
An Assessment of the Impact of Dimensionality 

Reduction on the Speed and Accuracy of 

Hyperspectral Image Classification 
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accuracy and speed of classifying Hyperspectral remote sensing 
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evaluated on both natural and man-made scenarios. 
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I.  INTRODUCTION  

Hyperspectral imagery is a relatively recent development in 
remote sensing technology that has the potential to allow the 
extraction of much finer details about a region on earth’s 
surface than was possible with older technologies like 
multispectral imagery. A hyperspectral image consists of a 
large number of very narrow contiguous spectral bands, each 
around 10 to 20 nm wide. The number of bands can vary from 
few tens to several hundreds and usually cover visible through 
middle infrared spectrum ranges (usually between 0.4 to 2.4 
micrometers). This property of hyperspectral images enables 
the construction of a continuous spectral signature for each 
pixel of the image which can be compared to the spectral 
signatures of known substances to identify the composition of 
the land surface at a very fine level of detail. 

However, hyperspectral images suffer from the 
disadvantage of requiring very high computational and 
storage/transmission bandwidth because of the large quantity 
of data involved. In addition, the presence of large number of 
narrow bands leads to the problem of redundancy since 
neighbouring bands often contain very similar information and 
are therefore highly correlated. Thus, some form of 
dimensionality reduction is needed to eliminate this 
redundancy while still retaining sufficient information to 
achieve acceptable classification accuracy. 

Some of the popular techniques for carrying out 
dimensionality reduction include Principal Component 
Analysis (PCA) - hierarchical PCA [1] and spectrally 
segmented PCA [2], Independent Component Analysis (ICA) 
[3], fract analysis [4], wavelet spectral analysis [5], multi linear 
algebra [6], extended morphological transformations [7], clonal 
selection [8] and piecewise constant function approximations 
[9]. The subsequent task of classification has also been the 
subject of extensive research and many approaches exist for it, 
including Independent Components Analysis [10, 11], multiple 
classifiers [12], support vector machines (SVM) [13, 14], 
mixture classifiers and nonparametric weighted feature 
extraction [15], structured Gaussian components [16], sparse 

inverse covariance estimates[17], and orthogonal subspace 
projections [18]. 

The ICA based dimensionality reduction method used here 
is detailed in [19, 20] and uses band selection rather than 
feature extraction [3]. The FastICA algorithm [21] has been 
used to implement ICA. The algorithm used for implementing 
the SVM classifier is called Sequential Minimal Optimization 
and has been introduced in [22] with  a more detailed 
description, including some ideas for implementation, being 
presented in [23]. 

II. METHODOLOGY 

A. Datasets and Pre-Processing 

Two data sets have been used for evaluating the results:  

a) Indian Pines Test Site (IP): This is a 224 band image of 
north-west Tippecanoe County, Indiana captured by the 
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 
sensor. The image has a size of 145x145 pixels and is divided 
into 16 classes according to the ground truth map. Out of the 
originally captured 224 bands, 4 contained no information and 
had been discarded at source, so that the downloaded data had 
only 220 bands.  

b) Washington DC Mall (WDC): This is a 210 band image 
of a mall in Washington DC, captured as part of the 
Hyperspectral Digital Imagery Collection Experiment 
(HYDICE). The image is 307x1280 pixels in size and is 
divided into 6 classes according to the ground truth map. 

 Both datasets and their ground truth maps are available at 
[24]. 

Before carrying out dimensionality reduction and 
classification, several pre-processing steps have been applied to 
simplify the subsequent tasks. These include atmospheric 
correction, elimination of water absorption bands (both using 
ENVI software package) and removal of bands containing too 
much noise by visual inspection. These methods resulted in the 
elimination of 35 bands from AVIRIS data set (20 were in 
water absorption region rest had too much visible noise) and 19 
bands from the 210 band HYDICE image. Thus, 185 bands 
were retained for the former and 191 bands for the latter. 

B. Algorithms 

Results have been reported here for three different approaches 

to dimensionality reduction (DR). The first one uses the ICA 

separating matrix to evaluate the relative information content 

of each of the bands and selects the most informative ones [19, 

20]. The second approach is based on Principal Component 

Analysis (PCA) and uses eigenvectors to select the bands 



corresponding to the direction of maximum covariance.  The 

third method is called random band selection (RBS) and 

involves selecting a few unmodified bands at random from the 

original data. This last method has been used to evaluate the 

advantages of applying the aforementioned transformations 

(ICA/PCA) to the data over simply using a random subset of 

the original bands.  

