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Abstract—This paper deals with the problem of computing
surface ice concentration for two different types of ice from digital
images of river surface. It presents the results of attempting
to solve this problem using several state of the art semantic
segmentation methods based on deep convolutional neural net-
works (CNNs). This task presents two main challenges - very
limited availability of labeled training data and presence of
noisy labels due to the great difficulty of visually distinguishing
between the two types of ice, even for human experts. The
results are used to analyze the extent to which some of the best
deep learning methods currently in existence can handle these
challenges. The code and data used in the experiments are made
publicly available to facilitate further work in this domain.

I. INTRODUCTION

The study of surface ice concentration and variation over
time and place is crucial for understanding the process of river
ice formation. The computation of temporal and spatial ice
distributions can help to validate models of this process. The
additional ability to distinguish frazil ice from the sediment-
carrying anchor ice can also increase the estimation accuracy
of the sediment transportation capacity of the river. Towards
this end, a large amount of video data has been captured using
UAVs and bridge mounted game cameras from two Alberta
rivers during the winters of 2016 and 2017. The objective of
this work is to analyze this data and perform dense pixel wise
segmentation on these images to automatically compute the
concentrations of the two types of ice.

The main challenge in this task is the lack of labeled
data since it is extremely difficult and time consuming to
manually segment images into the three categories, owing
to the arbitrary shapes that the ice pans can assume. As a
result, there are currently only 50 labeled images (Fig. 1) to
accompany 564 unlabeled test images and over 100 minutes of
unlabeled high resolution (4K) videos. These labeled images
along with 205 additional images with only ice-water labeling
had previously been used to train an SVM [22], [21], [20]
to perform segmentation that provided water-ice classification
accuracies ranging from 80.1% - 93.5% and surface ice
concentration errors of 0.7% - 3.3%. Though these methods
were fairly successful at separating ice from water, they had
difficulty in distinguishing between frazil and anchor ice pans,
especially in cases where they are not physically separated and
are hard to differentiate, even for human eyes. This paper is
mainly concerned with handling these more difficult cases.

To address the limitations of SVM-based ice classification,
this work uses recent semantic segmentation methods based on
deep CNNs. Since CNNs need large amounts of training data
to work well, several data augmentation techniques (Sec. III-C)
have been used to generate enough training images. Detailed

Fig. 1: A sample training image with corresponding label
where white, gray and black pixels respectively denote frazil
ice, anchor ice, and water.

ablation studies have also been performed (Sec. IV-B2, IV-B3)
to evaluate the extent to which few and partially labeled
training images can be used to obtain results that are conducive
to generating further training data with minimum human effort
and thus setup a bootstrapping process.

II. BACKGROUND

Surface ice is formed on rivers in cold regions like Canada
when the air temperature remains below freezing for extended
periods of time. It begins with the formation of frazil ice
crystals and flocs as water columns become supercooled [11].
Being naturally adhesive [23], these ice crystals sinter together
to form larger flocs whose increasing buoyancy brings them to
the surface as slush. As the moving slush is in turn subjected
to freezing temperatures, it forms solid frazil pans and rafts
which can become circular with upturned edges on colliding
with each other. Examples of these formations can be seen in
Fig. 1.

Anchor ice is formed when frazil flocs come in contact with
the river bed or other solid surface and freeze there to become
immobile. Such accumulations grow in multiple stages [25] to
reach vertically towards the surface. This mechanism increases
the drag on the top of the accumulation which, along with
internal buoyancy of the formation and the weakening effect
of incoming solar radiation, can eventually overcome the bond
between the formation and the substrate, causing it to break
apart and float to the surface as anchor ice pans. These pans
carry entrapped sediments and other materials from the river
bed and transport them downstream.

