
Improving model-based RL with Adaptive Rollout
using Uncertainty Estimation

Nhat M. Nguyen
University of Alberta

Alberta T6G 2R3
nmnguyen@ualberta.ca

Abhineet Singh
University of Alberta

Alberta T6G 2R3
asingh1@ualberta.ca

Kenneth Tran
Microsoft Research

WA 98052, USA
ktran@microsoft.com

Abstract

Recently, incorporating a learned dynamic model in generating imagined data has
been shown to be an effective way to reduce sample-complexity of model-free RL.
Such model-free/model-based hybrid approaches usually require rolling out the
dynamic model a fixed number of steps into the future. We argue that such fixed
rollout is problematic for several reasons. We propose a simple adaptive rollout
algorithm to improve the model-based component of these approaches and conduct
experiment on CartPole task to evaluate the effects of adaptive rollout.

1 Introduction

Reinforcement learning (RL) is a general framework where an agent interacts with the environment
to solve specific tasks through trial-and-error. There are two prominent paradigms in RL: model-free
and model-based RL. They both have distinct strengths and weaknesses.

Model-free RL learns the state/state-action values only from the rewards and does not explicitly
exploit the rich information underlying the dynamic transitions data. Model-free RL algorithms
have been shown to achieve impressive feats in many high dimensional problems [17, 19]. Despite
their recent successes, one main limitation of model-free RL algorithms is that they often require
massive amounts of data samples for training. For example, simplest RL tasks like mountain-car or
cart-pole usually require tens or hundreds of episodes to learn. This data-inefficiency problem makes
it almost impossible for these algorithms to be as effective in control/robotic domains where the costs
associated with real system interactions are high.

In contrast to model-free RL, model-based algorithms require models of the underlying system
dynamics to be learned. Theoretically, when a good model is available, the agent can use it as a
simulator to generate future observations and thus accelerate learning without having to interact with
the real system as much. This leads to much better sample-efficiency than model-free RL. In practice,
however, the assumption about the accuracy of the learned dynamic model is usually not satisfied,
especially in real-world systems where the dynamic models are often complex and the environment is
not fully observable. This kind of model error makes model-based RL less preferable to model-free
RL in a wide range of tasks and is a crucial subject to address when employing model-based RL since
even small biases in the learned model can lead to strongly-biased sub-optimal policies.

Many solutions have been proposed to compensate for the weaknesses of model-free and model-based
RL. One of the preferred techniques is to integrate the learned dynamic model as a component of

Preprint. Work in progress.



model-free algorithms. For example, the Dyna-Q family [21, 11] learns the dynamic model to
generate imagination rollouts for Q-learning in addition to the ones obtained from interacting with
the real environment. A recent work [18] uses the policy learned by a model-based RL algorithm as
initial policy for a model-free learner. [1] use the learned dynamic model to compute the trajectory
distribution corresponding to a given policy and consequently the estimated cost of the policy. This
approximated cost is then used to guide policy exploration for the model-free learner using Bayesian
optimization. [6] improve the sample-complexity of model-free learning by restricting the use of
the learned dynamic model to a fixed depth while allowing wider usage of the dynamic model.
Overall, model-based/model-free hybrid methods have been shown to achieve on-par performance
with model-free algorithms while having lower sample-complexity.

Most of the model-based components of the aforementioned methods utilize fixed number of steps
rollout: they use the learned dynamic model to simulate transitions exactly H steps into the future.
The imagined transitions can help to improve value estimation because the agent can "look ahead"
and see what future states might follow from whatever action it is taking. This prevents the agent
from exploiting bad actions that have high short-term gain.

However, such fixed rollout strategies have several drawbacks. First, rolling out a fixed number
of steps can lead to a situation where simulated transitions are no longer accurate enough due to
errors in the dynamic model. This usually causes catastrophic drop in performance as the agent will
be provided with states that are too different from the real environment or are simply unreachable.
Second, fixed rollout does not take into account the fact that imagined transitions are usually more
useful at the beginning of training when the value estimation functions have not started to converge
yet and less useful at the end of training where real data provides much better training targets for
the agent. An ideal rollout strategy would rollout just enough number of steps, usually more in the
beginning and less or even none at the end of training. Finally, for many algorithms, the number of
fixed rollout steps is a hyper-parameter that needs to be chosen during training. Automatic selection
of rollout steps can reduce training time significantly.

