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A Method for Enforcing Integrability in Shape from 
Shading Algorithms 

ROBERT T.  FRANKOT, MEMBER, IEEE, AND RAMA CHELLAPPA, SENIOR MEMBER, IEEE 

Abstract-Several recently developed techniques for reconstructing 
surface shape from shading information estimate surface slopes with- 
out ensuring that they a re  integrable. This paper presents a n  approach 
for enforcing integrability, a particular implementation of the ap- 
proach, a n  example of its application to  extending a n  existing shape- 
from-shading algorithm, and experimental results showing the im- 
provement that results from enforcing integrability. 

A possibly nonintegrable estimate of surface slopes is represented 
by a finite set of basis functions, and integrability is enforced by cal- 
culating the orthogonal projection onto a vector subspace spanning the 
set of integrable slopes. This projection maps closed convex sets into 
closed convex sets and, hence, is attractive as  a constraint in iterative 
algorithms. The same technique is also useful for noniterative algo- 
rithms since it provides a least-squares fit of integrable slopes to  non- 
integrable slopes in one pass of the algorithm. The special case of Fou- 
rier basis functions is also formulated. This provides an  intuitive 
frequency domain interpretation of shape from shading, a computa- 
tionally efficient implementation using fast Fourier transforms, and a 
convenient method for introducing low-resolution information into the 
shape-from-shading solution. Reconstruction of surface height by in- 
tegrating surface slope estimates is obtained as  a byproduct of the in- 
tegrability constraint. 

The integrability projection constraint was applied to extending a n  
iterative shape-from-shading algorithm of Brooks and Horn. Experi- 
mental results show that the extended algorithm converges faster and 
with less e r ror  than the original version. Good surface reconstructions 
were obtained with and without known boundary conditions and for 
fairly complicated surfaces. Simulation examples show that the algo- 
rithm is robust with respect to  large (but known) changes in illumi- 
nation geometry, obtaining high-quality reconstructions even in the 
presence of significant shadowing. 

Other possible applications of this method to computer vision prob- 
lems such as  shape from texture and surface reconstruction from syn- 
thetic aperture radar  imagery a re  discussed. 

Index Terms-Computer vision, depth maps, integrability, photo- 
clinometry, radarclinometry, shape from shading, surface reconsttuc- 
tion, 2 1/2-D models. 

I. INTRODUCTION 
HAPE from shading refers to the problem of deter- S mining the shape of a smooth surface given a single 
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image of that surface. One way to infer surface variations 
given a single image is to model the observed image in- 
tensity in terms of the surface orientation and then use that 
relationship to solve for the surface slopes. 

Let Z(x, y )  be the observed image intensity and z ( x ,  y )  
be the unknown surface height above the (x, y)  plane. 
The relationship between image intensity and surface 
slopes can be expressed in the following form [ 11-[31: 

where 

az 
ax z x  = - 

and 

az zy = - 
ay 

are the surface slopes, is the illumination direction vec- 
tor, 1 is the vector from the surface to the camera, and p 
is the albedo or intrinsic reflectivity of the materials com- 
posing the surface. It is also convenient to make the fol- 
lowing assumptions: 1) at any point (xo, yo), the reflec- 
tance map @ is a function of the surface slopes and albedo 
only at (xo, y o ) ,  i.e., multiple reflections are ignored; 2) 
the albedo p and the vectors 6 and 1 are known over the 
entire image; and 3) @ is spatially invariant. The imaging 
geometry is illustrated in Fig. 1. 

It has been observed [3] that shape from shading can be 
expressed as a problem of solving a first-order nonlinear 
partial differential equation in x and y .  In deriving itera- 
tive solutions to (1) by the calculus of variations, it ap- 
pears to be much more straightforward to solve for surface 
orientation than to solve directly for z [4]. The question 
of consistency between zx  and z y  then arises. A reason- 
able consistency constraint to place on the surface slopes 
is that they be integrable, where integrability is defined 
by 

z x y ( x ,  Y >  = zyx(x9 Y >  (2) 

for all (x, y )  on the support of I .  That is, they correspond 
to a surface with second partial derivatives independent 
of the order of differentiation. As a result, the surface 
height at any particular point is independent of the path 
of integration. This can also be thought of as a smooth- 
ness constraint since a surface with discontinuities vio- 
lates (2). Horn and Brooks assert [4], as do we, that past 
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Fig. 1 .  Imaging geometry. 

shape-from-shading algorithms can be improved consid- 
erably by incorporating such an integrability constraint. 

Most shape-from-shading algorithms reported in the lit- 
erature [5]-[lo] do not take into account the interdepen- 
dence of the two components of surface orientation, but 
allow them to vary independently. If we do allow (z,, z r )  
to vary independently, then (1) may have an infinite num- 
ber of solutions even when boundary conditions are com- 
pletely known and there are no modeling errors or obser- 
vation noise. Just to illustrate this point, neglect the issue 
of boundary conditions and consider shape from shading 
as a discrete problem. Suppose we observe image inten- 
sity on an N x N grid. We have N 2  observations and hope 
to determine 2 N 2  samples of the partial derivatives of z ( x ,  
y) .  Clearly, there is an infinite number of solutions to (1) 
if the partial derivatives of z are not interdependent. Sup- 
pose instead that we simply require that these partial de- 
rivatives be integrable in the sense of (2 ) .  Then the partial 
derivatives must correspond to only N 2  unknown samples 
of z ,  so that we are dealing with approximately N 2  equa- 
tions in N 2  unknowns. Hence, an integrability constraint 
cuts the number of unknowns by a factor of two, neglect- 
ing boundary conditions. 