An improved understanding of the importance of such trans-
portation to the overall sediment budget of the river would be
useful for developing and validating models of river processes.
Thus, we require accurate estimates for the concentrations



of sediment-carrying anchor ice in the river for which field
measurements are unavailable. Since there is far too much data
for manual analysis to be practical, one of the objectives of this
work is to estimate this concentration from digital images and
videos of the river surface in an automated or semi-automated
manner using deep learning. Distinguishing ice from water
is relatively straightforward and has been accomplished fairly
successfully using simple techniques like thresholding [2] as
well as classic machine learning methods like SVM with
handcrafted features [22], [21], [20]. The main goal of this
work is therefore to be able to distinguish between frazil and
anchor ice pans with high accuracy using state of the art deep
learning techniques.

River ice images bear a significant resemblance to mi-
croscopic images of cells in the bloodstream which initially
suggested the use of existing cell classification networks
from medical imaging. There are several promising studies
employing a range of architectures including ConvNet [40],
LeNet [34], [30], Resnet [26] and Inception [27] that might
have provided the base networks for such an approach. How-
ever, a more detailed examination of these studies revealed
that medical imaging tasks are mainly concerned with the
detection and localization of specific kinds of cells rather
than performing pixel wise segmentation that is necessary to
estimate ice concentration.

Further, unsupervised and semi-supervised video segmen-
tation techniques were considered to better utilize the large
amount of unlabeled but high-quality video data that has been
collected. Most of these methods use optical flow for perform-
ing motion segmentation [13], though some appearance based
[4] and hybrid [15], [19] methods have also been proposed.
An unsupervised bootstrapping approach has been proposed
in [31] where motion segmented images are used as training
data to learn an implicit representation of this object under
the assumption that all moving pixels belong to the same
foreground object. This learnt model is then used to refine
the motion segmentation and the improved results are in turn
used to bootstrap further refinements.

Unfortunately, two underlying assumptions in [31], and
motion segmentation, in general, render such methods unsuit-
able for the current task. First, they assume that there is a
single moving foreground object whereas the objective here
is to distinguish between two different types of moving ice,
both of which are foreground objects. Second, they assume
a static background while the river, which makes up the
background here, is itself moving. Preliminary attempts to
perform optical flow-based motion segmentation on the river
ice videos confirmed its unsuitability for this work. There
is a method [37] for performing simultaneous optical flow
estimation and segmentation which might be able to address
these limitations to some extent. However, it had only a Matlab
implementation available that was far too slow for our purpose
so its further exploration was deferred to future work.

Finally, it seems that very limited existing work has been
done on the application of deep learning for surface ice
analysis as the only one that was found [8] uses microwave
sensor data instead of images.

TABLE I: Trainable parameter counts for the four models

Model
Parameters

UNet
12,284,019

DenseNet
90,948

Deeplab
41,050,787

SegNet
11,546,739

III. METHODOLOGY
A. Data Collection and Labeling

Digital images and videos of surface ice conditions were
collected from two Alberta rivers - North Saskatchewan River
and Peace River - in the 2016-2017 winter seasons. Images
from North Saskatchewan River were collected using both Re-
conyx PC800 Hyperfire Professional game cameras mounted
on two bridges in Edmonton as well as a Blade Chroma UAV
equipped with a CGO3 4K camera at the Genesee boat launch.
Data for the Peace River was collected using only the UAV
at the Dunvegan Bridge boat launch and Shaftesbury Ferry
crossing. The game camera captured 3.1 megapixels resolution
still images at one-minute frequency while the UAV camera
captured 4K videos (8.3 megapixels) of up to 10 minutes
duration.

Large 3840 x 2160 UAV images were cropped into several
1280 x 1080 images to make labeling more convenient while
the smaller 2048 x 1536 game camera images were only
cropped to remove text information added by the camera
software. More than 200 of these images were labeled for
binary ice-water classification but only 50 of these were
labeled into 3 classes to distinguish between the two types
of ice and the water. Only the latter images were used for
training in this work. More details of the data collection and
labeling process along with images of the camera setups are
available in [21, sec. 4.1].