In this paper, we propose an adaptive rollout algorithm for model-based RL based on the error
estimate of the dynamic model and the state value function. In our algorithm, we only rollout until
the estimated compound error of the dynamic model is higher than the estimated error of the next
state value. This adaptive rollout strategy is similar to human planning: we can only predict a certain
number of steps into the future until our forecasting model of the world becomes too unreliable and
we have to rely on a rough value estimate of the last predicted state instead. This adaptive rollout
algorithm should address the problems with fixed rollout. Adaptive rollout alleviates the effects of
compound model errors as we explicitly use a heuristic to control when to stop rolling out based
on compound model errors. Our rollout algorithm should also have fewer rollout steps into the
future at the end of training, as the state value error estimate should be small during this period.
Finally, adaptive rollout chooses the number of rollout steps automatically, thus removing the need
for additional hyper-parameter tuning.

2 Background

2.1 Markov Decision Process

Following the notations in [6], a deterministic Markov Decision Process (MDP) is specified by the
5-tuple (S,A, f, r, γ). Here, S and A are the sets of possible states and actions, f : S × A → S
is the deterministic state transition function, r : S → R is the bounded reward function, and γ is
the discount factor used to attach less importance to more distant rewards. The main objective in
solving an MDP problem is to determine a deterministic policy π : S → A that can choose an
action in each state so as to maximize the long-term γ-discounted cumulative reward. This work
assumes continuous state and action spaces so that π is a function of real values parameterized by θ.
This parameterization is assumed to be implicit in the definition of π for simplicity though might be
explicitly indicated as πθ when needed.

The cumulative reward can be represented by the action value function Qπ : S × A → R defined
as Qπ(si, ai) =

∑∞
t=i γ

trt where rt = r(st, at) and actions are chosen according to π so that
at = π(st) and st+1 = fπ(st) = f(st, π(st)) ∀ t ≥ 0. An alternative way to express the cumulative
reward is through the value function V π : S → R defined as V π(s) = Qπ(s, π(s)). Since the true

2



value functions Qπ and V π are unknown, these are approximated using estimates denoted as Q̂ and
V̂ respectively. The objective function to be maximized for finding the optimal policy can then be
expressed as Jd0(π) = Ed0 [V π(S)] where S ∈ S is sampled from the initial state distribution d0.
Further, this work considers the off-policy setting where an exploratory policy is derived from π by
random perturbation. Assuming the corresponding states to have been drawn from a distribution ν,
the approximate objective is refereed to as Jν . Finally, with a slight abuse of notation, f and r will
be used to refer to learned models for the unknown state transition and reward functions respectively.

2.2 Neural networks with dropout as Bayesian Approximation

The dropouts technique was introduced by [20] to avoid over fitting while training deep networks.
This involves selecting a random subset of units in some or all layers during each forward pass and
turning them off, i.e. setting their outputs to zero. A fixed proportion of units is turned off for each
layer and a different set of units is selected for each forward pass, though the same one is used for the
corresponding back propagation too.

Let Wi and bi denote the weight matrix of size Ki ×Ki−1 and the bias vector of size Ki for the
ith layer of the network with L layers. Dropout in this layer is implemented by sampling a binary
vector zi from a Bernoulli distribution such that pi ∈ [0, 1] is the probability of each element of this
vector being 1 and the proportion of units turned off is thus 1− pi. The output of this layer is then
given as ŷi = σ((ŷi−1 ◦ zi)Wi + bi) = σ(ŷi−1(diag(zi)Wi) + bi) where σ is the non-linearity
(e.g. ReLU), ◦ denotes the element wise product while diag(·) is the diagonal matrix with its input
vector in the diagonal.

This technique was shown by [9] to be equivalent to performing approximate variational inference on
a deep Gaussian process (GP) [3] after marginalizing over the parameters of its covariance function.
This equivalence is shown by first approximating the deep GP posterior p(y|x) using a variational
distribution q(ω). The estimation of q(ω) through minimization of KL divergence is then further
approximated using single sample Monte Carlo integration to show that the final objective to be
optimized is identical to an L2 regularized loss function corresponding to Eq. ??. The detailed proof
is too mathematically involved to be included here even in condensed form. The reader is referred
instead to [9] and its separate appendix [8] for more details.