Early solutions to the shape-from-shading problem were 
based on direct inversion of the differential equation (1) 
[1]-[3] and served to demonstrate the concept of shape 
from shading. Unfortunately, an exact solution to the im- 
aging equation (1) does not always exist, or there may be 
an infinite number of solutions. In practice, modeling er- 
rors such as reflectance map mismatch, imperfect knowl- 
edge of the light source, spatial and radiometric quanti- 
zation error, observation noise, and albedo variations are 
inevitable. Further, boundary conditions are generally not 
completely known and sometimes may not be available at 
all. These factors all influence the existence and unique- 
ness of a solution to (1) and the estimation of a good so- 
lution in the case that a unique one does not exist. For 
these reasons, shape from shading is a very difficult prob- 
lem in practice. 

It is more practical to pose shape from shading as a 
constrained minimization problem rather than purely an 
inversion problem. For example, Brooks and Horn [5] 

proposed the approach of selecting the surface slope es- 
timates (i,, 2,) which minimize the following cost func- 
tion: 

+ x (2% + 2i:, + ?;,) d r d y ,  (3)  
subject to known boundary conditions. The first term in 
the integrand is the squared error between the observed 
image intensity and the image intensity predicted by sub- 
stituting the estimates ( iX,  f Y )  into (1). This mean-squared 
error term allows for modeling errors and noise. The sec- 
ond term in the integrand is a measure of quadratic vari- 
ation in the surface slopes. This is a smoothness criterion, 
which, in principle, assures a unique smooth solution to 
(3) even when (1) does not possess a unique solution. It 
is also interesting that minimization of a quadratic varia- 
tion of the surface slopes is roughly equivalent to min- 
imization of the potential energy of a thin elastic plate 
[ 111.  The constant A establishes a tradeoff between the 
smoothness of the solution (2,, 2,) and the mean-square 
value of the residuals I - @. 

Brooks and Horn [5] developed an algorithm to mini- 
mize E in (3), subject to the constraint that (?,, &) satisfy 
known boundary conditions. Although the Brooks and 
Horn algorithm may converge to a unique solution of (3), 
that solution is generally not integrable. That is, given the 
final estimates of the partial derivatives, many possible 
surfaces could be constructed, each dependent on the path 
of integration. 

Earlier, Ikeuchi and Horn [6] developed a similar al- 
gorithm that, instead of using gradient space ( z , ~ ,  z , ) ,  was 
parameterized in stereographic coordinates ( f, g ) where 

22, 
f =  1 + dl + z :  + z ;  

and 

22, 
g =  

1 + J1 + z ;  + 2 ; '  
(4) 
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This parameterization eliminates the difficulty in handling 
occluding boundaries where z,, z,, or both are un- 
bounded. To understand the ( f, g )  coordinates geomet- 
rically, note that the locus of all conceivable unit normal 
vectors defines a unit sphere, called the Gaussian sphere. 
The (f, g )  coordinate system above can be obtained 
through a central projection from the south pole of the 
entire Gaussian sphere into a plane tangent at its north 
pole. The locus of all occluding boundaries correspond: 
to the equator of the Gaussian sphere and a circle of radius 
2 in (f, g )  space. The algorithm of Ikeuchi and Horn 
allows f and g to vary independently in the iterative so- 
lution, and (zx, z,) is obtained by a point transformation 
of ( f, 8). The result is that Ikeuchi and Horn’s algorithm 
also suffers from the drawback of not producing an in- 
tegrable solution. 

Lee [8] presented a shape-from-shading algorithm in- 
spired by that of Ikeuchi and Horn, for which he proves 
the existence of a unique solution. Further, Lee proves 
that his algorithm converges to the unique solution if the 
surface slopes are known on the square image boundary. 
Unfortunately, that solution is not integrable. 

Pentland [9] developed a technique which examines lo- 
cal estimates of the Laplacian of image intensity under the 
assumption that the surface is locally spherical at each 
point. Lee and Rosenfeld [7] later improved this tech- 
nique so that it requires only first derivatives of image 
intensity, thereby reducing sensitivity to noise. Two dif- 
ficulties with this local approach are the local sphericity 
assumption and the reliance on intensity derivatives, 
which can be very noisy. A third difficulty is that no pro- 
vision is made for enforcing global consistency (e.g., in- 
tegrability) of the local slopes, so that it is difficult to con- 
struct a surface from the slope estimates. 

Integrability constraints have been used before in iter- 
ative shape-from-shading algorithms. Smith [ 121 derived 
a set of equations relating derivatives of image intensity 
to surface orientation independent of albedo and illumi- 
nation angle and without assuming a particular local char- 
acteristic for the surface (such as Pentland’s local sphe- 
ricity assumption). It is illuminating to note that integra- 
bility was assumed in the formulation and imposed in de- 
riving algorithms for solving the equations. Smith consid- 
ered the use of a penalty function to encourage 
integrability during iteration and a local spatial approach 
for constructing a surface from nonintegrable slope esti- 
mates, although no convergent algorithm was reported. 

Recently, Horn and Brooks [4] have developed an ap- 
proach for deriving iterative shape-from-shading algo- 
rithms. In that paper are examples of iterative algorithms 
which do attempt to enforce integrability through the use 
of a penalty function. This represents a significant ad- 
vance. However, Horn and Brooks encountered some dif- 
ficulties in developing a convergent iterative algorithm 
that strictly enforces integrability. Further, the algorithms 
that were presented do not appear to allow much flexibil- 
ity for incorporating additional constraints. 

