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Abstract

This paper presents a novel boundary based semi-
automatic tool, ByLabel, for accurate image annotation.
Given an image, ByLabel first detects its edge features and
computes high quality boundary fragments. Current label-
ing tools require the human to accurately click on numerous
boundary points. ByLabel simplifies this to just selecting
among the boundary fragment proposals that ByLabel au-
tomatically generates. To evaluate the performance of By-
Label, 10 volunteers, with no experiences of annotation, la-
beled both synthetic and real images. Compared to the com-
monly used tool LabelMe, ByLabel reduces image-clicks
and time by 73% and 56% respectively, while improving the
accuracy by 73% (from 1.1 pixel average boundary error to
0.3 pixel). The results show that our ByLabel outperforms
the state-of-the-art annotation tool in terms of efficiency,
accuracy and user experience. The tool is publicly avail-
able: http://webdocs.cs.ualberta.ca/~vis/
bylabel/.

1. Introduction
In image segmentation and visual tracking, well anno-

tated image and video ground truth are essential for per-
formance evaluation and comparison of methods [11]. La-
beled images are also used in supervised learning. Although
many ground-truth datasets [32, 6, 15, 17, 4, 21, 23, 26]
have been published, they are still few compared with the
diversity of images and applications of interest in the real
world. Fast and accurate image annotation remains an open
problem in computer vision and related fields. Image anno-
tation tools seek to maximize labeling accuracy while min-
imizing human labour and time [31]. Existing annotation
tools can be categorized into three main classes: (1) bound-
ing box/quadrilateral based labeling; (2) pixel-wise label-
ing; (3) boundary based labeling. The annotation tool pro-
posed in this paper belongs to the third class, as shown in
Figure 1.

A simple bounding box, defined by two corners (top-
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Figure 1. Annotation of a bike. Given an input image, By-
Label computes boundary proposals and the human selects
the correct ones. Then, its region mask are generated from
these boundaries.

left and bottom-right), is usually used in object recogni-
tion [6] and two degree of freedom (DoF) tracking [13].
In registration based high DoF tracking, a quadrilateral,
which is defined by four corners, describes planar geomet-
ric transformations, such as rotation, affine and homogra-
phy [25, 7, 14, 16]. Bounding boxes labeling is easy to
implement. Doermann and Mihalcik developed ViPER, a
video annotation tool which allows users to perform an-
notation frame by frame [5]. Vondrick et al. designed a
crowdsource video labeling tool, VATIC, which introduces
inter frames interpolation to generate bounding boxes semi-
automatically [30].

Compared to bounding boxes, pixel-wise labeling pro-
vide detailed shape descriptions of target objects [32].
Graph cuts [2], watershed segmentation [12], active contour

http://webdocs.cs.ualberta.ca/~vis/bylabel/
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Figure 2. Three basic types of objects. Column (a) is a cir-
cular box (one closed boundary). Column (b) is a key with
a hole (two boundaries). Column (c) is a partially occluded
toy van (three boundaries). The top, middle and bottom row
are their original images, edge maps and region masks re-
spectively.

[31], partition trees [8] and even mixed techniques [20, 19]
have been introduced to decrease the need for user inter-
vention. When to-be-annotated images have salient fore-
grounds and relatively flat backgrounds, these methods per-
form well. Otherwise the region masks produced are often
inaccurate and noisy.

Closed boundaries are used in many annotation tools,
such as KAT [28], PhotoStuff [9], M-Ontomat Annotizer
[22] and iVAT[1]. Closed boundaries are usually approx-
imated by polygons. Russell developed a web-based im-
age annotation tool, LabelMe, based on manual polygon
drawing [27]. Lluis et al. used Recurrent Neural Networks
(RNN) to reduce human intervention in polygon annotation
[3]. The annotation accuracy depends on the number of the
sampled control points and their localization error. More
control points are required to describe curved boundaries
accurately. Human labelers have to localize each point very
accurately [2]. These two factors limits the annotation effi-
ciency. To address these problems, Yang et al. proposed a
constrained random walk algorithm, which combined uni-
fied combinatorial user inputs, to obtain relatively smooth
segmentations [33]. Maji et al. refined the manually la-
beled coarse polygons using random maximum a-posteriori
perturbations [18]. However, their results usually have sim-
ilar problems as the aforementioned pixel-wise annotation
methods.