B. Image Segmentation

Since neither cell classification nor video segmentation
methods seemed promising, it was decided to rely only on su-
pervised image segmentation. After extensive research through
several excellent resources for these methods [29], [12], four
of the most widely cited and best performing methods with
publicly available implementations were selected. Descriptions
of these methods that follow have been kept brief and high-
level because of the empirical nature of this work and the
target audience.

The first of these models is UNet [32] from the medical
imaging community. It was introduced for neuronal structure
segmentation in electron microscopic images and won the
ISBI challenge 2015. As the name suggests, UNet combines a
contracting part with a symmetric expanding part to yield a U-
shaped architecture that can both utilize contextual information
and achieve good localization owing to the two parts respec-
tively. It was shown to be trainable with relatively few training
samples while relying heavily on patch based augmentation
which seemed to make it an ideal fit for this study.

The second network is called SegNet [3] and was introduced
for segmenting natural images of outdoor and indoor scenes
for scene understanding application. It uses a 13-layer VGG
net [35] as its backbone and features a somewhat similar
architecture as UNet. The contracting and expanding parts



are here termed as encoder and decoder, respectively and
the upsampling units in the latter are not trainable, instead
sharing weights with the corresponding max-pooling layers in
the former. Keras [10] implementations were used for both
UNet and SegNet, available as part of the same repository
[16]. !

The third method is called Deeplab [5] and is one of the
best performing methods in the Tensorflow research models
repository [6]. It uses convolutions with upsampled filters -
the so called atrous convolutions [38] - both to achieve better
control over the feature response resolution and to incorporate
larger context without increasing the computational cost. It
also uses pyramidal max pooling to achieve scale-invariance
and combines its last layer output with a fully connected
conditional random field layer to improve localization ac-
curacy while maintaining spatial invariance. This work uses
a more recent version called Deeplabv3+ [7] which adds a
decoder module to produce sharper object boundaries and uses
the powerful Xception backbone architecture [9] for further
performance improvements.

The fourth method is based on the DenseNet architecture
[17]. To the best of our knowledge, this architecture has not yet
been applied for segmentation but is included here due to its
the desirable property of providing state of the art performance
with a much smaller network size. The basic idea of DenseNet
is to connect each hidden layer of the network to all subsequent
layers so that the feature maps output by each layer are used as
input in all subsequent layers. This provides for better multi-
resolution feature propagation and reuse while drastically
reducing the total number of parameters and mitigating the
vanishing gradient problem. The architecture used in this work
had 9 such layers though experiments were done with the more
layers up to 21 (Sec. III-C). As shown in Table I, DenseNet
has by far the fewest parameters of the four models, being
over two orders of magnitude smaller than the next smallest
one.

C. Data Augmentation and Training

A simple sliding window approach was used to extract a
large set of sub-images or patches from each training image.
The window was moved by a random stride between 10%
to 40% of the patch size K. This process was repeated after
applying random rotations to the entire image between 15 to
345 degrees divided into four bands of equal width to allow
for multiple rotations for each image. Finally, each patch was
also subjected to horizontal and vertical flipping to generate
two additional patches. All resultant patches were combined
together to create the dataset for each K. For testing a model,
patches of size K were extracted from the test image using a
stride of K, segmentation was performed on each patch and
the results were stitched back to get the final result.

All models were trained and tested using patch sizes
K € {256,384, 512,640, 800, 1000}. DenseNet turned out to
perform best with K = 800 while all other models did so

I'This repository also includes two variants of the FCN architecture [28], [33]
that were also tested but did not perform as well as the other two and are
thus excluded here.

with K = 640. All results in Sec. IV were therefore obtained
using these patch sizes. The 50 labeled images were divided
into two sets of 32 and 18 for generating the training and
testing/validation images, respectively. Results on some of
the unlabeled videos (Sec. IV-C2) were also generated using
models trained on all 50 images.