In this paper, we present a technique for strictly en- 

forcing integrability, as in (2). The method for enforcing 
integrability is to project the possibly nonintegrable sur- 
face slope estimates onto the nearest integrable surface 
slopes [13]. In Section 11, this orthogonal projection is 
solved for the case in which the surface slopes are repre- 
sented by finite sets of orthogonal integrable basis func- 
tions. It is shown that the projection maps closed convex 
subsets of the space of nonintegrable surface slopes onto 
closed convex subsets of the space of integrable surface 
slopes, provided that certain conditions are met. Ikeuchi 
and Horn have previously derived an iterative algorithm, 
described in [4], that constructs depth information from 
nonintegrable surface orientation data by iteratively solv- 
ing the same projection. That approach has the advantage 
of not requiring a finite basis function representation. Our 
method has the advantage of being noniterative along with 
all of the advantages and disadvantages of the basis func- 
tion representation. In Section 111, the projection is pre- 
sented for the special case of Fourier basis functions. In 
Section IV, the discrete periodic Fourier basis formula- 
tion of the projection is applied to extending a shape-from- 
shading algorithm of Brooks and Horn [5] so that it con- 
verges faster and with much less error than the original 
version. Simulation results are presented for images of 
complicated surfaces representative of natural terrain. The 
technique is appropriate for integrating noisy slope esti- 
mates and could, perhaps, be used in improving the re- 
sults of several other shape-from-shading algorithms [7]- 
[ 101, [ 121. Finally, in Section VI, possible applications 
to shape from texture [ 101, [ 141, shape from synthetic ap- 
erture radar (SAR) imagery [23], and shape from coherent 
image amplitude [ 151 are discussed briefly. 

11. ENFORCING INTEGRABILITY BY ORTHOGONAL 
PROJECTIONS 

There are many conceivable ways of enforcing (2). The 
key is to develop a computationally efficient method suit- 
able for use with iterative algorithms. We have developed 
an approach based on projecting the possibly noninte- 
grable estimated surface slopes (i,, iy) onto a set of in- 
tegrable surface slopes (Z,, Z y )  where 

a a 
- z‘, = - 2, 
ay ax 

while simultaneously minimizing the following distance 
measure: 

Note that the minimum distance property makes this an 
orthogonal projection. 

The task of fining such a projection is simplified if we 
can represent the surface slopes by a finite set of inte- 
grable basis functions, each satisfying (5). Suppose that 
we represent the surface z(x, y )  by the functions 4(x, y, 
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w )  so that because of the orthogonality of { +x ( w ), w E } and of 
{ $ , ( C O ) ,  6.1 E a} .  By interchanging the order of sum- 
mation and integration, the distance in (6) reduces to (7)  z ( x ,  y )  = C(w) 4(% y ,  w )  

W € Q  

where w = ( u ~ ,  U , )  is a two-dimensional index, n is a 
finite set of indexes, and the members of { 4(x ,  y ,  a)} 
are not necessarily mutually orthogonal. If each 4 (U) 
satisfies ( 5 ) ,  then it follows that z does also. Note that the 
partial derivatives of z can also be expressed in terms of 
this expansion, giving 

z,(x, Y )  = C ( w )  Y ,  0 )  

z&, Y )  = c C ( 0 )  4&, Y ,  w )  

w € n  

and 

( 8 )  
w € n  

where qiX = ( a + / a x )  and +? = ( a @ / a y ) .  
Now a method is presented for finding the expansion 

coefficients C( w )  which minimize (6). Suppose that the 
members of { & ( x ,  y ,  a)} as well as the members of 
{ $ ( x ,  y ,  w ) }  are mutually orthogonal. Then we can 
compute the coefficients for the expansions of 2, and 2, 
such that 

ix(x, Y )  = C,(w> 9L(x, Y7 0 )  
O € R  

and 

Equation (12) can be minimized by minimizing each term 
of the summation individually. By differentiating (12) with 
respect to the real and imaginary parts of C( 6.1) for each 
w, setting the result to zero and solving for C, (10) re- 
sults. 

For clarity in the subsequent proofs, express (8) and (9) 
in terms of vectors. First, define the vectors 

@,(& Y )  = col [A(& y ,  U), 0 E n] 
@,(x, Y )  = col [ 4 ) k  Y ,  U), w E n] 

o =  [ O ; . . , O ]  

c = col [C(w) ,  0 E n] 
c, = col [C,(w), 0 E n] 
c2 = col [ C 2 ( 0 ) ,  0 E n]. 

Equation (9) can now be written as 
2,(& Y )  = C 2 ( 4  4& Y ,  0 ) .  (9) w € n  

The orthogonality of the basis functions in (9) greatly (13) 
simplifies the minimization of (6). 