To achieve highly accurate annotations while minimiz-
ing user interventions, we present an edge fragment based
annotation tool called ByLabel. Given an image, edges

Figure 3. Annotation workflow of ByLabel

are detected and split into high quality fragments. Com-
pared with manually sampled polygon control points, de-
tected edge fragments fit curved boundaries more accu-
rately. Then, users create closed boundaries by selecting
subsets of those edge fragments sequentially. The selection
operation requires no careful localization of boundaries,
hence it greatly reduces the annotation work load. One or
multiple boundaries are grouped to describe different types
of objects including simple objects with single boundary,
objects with holes and objects divided by occlusions. Fi-
nally, region masks are generated and outputted based on
the corresponding boundary groups.

The remainder of this paper is organized as follows. In
section 2, we describe the workflow and basic functionali-
ties of our semi-automatic annotation tool, ByLabel. Sec-
tion 3 shows the experimental results and evaluations. The
conclusion is presented in section 4.

2. ByLabel
Boundary maps and region masks are the two most com-

monly used image ground truth types. The goal of ByLabel
is to produce these ground truths semi-automatically inter-
actively with a human user. We categorize to-be-annotated
objects into three basic types:

• simple objects, which can be defined by one closed
boundary or a piece of contiguous region, as shown
in Figure 2a.

• objects with holes, which can be described by several
nested closed boundaries or a piece of contiguous re-
gion, as shown in Figure 2b.

• objects divided by occlusions, which can be deter-
mined by multiple closed boundaries or isolated re-
gions, as shown in Figure 2c.

As we can see in Figure 1 and Figure 2, holes and occlusions
often exist. Multiple boundaries or regions are necessary to
describe these kinds of complicated targets. We take closed
boundaries and the regions enclosed by them as "dual" rep-
resentations of targets, since they can be determined by each
other. Hence, we can label either boundaries or regions and
generate the other one automatically. ByLabel is designed
to label boundaries. Region masks are generated from the
labeled boundaries.
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Figure 4. Edge segment splitting. (a) and (b) show the au-
tomatic splitting of an Edge Segment (ES) based on turning
angle. As illustrated in (a), if the turning angle of the pixel
pi is larger than a threshold (35), the edge segment will be
split between pixel pi and pi+1. (c) and (d) illustrate the
manual splitting of an Edge Fragment (EF). The edge frag-
ment is split between the blue and green pixels

To achieve high annotation accuracy and efficiency, we
propose to use automatically detected edge fragments in-
stead of the manually sampled control points to describe
object boundaries. Given an image, annotating a new ob-
ject involves three steps, as illustrated in Figure 3. First, the
edge features of the image are detected and split properly.
Then, users are allowed to annotate boundaries interactively
with well-designed keyboard and mouse interface. Finally,
grouped boundaries, generated region masks and inputted
class names are organized and formatted in an output fold
to represent the objects.

2.1. Feature Detection

Edge fragments (EF) are basic elements in our anno-
tation process. They are obtained by splitting detected
edge segments (ES). Given a image, edge segments are ex-
tracted by Edge Drawing [29], which is able to produce
well-localized, clean, contiguous and one-pixel wide edge
segments. Each (chain-wise) edge segment is outputted in
vector form as an array of pixels. Compared with manual
control points, these pixel chains are smoother and more
accurate in fitting object boundaries. However, in the au-
tomatically detected fragments some foreground and back-
ground edge pixels are often improperly identified as one
long and complex edge segment. Our annotation tool pro-
vides two ways of splitting an edge segment into multiple
well organized edge fragments, as illustrated in Figure 4:
(1) automatic splitting using turning angle rules; (2) manual
splitting.