In addition to proving this equivalence, [9] also developed insights about how NNs with dropouts can
be used to estimate uncertainty of the network output. As shown in [8][sec. 2.3], the predictive distri-
bution is given as q(y∗|x∗) =

∫
p(y∗|x∗, ω)q(ω)dω. Uncertainty estimation is done by empirically

computing the first two moments of this distribution. In theory, this is done by sampling a set of T
binary vectors {zt1, ..., ztL} from the Bernoulli distribution to get the corresponding weight matrices
{Wt

1, ...,W
t
L}. These weights are then used to obtain T samples for ŷ∗ and the mean and variance

are computed over this sample set.

For the NN, this involves performing T stochastic forward passes through the network, each one with
a different set of units turned off, and then computing the sample mean and variance of the results
thus obtained. This is called Monte Carlo Dropout. Also, though, [9] mentioned that the inverse of
the model precision needs to be added to the sample variance, it turns out that this is not needed for
reinforcement learning applications, as shown, for instance, by [10].

3 Adaptive Rollout using Uncertainty Estimate

3.1 Adaptive Rollout

Consider a model-based RL algorithm that learns a state value function V , a dynamic model f and a
reward function r. Denote τ = (τ0, τ1, ..., τt) as the rollout trajectory using f and r starting from
τ0 with τi = (si−1, ai−1, ri−1, si) for i = 0, ..., t when the agent follows a policy π which can be a
greedy policy or a policy that is parameterized by θ. τ0 = (s−1, a−1, r−1, s0) where s0 denotes the
starting rollout state and s−1, a−1, r−1 denote previous state, action and reward.

Assume that f has the capability to output the compound error estimate between the rollout trajectory
and the true policy, i.e. the trajectory obtained when we follow the true dynamic model instead of
f . This compound error estimate can be defined as the squared error between the final state of the
rollout trajectory and the true dynamic model trajectory. One of the most common ways to model this

3



Algorithm 1 General Adaptive Rollout
Input: Starting transition τ0 = (s−1, a−1, r−1, s0). Policy π. State value function V with error
estimate. Dynamic model f with error estimate. Reward model r.
Output: Transitions τ1, τ2, ..., τt

1: t← 0
2: while true do
3: Generate an action at according to the policy π and current state st
4: Use f and r to generate the next transition τt = (st, at, rt, st+1). Also, record the compound

error estimate et,f of the next state.
5: Compute the value function for the next state V (st+1). Record the error estimate et,V .
6: if any(et,f > et,V ) then
7: break
8: end if
9: t← t+ 1

10: end while
11: return τ1, τ2, ..., τt

compound error estimate is to treat it as uncertainty in f and use probabilistic approaches like GP to
model this uncertainty. There have been many works that follow this paradigm, for example, PILCO
[5] and DeepPILCO [10]. The theoretical relationship between the variance of a GP and its mean
prediction error is well-known [12]. Additionally, we assume that V also has the ability to output
the estimated error for a state value. In this work, we only consider the case where the environment
is deterministic and the error estimate output by out models account only for their belief about the
accuracy of the predictions.

Starting from the transition τ0, the Adaptive Rollout algorithm proceeds as follows: at every step
t with current state st, the agent takes an action at according to the current policy π, gets a reward
rt from the reward model r and a next state st+1 with its compound error estimate et,f from the
dynamic model. After that, the agent computes the next state value V (st+1) and its error estimate
et,V . The agent then compares the two error estimates and if et,f > et,V at any step t, the agent stops
the rollout. This process continues as a loop until it is terminated using the aforementioned condition.

Note that, because the error estimate et,f of f is a vector that has the same dimensionality as the
states and et,V is a scalar, we cannot compare them directly. Instead, we compare each value in et,f
with et,V and if any of them is greater than et,V , we stop the rollout process. We denote this kind of
comparison as any(et,f > et,V ). Another issue is that, for the comparison between each value in
et,f with et,V to make sense, et,V and these values must have the same scale. In the general Adaptive
Rollout algorithm, we assume that both f and V output error estimates such that this scale condition
is satisfied. The general Adaptive Rollout algorithm is shown as Algorithm 1.