in (7) 
that minimize (6) given a possibly nonintegrable estimate 

~~~~~~i~~~~ 1: The expansion coefficients with the Set of possibly nonintegrable surface slopes ex- 
pressed as 

of surface slopes t X ( x ,  y) ,  ?y(x, y )  are given by 

(10) 
P X ( 0 )  G ( 4  + Py(Q.4 C 2 ( 4  

P x ( 4  + P , ( 4  
C ( 0 )  = 

for each w E Q where P x ( w )  = j j I 4T(x, y ,  w )  l 2  dx  dy  
and P , ( w )  = j j 1 +,(x, y ,  a) l 2  dx dy .  The integrated 
surface Z ( x ,  y )  and integrable surface slopes, Z x ( x 7  y ) ,  
Z,(x, y )  are then obtained by substituting C ( w )  into the 
expansions (7) and (8). 

Proof: By substituting the expansion for iX7 2,, ,Ex, 
and 2, into ( 6 ) ,  the distance measure becomes 

d {  (L e,), (z,, 2 J }  

which reduces to 
" n  

+ c ( C  - C 2 ( 2 / 4 y 1 2 d x d y  
w € n  

Similarly, (8) can be rewritten as 

with the set of integrable surface slopes given by 

which is a vector subspace of So. 

6 .  This can be written in vector form as 
We will denote the mapping of So onto S using (10) as 

[::I C = [ P  I - P I  

where P is a diagonal matrix with diagonal elements 
P x / ( P x  + P,) and I is the identity matrix. 

Proposition 2: The projection (10) maps convex sub- 
sets of { iX,  2, } onto convex subsets of { 2,, 2, ]. 

Proof: Convexity follows directly from the obser- 
vation that (17) is a linear mapping. Suppose that G is a 
convex subset of SO. Then 6 ( E  ) is a subset of S,  and we 
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must now prove that 6 ( E  ) is convex. The definition of 
convexity is that, for all U, V E E and for all 0 < p < 
1, we have pU + ( 1  - p ) V  E E .  Then 6 ( p U  + ( 1  - 
p ) V )  E @ ( E )  since E is convex. 6 is linear so that 

@(PU + ( 1  - 0) 
= p@(U)  + (1  - p )  6 ( V ) .  (18) 

This proves that the right-hand side of (18) is an element 
of S, thus completing the proof. 
Proposition 3: The projection (10) maps compact sub- 

sets of the functions {?,, 2,) onto compact subsets of 
{ Z,, Z, } .  Since we are working in metric spaces, this is 
equivalent to saying that closed and bounded sets are 
mapped onto closed and bounded sets [ 161. 

Proofi From [ 16, theorem 4.151 we know that Prop- 
osition 3 holds if 6 is a continuous mapping. Since all of 
the elements of the transformation in (17) are finite, it 
follows that 6 is continuous, completing the proof. 

It was shown that the integrability constraint represents 
an orthogonal projection mapping closed convex subsets 
of its input space onto closed convex subsets of its output 
space. This is a highly desirable property if the projection 
is to be applied as a constraint in iterative algorithms [ 171 , 
[ 181. The shape-from-shading problem, in its entirety, 
does not appear to lend itself well to solution by the 
method of projection onto convex sets (POCS) since the 
nonlinearity of the reflectance map makes it difficult to 
realize an orthogonal projection. However, it is possible 
to introduce additional constraints, e.g., integrability, into 
an iterative shape-from-shading algorithm using POCS as 
an intermediate step. An example of this is presented in 
Section IV. Note that the methods for enforcing boundary 
conditions in previous shape-from-shading algorithms [4]- 
[6], [8] could be expressed as projections onto closed con- 
vex sets. This follows from the fact that the operation of 
setting a function equal to prescribed values over some 
region of its support (e.g., strictly enforcing boundary 
conditions) can be expressed as an orthogonal projection 
mapping closed convex sets onto closed convex sets [ 171. 

This approach for enforcing integrability has a second 
distinct advantage in that the surface can be reconstructed 
in one pass using all of the information available in 
( iX ,  2,) simply by performing the summation in (7) for 
the values of c(o) computed in (10). Thus, it may be 
useful as a more efficient integrator for nonrecursive local 
shape-from-shading approaches. 

111. INTEGRATION BY FOURIER EXPANSION 

The usefulness of the expansion presented in Section I1 
depends on the specific choice of basis functions. The 
Fourier basis functions 4 ( x ,  y, o) = exp ( jw,x + j o ,y )  
are particularly convenient computationally, and they also 
form a complete orthornormal basis for z .  

Using this basis, the surface is represented by 

where { C } are the coefficients of the Fourier series ex- 
pansion of 2.  For images of size N x N, a reasonable 
choice for Q would be (2an, 27rm), with n, m E (0,  
1, * - , N - 1 }.  Now let e,, Cy, C,, C,, be the Fourier 
coefficients for ?,, 2y, z,, z,, respectively. 

The derivatives of the Fourier basis functions possess 
the following useful properties 

4, = jU,4 

and 

4, = j ~ , 4 ,  (20) 

P, U:, P, oc U;, C,(o) = C,(o) /Jw, ,  and &a) = 
~ , ( o ) / j w , .  Then using (10) and (20), it is straightfor- 
ward to show that (6) is minimized by taking 

with the Fourier coefficients of the constrained surface 
slopes given by [ 131 

C,(o) = j U , C ( W )  

C,(o) = jw,C(w). 

and 

The expressions above are valid except at the point o = 
(0, 0), which simply means that we cannot recover the 
average value of z without some additional information. 

U, + o =$ C(o) -+ C, (o ) / jwx  

Note that 

and 

In general, the Fourier coefficients of the raw slope esti- 
mates are combined in proportion to their relativ: fre- 
quencies. For example, if we divide the weight for C,( o) 
in (10) by that of C,(o), we get w,/w,. The effect is to 
reduce “random walk” errors that result from amplifica- 
tion of low-frequency noise during integration. 

This frequency domain interpretation helps in under- 
standing an inherent difficulty in the shape-from-shading 
problem. The observed image intensity is a function of 
the derivatives of the surface. Equation (20) shows that 
the low-frequency information for the surface is lost in 
the image formation process. Hence, the reconstructed 
surface inevitably suffers from low-frequency distortion, 
the severity depending on observation noise characteris- 
tics. The frequency domain formulation of the integrabil- 
ity constraint is appropriate here since the low-resolution 
data could be introduced as a projection constraint in an 
iterative shape-from-shading algorithm. This is accom- 
plished by substituting the Fourier coefficients of the low- 
resolution surface in place of the lowest-frequency shape- 
from-shading results, Experimental results in Fig. 6 of 
Section V demonstrate the improvement that results from 
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using four known low-frequency terms in compensating 
for completely unknown boundary conditions. 

It is conceivable that low-resolution information could 
be drawn from other sources in real-world applications of 
