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Abstract: This study presents a new online signature verification system based on fuzzy modelling of shape and dynamic features
extracted from online signature data. Instead of extracting these features from a signature, it is segmented at the points of
geometric extrema followed by the feature extraction and fuzzy modelling of each segment thus obtained. A minimum
distance alignment between the two samples is made using dynamic time warping technique that provides a segment to
segment correspondence. Fuzzy modelling of the extracted features is carried out in the next step. A user-dependent threshold
is used to classify a test sample as either genuine or forged. The accuracy of the proposed system is evaluated using both
skilled and random forgeries. For this, several experiments are carried out on two publicly available benchmark databases,
SVC2004 and SUSIG. The experimental results obtained on these databases demonstrate the effectiveness of this system.
1 Introduction

Biometrics is an emerging field of technology for the
enforcement of security. Several biometric modalities have
been proposed in the last decades [1]. These can be divided
into two main classes, depending on whether they are based
on physical called physiological or behavioural traits of an
individual. Physical traits are related to anatomical
characteristics of a person and include fingerprint, face, iris
and hand geometry among others. Behavioural traits refer to
how an individual performs an action, and include voice,
signature and gait among the most popular ones.
Signatures have been used for centuries to validate documents

and transactions. Therefore, signature is one of the most socially
accepted biometric traits, thus making it the most natural and
established way of confirming an identity. It is non-invasive in
nature and has no undesirable health connotations [2]. In the
past few decades, digitising devices have made machine-based
signature verification possible. Despite its wide acceptance,
automatic signature verification is still a challenging task. One
of the main challenges in signature verification is posed by the
signature variability. While signatures from the same user
taken at different times show considerable differences (high
intra-class variability), skilled forgers can imitate signatures
with high resemblance (low inter-class variability). An
experimental study of human perception of handwritten
signatures covering genuine and the forged samples is
reported in [3]. The human strategies for signature checking
influence the automatic signature verification. Moreover,
factors like the number of reference samples available,
signature sample variability and complexity of signature
patterns also affect the verification process.
Signature verification can be split up into two modes –
online and offline – depending on the type of available
data. Online or dynamic signatures are captured by special
hardware (e.g. smart pens or pressure sensitive tablets),
which is capable of measuring dynamic properties of a
signature in addition to its shape. Offline signatures, on the
other hand, are drawn on paper with ordinary pens and thus
have shape as the only available information. Online
signatures are typically considered more reliable than offline
ones since dynamic properties like pen pressure and writing
speed make the signature more unique and difficult to
forge. Each online signature is represented by a discrete
time sequence of data points with each point containing the
x, y coordinates, time stamp and button status. Additional
information like pen pressure, altitude angle and azimuth
angle may also be present.
Applications of online signature verification include

identity verification during electronic payments (e.g. using a
credit card), authorisation of computer users for accessing
the sensitive data or programs, authentication of individuals
for accessing physical devices or buildings and protection
of small personal devices (e.g. PDA, laptop) from
unauthorised usage [4].
The remainder of this paper is organised as follows:

Section 2 presents a brief review of the existing literature
along with showcasing the novelty of this work over an
existing method [5]. Section 3 details the proposed
methodology involving preprocessing, segmentation,
segment alignment, feature extraction and fuzzy modelling.
Section 4 presents the details of databases and
methodologies used in the performance evaluation along
with the obtained results and their comparison with several
1
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state-of-the-art methods. Section 5 gives the conclusions and
the future scope.

2 Background

2.1 Related work

An extensive literature exists in the field of online signature
verification. A review of some of the more recent approaches
has been carried out in [6]. Signature segmentation is
considered mostly as the first step in the verification process.
Segmentation is defined as the detection of perceptually
important points in [7] at which to divide the signature into
segments. The work presented in [8] measures the perceptual
importance of each point by the change of writing angle
between the selected point and its neighbour. A modified
version of this method appears in [9], where the end points
of pen-down strokes are considered as the significant splitting
points. The method proposed in [10] uses the points of
geometric extrema, both horizontal and vertical, as the
segmenting points and carries out segment-to-segment
matching through a set of rules based on the properties of the
extremum specific to each such point. Three different
segmentation methods, using equal partitioning, strokes and
local extrema, are implemented in [11].
Since different signatures may have different lengths, a

method is needed to equalise them before they can be
compared on a point-to-point or segment-to-segment basis.
Dynamic time warping (DTW) is a technique that employs
compression or expansion of the time axis of two time
sequences, representing two signatures with possibly
different number of points, to obtain a correspondence that
minimises some measure of distance between them. DTW
has been employed widely in the literatures [10, 12–16] to
aid the signature matching process.
Most of the existing methods extract a set of features either

from the signature or from the individual segments before
verification. A comparative study of features commonly
used in online signature verification is presented in [17].
Owing to a large number of the available features, we need
a method to select a subset of features with the maximum
discriminative ability. Genetic algorithm (GA) has been
used for this purpose in [5, 18–20]. The approaches such as
velocity image model [21], fast Fourier transform [22],
Rough sets [23] and Mellin transform [24] necessitate
complex feature extraction procedures.
Fuzzy logic is a powerful tool for solving complex problems

because of its ability to handle uncertainties in the inputs and it
also incorporates the heuristics devised by a human expert to
arrive at the most likely solution. Fuzzy inference is used for
both offline and online signature verification. Methods in the
former category include those based on modular neural
network [25], snake algorithm [26], box method [27, 28] and
confidence fuzzy intervals [29]. Most of these methods
employ the relatively simpler Takagi-Sugeno (TS) model.
There are several examples in the latter category, such as
[30] that employs a neural network classifier with fuzzy
inference decision module; [20] that uses fuzzy network; [31]
that employs neural network-driven fuzzy reasoning; and [5]
that uses a rule-based Mamdani system for fuzzy modelling
of optimal features selected using GA.