3.2 Adaptive Rollout using Neural Networks with Dropout

In this section, we discuss a special case of the general adaptive rollout algorithm where V and f are
represented by neural networks with dropout (Algorithm 2). Traditionally, model errors have been
treated as variance of GPs. However, GPs do not scale well to high dimensional problems as they rely
on Euclidean distance to define their input-space correlation which becomes uninformative in higher
dimensional problems [2]. Furthermore, GPs are slow too as their runtime scales cubically with the
amount of input data. Neural networks with dropout have been shown to approximate Deep GPs [4]
which are hierarchical extensions of GPs. They are also faster than GPs, as their time complexity only
scales linearly with the number of input samples and they can be computed very quickly on GPUs.
For a summary of neural networks with dropout, see section 2.2. In order to model f and V thus, we
need to address three issues: (1) How to compute the error estimate of V , (2) How to compute the
compound error estimate of the rollout trajectory, and (3) How to scale the error estimates for f and
V to the same scale.

Issue (1) is trivial as we can just do a couple of stochastic forward passes through our V once we
have the next state st+1 and use the variance of the output as our error estimate. To resolve issue (2),
we noticed that, after the first imagination rollout step, there is uncertainty in our states. Namely, our
state estimation is a probability distribution rather than a single point in the state space. To compute

4



Algorithm 2 Adaptive Rollout using Neural Network with dropout
Input: Starting transition τ0 = (s−1, a−1, r−1, s0) using particles method. K: number of parti-
cles/sampling time for reward and state value functions. Policy π and state value function V which
are parameterized by θ and ϕ (θ = ∅ in case π is a greedy policy) . f and r: state dynamic and
reward models.
Output: Transitions τ1, τ2, ..., τt

1: Initialize a set of K particles skt , 1 ≤ k ≤ K to s0
2: for k = 1 to K do
3: Sample dropout weight for kth particle W k

4: end for
5: t← 0
6: while true do
7: at ← πθ(st)
8: for each particle s1t to sKt do
9: Evaluate f(skt , at) with dropout weight W k and input particle skt , obtain output fkt

10: end for
11: Compute the mean µt,f and standard deviation σ2

t,f of {f1t , f2t , ..., fKt }
12: st+1 ← µt,f
13: Evaluate the next state value function Vϕ(st+1)K times.
14: Compute the mean µt+1,V and standard deviation σ2

t+1,V of the sampled state values.
15: if any(normalize_state(σ2

t,f ) > normalize_state_value(σ2
t+1,V )) then

16: break
17: end if
18: Evaluate the reward model r(st, at, st+1) to get rt.
19: τt+1 = (st, at, rt, st+1)
20: Sample a set of K new particles skt+1 ∼ N (µt,f , σ

2
t,f )

21: t← t+ 1
22: end while
23: return τ1, τ2, ..., τt

the compound error estimate, we need to propagate our state distribution through the dynamic model.
Similar to [10], we use particle method to feed a distribution through the dynamic model. This
involves sampling a set of particles from the input distribution and feeding the particles into the
dynamic model, which yields an output distribution represented by the output particles. At the start of
the rollout, the input distribution is the starting state s0. After each rollout step, the output distribution
becomes the input distribution for the next rollout step. Additionally, we re-sample a new set of
particles after each rollout step and fix the dropout mask W k for all K particles during the rollout
process, similar to [10]. The next state st+1 of the rollout is the mean value of the output distribution
while the compound error estimate up to the current rollout step is its variance.

To solve the scale problem in issue (3), we propose a simple heuristic to normalize the error estimates
of f and V by dividing each by its own estimated variance. This is equivalent to scaling the output of
f and V to unit scale. Specially, we divide the error estimate of f by the variance of all the states
in the replay memory R. For V , we first compute the expectation values of the states in the replay
memory (i.e. E[V (s)]) and then use the variance of these values as the estimated variance for V .
Because this operation is expensive, we only compute this variance for a number of states that are
randomly sampled from R and only done this computation once every few action steps. Note that
this normalization scheme is only applied to the comparison between error estimates of f and V only
nowhere else. Also note that this adaptive rollout algorithm can be easily attached to many existing
model-based RL algorithms as long as they use neural networks as their dynamic model and state
value function, which is quite common in the literature.