shape-from-shading techniques. For example, in some re- 
mote sensing applications, low-resolution surface height 
information is available from digital terrain models 
(DTM’s) [ 191, [20]. A particular example where low-res- 
olution constraints on shape from shading is available and 
useful is the Magellan project’s Venus Radar Mapper, 
which will collect SAR imagery of the surface of Venus 
along with much lower-resolution radar altimetry data 
[22]. With shape-from-shading techniques, it may be pos- 
sible to improve on the resolution of the radar altimetry 
data by combining it with the higher-resolution SAR im- 
agery. 

A. Discrete Periodic Formulation 
For computer implementation, some form of discreti- 

zation is necessary. We have assumed, for computational 
simplicity, that the surface slopes are :circularly periodic 
and evaluate the Fourier coefficients C, and C, using the 
discrete Fourier transform (DFT). With this discrete pe- 
riodic formulation, (6) is minimized by 

(22) 
a,*(%) a4 + q w , >  q6.d  

b X l 2  + la,12 
C(0) = 

with 

C X ( 4  = U,(%) w-4 

C,(O) = a,(w,.) C ( 0 )  
and 

where a, and a, are the Fourier coefficients of the appro- 
priate discrete differentiation operator in x and y .  Suppose 
we approximate the derivatives by finite central differ- 
ences, e.g., 

z , ( l ,  rn) = $ [ z ( l  + 1 ,  m) - z ( 1  - 1 ,  m ) ]  (23) 

and similarly for z,. For the central difference operator 
above, we get ar(wy) = (1 /2)  exp { j w , }  - ( 1 / 2 )  exp 
{ - jw, } = j sin (U,), and similarly, a, ( a,) = ( 1 / 2 )  exp 
{ jw , }  - (1 /2)  exp { -jw,} = j sin (U,). 

The estimated surface is constructed by performing the 
inverse DFT of c( a) from (22), so that the integrability 
projection doubles as an integrator. In all cases, the DFT 
is evaluated using a fast Fourier transform (FFT) algo- 
rithm. The intuitive frequency domain interpretation of 
the integrability projection is easily extended to the dis- 
crete case using the discrete periodic formulation. 

Alternatives to the discrete periodic formulation are 
possible, but are not considered in this paper. The Fourier 
expansion could be formulated on a finite lattice instead 
of a periodic lattice. The mathematics are somewhat more 
complicated, but FFT calculations are still possible [21], 
and more careful attention could then be paid to boundary 

conditions. Other basis functions, such as Chebyshev 
polynomials, could also be useful for finite lattice reali- 
zations. 

IV. AN IMPROVED SHAPE-FROM-SHADING ALGORITHM 
We have utilized the projection from Section I11 to ob- 

tain a simple extension of an algorithm presented by 
Brooks and Horn [5]. The result is an algorithm which 
minimizes (3) while satisfying the discrete form of ( 5 )  and 
(6) at each iteration. The experimental results presented 
in Section V show a marked improvement in performance 
due to the integrability constraint. 

Using the finite difference approximations, the values 
of i x ( x ,  y )  and ?,(x, y )  which minimize (3) are found 
iteratively by the following recursion for each point (x, 
Y ) :  

at the ( k  + 1)th iteration where 

and 

and its partials are evaluated at [i,, $y]k, is a con- 
stant inversely proportional to h in (3), [?,, ? , I k  is a 
smoothed version of [Z,, Z,Ik,  and [Z,, f y ] k  is obtained 
by substituting the raw estimates [i,, .?,Ik into the inte- 
grability projection (22). 

The smoothing applied during each iteration is given by 
PI 

+ &[z, ( /  - 1 ,  m - 1) 

+ ~ , ( l  - 1 ,  rn + 1 )  

+ ~ , ( l  + 1, m + 1) + f , ( E  + 1, m - I ) ]  

and similarly for f,. Note that this is just a discrete ap- 
proximation to the Laplacian with the center pixel left out. 
This follows from a manipulation of a discrete form of the 
Euler equations for (3) as discussed in [4], [5]. The re- 
rationale for evaluating @ with the smoothed slope esti- 
mates is that it stabilizes (24) [6]. 

The iterative algorithm can be summarized as follows 
[13]: 

1) Smooth the previous slope estimates using (25), 
2) generate a new set of raw slope estimates using (24), 

and 
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3) project the raw slope estimates onto the nearest in- 
tegrable solution using (22). 

The process is repeated until the cost function either 
stops decreasing or becomes sufficiently small. The sur- 
face height is obtained by simply performing the inverse 
DFT of e( a) after the final iteration. 

Parameterization in gradient space (z,, z,) rather than 
stereographic coordinates ( f, g ) is sometimes criticized 
because the surface gradient is not well defined at occlud- 
ing boundaries where z,, z,, or both are infinite. How- 
ever, for discrete data, z ,  and z ,  are bounded for all prac- 
tical purposes. This observation leads to a potential 
method for utilizing occluding boundaries in the above 
shape-from-shading algorithm. Intuitively, it seems that 
most of the information provided by the occluding bound- 
ary comes from knowledge of the location of its contour 
in the ( x ,  y )  plane and the orientation z x / z y  along its con- 
tour. The occluding boundary can be detected by exam- 
ining zero crossings of the Laplacian of image intensity 
[ 111.  The orientation of the occluding boundary z , /zy  can 
be found from analysis of this occluding contour. Then, 
perhaps, the orientation can be enforced as a constraint in 
the shape-from-shading solution while allowing the mag- 
nitude - to be controlled by the regularization 
penalty in (3). Alternatively, it is possible to apply the 
integrability constraint in gradient space and the surface 
slope update in ( f, g )  coordinates. 

V. EXPERIMENTAL RESULTS 

The above algorithm was tested on synthetic imagery 
with and without known boundary conditions and was also 
tested on real imagery. In each case discussed below, the 
images are of size 64 X 64 pixels. Lambertian surfaces 
illuminated by point sources were assumed in each case, 
giving the following the reflectance map: 

However, the implemented algorithm used numerical de- 
rivatives of the reflectance map, so that any reasonably 
well-behaved known reflectance map could have been ap- 
plied. 

A. Comparison of Constrained Versus Unconstrained 
Algorithm 

First, a series of experiments was performed to com- 
pare the performance of the shape-from-shading algo- 
rithm in Section IV with and without the integrability con- 
straint. An image was simulated for a surface consisting 
of a partial sphere protruding above a plane. 

In the first experiment, the surface slopes were pro- 
vided where the sphere intersects the plane. No noise was 
added to the observed intensity, the only source of errors 
being intensity quantization and finite precision arithme- 
tic. Under these conditions, the algorithm of Brooks and 

Horn converges to a reasonably accurate solution for the 