2.2 Novelty of the proposed method

The present work can be regarded as an extension of the work in
[5], where fuzzy modelling is carried out on features extracted
2
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from a whole signature. In this work, however, a signature is
first divided into segments which are then aligned with the
segments of a reference signature before applying an adapted
version of the same fuzzy model at the level of individual
segments. This extra step of segmentation can significantly
improve the detection accuracy for reasons stated in Section
3.2. In addition, a novel adaptive segmentation improves the
quality of segments and produces more accurate
segment-to-segment correspondence.
Another significant difference arises with regard to the use

of a threshold. A single global threshold is used in [5] to
classify a test signature as genuine or forged whereas we
use a different threshold for each user. A user-dependent
threshold captures the inherent variability in a particular
user’s signatures and thus helps to reduce both false
acceptances and false rejections. For example, a user who is
not very precise about the way he writes his signatures will
exhibit greater variability among his genuine signatures as
compared to a user who is always extremely specific about
the way his signatures are made. This difference in writing
habit necessitates the use of a higher threshold for the
second user than the first one to obtain optimal results.
Thus, using a single threshold for both these users may lead
to an increased rate of false rejections for the first user and
false acceptances for the second one. Another advantage of
user-dependent threshold is that the use of global threshold
requires the entire system to be trained again to obtain an
updated threshold whenever a new user is added to the
database whereas with user-specific threshold, however,
only the new user’s signature samples are needed in the
training process The time required for this process is
therefore independent of the number of users already
present in the database and does not increase as the
database grows larger, which is not the case with the global
threshold. Also, the user-specific threshold is found to be
more appropriate than the global threshold in behavioural
biometrics because of comparatively larger variations in
genuine samples of a person than in physiological
biometrics where global thresholds might make more sense.
3 Proposed system

A block diagram of the proposed system is shown in Fig. 1. All
the tasks mentioned therein are performed independently for
each user. The preprocessing of each signature sample is
followed by segmentation along the points of geometric
extrema. Next, all the training samples of the same user are
pair-wise segment-aligned with each other. One of the
training samples is then chosen as the prototype genuine
sample for that user and all the test samples of that user are
segment-aligned with this sample. This is followed by the
feature extraction where both static (shape) and dynamic
features are extracted for each segment for all the samples
(training and testing). The extracted features are subjected to
fuzzy modelling using a combination of TS and Mamdani
approaches to obtain a single match score for each segment.
The scores of all the segments of each sample are then
combined to obtain an overall score for that sample. This
score is compared with a user-dependent threshold at the
decision stage to classify the sample as either genuine or forged.
3.1 Preprocessing

The signing process is considered as a ballistic movement that
causes variation among the genuine signatures of the same
IET Biom., pp. 1–15
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Fig. 1 Block diagram of the proposed system
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person. As the variations in different signatures have different
dynamic ranges, min–max normalisation is applied on their x
and y coordinates. The normalisation process used here shifts
IET Biom., pp. 1–15
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the minimum and maximum scores to 0 and 1000,
respectively; but it does not change the underlying
distribution of the data except for a scaling factor.

xn =
x−min(x)

max(x)−min(x)
× 1000 (1)

yn =
y−min(y)

max(y)−min(y)
× 1000 (2)

where x and y are the original coordinates and xn and yn are the
normalised coordinates. The remaining components of each
data point, viz., pressure and angle information (both
altitude and azimuth) are not changed since they are fairly
resistant to noise and also contain crucial clues to the way a
person holds the pen and writes with it. These
characteristics are typically specific to a person and are
practically impossible to forge without detailed knowledge
of the person’s writing manner. Thus retaining their original
values is necessary for deriving maximum discriminative
ability.