Pixels which have large curvatures are more likely to be
incorrect connections of foreground and background edges.
Here, we search for these pixels using a simple measure,
turning angle θ, which is computed as:

θpi
= arccos(

(pi − pi−2) · (pi+2 − pi)

|pi − pi−2||pi+2 − pi|
). (1)

where pi is the current pixel, pi−2 and pi+2 are two pixels
sampled near pi. θpi

is the angle between vector −−−−→pi−2pi

and −−−−→pipi+2, as illustrated in Figure 4a. All of the detected
edge segments are split at pixels where turning angles are
larger than a certain threshold (set to 35 throughout our ex-
periments), as shown in Figure 4b. Compared with line
fitting-based edge splitting methods, this method retains rel-
atively long smooth edge curves, and hence prevents over
splitting.

Sometimes, foreground and background edges also have
smooth connections, leading to a boundary that cannot be
inferred from the turning angle. To handle this case, ByLa-
bel allows manual splitting. Users can split an edge frag-
ment by moving the mouse cursor over the expected split-
ting position and pressing key "b". As shown in Figures 4c
and 4d, the expected splitting position is indicated by two
pixels: the blue pixel pi, which is the closest one to the
mouse cursor, and the green pixel pi+1, which is the next
one of pi in the vector of edge fragment EFt.

2.2. Interactive Annotation

In ByLabel, one or multiple closed boundaries are em-
ployed to describe an object of arbitrary shape. Closed
boundaries are defined by sequentially connected multi-
ple edge fragments. In the annotation process, detected
edge fragments are superimposed on the original image, and
users sequentially select a subset of them to form the object
boundaries. If there is a small gap, two successively se-
lected edge fragments are connected with their two closest
endpoints by a short straight line segment that is automat-
ically added. Sometimes, not all of the object boundaries
can be detected successfully. To address this problem, By-
Label provides a "drawing" mode. Users can switch the
labeling mode between "selecting" and "drawing" by press
key "a". Similar to LabelMe, the "drawing" mode allows
users to manually enter multiple control points to fit those
missing arcs. After selecting all necessary fragments, users
can click the middle button of the mouse (mouse wheel) to
finish the labeling and close the boundary. The simple pro-
cess of annotation is shown in Figure 5.

An object can consist of multiple boundaries. To group
these boundaries into an object entity, users have to label
them successively. The annotation processes in ByLabel is
sequentially ordered. After completing a closed boundary,
there will be a pop-up window asking whether the labeled
boundary is the last one of the current object. The input
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Figure 5. Interactive annotation. (a) shows the detected
edge fragments. (b) shows the labeled boundary, red edges
are selected EF, green edges are generated connections,
pink edges are drawn segments. (c) is the region mask gen-
erated from the labeled boundary.

of "n" means the object has more boundaries to label. The
input of "y" means the current object labeling is finished
and there will be another pop-up window for inputting the
object’s class name or identity.

2.3. Annotation Formatting

There are mainly seven types of annotation outputs
stored in their corresponding folders: (1) color_im_overlap,
(2) edge_map_classes, (3) edge_map_instances, (4)
region_map_classes, (5) region_map_instances, (6)
text_EF_pixels, (7) text_shape_pixels. The pixel coor-
dinates of detected edge fragments are outputted into
text_EF_pixels. The direct results of interactive annotation
are boundaries represented by multiple edge fragments.
These boundaries are all one-pixel-wide. They are written
in text files (text_shape_pixels) and drawn as bound-
ary maps. In addition to label boundaries, ByLabel is
also able to generate region masks according to labeled
boundaries. Here, both edge maps and region masks
are outputted as two types of color images: class based
(edge_map_classes, region_map_classes) and instance
based (edge_map_instances, edge_map_instances). Users
are free to choose any type of output depending on the
application. More details and instructions can be found:
https://github.com/NathanUA/ByLabel.

3. Experimental Results

To demonstrate the advantages of our boundary based
annotation tool ByLabel, we conduct a set of user tests to
quantitatively compare its performance with that of a pop-
ular web-based annotation tool LabelMe. Additionally, we
show the results of some typical annotation cases to demon-

strate the effectiveness of ByLabel qualitatively.