Dimensionality reduction is followed by the use of a SVM 

based classifier [13] to detect different classes of the land 

cover from the images. Since SVM is essentially a binary 

classification method, it must be adapted for carrying out 

multi-class classification. There are several strategies for 

accomplishing this [13], three of which have been used in this 

work: 

a) Parallel one against all (OAA): This involves building one 

SVM for each class such that each SVM compares the 

corresponding class against all others. The test sample is then 

tested against each of these and is classified to the class, the 

SVM corresponding to which produces the maximum output. 

b) Parallel one against one (OAO): This involves building one 

SVM for comparing each possible pair of input classes thus 

leading to the construction of k(k-1)/2 SVMs for k class 

problem. The test sample is evaluated against each of these 

and is assigned to the class with the maximum number of 

victories.  

c) Binary hierarchical tree with balanced branches (BHT): 
This involves building a hierarchy of SVMs such that each 
compares two groups of classes with roughly equal apriori 
probabilities. The SVM corresponding to the root of the tree 
divides the input classes into two roughly equal parts; each of 
its children further divide these into two equal subgroups and 
so on till each node corresponds to only one class. A test 
sample is evaluated by passing it down the tree from parent to 
child depending on which child wins at each step. The 
classification decision is made implicitly by the leaf node it 
ends up at. 

III. TESTING AND RESULTS 

A. Setup 

All tests have been conducted on an Intel Core-i7 950 based 
system clocked at 3.06GHz and having 6 GB of RAM. 
MATLAB has been used for implementing the algorithms. The 
total pixel counts for the IP and WDC datasets are 21025 and 
392960 respectively (these reduce to 10366 and 136992 
respectively after discarding the pixels marked as background 
in the ground truth map). Due to limitations of time and 
computational resources, only subsets of these pixels, selected 
randomly from the entire image, have been used for evaluating 
the results.  

Since the distribution of pixels between different classes 
cannot be predicted in any random selection, it is possible for 
most pixels to belong to only one or two classes while leaving 
several other classes with too few pixels. Such an uneven 
distribution can result in the SVM classifier becoming biased 
towards the majority classes and giving incorrect classification 
for the others. To avoid such misclassifications, only those 

classes whose pixel counts are above a certain threshold are 
used for training (and subsequent testing) in any given run; 
remaining classes are discarded. Half the remaining samples 
are used for training and the other half for testing. The value 
used for this threshold here is 5% of the total samples (i.e. 
50,100 and 500 respectively for 1000, 2000 and 10000 
samples). This discarding procedure reduces the number of 
classes to 5 and 12 respectively for WDC and IP datasets. 

Experiments have been conducted with two configurations 
of the SVM classifier: one combines a small value of the 
learning parameter (parameter 'C' in [23]) with a simpler linear 
kernel while the other one uses a much larger value but with a 
more complex non-linear kernel based on the radial basis 
function (RBF). The former configuration (C=0.05/Linear 
kernel) is much faster at the cost of lower accuracies while the 
latter (C=40/RBF kernel) is slower but gives better accuracies, 
especially in more difficult scenarios. 

Classification accuracy is measured in terms of the 
percentage of total testing pixels classified correctly. Run time 
is the total time taken (in seconds) for performing both 
dimensionality reduction and classification. 

B. Result Summary 

1) No dimensionality reduction: To establish a baseline for 

performance comparisons, classification accuracy and run 

time were evaluated for both datasets without applying any 

dimensionality reduction. These are summarized in Table 1. 

 
Classification Accuracy (percent) 

Number of 
samples 

Washington DC Mall Indian Pines Test Site 

OAA OAO BHT OAA OAO BHT 

1000 92.96 91.75 91.95 76.83 79.91 77.78 

2000 94.27 92.56 90.95 81.43 84.13 80.07 

10000 94.09 93.89 93.49 88.32 92.47 87.80 

25000 94.25 94.66 94.22 NA NA NA 

Classification Time (seconds) 

1000 432 103 218 610 239 467 

2000 1678 327 441 2561 992 1662 

10000 18782 4914 10623 27333 8701 13071 

25000 84663 18473 52692 NA NA NA 

TABLE 1 CLASSIFICATION RESULTS WITH NO DIMENSIONALITY 

REDUCTION 

2) Varying SVM multi-class strategy: It is evident from 

Table 1 that OAO multi class strategy not only gives better 

accuracy than the others (in most cases) but is also the fastest, 

often by a large margin too. To verify if these observations 

hold true with less bands too, tests were conducted using RBS-

DR method. The results are presented in Fig. 1. 

3) Applying dimensionality reduction: Plots were obtained 

for both datasets by varying the retained dimensions from 5 to 

175 in steps of 10 and evaluating the accuracy and run time 

for each such run. All tests were conducted using OAO multi 

class strategy with the slower and more accurate configuration 

of the SVM classifier. The results are summarized in Fig. 2 

and 3. 

 



 

 

 

Fig. 1 Classification results for different SVM multi class strategies using 1000 samples with RBS-DR: (a) Washington DC dataset (b) Indian Pines dataset 

 

Fig. 2 Classification results for different DR techniques using Washington DC dataset and OAO strategy: (a) 1000 samples (b) 2000 samples (c) 10000 samples 



 

 

Fig. 3 Classification results for different DR techniques using Indian Pines dataset and OAO strategy: (a) 1000 samples (b) 2000 samples (c) 10000 samples 

 

Fig. 4 Classification results for different SVM configurations using 2000 samples with PCA-DR: (a) Washington DC dataset (b) Indian Pines dataset 



 

4) Varying SVM configuration: As mentioned earlier, two 
different configurations of the SVM classifier were used for 
evaluating the results. These results are summarized in Fig. 4. 
All the reported results were obtained using OAO multi class 
strategy combined with PCA-DR method. The results of other 
DR methods followed a similar trend and are not reported here 
to avoid cluttering the graphs. 