3.2 Segmentation

When features are extracted from the whole signature sample,
they are subjected to an averaging effect [10] due to which
finer information present in localised regions of the sample
is lost, thus reducing the discriminative capability of the
features. This is particularly true for online signatures –
since dynamic information present in specific parts of a
signature is crucial in identifying the writer and it is
difficult to be forged. For example, many people have a
specific pattern in the speed with which they typically
generate their signatures, for instance, slow in the beginning
and at the end of the signature but with the maximum speed
in the middle. This is why the samples are segmented
before the feature extraction step.
A good segmentation method should meet two main

requirements [10]: the segments generated should be
consistent across all the genuine samples and the
correspondence between matching segments of any two
samples should be easy to find. Based on these
requirements, the points of geometric extrema are chosen to
segment the signatures since they constitute the corner
points of the frame of the pattern and are thus reproduced
reliably in different samples of the same user. They also
have specific properties that help in determining
segment-to-segment correspondence [10]. Points of vertical
and horizontal extrema are detected by finding the zero
crossings of the derivatives of x and y sequences,
respectively. The ith point in a signature sequence is taken
as a point of vertical extremum, if the following condition
holds true

yi+1 − yi
( )

yi − yi−1

( ) ≤ 0 (3)

Here, yi denotes the y coordinate value in the ith data point
where i = 2, 3, …, k− 1 for a sample with k data points. A
similar expression is used for the points of horizontal
extrema too. In order to deal with the presence of noise in
the time sequence, which may lead to several invalid
segments, a certain threshold (δ) is taken as the minimum
number of points in an acceptable segment. If a segment is
having number of points <δ, it is merged with the next
segment if possible or with the previous one if it happens to
3
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be too close to the end of the signature. Experiments are
conducted by considering each of the x and y derivatives
separately and the best results are obtained using the latter.
Fig. 2 shows a few genuine and skilled forgery samples for
the same user from SVC2004 database.
During experimentation δ is fixed at 5 and 10 and the

former value was found to give better results than the latter
value on SVC2004 while the opposite is true for SUSIG.
Further investigation into this has revealed that signatures in
SUSIG are on average 50% longer than those in SVC2004
in terms of the number of points in the signature sequence
(300 points against 208 points). This suggests that higher
values of δ should be used for longer signatures to obtain
the best results. This in turn has led us to the concept of
adaptive segmentation where, instead of using a fixed value
of δ for all samples, a different δ is used for each sample. A
certain fraction (min_fraction) of the total number of points
in a sample is taken as the value of δ for that sample
subject to a global minimum (global_min). Thus, the value
of δ for a sample with n points is evaluated as follows

min points = floor(min fraction× n) (4a)

d = max(global min , min points) (4b)

Here floor(x) returns the largest integer not greater than x.
This method constrains the total number of segments in a
sample to be less than a specific value irrespective of the
length of that sample and is quite effective at dealing with
spurious extrema generated due to shaky hands or
instrument noise. In addition, it also makes the task of
finding segment-to-segment correspondence easier and more
accurate since the number of segments obtained for
different samples is likely to be roughly equal even if the
samples are of widely differing sizes.
We have experimented with several values of min_fraction

between 0.01 and 0.2 and global_min between 5 and 15 and
optimal results were obtained using min_fraction = 0.03 for
SVC2004 and min_fraction = 0.04 for SUSIG, with
global_min = 5 for both databases. A comparison of the
results obtained for various values of min_fraction is
presented in Fig. 3.
3.3 Alignment of segments

Since any two signature samples may have different number
of segments, a non-trivial method is needed to find the
correspondence between the segments of the two samples.
Through the process of alignment, segments of a sample are
matched with those of another sample to obtain this
correspondence. This matching may involve mapping in
which a single segment of either sample matches with
multiple segments of the other. To make it more clear,
consider two samples, sample1 and sample2, then a single
segment of sample1 may match with multiple segments of
sample2 or a single segment of sample2 may match with
multiple segments of sample1, as in Fig. 4.
For this purpose, a DTW-based method is used, as detailed

in [32]. It employs a dynamic programming-based approach
to obtain a many-to-many mapping between the segments
of two samples so as to minimise the accumulated distance
between the matched segments, as given by some distance
function (e.g. Euclidean distance). Let us call this minimum
accumulated distance between two samples (or segments) as
the DTW distance between them.
4
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The mapping produced by this method is subject to the
following constraints:

1. There is always a mapping between the starting and the
ending pairs of segments of the two samples.
2. The mapping is strictly non-decreasing in time from the
perspective of either sample. This means that, while
matching two samples, samples1 and samples2, if segment
m of samples1 (Seg1m) has been matched to segment j of
samples2 (Seg2j), then any other segment Seg1n, where n≥
m, can match to a segment Seg2k only if k≥ j.
3. Each segment of either sample must be a part of exactly
one mapping which may be one-to-one, many-to-one or
one-to-many. A particular segment cannot be a part of two
different types of mappings at the same time. For instance,
in the example of Fig. 4a, segments 3 and 4 of sample (iii)
are paired with segment 4 of sample (i) and are thus
involved in a many-to-one mapping. Now it would be
invalid for either of these two segments to be a part of
another mapping with segments of sample (i) (e.g. segment
3 of sample (iii) cannot have a one-to-one mapping with
segment 3 of sample (i) even though such a mapping would
not violate the other two constraints). This constraint also
implies that each segment of either sample must match with
at least one segment of the other sample.

