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Abstract

This report deals with the problem of computing sur-
face ice concentration for two different types of ice from
river ice images. It presents the results of applying sev-
eral state of the art semantic segmentations methods utiliz-
ing deep CNNs for solving this problem. This task presents
two main challenges - very limited availability of labeled
training data and the great difficulty of visually distinguish-
ing the two types of ice, even for humans. The results are
used to analyze the extent to which some of the best deep
learning methods currently in existence can handle these
challenges.

1. Introduction
The study of surface ice concentration and variation over

time and place is crucial for understanding the river ice for-
mation process. The temporal and spatial ice distributions
thus computed can help to validate models of this process.
The additional ability to distinguish frazil and the sediment-
carrying anchor ice can also help to increase the estimation
accuracy of the sediment transportation capacity of the river.
Towards this end, a large amount of video data has been cap-
tured using UAVs and bridge mounted game cameras from
two Alberta rivers during the winters of 2016 and 2017. The
objective of this work is to analyze this data and perform
dense pixel wise segmentation on these images and videos
to be able to automatically compute the concentrations of
the two types of ice.

The main challenge in this task is the lack of labeled data
since it is extremely difficult and time consuming to man-
ually segment images into the three categories due to the
arbitrary shapes that the ice pans can assume. As a result,
there are currently only 50 labeled images (Fig. 1) to ac-
company 564 unlabeled test images and over 100 minutes
of unlabeled 4K videos. These labeled images along with
205 additional images with only ice-water labeling have al-
ready been used to train an SVM [17, 16, 15] to perform the
segmentation. It provided water-ice classification accura-
cies ranging from 80.1% - 93.5% and surface ice concentra-

Figure 1. Sample training image with label where white, grey and
black pixels respectively denote frazil ice, anchor ice and water

tion errors of 0.7% - 3.3%. Though it was fairly successful
at separating ice from water, it had much greater difficulty
in distinguishing between frazil and anchor ice pans, espe-
cially in cases where they are not physically separated and
are hard to differentiate even for human eyes. This project is
mainly concerned with handling these more difficult cases.

To address the limitations of SVM, this work uses re-
cent deep learning based methods of semantic segmenta-
tion. Since these methods need large amounts of training
data to work well, the training images have been subjected
to several data augmentation techniques (Sec. 3.2) to gener-
ate enough data. Another promising approach, though not
tested here due to time limitations, is to use this augmented
dataset as the starting point for a boot-strapping process.
Successively better models can be trained by manually cor-
recting the segmentation results produced on the test images
by each stage of the process and adding these corrected im-
ages to the labeled set for training the next stage model.

2. Background

The river ice images look very similar to microscopic im-
ages of cells in the bloodstream so my initial idea was to try
existing cell classification networks in medical imaging af-
ter fine tuning them on the training images. I found several
promising works employing a range of architectures includ-
ing ConvNet [30], LeNet [27, 23], Resnet [19] and Incep-
tion [20] that might have provided the base network for this
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work. However, more detailed examination revealed that
medical imaging tasks are mainly concerned with the de-
tection and localization of specific kinds of cells rather than
performing pixel wise segmentation that is needed here.

Further, I looked for unsupervised or semi-supervised
video segmentation techniques to utilize the large amount of
high-quality video data. I found that most of them use op-
tical flow for performing motion segmentation [10], though
some appearance based [2] and hybrid [11, 14] methods
have also been proposed. A recent work [24] proposes an
unsupervised bootstrapping approach, somewhat similar to
the one mentioned above. Under the assumption that all the
moving pixels belong to the same foreground object, it uses
the motion segmented images as training data to learn an
implicit representation of this object. The model is used for
refining the motion segmentation and the improved results
are in turn used to bootstrap further refinements.

However, there are two assumptions underlying this
work as well as motion segmentation in general, which ren-
ders such methods unsuitable for our task. Firstly, they as-
sume that there is a single moving foreground object while,
in our task requires distinguishing between two different
types of moving ice, which are both foreground objects.
Secondly, they assume a static background while the river,
which makes up the background in our case, is itself mov-
ing. Preliminary attempts to perform optical flow-based
motion segmentation on these videos confirmed their un-
suitability for this work. I did find a recent method [29] for
performing simultaneous optical flow estimation and seg-
mentation which might be able to address these limitations
to some extent. However, I was unable to gets its Matlab
code working in time and so deferred its further exploration
to future work. Finally, I looked for existing applications of
deep learning for surface ice analysis and though I did find
one [6], it uses microwave sensor data instead of images.

3. Methodolgy

3.1. Image Segmentation

Since neither cell classification nor video segmentation
methods seemed promising, I decided to use supervised im-
age segmentation instead. I found a couple of excellent re-
sources for these methods [22, 9] and selected three of the
most widely cited and best performing ones with publicly
available code that I was able to get working in time.