3.1. User Tests and Evaluation

In our user experiments, ten volunteers are asked to an-
notate five synthetic images (Figure 6), and ten real images
(Figure 7 and Figure 8), as fast and accurate as possible us-
ing both LabelMe and ByLabel. These ten volunteers have
no prior experiences on image annotation. To reduce the
total work load of the annotation test, each testing image
contains only one target object, which is defined by a single
boundary.

We evaluate ByLabel and compare it with LabelMe on
the following four aspects: clicks, time costs, error and user
experience. Mouse clicks are the most commonly used op-
eration in image annotation. Generally, more clicks produce
more detailed annotation results and higher geometric ac-
curacy. However, a large number of clicks require more pa-
tience and time. Therefore, clicks and time costs reflect the
annotation work load directly. The geometric annotation
error is defined by the average Alignment Error (aveAE)
[24]

aveAE =
Busr ⊗Distgt

Pusr
(2)

where ⊗ indicates the summation of element(pixel)-wise
multiplication, Busr is the annotated binary boundary map,
Distgt is the distance map of the ground truth, Pusr is the
edge pixels’ number of Busr.

In our tests, we recorded users’ clicks, time costs and
errors on each testing image, as shown in Figure 6, Figure
7 and Figure 8. After annotating, they were also asked to
fill the forms of NASA Task Load Index (TLX) [10] for
user experience evaluation (see the results in Figure 11).

1) Tests on synthetic images
Image annotation are usually simplified as polygon

drawing. As mentioned above, there are two factors that af-
fect the annotation work load. One is the number of bound-
ary control points, which determines the required clicks
along the boundary. The other one is the boundary saliency.
Here, the boundary saliency denotes the intensity change
rate (image gradient) along the perpendicular direction of
local boundary. It affects the difficulty of key points local-
ization and therefore their accuracy.

To study the influences of the two factors on image an-
notation, we first conduct our user tests on five synthetic
images of increasing complexity. These five images are
square, octagon, dodecagon, circle and a shape of butterfly
respectively (see the first row of Figure 6). They are gener-
ated by blurring corresponding binary shape maps using a
Gaussian filter (kernel size = 5, σ = 1). The Gaussian fil-
ter blurs the binary map to simulate the appearance of real
image boundaries. The binary shape maps are retained as
ground truth of synthetic images.

https://github.com/NathanUA/ByLabel


(a) A1 (b) A2 (c) A3 (d) A4 (e) A5

(f) σl = 0, σb = 0 (g) σl = 0.32, σb = 0 (h) σl = 0, σb = 0.48 (i) σl = 5.60, σb = 0 (j) σl = 35.03, σb = 1.90

(k) σl = 2.92, σb = 0.90 (l) σl = 3.74, σb = 0.76 (m) σl = 5.69, σb = 1.04 (n) σl = 13.46, σb = 0.77 (o) σl = 40.01, σb = 4.72

(p) σl = 0.19, σb = 0 (q) σl = 0.10, σb = 0 (r) σl = 0.12, σb = 0 (s) σl = 0.27, σb = 0 (t) σl = 0.14, σb = 0.01

Figure 6. The results of user tests on synthetic images. The top row shows the synthetic images. The second to fourth row
show the clicks, time costs and average Alignment Error (aveAE) respectively. σl and σb are standard deviations of LabelMe
and ByLabel.

In LabelMe, to annotate regular polygons whose bound-
aries are straight line segments as shown in Figures 6a, 6b
and 6c, users just have to click through the corners sequen-
tially. But as the number of corners goes up, more clicks and
time costs are required (see Figures 6i and 6n). The extreme
case of the regular polygon is a circle, as shown in Figure
6d. Theoretically, there are infinitely many corners along
its boundaries. The users would need to click many times
to obtain an accurate annotation. Compared with LabelMe,
ByLabel annotates targets simply by selecting the detected
edge fragments, which is more efficient for smooth bound-
ary annotation. As can be seen in Figures 6f - 6i, using
ByLabel reduces clicks greatly and therefore saves the an-
notation time (see Figures 6k - 6n). Although ByLabel re-
quires the same number of clicks as LabelMe in annotating
A1, it costs less time because selecting detected edge frag-
ments is easier than localizing the exact control points. The

butterfly shape in Figure 6e is comprised of many corners
and smooth arcs. It is designed as a comprehensive annota-
tion test. The results show that ByLabel achieves significant
improvement in terms of clicks and time cost, see Figure 6j,
Figure 6o and Table 1, 2.