UNet and SegNet were both trained for 1000 epochs and
the training and validation accuracies were evaluated after
each. The trained model used for testing was the one with
either the maximum validation accuracy or the maximum mean
accuracy depending on how well the training and validation
accuracies were matched in the two cases. Deeplab was trained
for between 100, 000 and 200, 000 steps. Batch size of 10 was
used for K’ = 256 and 2 for K € {640,800,1000} with the
latter chosen due to memory limitations. K = 384 was tested
with batch sizes 6 and 8 while K = 512 was tested with 6
and 2. Most tests were conducted using the default stride of
16 with corresponding atrous rates of [6,12,18] though one
model with K = 256 was also trained using Stride 8 with
atrous rates of [12, 24, 36].

DenseNet training was a bit more complicated. Simply
using all the pixels for training caused the network to rapidly
converge to a model that labeled all pixels with the class that
had the most training pixels - water in most cases. To get
meaningful results, the number of pixels belonging to each
of the classes had to be balanced. Therefore 10,000 random
pixels belonging to each class were selected in each epoch,
with different sets of pixels selected each time, and only these
were used for computing the loss. Training images with less
than 10,000 pixels in any class were discarded. The number
of epochs were between 1000 — 1600 for all K. In all cases,
the performance metrics in Sec. IV-A were computed on the
validation set every 10 epochs and training was stopped when
these became high enough or remained unchanged for over
100 epochs.

D. Ablation Experiments

One of the principal difficulties in training deep models for
performing segmentation is the lack of sufficient labeled data
due to the tedious and time-consuming manual segmentation
of images. This problem is exacerbated in the current task
because of the difficulty in distinguishing between the two
types of ice that exhibit both high intraclass variation and
significant appearance overlap in addition to arbitrary and
difficult to delineate shapes. As a result, a highly desirable
attribute of a practically applicable model would be its ability
to learn from a few images including partially labeled ones.

Two different types of ablation experiments were performed
in order to explore the suitability of the tested models in this
regard. The first one was to train the models using different
subsets of the training set. The second one was to consider
the labels from only a small subset of pixels in each image to
simulate the scenario of partially labeled training data. Note
that the input image itself was left unchanged so that the
models did have access to all the pixels but the loss function
minimized during training was computed using only the labels
from the selected pixels.



SegNet exhibited similar performance patterns as UNet in
the ablation tests, while being slightly worse on average,
probably because they share the same base network. SegNet
results have thus been excluded in Sec. IV-B2 and IV-B3 for
the sake of brevity. All the code and data used for training,
augmentation and ablation tests is made publicly available
[36][1] along with detailed instructions for using it to facilitate
further work in this domain and easy replication of results.

IV. RESULTS
A. Evaluation Metrics

Following evaluation metrics are typically used in image
segmentation [33], [24]:

1) Pixel accuracy:
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where n is the number of classes, n;; is the number of pixels
of class ¢ predicted to belong to class j and ¢; is the total
number of pixels of class ¢ in the ground truth. Note that
accuracy measures only the rate of true positives while IOU
also accounts for false positives. Hence, accuracy and 10U
are respectively equivalent to recall and precision that are
more widely used in pattern recognition and are referenced
thus in the remainder of this paper. Note also that pix_acc is
a frequency weighted version of mean_acc and is thus referred
to as frequency weighted (fw) recall in Table III.

Using these metrics to measure the combined segmentation
performance over all three classes can lead to biased results
when the number of image pixels is not evenly distributed
between the classes. This is particularly so in the current work
whose main objective is to distinguish between the two types
of ice. However, as shown in Table II, more than half the
pixels in both sets of test images are of water while anchor
ice, which is the most difficult to segment, covers only about
17% of the pixels. Therefore, results in the next section are
mostly restricted to class specific versions of these metrics.