Following are the main steps involved in the matching
process:

1. First, a measure of distance needs to be defined between
two segments, each belonging to one of the two samples
being aligned, where each segment is represented by a
sequence of data points. We have used the mean Euclidean
distance between the x and y coordinates of the
corresponding data points in the two segments as the
measure. Two cases may arise here:

i. If the two segments have equal number of data points, then
the distance between them is given by the following equation:

distij =
1

n

∑n
k=1

�����������������������������
xik − x jk

( )2
+ yik − y jk

( )2√
(5)

Here, distij is the DTW distance between segi and segj,
belonging, respectively, to samples1 and samples2 and each
having n data points. The x, y coordinates of segi and segj
are (xik, yik) and (xjk, yjk), respectively, for k = 1, 2, …, n.
ii. If, on the other hand, they have different number of data
points, we find the minimum-distance-matching between the
two sets of data points by recursively applying the same
DTW-based method of finding a correspondence between
two sets of segments except that here we assume that each
segment has only one data point. Thus, the DTW distance
between two such single-point-segments is simply the
Euclidean distance between the points. The overall DTW
distance distij between segi and segj is then the mean
accumulated Euclidean distance between the matched points.

2. The distance obtained in Step 1 is used in a dynamic
programming-based algorithm to find a path from the first
pair to the last pair of segments with the minimum
accumulated cost. This is the optimal DTW path and the
accumulated cost divided by the number of steps in this
path is the corresponding DTW distance between the two
samples. More details of this algorithm can be found in [32].
IET Biom., pp. 1–15
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Fig. 2 Sample signatures of a user from SVC2004 database segmented along points of vertical extrema (min_fraction = 0.03 global_min = 5)

The segmentation points are marked by an asterisk and consecutive segments are shown by solid and dotted lines
The unmarked end is the starting point of the signature
(i) Prototype sample; (ii) and (iii) training genuine samples; (iv) and (v) test genuine samples; (vi) and (vii) skilled forgery samples
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Fig. 4 Pairings obtained by the DTW method between the prototype sa

a Pairings of sample (i) with samples (ii) and (iii) of Fig. 2
b Pairings of sample (i) with samples (iv) and (v) of Fig. 2
c Pairings of sample (i) with samples (vi) and (vii) of Fig. 2

Fig. 3 Results obtained in terms of user-dependent EER for
different values of min_fraction using both SVC2004 and SUSIG
databases

N = 5 and global_min = 5 were used for all runs

www.ietdl.org
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3. The method outlined in the previous two steps is applied
pair wise to all the training samples of the same user, thus
obtaining the distance of each training sample from each of
the other training samples. Hence if there are n training
samples, there will be a total of ((n(n− 1))/2) pairings. The
training sample with the least mean distance from all others
is then chosen as the prototype (or reference) genuine
sample for that user.
4. Finally, Steps 1 and 2 are applied to find the segment
correspondence between the prototype sample and each of
the test samples, both genuine and forged.

Since the DTW matching process produces a
many-to-many mapping between the segments of the two
samples, a method of resolution is needed for cases where
one segment of the prototype sample gets paired with
multiple segments of the other sample. The properties of
the multiple matching segments need to be combined so
that they can be compared to the corresponding property of
the single prototype segment. Three alternative methods are
tried to carry out this combination
mple and a few other samples

IET Biom., pp. 1–15
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Table 1 Features used in the proposed system

Shape features Dynamic features

mean of x coordinate total signature time
mean of y coordinate mean velocity in x direction
height mean velocity in y direction
width mean acceleration in x direction
length

mean acceleration in y direction
mean of pressure

mean of azimuth angle
mean of altitude angle

www.ietdl.org

1. Extract the features of each matching segment as detailed
in Section 3.4 and take the mean over all the segments to
obtain a single value for each feature which is then used for
further processing. This is the case of feature-level
combination.
2. Extract features and carry out the first two steps of fuzzy
modelling (Section 3.5) to obtain the degree of match
(DOM) for each of the segments independently and then
take the mean of these DOMs as the single DOM
representing these segments. This is the case of DOM level
combination.
3. As a consequence of the second constraint in the matching
process specified earlier, if multiple segments of one sample
match with a single segment of the other sample, they will
necessarily be consecutive segments. Thus, another way to
combine them is to consider all the data points from the
first point of the first segment to the last point of the last
segment as belonging to a single segment and then extract
features from this composite segment. This is the case of
combination at the level of data points.

Experiments are carried out using each of these methods
and the second one is found to give the best results
probably because of least incidence of the averaging effect
mentioned in Section 3.2. Thus, only the results of DOM
level combination are mentioned in Section 4.
To clarify the segment alignment process, the segment

pairs that were obtained between the prototype sample and
the other samples shown in Fig. 2 are given in Fig. 4.

3.4 Feature extraction

Two types of features, viz., shape and dynamic features are
extracted from each segment at this stage. Shape features
are useful for detecting random forgery but may fail for
skilled forgeries because of the relative ease of copying the
overall shape of a signature. Dynamic features, on the other
hand, have much better discriminative power because they
are much harder to imitate [33].
Several features are experimented and out of which only

those having valid values for any segment are used in this
work. Although the main inspiration for this work is [5],
but many of its features cannot be used here because of
either divide-by-zero problems or their irrelevance at the
level of individual segments. For example, features like
height-to-width ratio and length-to-width ratio used in [5]
cannot be used here because of the possibility of the width
becoming zero for some segments, a problem that does not
occur when these features are extracted for the whole
signature. Moreover, some complex features like RMS
centripetal acceleration, RMS tangential acceleration and
RMS acceleration [5] could not be used here since they are
expensive to compute, leading to unacceptable performance
when this computation has to be repeated for each segment.
Thus, only a few relatively simple features are used in this
work. These are listed in Table 1.