Overall, as the shape complexity increases, more clicks
and time costs are required to obtain relatively detailed
annotations using LabelMe. However, with ByLabel, the
number of clicks and the time costs stayed at a low level, as
shown in the second and third row of Figure 6,

As shown in Figures 6p - 6t, users produce smaller er-
rors (0.5 - 1 pixel) when using ByLabel than using La-
belMe (over 1 pixel). Besides, different users achieve al-
most the same error on each testing image when using By-
Label which suggests that ByLabel is able to reduce the an-
notation uncertainties. The quantitative evaluation of the
uncertainties is the standard deviation σ.



(a) B1 (b) B2 (c) B3 (d) B4 (e) B5

(f) σl = 5.41, σb = 2.33 (g) σl = 9.18, σb = 0.32 (h) σl = 9.97, σb = 0.82 (i) σl = 4.40, σb = 2.45 (j) σl = 9.62, σb = 0.53

(k) σl = 12.44, σb = 5.26 (l) σl = 7.89, σb = 1.71 (m) σl = 17.62, σb = 2.55 (n) σl = 17.31, σb = 4.25 (o) σl = 13.97, σb = 2.80

(p) σl = 0.31, σb = 0.03 (q) σl = 0.28, σb = 0 (r) σl = 0.12, σb = 0 (s) σl = 0.13, σb = 0.02 (t) σl = 0.12, σb = 0

Figure 7. The results of user tests on the first group of real images. The top row shows the test images. The highlighted
red regions are to-be-annotated targets. The second to fourth rows show the clicks, time costs and average Alignment Error
(aveAE) respectively. σl and σb are standard deviations of LabelMe and ByLabel.

2) Tests on real images
The 10 real images including nature images, satellite im-

age, medical image, and manga are selected for user tests.
These images are divided into two groups according to their
targets’ shape complexity. The targets in the first group are
relatively simple, as shown in Figures 7a - 7e. Those in the
second group are more complicated and challenging, see
Figures 8a - 8e.

B1, B2, B4 and B5 are circular box, rounded rectangular
container, measure cup and MRI image of human neck re-
spectively. Their boundaries are all smooth curves. Figures
7f, 7g, 7h, 7j and Figures 7k, 7l, 7m, 7o show that ByLabel
reduces both clicks and time costs on this kind of targets. B3
(see Figure 7d) is an aerial image with a building roof whose
boundary is comprised of multiple straight edges and sharp
corners. Our algorithm split its boundary into many edge

fragments at its sharp corners. As a result, the annotation
clicks and time costs of ByLabel and LabelMe are similar.
But using ByLabel achieves almost zero errors while the er-
rors when using LabelMe are all close to 1 pixel, as shown
in Figures 7p - 7t.

Targets in Figures 8a - 8e are pedestrain, cable, manga
totoro, insect and motorcycle respectively. Compared with
the targets in the first group, this five images have finer
structures, which are challenging to annotate. As shown
in Figure 8f - Figure 8j, more than 100 clicks are required
to annotate each of these targets by LabelMe. ByLabel re-
duces clicks to close to or fewer than 50. Figures 8k - 8o
illustrate the advantage of ByLabel in terms of time costs.