TABLE II: Class frequencies in the two test sets

test images | water | anchor ice | frazil ice
18 0.557 | 0.175 0.268
46 0.610 | 0.166 0.224

In addition to these segmentation metrics, the estimated ice
concentration accuracy has also been used. This is computed

through a three-step process. First, column-wise ice concentra-
tion is obtained for each frame by computing the percentage of
all pixels in each column that are classified as ice (combined,
anchor or frazil). These values are stacked together for all
columns from left to right to form a vector of the same size
as the frame width. Next, the mean absolute error (MAE) is
computed between the ice concentrations vectors produced by
the ground truth and a model to obtain the overall accuracy for
that frame. Finally, the median of MAE values over the entire
test set is taken as the final metric. Median has been preferred
over mean as being significantly more robust to outliers.

The above metrics are only applicable to labeled images so
that unlabeled videos can only be evaluated qualitatively but
the conclusions thus obtained are usually somewhat subjective.
In order to ameliorate this, an unsupervised metric named
mean ice concentrations difference has been proposed to
measure the consistency of segmentation results between con-
secutive video frames as a proxy for its accuracy. This metric
is computed as the mean absolute difference between the ice
concentration vectors of each pair of consecutive frames in
the video. Segmentation consistency over the entire video is
summarized by taking the average of these differences over all
pairs of consecutive frames. The intuition behind this metric
is that, since the ice and/or river are moving slowly and video
FPS is fairly high, the ice concentration changes very gradu-
ally and its difference between consecutive frames remains
small. A model that fails to generalize well to the videos
would give inconsistent results in corresponding patches from
nearby frames that would therefore result in a high mean
concentration difference. Experiments were also done using
the direct pixel-wise difference between the segmentation
masks themselves, both with and without incorporating motion
estimation by optical flow [39], [14], [18], but the results were
less consistent so these were excluded here.

B. Quantitative Results

1) Overview: As shown in Table III, all of the deep models
provide significant improvement over SVM for all cases except
a couple instances of frazil ice. This is most notable for
anchor ice where an increase of 12 — 20% in recall and
6 — 20% in precision is achieved in absolute terms, with the
respective relative increases being 19 — 34% and 13 — 44%.
It is noteworthy that the two best models Deeplab and UNet
provide greater performance improvement, in both absolute
and relative terms, with respect to precision than recall over
all 4 categories. This is particularly impressive since high
precision is usually harder to achieve than recall, as testified
by its lower values across all models and categories.

Further, we see that DenseNet and SegNet fall slightly
behind SVM on frazil ice, especially with respect to recall,
even though they have the two highest recalls on anchor ice.
This trend of an inverse relationship between anchor and frazil
ice recall was consistently observed in the ablation tests too
(Sec. IV-B2). It seems that learning to better distinguish anchor
from frazil ice often comes at the cost of either a decrease in
the capability to recognize frazil ice itself or an overcorrection
which causes some of the more ambiguous cases of frazil to



TABLE III: Segmentation recall and precision for SVM and all deep models trained and tested on the 32 and 18 image sets
respectively. The fw in the last category stands for frequency weighted and the corresponding recall and precision metrics refer
to pix_acc (Eq. 1) and fw_iou (Eq. 4) as detailed in Sec. IV-A. Relative increase over SVM is computed as (model_value—
svm_value)/svm_value x 100

anchor ice frazil ice ice+water ice+water (fw)
Metric Relative Metric Relative Metric Relative Metric Relative
Model . . ] )
Value increase Value increase Value increase Value increase
(%) over SVM | (%) over SVM | (%) over SVM | (%) over SVM
Recall
svm 61.54 - 75.41 - 78.12 - 84.93 -
deeplab | 74.46 21.00 87.51 16.05 86.38 10.57 90.87 7.00
unet 73.75 19.85 84.27 11.75 85.13 8.97 88.69 4.42
densenet | 76.96 25.06 71.06 -5.77 81.42 4.22 85.02 0.11
segnet | 82.31 33.75 68.99 -8.51 83.06 6.32 85.90 1.14
Precision
svm 43.32 - 63.07 - 65.84 - 76.84 -
deeplab | 62.39 44.03 77.14 22.32 717.25 17.33 84.32 9.72
unet 54.89 26.72 71.17 12.84 73.19 11.17 81.73 6.36
densenet | 48.98 13.07 60.97 -3.32 67.69 2.82 77.49 0.84
segnet | 52.80 21.90 62.60 -0.73 69.60 5.72 78.46 2.10

be misclassified as anchor ice. It is likely that the loss function
can be minimized equally well by over-fitting either to frazil
or to anchor ice, thus leading to two stable training states.