4 Related works

There have been several works that employ uncertainty estimate to improve model-based RL. Many
of these algorithms rely on using a probabilistic model of the agent’s ignorance of the world to allow
it to choose actions under uncertainty. The PILCO algorithm [5] learns a model from scratch using

5



GP and uses it for long-term planning. During policy evaluation, uncertainty is propagated through
time-steps to update the parameters of a linear controller using analytical gradients. PILCO achieved
an unprecedented sample efficiency even though it learned everything from scratch. The work by [10]
improves on PILCO by using neural networks with dropout as their probabilistic model instead of GP,
resulting in lower planning cost than PILCO. In [16], the authors use Model Predictive Control in
conjunction with reformulating the optimal control problem with learned GP models as an equivalent
deterministic problem to find optimal control signals, while handling constraints in a principled way.

Another way to use the uncertainty estimate is to limit the usage of the dynamic model based on the
uncertainty estimate of the rollouts. [13] combat the adverse effects of bad imagination rollout by
restricting the use of imagination data to only when the variance of the rollout batch is high. Their
work is arguably closest to ours. However, instead of restricting the usage of the whole rollout batch,
we use the uncertainty estimate to stop rollout early before the dynamic model become too inaccurate.

[7] introduced an alternative approach to reducing the rollout length while maintaining the planning
performance. They added an independent value function approximator or critic to the direct policy
iteration (DPI) algorithm [15] and used a portion of the total budget of environmental interactions or
model evaluations to train it. The return corresponding to the steps truncated due to the finite rollout
horizon was then approximated by this learned value function instead of implicitly setting it to zero.
Since the variance of the estimated return increases with the rollout length while its bias decreases,
this approach helps to reduce the variance while controlling the bias through incorporation of the
independent critic.

Another significant issue with longer rollouts is that the model encounters inputs that may never be
produced by the environment and thus be very different from its training samples. This can cause
the model to generate rollout trajectories that make no sense for the actual environment and lead to
catastrophic planning failure. [22] proposed the hallucinated replays method for solving this problem
by utilizing some of the model outputs themselves as training samples for the model. This was done
by using the context information (state-action history) from some step in the trajectory as input to
the model to produce the predicted observation. This replaces the true observation for that step to
generate the hallucinated context for the next step which, along with the true observation for that step,
is used to form a training sample for the model.

Theoretical analysis of this method was presented in [24] along with a novel error type called
hallucinated one step error formulated as an alternative to the standard one step prediction error. This
error was shown to be more closely related to the actual model performance within the setting of a
deterministic environment and blind rollout policy. This result was used to extend the DAgger-MC
method of [23] with unrolled models and hallucinated replays. The resultant algorithm, called
H-DAgger-MC, was also proven to be theoretically capable of learning the perfect model if one
existed in the model class even with hallucinated samples in the training set. H-DAgger-MC was
further extended by [25] to apply hallucinated replays while learning the reward function too so that
the latter can be specialized to flawed model dynamics.

5 Experiments

5.1 A simple V learning algorithm

We test the effects of using adaptive rollout instead of fixed step rollout in a simple Dyna-Q-like
algorithm called V learning (Algorithm 3). Here, we learn the state value function V , the dynamic
model f and the reward function r instead of the state-action value function Q. Additionally, we
simulate long trajectories from some starting transitions sampled randomly from the replay memory
R. As we need to model the uncertainty estimate, V and f are modeled using neural networks with
dropout that approximate GPs. Although we do not learn Q, we can reconstruct it via V , f and r
using Q(s, a) = r(s, a, s′) + γE[V (s′)] where s′ = E[f(s, a)] is the expected next state computed
by averaging the outputs obtained by sampling f using Monte Carlo dropout a number of times.
Similarly, we can compute the expected next state value E[V (s′)] by averaging the outputs obtained
by sampling V . The policy used in this algorithm is the ε-greedy policy with ε decaying over time.

Similar to [17], we use a replay bufferR to store all real transitions as training data. During an episode,
the algorithm executes an action at using the ε-greedy policy on the current state st, observes a
reward rt and the next state st+1 and stores the transition (st, at, rt, st+1) into R. Next, a mini-batch

6



of N real transitions is sampled from the replay buffer R and used for training f and r with L2 losses.
To train V , we set yi = ri + γE[V (si+1)] for every transition in the sampled mini-batch and do an
update on parameters of V by minimizing the loss L = 1

N

∑
i(yi − V (si))

2. Note that this update
is similar to and inspired by the TD update but has been modified to be suitable for training neural
networks with dropout.