As can be seen in Figure 8k and Figure 8o, some volun-
teers spend the same or even more time in annotating object
C1 and C5 when using ByLabel compared to LabelMe. The



(a) C1 (b) C2 (c) C3 (d) C4 (e) C5

(f) σl = 16.38, σb = 3.53 (g) σl = 23.18, σb = 1.71 (h) σl = 22.99, σb = 3.85 (i) σl = 54.95, σb = 2.00 (j) σl = 37.80, σb = 6.04

(k) σl = 27.29, σb = 10.94 (l) σl = 30.28, σb = 5.29 (m) σl = 33.20, σb = 13.11 (n) σl = 56.51, σb = 12.87 (o) σl = 43.39, σb = 22.34

(p) σl = 0.13, σb = 0.07 (q) σl = 0.43, σb = 0.02 (r) σl = 0.29, σb = 0.01 (s) σl = 0.21, σb = 0.01 (t) σl = 0.21, σb = 0.15

Figure 8. The results of user tests on the second group of real images.

Table 1. Average Clicks

Image A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 Average

LabelMe 5 9 13 35 123 37 28 45 38 51 98 73 129 147 177 67
Ours 5 5 4 3 21 13 2 11 23 11 35 16 29 37 62 18

Table 2. Average Time Costs (s)

Image A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 Average

LabelMe 9.61 14.80 18.80 37.85 113.71 44.13 32.08 52.63 49.62 47.80 90.71 74.56 104.79 145.52 144.39 65.04
Ours 4.51 4.26 4.01 2.56 23.25 20.03 2.60 13.49 28.19 12.26 64.30 31.02 47.07 62.76 107.62 28.53

Table 3. Average Alignment Error (pixel)

Image A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 Average

LabelMe 1.23 1.35 1.50 1.35 1.08 1.21 1.09 0.78 0.73 0.91 0.97 1.25 1.05 0.92 1.02 1.10
Ours 0.50 0.74 0.86 0.64 0.67 0.14 0.00 0.01 0.04 0.02 0.16 0.22 0.09 0.03 0.37 0.30



Figure 9. Annotation of objects with multiple boundaries.

(a) image (b) annotated image edge

(c) region classes (d) edge classes

(e) region instances (f) edge instances

Figure 10. Classes and instances.

reason is that some part of the boundary in C1 and C5 are
missing. Volunteers have to draw the missing parts using
“drawing” mode of ByLabel. A lot of the time are spent in
figuring out how to switch between “selecting” and “draw-
ing” mode due to their limited experience with the tool.
This can be reduced for experienced users.

3) Overall Evaluation
We summarize the average clicks, time costs and errors

of 10 volunteers on each testing image in Table 1 and Table
2. Our ByLabel reduces 73% of clicks (from 67 to 18),

Figure 11. The average value of NASA Task Load Index
(TLX) produced by those 10 volunteers.

meanwhile saves 56% time costs (from 65.04 s to 28.53
s). Table 3 shows that ByLabel achieves an overall aver-
age Alignment Error (ave_AE) of 0.30. Compared with
that (1.10 pixels) of using LabelMe, the annotation error is
decreased by 73%.

Figure 11 shows the NASA Task Load Index results gen-
erated by these 10 volunteers. Lower scores denote more
friendly user experience. As shown in Figure 11, ByLabel
achieves lower scores than LabelMe in all six aspects.

3.2. More Annotation Examples

In section 3.1, the testing targets are all defined by single
boundaries. To further illustrate the capability of ByLabel,
Figure 9 shows annotations of some commonly used objects
which are defined by multiple boundaries.

Additionally, ByLabel is able to output both class based
and instance based annotations. Figure 10 depicts a scence
with three cups and four candies. Figure 10c and Figure
10d show the class based annotations. Objects belonging to
the same class are encoded in the same color. Figure 10e
and Figure 10f show the instance based annotations. Each
object instance has a unique color. The color codes and
their corresponding classes and instances are outputted into
accompanying text files.

4. Conclusions

In this paper, we develop a novel semi-automatic bound-
ary based image annotation tool, ByLabel. Instead of anno-
tating images directly, ByLabel introduces edge detection
and splitting algorithms to assist annotation, which greatly
improves the annotation efficiency and accuracy. The re-
sults of user tests show that ByLabel outperforms the state-
of-the-art annotation tool LabelMe in terms of time costs,
accuracy and user experience. Additionally, ByLabel can
also be used to annotate video streams frame by frame.
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