surface slopes. This case was used to get an indication of 
the impact of enforcing the integrability projection under 
very benign conditions. Table I shows the mean and stan- 
dard deviations of the surface orientation error for both 
the constrained and unconstrained algorithm after 100 it- 
erations. Note that the application of the integrability 
constraint reduces the error standard deviation from 2.36 
to 0.53", a factor of 4.5. A second observation is that a 
minimum value of X = 7000 was required for stabilizing 
the unconstrained algorithm, whereas the constrained al- 
gorithm was stable for a wider range, down to X = 5000. 
Interestingly, the very significant change in X (from 7000 
to 5000) resulted in an insignificant change in the error 
standard deviation (from 0.53 to 0.56), perhaps indicating 
that most of the smoothing is coming from the integrabil- 
ity constraint. This appears to corroborate the finding of 
Horn and Brooks [4] where the regularization penalty from 
(3) was dropped and an integrability penalty was used in- 
stead, improving on the results of Ikeuchi and Horn [6]. 

The rate of convergence was also compared for the par- 
tial sphere case. For the constrained algorithm, the ori- 
entation error standard deviation was down to 2.7" after 
only five iterations. The unconstrained algorithm took 
about 90 iterations to reach this same level of conver- 
gence. After eight iterations, the constrained algorithm 
was down to 1.25 " error standard deviation, whereas the 
unconstrained algorithm took nearly 1000 iterations to 
reach the same level. This demonstrates that enforcing in- 
tegrability by the method developed in this paper can 
greatly speed up convergence. 

Similar experiments were repeated with relaxed bound- 
ary conditions, i.e. , boundary conditions provided around 
the square border of the image. The integrability con- 
straint also reduced the error standard deviation by a fac- 
tor of about 4.5 in this case. The numerical comparison 
is shown in Table 11. 

When the unconstrained algorithm was applied with re- 
laxed boundary conditions, the resulting solution was 
nearly locally cylindrical ( i .e. ,  iY 5: 0) everywhere. This 
is clearly nonintegrable. The integrability projection was 
applied to the above erroneous slope estimates after 100 
iterations of the unconstrained algorithm. Here, the error 
standard deviation is much higher than for constrained it- 
eration, but significantly lower than for unconstrained it- 
eration, as indicated in Table 11. This demonstrates the 
usefulness of the integrability projection as a method for 
constructing a surface from nonintegrable slope esti- 
mates. 

Fig. 2(a) shows the true partial sphere surface; Fig. 2(b) 
shows an image generated from that surface; Fig. 2(c) 
shows the surface estimated using the constrained algo- 
rithm given both the image intensity and knowledge of the 
surface slopes around the border of the image (corre- 
sponding to Table 11); and Fig. 2(d) shows the surface 
estimated given only the simulated image without knowl- 
edge of boundary conditions. For the known boundary 
condition case, the reconstructed surface is almost iden- 
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Algorithm 

Unconstrained 

Constrained 

Constrained 
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Orirntation Error (Degrees) 

X mean st. dev. 

7000 4.07 2.36 

7000 0.64 0.56 

5000 0.61 0.53 

TABLE I1 

THE UNCONSTRAINED ALGORITHM VERSUS THE CONSTRAINED ALGORITHM. 
IN THESE EXAMPLES, BOUNDARY CONDITIONS ARE SUPPLIED AROUND THE 

COMPARISON OF SURFACE ORIENTATION ERROR AFTER 100 ITERATIONS FOR 

SQUARE BORDER OF THE IMAGE 

II 

Unronstrainrd 

(until  last  i teration) 

11 Constrained 

7000 6.49 10.33 

5000 1 1.89 2.45 I/ 

(C) (d) 

Fig. 2. Shape-from-shading results using simulated imagery. (a) The true 
surface shape. (b) An image simulated from the surface in (a). (c) The 
surface estimated by assuming that all surface slopes around the border 
of the image are zero, corresponding to Table 11. (d) The surface esti- 
mated with unknown boundary slopes. 
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tical to the true surface. For the case of unknown bound- 
ary conditions, use of the regularization penalty term in 
(3) combined with the integrability constraint was suffi- 
cient to provide convergence to a reasonable solution in 
all test cases. 

The positive results above can be attributed mostly to 
the integrability constraint, although other issues deserve 
some attention. Illumination from the side (instead of di- 
rectly overhead) has a positive impact on the results. Had 
the sphere been illuminated from directly overhead, one 
would not be able to distinguish a concave-downward 
sphere from a concave-upward sphere using shading 
alone. Some other information would be needed, such as 
boundary slopes at the joint between the sphere and the 
plane or low-resolution surface information. This did not 
appear to be a very serious issue in our experiments since 
a slight deviation of the illumination source from vertical 
would allow the algorithm to resolve this type of ambi- 
guity. No special measures were taken to avoid wrap- 
around due to the discrete periodic formulation of the in- 
tegrability projection: N x N FFT’s were used for N x 
N images. Similar methods have been used before in solv- 
ing similar elliptic problems [2 11. Periodicity appears to 
help a little bit for surfaces without discontinuities at the 
wraparound points, such as in Fig. 2, but it has a slight 
negative impact for more complicated surfaces. 

B. Shape-from-Shading for Complicated Sut$aces 
A second set of experiments demonstrates the perfor- 

mance of the constrained shape-from-shading algorithm 
using images of more complicated surfaces. In Fig. 3, a 
picture of the surface of the moon is shown along with a 
surface estimate based on a guessed light source direction 
and an assumed reflectance map. Boundary conditions are 
neither known nor guessed in advance, and a reasonable 
surface estimate is obtained. Although the lunar surface 
may be non-Lambertian [2], the surface estimate shown 
in Fig. 3 was obtained by assuming Lambertian reflectiv- 
ity. For this moon image, surface estimates consistent 
with our visual intuition were obtained using a variety of 
assumed reflectance maps and for a broad range of plau- 
sible light source directions. 

Images were simulated using a digital terrain model 
(DTM) of the Laguna Hills in California. Fig. 4 shows 
three-dimensional (3-D) plots of the true DTM and the 
results of the constrained shape-from-shading algorithm 
after 50 iterations. Comparison of the 3-D plot in Fig. 
4(a) with those of Fig. 4(b) and (c) show that the general 
shape of the surface has been reconstructed both with and 