After training f , r and V on real transitions, we use f and r to generate simulated transitions that are
used as additional training data to train V . These start from a real transition and can be generated
using either fixed number of steps rollout or adaptive rollout. For fair comparison between all rollout
strategies, we randomly select only a fixed number Nrollout of simulated transitions for training.
Note that this algorithm only works for discrete action space problems.

Algorithm 3 V learning with dynamic model rollouts
1: Randomly initialize parameters of the state value function V , the dynamic model f , the reward

function r
2: Initialize replay buffer R← ∅
3: while not solved do
4: Receive an initial state s1
5: for t = 1, T do
6: Select action at according to the ε-greedy policy.
7: Execute at and observe reward rt and next state st+1

8: Store (st, at, rt, st+1) into replay buffer R
9: Sample a random mini-batch of N transitions from R

10: Train f and r with data in the mini-batch using L2 losses.
11: Set yi = ri + γE[V (si+1)] for each transition in the mini-batch
12: Update V by minimizing the loss L = 1

N

∑
i(yi − V (si))

2

13: Set simulated rollouts buffer Rf ← ∅
14: for each transition (si, ai, ri, si+1) in the mini-batch of N real transitions do
15: Use f and r to generate simulated transitions from (si, ai, ri, si+1). Can use

fixed steps rollout or adaptive rollout.
16: Add all simulated transition to Rf
17: end for
18: Randomly select Nrollout transitions from Rf
19: Update V using selected simulated transitions from previous step in a similar manner to

updating V using real transitions.
20: end for
21: end while

Figure 1: Average rewards across 20 runs for different rollout strategies. Left: No rollout vs
Adaptive rollout vs Fixed 1 step rollout. Right: No rollout vs Fixed 1, 3, 5 and 10 steps rollout.

7



Figure 2: Number of rollout steps and estimated error for both adaptive rollout algorithms.
The two figures on the left are for the algorithm with normalization and the two on the right are for
the one without normalization. Black, red and green lines respectively represent number of rollout
steps, dynamic model error and state value error. Number of rollout steps is capped at 20.

5.2 Results

We have tested adaptive rollout against no rollout and fixed steps rollout with number of steps
H ∈ {1, 2, 3, 5, 10} on the CartPole problem. No rollout means that no simulated transitions are
used for additionally training V . Note that the no rollout algorithm actually does a one-step lookup
as our Q function decomposition requires looking at the expected next states E[V (s′)]. We have used
3-layer neural networks for f , r and V , with hidden layer dimensionality of 8 for f and r and 256 for
V . f and V both use a dropout rate of 0.05. All neural networks use tanh as their hidden activation
and no output activation. Adam optimizer [14] is used for training with a learning rate of 0.001.

Figure 1, left, shows the average episode rewards for 200 episodes averaged over 20 runs. Overall,
adaptive rollout algorithm does quite well with normalization but fails without it. In fact, it achieves
the second best performance, better than 1-step Rollout and just behind the optimal strategy of no
rollout for the CartPole problem. It improves as fast as no rollout at the beginning but its performance
decreases a bit toward the end. Meanwhile, adaptive rollout without normalization improves slowly
and has the worst performance of all the rollout strategies.

Figure 1, right, compares the performance of fixed steps rollout with no rollout. The latter can be seen
to be the best strategy and performance decreases with increasing steps. This is because the CartPole
task does not require looking far ahead into the future to find a good policy; one can be obtained by
just looking at the next state and choosing the action that makes the pole as vertical as possible.

To inspect the behavior of adaptive rollout in more detail, we plot the number of rollout steps and
error estimates of f and V in Figure 2. Note that we limit the maximum number of rollout steps
to 20. Because the difference in scale between the outputs of f and V , adaptive rollout without
normalization fails and always returns the maximum number of rollout steps. Adaptive rollout with
normalization does well in the first half of the episodes. However, it starts to rollout after a while.
Upon comparing the error estimates of f and V , we see that the latter rises abruptly in the middle of
the graph. This corresponds to significant changes in the agent’s policy. Our hypothesis is that, when
the agent changes its policy, it sees new states that it has not been trained on and our models have
the tendency to output constant value for such states [9]. This phenomenon messes up the variance
estimates of f and V , causing this strange behavior. This problem will be addressed in a future work.