The first of these is UNet [25] from the medical imag-
ing community. It was introduced for neuronal structure
segmentation in electron microscopic images and won the
ISBI challenge 2015. As the name suggests, UNet com-
bines a contracting part with a symmetrix expanding part to
yield a U-shaped architecture that can both utilize context
information and achieve good localization owing to the two
parts respectively. It was shown to be trainable with rela-

tively few training samples while relying heavily on patch
based data augmentation which seemed to make it an ideal
fit for our requirements.

The second network is called SegNet [1] and was intro-
duced for segmenting natural images of both outdoor and
indoor scenes for scene understanding application. It uses
a 13-layer VGG16 net [28] as its backbone and features
a somewhat similar architecture as UNet. The contract-
ing and expanding parts are here termed encoder and de-
coder respectively and the upsampling units in the latter
are not trainable, instead utilizing the weights learned by
the corresponding max-pooling layers in the former. I have
used Keras [8] implementations for both UNet and SegNet.
available as part of the same repository [12] along with a
couple of variants of the FCN architecture [21, 26] which,
however, did not perform as well and are thus excluded from
this study.

The third method is called Deeplab [3] and is one of the
best performing methods in the Tensorflow research models
repository [4]. It uses convolutions with upsampled filters
- the so called atrous convolutions - to both achieve better
control over the feature response resolution and to incorpo-
rate larger context without increasing computational cost.
It also achieves scale-invariance by using a pyramidal max
pooling and improves localization accuracy while maintain-
ing spatial invariance by combining the last layer output
with a fully connected conditional random field layer. I used
a more recent version called Deeplabv3+ [5] which adds a
decoder module to produce sharper object boundaries while
also incorporating the Xception model [7] for further per-
formance improvements.

In addition to these methods, I also used an adapted ver-
sion of an unpublished approach called indicator learning
that is based on the DenseNet architecture [13]. The basic
idea of DenseNet is to connect each layer of the network
to all subsequent layers so that the feature maps output by
each layer are used as input in all subsequent layers. This
provides for better feature propagation and reuse while also
reducing the total number of parameters and mitigating the
vanishing gradient problem.

Indicator learning uses a loss function which forces the
n channel output probability map (where n is the no. of
classes) to learn one channel for each class by forcing the
pairwise inner product between the probability values for
labelled pixels to be 1 when the pixels belong to the same
class and 0 otherwise. This has the disadvantage that,
though it separates the pixels into distinct classes, it does
not keep track of which channel corresponds to which class
and hence class identification is not possible. In addition,
it leads to a lot of flip-flopping during training as different
channels are successively trained for different classes. To
resolve these issues, the standard L2 loss was used instead.
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Table 1. Augmented dataset sizes. Last column shows the number
of training samples used for DenseNet (Sec. 3.2)

K All Training Validation DenseNet
256 159336 84075 44013 -
384 44130 29268 15384 348
512 18231 11895 6426 361
640 7347 4860 2358 349
800 2292 1587 831 191
1000 876 609 375 381

3.2. Data augmentation and Training

A simple sliding window approach has been used to ex-
tract a large set of sub-images or patches from each training
image. The window is moved by a random stride between
10% to 40% of the patch size K. This process is repeated
after applying random rotations to the entire image between
15 to 345 degrees divided into four bands of equal width to
allow for multiple rotations for each image. Finally, each
patch is also subjected to horizontal and vertical flipping
to generate two additional patch. All resultant patches are
combined together to create the dataset for each K. For test-
ing a model, patches of size K are extracted from the test
image using a stride of K, segmentation is performed on
each and the results are stitched back to get the final result.

All models were trained and tested using patch sizes
K ∈ {256, 384, 512, 640} except DenseNet where larger
sizes of 800 and 1000 were used instead of 256 as it seemed
to perform better with larger images. The 50 labeled im-
ages were divided into two sets of 32 and 18 for generat-
ing the training and validation images respectively. Table 1
lists the sizes of the datasets thus generated for each patch
size. Note that the training sets were used for generating the
quantitative performance results on the validation sets while
the combined sets generated using all 50 images (first col-
umn of Table 1) were used for producing qualitative results
on the unlabeled test set.

UNet and SegNet were both trained for 1000 epochs and
the training and validation accuracies were evaluated after
each. The trained model used for testing was the one with
either the maximum validation accuracy or the maximum
mean accuracy depending on how well the training and val-
idation accuracies were matched in the two cases. Deeplab
was trained for between 50, 000 and 100, 000 steps. Batch
size of 10 was used for K = 256 and 2 for K ∈ {640, 800}
with the latter chosen due to memory limitations. K = 384
was tested with batch sizes 6 and 8 while K = 512 was
tested with 6 and 2. Most tests were conducted using
the default stride of 16 with corresponding atrous rates of
[6, 12, 18] though one model with K = 256 was also trained
using Stride 8 with atrous rates of [12, 24, 36].