without known boundary conditions. The 1-D slices com- 
pared in Fig. 5 better illustrate how closely the recon- 
structed surface (dotted line) fits the true surface (solid 
line) in the known boundary conditions case. 

The dashed line in Fig. 6 shows a 1-D slice of the sur- 
face reconstruction obtained with completely unknown 
boundary conditions. Although the overall shape of the 
reconstruction is very similar to that of the true surface 
(solid line), there is some apparent low-frequency distor- 

(b) 
Fig. 3.  Shape-from-shading results for real imagery of  the moon. (a) The 

observed image. (b) The estimated surface. 

tion. This distortion is caused by the loss of low-fre- 
quency information in the process of image formation, 
combined with the tendency of the regularization penalty 
and periodic boundary conditions to flatten the surface. 
Qualitatively similar low-frequency errors appear in the 
solution for z(x, y )  when small amounts of observation 
noise or other sources of error are present. This low-fre- 
quency distortion is an inherent part of the shape-from- 
shading problem since we are observing image intensity, 
which is a function of the partial derivatives of z (x, y ). 
The reconstruction of z(x, y )  involves integrating those 
partial derivatives, amplifying the low-frequency portion 
of the noise spectrum, as discussed in Section 111. Thus, 
it is important to be able to include low-frequency con- 
straints from other sources. 

C. Incorporating Low-Resolution Information 
The dotted line in Fig. 6 shows the improvement that 

results from including a very small amount of low-reso- 
lution data in the shape-from-shading solution. This dem- 
onstrates that if low-resolution information is indeed 
available in some form other than shading, then errors 
resulting from missing boundary conditions and observa- 
tion noise can be greatly reduced. The application of the 
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?tue DTM 
Reconstruction, known boundary slopes . . . . . .  

1 " ' ' a " 

t 

(C) 

Fig. 4. (a) Laguna Hills DTM. (b) Estimated DTM obtained from a sim- 
ulated image of the surface in (a) and known boundary slopes. (c) Esti- 
mated surface obtained with unknown boundary slopes. 

integrability constraint lends itself well to including low- 
resolution information as a constraint in the iterative 
shape-from-shading algorithm of Section IV. This was 
accomplished by taking the Fourier transform of the La- 
guna DTM in Fig. 4, and saving only the four lowest- 
frequency terms (not including the dc term). The four 
lowest-frequency terms of the true DTM were then sub- 
stituted for the corresponding part of the Fourier trans- 
form of the estimated surface height at each iteration. This 
did not add significantly to the computational load be- 
cause the Fourier transform of estimated surface height is 
obtained as a byproduct of the integrability constraint, as 
can be seen from (21). Enforcing the low-frequency data 
as a projection constraint did not appear to slow down 
convergence in the cases tested 

True DTM 
Reconstruction, unknown boundary slopes :::I F, Reconstruction, , , , unknown , boundary , , slopes , and , , , 1 

low resolution constraiiits 

0.0 
0 .  5 .  10. 15. 20. 25. 30. 35. 40. 45. 5 0 .  55.  60. 65. 

Fig. 6. One-dimensional slice comparing the true DTM, shape-from-shad- 
ing results with unknown boundary conditions [Fig. 4(c)], and shape 
from shading with unknown boundary conditions, but utilizing low-fre- 
quency constraints provided by the 0.1 percent lowest-frequency Fourier 
coefficients of the true DTM. 

D. Synthesis Results 
The shape-from-shading algorithm was used to obtain 

a viewpoint-independent representation of the image suit- 
able for predicting image intensity patterns. In Figs. 7 and 
8, predicted images are synthesized for various illumina- 
tion geometries given true surface shapes and also given 
surface slope estimates obtained using the constrained 
shape-from-shading algorithm of Section IV. 

The top row of Fig. 7 shows simulated images for the 
partial sphere from Fig. 2 created with four different il- 
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Fig. 7. Simulated images for various imaging geometries given shape- 
from-shading results. The first row shows the images simulated from the 
true partial sphere surface of Fig. 2 .  The second row uses the recon- 
structed surface given only the image intensity in Fig. 2, and the third 
row uses a surface estimated from the moon image of Fig. 3.  

Fig. 8.  Simulated images given true DTM compared to images predicted 
by shape-from-shading results. The first (top) row shows images simu- 
lated from the DTM for various illumination directions. The second row 
contains predicted images for those same illumination geometries, but 
using the surface estimate given the first image from row one. The third, 
fourth, and fifth rows use the surfaces estimated given the second, third, 
and fourth images, respectively, from row one. 

lumination directions. The second row synthesizes im- 
ages with the same four illumination directions, but using 
the surface reconstruction from Fig. 2(b), which uses 
known boundary conditions around the border of the im- 

age. The close match between each of the images in the 
second row and their counterparts in the first row appears 
to indicate that the shape-from-shading algorithm is uti- 
lizing most of the information available in the observed 
image intensity. The third row uses the moon surface es- 
timate from Fig. 3(b). Although ground truth is not avail- 
able for testing the accuracy of this solution, it is encour- 
aging that the surface estimate did produce a set of 
synthesized images that are consistent with our visual in- 
tuition. 

Fig. 7 also reminds us that the human visual system 
does a good job of evaluating surface shape from image 
intensity for a wide variety of illumination conditions. 
Then it is reasonable to ask if the shape-from-shading al- 
gorithm can also produce high-quality surface reconstruc- 
tions without much sensitivity to illumination geometry. 
In Fig. 4, simulated images created using four different 
illumination geometries were used to test the constrained 
shape-from-shading algorithm. First, simulated images 
were created using the DTM from Fig. 4, given the var- 
ious illumination directions. This is shown in the top row. 
Second, the shape-from-shading algorithm was applied to 
each of those images. The resulting four surface slope es- 
timates were each used to simulate four images using the 
same set of four illumination directions. These images are 
presented in the four subsequent rows. For example, the 
DTM was reconstructed given the first (leftmost) image 
in the top row, and that surface was used in simulating all 