Comparing between the deep models themselves, Deeplab anchor ice frazil ice
turns out to be the best overall followed closely by UNet. It is Median| Relative Median| Relative
Lnteresting ltlo np;le thatk,1 while D;:n.seNet and S(;:gNet prqv.ide Model MAE | decrease MAE | decrease
.etter reca. with anchor ice, their .correspon 1n.g. precmf)n (%) over SVM | (%) over SVM
is lower. Since recall does not penalize false positives while
precision does, this probably indicates that DenseNet and Seg- svim 8.37 - 7.18 -

Net misclassify frazil as anchor ice more often than Deeplab | deeplab | 4.71 | 43.80 4.52 | 37.01
and UNet, which is consistent with the inverse relationship unet 6.51 22.29 6.80 5.22
hypotl?etsis. Fu(rither, it Zar; be Zegll/ tl\l;latd the perforn;lanceudiger— densenet| 7.24 13.59 7.20 20.30
ence between deep models an ecreases when all three

°P " ['segnet | 6.48 | 22.61 6.64 | 751
classes are considered and even more so when the averaging is

frequency weighted. As mentioned before, these are the cases
where high segmentation accuracy of water starts to dominate.
Finally, the greater difficulty of recognizing anchor ice over
frazil ice is confirmed by its significantly lower recall and
precision in almost all cases.

Table IV shows the ice concentration estimation accuracy of
all the models in terms of median MAE. It should be noted that
recall and precision are better indicators of raw segmentation
performance since MAE suffers from an averaging effect
where false positives can cancel out false negatives to provide
an overall concentration value that happens to be closer to the
ground truth. As a result, MAE does not always provide a
true indication of the actual recognition ability of the model.
As an example, SegNet has slightly better MAE than UNet
on frazil ice even though it has significantly lower (9 — 16%)
precision and recall. Nevertheless, except for the single case
of DenseNet with frazil ice, the deep models are consistently
better than SVM here too, especially on anchor ice. As with the

TABLE IV: Median MAE for anchor and frazil ice over the
18 test images. Relative decrease over SVM is computed as
(svm_mae — model_mae)/svm_mae X 100

segmentation metrics, Deeplab is the best model and provides
around 3% absolute and 40% relative improvement over SVM.

2) Ablation study with training images: For this study,
models were trained using 4, 8, 16, 24 and 32 images and
each one was tested using the same 18-image test set. Results
for both anchor and frazil ice are given in Fig. 2. Contrary
to expectation, a distinct pattern of improvement with more
images is not shown by most of the models. There is a slight
improvement in anchor ice performance but it seems too weak
to clearly demonstrate model improvement with increase in
training images. A more likely conclusion is that the test set is
just too similar to the training set and does not contain enough
challenging variation to allow the extra information from more
training images to be reflected in the performance numbers.
This is lent some credence by the fact that the 50 labeled
images were specifically chosen for their ease of labeling
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Fig. 2: Results of ablation tests with training images for (a-b) anchor ice and (c-d) frazil ice. Note the variable Y-axis limits.
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Fig. 3: Results of ablation tests with selective pixels for (a-b) anchor ice and (c-d) frazil ice. Note the variable Y-axis limits.

owing to the highly tedious and time-consuming nature of
performing pixel-wise segmentations in addition to the high
degree of ambiguity and subjectivity in classifying ice in the
more difficult cases. Combined with the fact that they were
labeled by the same person, it would not be unusual for them
to be similar, both in terms of content and level of challenge.