C. Result Analysis 

Several points can be observed from the results. To begin 
with, it can be noted from Fig.1 that the trend observed earlier 
from Table 1 holds true for fewer dimensions too; OAO is 
usually the most accurate and also the fastest while OAA, 
though giving good accuracies, is slower by very large gins. 
BHT performs in between these two though its speed is much 
closer to that of OAO. 

Moving on to Fig. 2 and 3, the first point to be noted is the 
significant difference in performance of the same DR method 
between the two datasets, both in terms of accuracy and 
processing time. The WDC dataset not only gave much higher 
accuracy figures than IP dataset but also required significantly 
less time to process. There are two probable reasons for this. 
Firstly, the WDC dataset features a man-made scenario with 
classes consisting of well defined structures like buildings, 
roads, water bodies and gardens, that exhibit relatively less 
intra-class variations in their reflectance characteristics. The IP 
dataset, on the other hand, represents a natural undeveloped 
scenario where classes consist of individual types of plants like 
wheat, soybean, corn, oats and so on. These classes are bound 
to exhibit a lot more intra class variations than the 
comparatively well separated classes of the WDC dataset. 
Secondly, the IP dataset also features much larger number of 
classes than the WDC dataset (16 vs. 6) which obviously 
makes the task of correctly classifying it more difficult. 

To summarize, it can be stated that the former involves a 
much finer level of classification and therefore requires more 
bands to extract sufficient information from the data. Hence its 
accuracy curves tend to reach saturation around 50-60 bands 
(Fig. 3) as opposed to the 10 band saturation achieved by the 
WDC dataset (Fig. 2). 

Another important observation is that even though ICA is 
the most mathematically robust of the three techniques tested 
here, it invariably gave the worst results. In addition, the 
performance gap between ICA and the other methods was 
much wider in the more difficult case of the IP dataset where it 
takes around 120 bands to provide classification accuracy even 
comparable to (but still worse than) the others. This is contrary 
to expectations since a more robust method would be expected 
to perform better in more challenging scenarios. In fact, with a 
few exceptions, the simplest (and trivial) DR technique of RBS 
gave the best performance out of the three, though PCA was 
usually too close, at least in terms of accuracy, to give it a clear 
advantage.  

It can further be noted from the curves of PCA and ICA-BS 
in Fig. 2(c) and 3(c) that the classification time does not 
increase on using more bands once the sample size becomes 
large enough, a tendency that can be observed when less 
samples are involved (Fig. 2(a, b), 3(a, b)). This in turn 

indicates that applying sophisticated DR techniques provides 
no advantage with respect to processing time provided the 
number of samples involved is large enough. It can also be 
seen that the trivial RBS-DR technique shows an almost linear 
increase in processing time in all 3 test cases. This does not 
indicate any performance disadvantage for this technique, 
however, since its run time remains comparable to the other 
methods even when it reaches maximum; it merely indicates 
that RBS-DR gradually loses its speed advantage over other 
methods as the number of bands increases. 

Comparing the two configurations of the SVM classifier 
further reinforces the earlier observation regarding the 
discrepancy in the classification difficulty levels of the two 
datasets since the performance difference between the two 
configurations is much less for the WDC dataset (Fig. 4(a)) 
than for the IP dataset (Fig. 4(b)). Another noticeable point 
here is the flat nature of the time curves of the simpler 
configuration (C=0.05) as opposed to the (mostly) increasing 
time curve of the more intensive configuration (C=40), 
signifying that the use of more dimensions negatively impacts 
the classification speed only when a more rigorous classifier is 
used. Finally, the number of bands required for the accuracy 
curves to reach relative saturation was same for both 
configurations, thus indicating that intensiveness and 
complexity of the classifier have little influence on the number 
of bands required to extract (most of) the useful information 
from hyperspectral data; it depends only on the complexity of 
the dataset involved. 

D. Conclusion and future scope 

Several tests were carried out using three different DR 
methods combined with three multi class strategies and two 
configurations of a robust SVM based classifier. Results were 
evaluated on both natural and man-made scenarios and several 
interesting points, pertaining to the impact of dimensionality 
reduction relative to the complexity of the classifier and the 
dataset involved, were cleared by the analysis of these results. 
However, all the DR methods used here were comparatively 
simple ones and conducting additional tests with more 
mathematically rigorous DR techniques may throw additional 
light on the unexpected poor performance of the ICA DR 
method and the lack of any advantage of PCA over the trivial 
RBS technique. 
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