3.5 Fuzzy modelling

Fuzzy modelling of each feature of each segment of the
prototype sample signature, which forms a fuzzy set as
explained below, is used in the verification of an unknown
signature. This decision is made on the basis of the fuzzy
membership values of the features extracted from this
signature using the fuzzy sets that are learned during the
training stage. In fact, these fuzzy sets constitute the fuzzy
IET Biom., pp. 1–15
doi: 10.1049/iet-bmt.2012.0048
rules framed. The concept of a fuzzy set arising from a set
of features is explained as follows. A fuzzy set is formed
from each feature of each segment of the prototype sample
gathered over all the training samples. Suppose there are m
training samples and the prototype sample has n segments
with i features extracted from each of these. Then there
would be a total of n × i fuzzy sets with each one having m
values since each training sample would contribute one
value to each fuzzy set. The variation in the feature values
over the training sample space gives rise to fuzziness.
Whenever multiple segments of a sample match with a

single segment of the prototype sample during the DTW
alignment process, their features will be combined and will
either be compared with (a test sample) or contribute to (a
training sample) the single fuzzy set corresponding to that
segment of the prototype sample. For instance, in the
example of Fig. 4a, segments 3 and 4 of training sample
(iii) would contribute only to the fuzzy set corresponding to
segment 4 of prototype sample (i). Along the same lines,
when the test sample (iv) of Fig. 4b is passed through this
system, the properties of its segments 4 and 5 would be
combined and compared to the values in the fuzzy set
corresponding to segment 4 of the prototype sample (i).
Conversely, it is also possible for one segment to contribute
to multiple fuzzy sets, as demonstrated by segment 1 of
sample (iii) that contributes to the fuzzy sets corresponding
to both segments 1 and 2 of sample (i).
This work uses the rule-based Mamdani approach to fuzzy

modelling, which is adapted from [5]. This approach involves
the following steps for each segment:

1. Calculate the normalised difference for each feature from
its reference set by

Disti =
fi − mi��������
1+ s2

i

√ (6)

Here, fi is the value of the ith feature, μi and σi are the mean
and standard deviation of this feature over the training
samples.
2. Compute the DOM. This is a measure of the degree of
similarity of the test signature’s specific feature value for a
particular segment against the reference, expressed as a
percentage. This is the output of single-input, single-output
and single rule TS model whose input is Disti from Step 1
and output is the corresponding DOM, as shown in Fig. 5.
This model uses two parameters Distmin and Distmax such
that DOMi = 100 for Disti≤Distmin and DOMi = 0 for
Disti≥Distmax. After experimenting with several
combinations of these parameters, the values of 1 and 7 for
Distmin and Distmax, respectively, are found to give optimal
results.
7
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Fig. 5 Single-input, single-output, single-rule TS fuzzy system
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The above two steps are repeated to obtain the DOM for
each feature.

3. Compute the total degree of match (TDOM) for each of the
two feature sets: static/shape-based features and dynamic
features. For each set, a weighted mean of all the features in
the set is called the TDOM for that set. The weighting
factors reflect the relative importance of features and are
taken to be inversely proportional to the respective standard
deviations. This is based on the reasoning that lesser the
standard deviation of a feature over the training set, more is
its relative importance in discriminating the user’s genuine
signatures from the forged ones. Thus, a feature’s relative
importance (RIM) may be expressed as

RIMi =
1��������

1+ s2
i

√ (7)

The variances between RIMs of different features are very
large, making them unsuitable for direct use as weighting
factors. A sigmoid function is therefore used to normalise
the RIM into the range from 0 to 1. This provides us a
measure of the feature’s normalised relative importance
(NRIM) given by

NRIMi =
1

1+ exp −RIMi

( ) (8)

The weight of the ith feature is then obtained as

Wi =
NRIMi∑n
j=1 NRIMj

(9)
Fig. 6 Triangular membership functions for the inputs as well as the o

8
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These weights are used to obtain two values of TDOM, one
each for the shape and dynamic features. These TDOMs are
computed as

TDOM =
∑n
i=1

Wi × DOMi

( )
(10)

The summations in (9) and (10) are done over all the n
features in the respective feature set.
4. Find the degree of authentication (DOA) for each segment
expressed as a percentage: The overall DOA of each segment
is obtained as the output of a two-input, single-output and
multiple-rules Mamdani fuzzy system for which the
TDOMs of shape and dynamics are the two inputs. This
gives an overall measure of authenticity for each segment of
the test signature.