The inverse relation between anchor and frazil ice recall
that was observed in the previous section is apparent here too.
For instance, the plot lines for anchor and frazil ice (Fig. 2
(a),(c)) are virtually reflections of each other for all models
including SVM except perhaps for Deeplab. Deeplab itself
exhibits nearly constant recall though with a clearer upward
trend in precision. It is also overall the best model, as in the
previous section. SVM shows the strongest improvement in
anchor ice recall, along with the corresponding decline in frazil
ice while DenseNet does so among the deep models. Also, Fig.
2 (a) and (b) illustrate the superiority of deep models over
SVM for anchor ice recognition more clearly than Table. III.
Deeplab and UNet largely maintain an appreciable superiority
over SVM for frazil ice too (Fig. 2 (c), (d)), though the overall
improvement there is less distinct. Finally, DenseNet does
seem to be the worst performing deep model, especially for
frazil ice, but its competitiveness is still noteworthy consider-
ing that it has over two orders of magnitude fewer parameters
than the other models (Table I).

3) Ablation study with selective pixels: This study was
performed by training models using 2, 10, 100 and 1000 pixels
per class selected randomly from each K x K training patch.

The training set was generated from only 4 training images
and not subjected to augmentation. Also, K = 640 was used
for all models including DenseNet to ensure that the number
of training pixels remained identical for all of them. Further,
in an attempt to counteract the limited challenges available in
the 18-image test set, these models were tested on all of the
remaining 46 labeled images. Finally, SVM was not included
here because its super-pixel based method [22] does not lend
itself well to training using randomly selected pixels.

Results are given in Fig. 3. It turns out that selective pixel
training has surprisingly little impact on quantitative perfor-
mance except perhaps in the case of UNet with anchor ice
and DeepLab with frazil ice. Though there is a more strongly
marked upward trend in performance compared to training
images (Fig. 2), it is not as significant as would be expected.
The case of 2 pixels per class is particularly remarkable.
When combined with the fact that the unaugmented training
set contained only 46 patch images, this training was done
using only 92 pixels per class or 276 pixels in all. This might
be another indicator of the limited challenges available in the
test set. This is further confirmed by the qualitative results on
videos (Sec. IV-C2) that show a much more strongly marked
difference than would be inferred by these plots.

C. Qualitative Results

1) Images: Fig. 5 shows the results of applying the optimal
configurations of the four models (as used in Sec. IV-B1) to
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Fig. 4: Mean ice concentration difference between consecutive frames for (a) both types of ice combined, (b) anchor ice, (c)
frazil ice and (d) all three for SVM sequences. Details of videos corresponding to the IDs are in the supplementary and suffixes
c, a and f in (d) respectively refer to combined, anchor and frazil ice.

segment several images from the unlabeled test set. Additional
results are in the supplementary. Several interesting observa-
tions can be made. First, both UNet and SegNet misclassify
water as frazil ice in several cases where water covers most
of the image, e.g. in image 3. DenseNet too seems to be
susceptible to this issue, albeit to a much lesser extent, though
a careful examination of its video results (Table 4) shows this
problem to be more prevalent than the images alone indicate.

Second, Deeplab results show the largest degree of dis-
continuity between adjacent patches due to its tendency to
occasionally produce completely meaningless segmentations
on some individual patches. Image 5 is an example.

Third, consistent with the quantitative results of the previous
section, DenseNet is overall the best performing model, even
though its results are slightly more fragmented than the others.
This is particularly noticeable in the more difficult cases of
distinguishing between frazil and anchor ice when they both
form part of the same ice pan. Images 1 and 7 are examples.

Qualitative results on labeled test image are available in the
accompanying data [1] as well as in Google Photos albums
whose categorized links are given in the supplementary for
convenience.

2) Videos: All the deep models were evaluated on 1 to 2
minutes sequences from 5 videos captured on 3 different days
and containing wide variations in the scale and form of ice
pans. SVM took 5 minutes to process each frame so could
only be evaluated on 30 seconds of video 1 and 10 seconds
each of videos 3 and 4. Also, selective pixel models were
only evaluated on videos 1 and 3. Results for all videos are
available in the accompanying data [1]. The supplementary
provides details of the tested sequences along with categorized
links for some of the results.