6 Discussion

This paper proposed a simple adaptive rollout algorithm based on uncertainty estimate to address
several issues with fixed number of steps rollout. This approach can provide improved performance on
both discrete and continuous action space tasks due to the increased quality of the rollout transitions.
Existing approaches that use uncertainty estimate to improve model-based RL usually focus on
reducing sample-complexity [5, 10] or use uncertainty estimate to limit model usage [13]. Our
algorithm provides an alternative way to use uncertainty estimate in model-based RL and can be
easily plugged into many existing model-based approaches where a dynamic model is available.
Though experiments on more complicated tasks are needed to verify its usefulness, we believe that
automatic rollout steps selection provides a promising direction for future exploration.

8



References
[1] S. Bansal, R. Calandra, S. Levine, and C. Tomlin. MBMF: Model-Based Priors for Model-Free

Reinforcement Learning. arXiv preprint arXiv:1709.03153, 2017.

[2] Y. Bengio, O. Delalleau, and N. L. Roux. The curse of highly variable functions for local kernel
machines. In Advances in neural information processing systems, pages 107–114, 2006.

[3] A. Damianou and N. Lawrence. Deep Gaussian processes. In C. Carvalho and P. Ravikumar,
editors, Proceedings of the Sixteenth International Workshop on Artificial Intelligence and
Statistics (AISTATS), AISTATS ’13, pages 207–215. JMLR W&CP 31, 2013.

[4] A. Damianou and N. Lawrence. Deep gaussian processes. In Artificial Intelligence and Statistics,
pages 207–215, 2013.

[5] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11),
pages 465–472, 2011.

[6] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-Based Value
Estimation for Efficient Model-Free Reinforcement Learning. ArXiv e-prints, Feb. 2018.

[7] V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scherrer. Classification-based Policy Iteration
with a Critic. In Proceedings of the 28th International Conference on International Conference
on Machine Learning, ICML’11, pages 1049–1056, USA, 2011. Omnipress.

[8] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Appendix. ArXiv e-prints,
May 2016. arXiv:1506.02157v5.

[9] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–
1059, 2016.

[10] Y. Gal, R. McAllister, and C. E. Rasmussen. Improving PILCO with Bayesian Neural Network
Dynamics Models. In Data-Efficient Machine Learning workshop, ICML, Apr. 2016.

[11] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

[12] A. F. Hernandez and M. A. Grover. Error estimation properties of gaussian process models in
stochastic simulations. European Journal of Operational Research, 228(1):131–140, 2013.

[13] G. Kalweit and J. Boedecker. Uncertainty-driven imagination for continuous deep reinforcement
learning. In Conference on Robot Learning, pages 195–206, 2017.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a Classification-based Policy Iteration
Algorithm. In Proceedings of the 27th International Conference on International Conference
on Machine Learning, ICML’10, pages 607–614, USA, 2010. Omnipress.

[16] F. Meier, D. Kappler, and S. Schaal. Online learning of a memory for learning rates. arXiv
preprint arXiv:1709.06709, 2017.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[18] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. arXiv preprint arXiv:1708.02596,
2017.

[19] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature,
550(7676):354, 2017.

9



[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[21] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine Learning Proceedings 1990, pages 216–224. Elsevier,
1990.

[22] E. Talvitie. Model Regularization for Stable Sample Rollouts. In UAI, 2014.

[23] E. Talvitie. Agnostic System Identification for Monte Carlo Planning. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 2986–2992, 2015.

[24] E. Talvitie. Self-Correcting Models for Model-Based Reinforcement Learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 2597–2603, 2017.

[25] E. Talvitie. Learning the Reward Function for a Misspecified Model. CoRR, abs/1801.09624,
2018.

10


	Introduction
	Background
	Markov Decision Process
	Neural networks with dropout as Bayesian Approximation

	Adaptive Rollout using Uncertainty Estimate
	Adaptive Rollout
	Adaptive Rollout using Neural Networks with Dropout

	Related works
	Experiments
	A simple V learning algorithm
	Results

	Discussion