The two input linguistic variables used are ‘TDOM of
shape’ and ‘TDOM of dynamics’ whereas the output
linguistic fuzzy variable is ‘DOA of segment’. The number
of linguistic terms partitioning the input and output spaces
is set to 11 each so that there is one term whose triangular
membership function is centred at each of the multiples of
ten from 0 to 100 (both inclusive). For the sake of
convenience, these linguistic terms are assigned integers
(called linguistic IDs or LIDs) from 1 to 11 rather than
names. It should be noted from Fig. 6 that higher numbers
denote lower degrees of match. The associated functions are
identical for each of the two inputs as well as the output, as
shown in Fig. 6. The rule base used in this work is given in
Table 2.
To further elucidate the meaning of the membership

functions and the rule base, the rules that are fired for the
example of Fig. 7, with TDOM values of 92 and 87%,
respectively, for dynamic and shape feature sets, are given
in the conventional If–Then rule form as follows:

i. If Shape TDOM has LID 1 and Dynamic TDOM has LID 2
Then segment DOA has LID 2
ii. If Shape TDOM has LID 1 and Dynamic TDOM has LID 3
Then segment DOA has LID 3
iii. If Shape TDOM has LID 2 and Dynamic TDOM has LID
2 Then segment DOA has LID 3
utput

IET Biom., pp. 1–15
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Table 2 Rule base for fuzzy inference

S. No. TDOM of dynamics

1 2 3 4 5 6 7 8 9 10 11

TDOM of shape 1 1 2 3 4 5 6 7 8 9 10 11
2 2 3 4 5 6 7 8 9 10 11 11
3 3 4 5 6 7 8 9 10 11 11 11
4 4 5 6 7 8 9 10 11 11 11 11
5 5 6 7 8 9 10 11 11 11 11 11
6 6 7 8 9 10 11 11 11 11 11 11
7 7 8 9 10 11 11 11 11 11 11 11
8 8 9 10 11 11 11 11 11 11 11 11
9 9 10 11 11 11 11 11 11 11 11 11

10 10 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11

Fig. 7 Graphical representation of Larson’s method

www.ietdl.org
iv. If Shape TDOM has LID 2 and Dynamic TDOM has LID
3 Then segment DOA has LID 4

Larson’s method is used to combine the rule base and the
membership functions to obtain a single crisp value for
each segment. A graphical representation of Larson’s
method is shown in Fig. 7, where singleton fuzzification
and mean of maximum (MOM) defuzzification methods are
employed. The defuzzified percentage DOA of the segment
is given by (refer to Fig. 7)

DOA(segment%)

= 0.2× 90+ 0.2× 80+ 0.7× 80+ 0.3× 70

0.2+ 0.2+ 0.7+ 0.3
= 79.28%

5. Classify the test signature based on its TDOA: The total
degree of authentication (TDOA) of a signature sample is
IET Biom., pp. 1–15
doi: 10.1049/iet-bmt.2012.0048
defined as the arithmetic mean of the DOAs of all of its
segments. This value is compared with a user-dependent
threshold to classify the sample as either genuine or forged.
The expression for calculating the TDOA of a sample
having k segments is

TDOA = 1

k

∑k
i=1

DOAi (11)

4 Performance evaluation

For verifying a test signature, it must be given as the input to
the fuzzy model, learned during the training stage to obtain a
single similarity score (TDOA). This is then compared with a
threshold, selected during the training stage, to classify the
signature as genuine or forged. For identifying an unknown
signature, it must be passed through the models of all users
9
© The Institution of Engineering and Technology 2013



www.ietdl.org

in the database and the user whose model gives the maximum
TDOA relative to his/her genuine training samples subject to
the condition that it is above the threshold specific to the same
user is identified with the unknown signature. If a signature
sample fails to cross the threshold for any of the users in
the database, it is classified as unknown.
Automatic signature verification can produce two types of

errors: Type I error, which is concerned with the false
rejections of genuine signatures called the false rejection
rate (FRR); and Type II error, which is concerned with the
false acceptance of forged signatures called the false
acceptance rate (FAR). Typically, FAR decreases while
FRR increases as the threshold is increased. The equal error
rate (EER), which is another measure of the overall
accuracy of a system, arises when FRR is made equal to the
FAR by adjusting the threshold [34]. The forgeries used in
the verification process are categorised as random and
skilled. In the case of a random forgery, the forger has
either no knowledge of the original signature or does not
try to imitate it. A skilled forgery, on the other hand, is
attempted by a professional imposter who traces over or
imitates the signature as best as he can. Skilled forgeries
already exist in the two databases whereas random
signatures of other users serve as random forgeries.

4.1 Databases

Two publicly available databases used in this work are
described now.
4.1.1 SVC2004: This database [35] has two sets of
signatures, namely, Task 1 and Task 2; out of which only
Task 2 signatures have been used in this work. This set
contains signatures of 40 users with 40 samples for each
user. Out of 40 samples, 20 are genuine and the rest are
skilled forgeries. Each signature in Task 2 is represented as
a sequence of points, containing x coordinate, y coordinate,
time stamp and pen status (pen-up or pen-down), azimuth,
altitude and pressure. Some sample signatures from this
database are shown in Fig. 8.
Fig. 8 Sample signatures from SVC2004

10
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4.1.2 SUSIG: This database [36] has two sets, viz., blind
and visual sub corpus. We have used the second set. This
set contains signature data of 100 users; but we have used
the data of only 94 users with each having 20 genuine and
10 skilled forgery signatures because the remaining six
users have one or more signatures missing. The
representation of signature data is similar to that of
SVC2004 except that the data on azimuth, altitude and pen
status is not available in SUSIG. A few sample signatures
from this database are shown in Fig. 9.