of the images in the second row from the top. The surface 
reconstruction obtained from the second image in the top 
row was used in forming the four images in the third row, 
and so on. The purpose of forming the synthesized images 
is so that we can examine the sensitivity of the observ- 
ables (image intensity) to errors in the function we want 
to estimate (surface shape) over a range of operating con- 
ditions (illumination geometry in this example). 

Inspection of the images in Fig. 8 for constant illumi- 
nation geometry, i.e., within the same column, shows 
very little difference in the synthesized images. The most 
notable difference is a slight smoothing in the direction 
orthogonal to the illumination vector p, as could be pre- 
dicted by examining the partial derivatives of the reflec- 
tance map in (24). Fig. 8 demonstrates that the con- 
strained shape-from-shading algorithm obtains results that 
are not sensitive to the illumination geometry of the ob- 
served image, provided that it is known. This indicates 
that the constrained shape-from-shading algorithm is ro- 
bust with respect to illumination geometry. 

Notice that a significant portion of the first image in 
Fig. 8 is covered by shadows. A reasonable surface esti- 
mate was still obtained, as indicated by the predicted im- 
ages in the second row of Fig. 8. Fig. 9 shows a repre- 
sentative 1-D cut through the surface reconstructed from 
the shadowed image as compared to the true surface and 
a surface estimated from an image free from shadows. It 
is possible, in principle, to extract powerful surface ori- 
entation constraints at shadow entry points and the rela- 
tive heights between shadow entry and exit points. How- 
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'"1 -TrueDTM 
Reconstruction, partially shadowed 

. . . . . .  Reconstruction, no shadowing 

0 . 0 '  " " " " ' " " 
0 .  5. 10. 15. 20. 25. 30. 3 5 .  40. 45. 5 0 .  55. 6 0 .  65. 

Fig. 9. One-dimensional slice showing true DTM and the estimated sur- 
face given a partially shadowed simulated image o f  the surface compared 
to an estimate made from an image without shadows. No attempt was 
made to utilize the relative height information available from the shadow 
boundaries. 

ever, it can be difficult to detect shadows and locate their 
entry and exit points reliably. The predictive ability of 
even partial shape-from-shading results might provide a 
method of distinguishing between shadows and areas with 
very low albedo. Hence, we wanted to test the "robust- 
ness" of the shape-from-shading algorithm when con- 
fronted with shadowing, while not taking advantage of the 
constraints that are, in principle, available from shadow- 
ing. The only provision made in obtaining shape-from- 
shading results for partially shadowed images was to set 
A, = 0 in the shadowed regions. This is equivalent to 
setting the albedo to zero in shadows, in effect ignoring 
the nonexistent shading information and letting the regu- 
larization penalty and integrability projection bridge the 
gaps left by cast shadows. This worked well with small 
but significant degrees of shadowing. As shadowing be- 
comes more severe, the algorithm becomes more difficult 
to stabilize. 

VI. DISCUSSION 

The projection represented by (21) was used to provide 
a very effective extension to the iterative shape-from- 
shading algorithm of Brooks and Horn [5]. The resulting 
extension converged relatively well for a variety of test 
cases. 

This technique also can be used as an integrator which 
minimizes the effects of local errors by combining all of 
the available information in a globally consistent manner. 
Accordingly, it may be useful for improving other com- 
puter vision techniques that obtain possibly erroneous lo- 
cal derivative estimates. Two obvious examples are the 
shape-from-texture work reported by Witkin [ 141 and the 
technique recently reported by Pentland [ 101 which at- 
tempts to unify shape from texture with shape from shad- 

ing. In both papers, mention was made of difficulties en- 
countered in reconstructing a depth map by integrating 
inexact surface orientation estimates. 

Shape-from-shading results were presented in Section 
V demonstrating a case where, for all practical purposes, 
knowledge of the 0.1 percent lowest-frequency Fourier 
coefficients of the surface makes up for the fact that 
boundary conditions are completely unknown. This is ex- 
actly the situation in some remote sensing applications: 
boundary conditions are not available, but low-resolution 
information is. For example, the Magellan project will 
provide SAR imagery of the surface of Venus along with 
much lower resolution radar altimetry data 1221. The al- 
gorithm in Section IV easily combines the low-resolution 
altimetry data with high-resolution shading information. 
A simple extension such that the algorithm is suitable for 
SAR imagery is developed in [23]. Incidentally, a crude 
estimate of the reflectance map and large-scale albedo 
variations could be obtained by comparing the low-reso- 
lution altimetry data with the observed SAR image inten- 
sity. 

A second application for the low-frequency constraint 
capability is in combining stereo information with shad- 
ing information. Correspondence between stereo image 
pairs provides low-frequency information not available in 
shading alone. Conversely, shading provides information 
not available from either sparse or low-resolution stereo 
correspondences. Further, illumination differences be- 
tween stereo image pairs (for photographs taken at differ- 
ent times of the day or for SAR imagery) may limit the 
accuracy of stereo image matching. It should be possible, 
therefore, to use shading and stereo information syner- 
gistically. 

During the preparation of this paper, a recent paper was 
discovered [24] which uses a similar integrability con- 
straint to unwrap the phase of complex SAR imagery in 
two dimensions. A fast least-squares approach was pre- 
sented there which removes the inconsistencies in local 
phase derivative calculations (due to phase ambiguities 
and noise) to provide a phase image. What is most inter- 
esting here in the context of computer vision is that the 
phase of a coherent image (e.g., SAR) pixel is related to 
surface structure. Hence, phase may provide depth infor- 
mation not completely available from image intensity 
alone. The contribution of phase in determining surface 
structure is an underlying principle in some applications 
of speckle interferometry [25] and also was utilized for 
SAR imagery in one dimension by Harger [ 151. It may be 
possible to combine phase and shading information for 
surface shape reconstruction. Interestingly, the technique 
presented in this paper is applicable to both components 
of that problem. 
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