The most noticeable point in these results is that Deeplab is
susceptible to completely misclassifying individual randomly
distributed patches which can lead to strong discontinuities
when these patches are stitched together to create complete
frames and the corresponding video. This is quantitatively
confirmed by Fig. 4 that shows the mean ice concentration
difference between consecutive frames in all of the videos for
each of the two types of ice as well as both combined. It can

be seen there that Deeplab has significantly higher values than
both UNet and DenseNet, being more than 3 times higher in
several cases, while DenseNet almost always has the smallest
difference, thus indicating the most consistent segmentation
results. Apart from confirming the limited challenges available
in the labeled test sets, this inversion of relative performance
between the 3 models as compared to the quantitative results
in Sec. 2, shows that DenseNet is able to generalize to new
scenarios much better than Deeplab which has a tendency to
overfit to the training images while UNet provides a good
balance between generalization and overfitting. Fig. 4 (d)
shows the concentration differences over the 3 sequences on
which SVM was also tested. SVM classifies pixels in groups
of super pixels so it doesn’t suffer from the issue of mis-
classifying entire patches that the deep models are susceptible
to but, even so, its generalization ability is poor enough to
give significantly higher concentration differences as compared
to both DenseNet and UNet, though being slightly better
than Deeplab. Moreover, this group classification technique
has the disadvantage of giving up blocky appearance to its
segmentation masks, whose boundaries are often too coarse
to correspond well with the actual ice pans.

Examination of the ablation test videos gives another im-
portant result that was mentioned in Sec. IV-B3 - selective
pixel training has significantly greater impact in practice than
indicated by Fig. 3. The segmentation masks seem to become
more grainy and sparse as the number of pixels is decreased
and there is a very noticeable difference between using 2 and
1000 pixels. Similarly, a greater difference is apparent between
the results produced by models trained on 4 and 32 images
than suggested by Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the results of using four state of the art
deep CNNs for segmenting images and videos of river surface
into water and two types of ice. Three of these - UNet, SegNet
and Deeplab - are previously published and well studied
methods while the fourth one - DenseNet - is a new method,
though based on an existing architecture. All of the models
provided considerable improvements over previous attempts
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Fig. 5: Results of testing the deep models on unlabeled images: left to right: raw image, UNet, SegNet, Deeplab, DenseNet




using SVM. These were particularly significant for the most
challenging case of anchor ice where around 20% increase in
both recall and precision were obtained by the four models
combined while the single best model - Deeplab - provided
respective improvements of 13—19% in absolute and 21 —44%
in relative terms. Frazil ice performance was slightly less
impressive but still surpassed SVM by 12 — 14% in absolute
and 16 — 22% in relative terms. Significant improvements
were obtained in ice concentration estimation accuracy too,
with Deeplab providing around 3% absolute and 40% relative
decrease in MAE over SVM for both types of ice.

Among the four models, Deeplab gave the best quantitative
performance on the labeled test set - 5 — 10% improvement
in precision with similar recall for anchor ice and 3 — 15%
better recall and precision for frazil ice - but showed poor
generalization ability by giving the worst qualitative results
on the unlabeled images and videos - up to 7-fold mean
concentration difference on the videos. DenseNet, on the other
hand, gave poor quantitative results but demonstrated excellent
generalization ability on the unlabeled data. UNet provided a
good balance between the two and might be taken to be the
single best model tested here, if such a one needs to be chosen.
Finally, this paper also demonstrated reasonable success in
handling the lack of labeled images using data augmentation.
Further improvements in this direction would be obtained by
using the augmented dataset as the starting point for a semi-
automated boot-strapping process where segmentation results
on unlabeled images would be corrected manually to yield
more labeled data to be used for training better models.
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