4.2 Experiments and results

4.2.1 Performance evaluation methodology: Two
sets of experiments are conducted to evaluate the system
performance, with the first one using only skilled forgeries
while the second one including random forgeries in
addition to skilled forgeries. Each set of experiments takes
the training samples of 5 and 10, with the remaining
genuine samples being used for testing along with the
forgeries. To increase the reliability of the results, cross
validation is done with five trials on each user. A different
set of genuine samples, selected randomly, comprises the
training set in each of these trials. The random forgeries in
the second set of experiments are obtained by randomly
selecting 10 samples belonging to other users in the
database. Note that the experiments are conducted on each
database separately.
The overall system performance is evaluated using two

measures: accuracy and EER. Here, accuracy is defined as
the percentage of forgery samples whose TDOA is less than
the TDOA of the genuine sample with the minimum
TDOA. It is calculated independently for each user and
then averaged over all users in the database to obtain the
system accuracy. EER is obtained at the point where the
FAR equals the FRR, where FAR is the percent of forgery
samples whose TDOA≥ threshold, whereas FRR is the
percent of genuine samples whose TDOA < threshold. Two
different methods are used in this work to evaluate EER.
User-dependent threshold: As stated in Section 1, this

work emphasises the user-dependent thresholds at the
verification stage. In this approach, the values of FAR and
FRR are obtained for each user for a range of thresholds
and these are used to draw plots of FAR against threshold
and FRR against threshold. The point of intersection of
these two plots gives EER for that user. In the case of cross
validation with multiple trials, EER is evaluated
independently for each trial and mean is taken over all trials
for a user to obtain EER for that user. Finally, the overall
EER of the system for a particular database is computed as
the mean of EERs of all the users in the database. A few
Fig. 9 Sample signatures from SUSIG
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Fig. 10 User-dependent threshold-based FAR/FRR curves for the same user from SUSIG database

a) Trial 1 b) Trial 2 c) Trial 3 d) Trial 4 e) Trial 5

www.ietdl.org
sample FAR/FRR curves for the same user are shown in
Fig. 10.
Global threshold: Even though this system relies on

user-dependent threshold, results are obtained using both
IET Biom., pp. 1–15
doi: 10.1049/iet-bmt.2012.0048
global threshold and user-dependent threshold for the sake
of comparison. TDOAs obtained for all the users in the
database are combined and subjected to a single threshold,
varying from 0 to 100, to obtain FAR and FRR values for
11
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Table 3 Results of the first set of experiments (only skilled
forgeries) on SVC2004 database where N = no. of training
samples

SVC2004 (only
skilled forgeries)

Accuracy,
%

EER, %

User-dependent
threshold

Global
threshold

N = 5 proposed
method

93.525 2.458 7.571

method of
[5]

55.050 14.930 19.088

N = 10 proposed
method

96.175 1.781 5.250

method of
[5]

65.975 11.538 15.277

www.ietdl.org

each threshold. These values are used to obtain a plot of FAR
against FRR and its intersection with the line x = y gives the
global EER. The curves due to the proposed method and
the method of [5] are shown in Fig. 11.
As expected, EER obtained with the global approach

proved to be significantly higher than the mean EER
obtained using user-dependent thresholds for both databases
(Tables 3 and 4).

4.2.2 Comparison with signature-level fuzzy
modelling: To evaluate the effectiveness of segment-level
fuzzy modelling over signature-level fuzzy modelling, we
have also implemented the method in [5] and conducted the
above experiments on this system too. Since no details
about preprocessing are mentioned in [5], experiments using
this method are conducted on the original data. Although
the results of SVC2004 are as expected, with our system
outperforming that of [5] by a large margin (Table 3), the
results of SUSIG are very similar on both methods
(Table 4), with [5] having a slight advantage.
Fig. 11 Error tradeoff curves with global threshold using only skilled f

The curves corresponding to the proposed method are shown with solid lines whe
The point of EER is marked with a black dot on each curve
a SVC2004 with 5 training samples
b SVC2004 with 10 training samples
c SUSIG with 5 training samples
d SUSIG with 10 training samples

12
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It may be noted that genuine signatures in SVC2004 are not
real signatures, unlike those in SUSIG, because people who
provided signatures have made up signatures for the sake of
contribution leading to more variation within genuine
orgeries (Set 1)

reas those of [5] are shown with dotted lines

IET Biom., pp. 1–15
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Table 4 Results of the first set of experiments (only skilled
forgeries) on SUSIG database where N = no. of training samples

SUSIG (only skilled
forgeries)

Accuracy,
%

EER,%

User-dependent
threshold

Global
threshold

N = 5 proposed
method

94.660 1.303 5.386

method of
[5]

95.340 1.319 4.116

N = 10 proposed
method

96.064 1.037 4.021

method of
[5]

98.638 0.684 2.234

Table 7 Results of the second set of experiments (both skilled
and random forgeries) on SUSIG database where N = no. of
training samples

SUSIG (skilled and
random forgeries)