DenseNet training was a bit trickier. Simply using all the
pixels for training caused the network to rapidly converge

to labeling all pixels with the class that had the maximum
number of pixels, which was water in most cases. To get
meaningful results, the number of pixels belonging to each
of the classes had to be balanced. Therefore 10, 000 random
pixels belonging to each class were selected in each epoch,
with different set of pixels selected each time, and only
these were used for computing the loss. Training images
with less than 10, 000 pixels in any class were discarded.
Also, DenseNet took much longer to train than the other
networks and so was trained with a much smaller number
of training images as shown in the last column of Table 1.
Number of epochs were between 1300− 1600 for all K ex-
cept 1000 which could only be trained for 360 epochs due
to time limitations. In all cases, the performance metrics in
Sec. 1 were computed on the validation set every 10 epochs
and training was stopped when these became high enough
and remained unchanged long enough.

4. Results
4.1. Evaluation metrics

Following four metrics [26, 18] have been used for eval-
uating the segmentation results:

1. Pixel accuracy: ∑
i nii∑
i ti

(1)

2. Pixel accuracy:
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3. Mean IOU:
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4. Frequency Weighted IOU:∑
k
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∑
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where n = 3 is the number of classes, nij is the number of
pixels of class i predicted to belong to class j and ti is the
total number of pixels of class i in the ground truth

4.2. Quantitative

Fig. 2 and 3 show the performance results for the four
models with all the configurations that they were tested in
while Fig. 4 compares the best configuration of each. It
can be seen that UNet and SegNet are relatively invariant
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Figure 2. Performance of UNet and SegNet on the validation set
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Figure 3. Performance of Deeplab and DenseNet on the validation set
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Figure 4. Performance of the best configurations of the models

to variations in K though they do show a slight improve-
ment with K = 640. They also perform quite similarly to
each other which is to be expected as they share the same

VGGNet16 backbone network. All of the models show gen-
eral improvement with increase in K except Deeplab with
384 and 512 and DenseNet with 1000. The former is prob-
ably due to incorrect batch size as 512 did manage to re-
cover with a batch size of 2 instead of 6 whic is remarkable
as the guidelines in the repository [4] mention that larger
batch sizes of 12 or more are needed for the best perfor-
mance. The latter is probably caused by the limited number
of epochs (360) for which it could be trained as the valida-
tion accuracies were still increasing when training had to be
terminated. DenseNet with K = 800 is the best performing
model overall which is impressive as it uses by far the least
number of trainable parameters - only around 90,000 - while
UNet and Segnet each have around 12 million and Deeplab
has by far the maximum of 140 million. DenseNet was
also trained using the least number of images which were
as little as a hundredth of the other models to as much as a
tenth which makes its superiority even more remarkable. Fi-
nally, Deeplab shows significantly better performance with
a stride of 8 in the sole case where this was tested which
might indicate possibilities for future improvements.
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4.3. Qualitative

Fig. 5, 6 and 7 show the results of applying the best con-
figurations of the four models to segment several images
from the test set. UNet, SegNet and Deeplab were tested
using K = 640 while Densenet used K = 800. Several in-
teresting observations can be made. Firstly, both UNet and
SegNet misclassify water as frazil ice in several cases where
most of the image contains water, e.g. in images 2 and 3 re-
spectively and of Fig. 5 and 6. DenseNet too seems to be
somewhat susceptible to this issue though to a much lesser
extent. Secondly, Deeplab results show the largest degree of
discontinuity between adjacent patches due to its tendency
to occasionally produce completely meaningless segmenta-
tions on some individual patches. Examples include image
6 in Fig. 5, image 5 in Fig. 6 and images 1 and 4 in Fig. 7.
Thirdly and consistently with the quantitative results of the
previous section, DenseNet is overall the best performing
model even though its results are slightly more fragmented
than the others. This is particularly noticeable in the more
difficult cases of distinguishing between frazil and anchor
ice when they both form part of the same ice pan. Exam-
ples include images 1 and 7 in Fig. 6 and image 1 in Fig.
7.

5. Conclusions

This report presented the results of using four state of
the art deep learning based semantic segmentation methods
for segmenting river ice images into water and two types of
ice. Three of these - UNet, SegNet and Deeplab - are previ-
ously published and well studied methods while the fourth
one - DenseNet - is a new method, though based on a re-
cent architecture. All of the models provided fairly good
results, both quantitatively on the labeled validation images
as well as qualitatively on the unlabeled test images. These
were significant improvements over the previous attempts
using SVM especially in distinguishing between the two
types of ice. Of the 4 models, DenseNet performed the est
even though it uses the fewest parameters by far and was
also trained using the least number of images. This pro-
vides a promising avenue for future exploration that might
be able to yield much better performance with more layers
and training images.
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Figure 5. Results of applying the best configurations of the four models on test images: left to right: UNet, SegNet, Deeplab, DenseNet
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Figure 6. Results of applying the best configurations of the four models on test images: left to right: UNet, SegNet, Deeplab, DenseNet
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Figure 7. Results of applying the best configurations of the four models on test images: left to right: UNet, SegNet, Deeplab, DenseNet
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