both illumination and viewpoint changes. It was also shown that using feature maps
from the second layer was much better than the first layer in Googlenet, and both were better than
using a network that has larger downsampling factor from the firt layer like VGG-F. Both SSD
and ZNCC on the feature maps were compared, but ZNCC wasn’t needed in the experiments with
Googlenet. One explanation might be cause it already has LRN layer before the Conv2 which
is doing normalization in a different way but was able to be robust without the need for ZNCC.
Another direction for future work would be to select the appropriate feature maps to work with.
Current implementation only sets the number of feature maps to use, that’s not robust especially that
some feature maps can harm the tracking more than benefiting it. PCA can be used on the feature
maps to select from it the ones that have high variations.
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Figure 4: Diagnostics Results with changing eight different parameters and on the y-axis is the norm
(similarity measure) and numerical jacobian.
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