Accuracy,
%

EER,%

User-dependent
threshold

Global
threshold

N = 5 proposed
method

95.904 1.234 4.567

method of
[5]

92.585 3.731 6.304

N = 10 proposed
method

97.447 0.911 3.394

method of
[5]

95.574 2.712 4.733

Table 6 Results of the second set of experiments (both skilled
and random forgeries) on SVC2004 database where N = no. of
training samples

SVC2004 (skilled
and random
forgeries)

Accuracy,
%

EER,%

User-dependent
threshold

Global
threshold

N = 5 proposed
method

95.783 1.653 5.493

method of
[5]

64.783 13.468 16.754

N = 10 proposed
method

98.300 0.906 3.466

method of
[5]

73.550 10.701 13.615

Table 8 Comparison with other methods using SVC2004
database

Authors Year Method EER,
%

Ong et al. [37] 2009 statistical quantisation
mechanism (SQM),
user-dependent threshold

5.32

Fierrez-Aguilar
et al. [38]

2005 fusion of local (DTW) and
regional (HMM) approach,
user-dependent threshold

6.91

SVC 2004 [35] 2004 team 219b 6.90
Mohammadi
et al. [39]

2012 extended regression and
DTW, user-dependent

6.33

www.ietdl.org
samples than would be possible in the real signature, thus
making the task of separating the genuine and forged
signatures more difficult. To verify this, we have calculated
the mean difference between the TDOA of genuine samples
and that of skilled forgery samples using our method and
that in [5] on both databases and found this difference to be
significantly larger for SUSIG indicating a greater ease of
separation than in SVC2004 (Table 5).
To the best of our knowledge, the approach in [11] is the

only other existing method in the literature, apart from ours,
that has been tested on both SVC and SUSIG databases.
The results obtained there too are consistent with our
observation since the EER obtained on SVC database (7.02)
is nearly three times the EER on SUSIG (2.46). Owing to
this difference, SVC2004 database benefits greatly from the
additional fine information captured by segmentation level
modelling, while the benefits are minimal for SUSIG where
signatures differ enough for even signature-level modelling
to be able to separate them with ease. In fact, the additional
information provided by segmentation even appears to have
a slight negative impact on the results. Thus, we conclude
that our method is more suitable for situations where the
forgery has been executed with great skill.
Since random forgeries are easier to detect than skilled

ones, we expected the results to improve when 10 random
forgeries were added to the testing set. The results of the
proposed method indeed show a marginal improvement for
both SVC2004 and SUSIG databases. The results of [5],
however, show an increasing trend in results only on
SVC2004 (Table 6) but exhibits a significant decline in
results on SUSIG (Table 7). This could be due to the fact
that the features extracted from a genuine signature match
with those extracted from a completely different signature
(i.e. random forgery). This unexpected behaviour is
observed more with the signature-level feature extraction
method of [5] than with the proposed segment-level feature
extraction method. Thus, the method of [5] is more likely to
confuse with a genuine signature as a random signature
than the proposed method.

4.2.3 Comparison with other methods: In order to
compare the performance of our method with other
Table 5 Mean difference between the TDOAs of genuine and
skilled forgery samples using five training samples

SUSIG SVC2004

proposed method 34.171 25.457
method of [5] 45.561 15.432

IET Biom., pp. 1–15
doi: 10.1049/iet-bmt.2012.0048
contemporary methods, we have considered EER based on
the user-dependent threshold to represent our system’s
accuracy. All results are the outcome of using five training
samples with no random forgeries.
A comparison of the results is given in Table 8 and Table 9

for SVC2004 and SUSIG databases, respectively. Results of
the proposed method have been obtained using min_
fraction = 0.03 for SVC2004 and min_fraction = 0.04 for
SUSIG, with global_min = 5 for both the databases.
threshold
Wang et al. [11] 2011 segmentation and graph

matching, user-dependent
threshold

7.02

Fallaha et al. [24] 2011 Mellin transform and MFCC,
neural network

3.00

proposed method 2013 segment-level fuzzy
modelling, user-dependent
threshold

2.46
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Table 9 Comparison with other methods using SUSIG
database

Method Year Method EER,
%

Khalil et al.
[40]

2009 multiple feature set and DTW,
user dependent threshold

3.06

Khomatov
et al. [36]

2009 Fourier descriptor and DTW 2.10

Ibrahim et al.
[41]

2009 Fisher linear discriminant (FLD)
analysis, user-dependent
threshold

1.57

Wang et al.
[11]

2011 segmentation and graph
matching, user-dependent
threshold

2.46

proposed
method

2013 segment-level fuzzy modelling,
user-dependent threshold

1.30

www.ietdl.org
5 Conclusions

A novel online signature verification method is developed
using segment-level fuzzy modelling of features. The fuzzy
modelling requires a simple rule-base and a few simple
features. The matching of the features of a test signature
with the training features is done using a similarity score
called the TDOA which is based on the TDOM of
individual segments. The results obtained by our method
are either comparable to or better than the existing methods
even though some of them are complex and
computationally intensive. This is an indication of the
potential underlying the concept of the localised fuzzy
modelling. The use of segment-specific features coupled
with a sophisticated rule base with some additional
computation may improve the results.
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