
An Interactive Framework for Abandoned and
Removed Object Detection in Video

Abhineet Kumar Singh and Anupam Agrawal
Indian Institute of Information Technology Allahabad, India

Email: {abhineet.iiita, anupam69}@gmail.com

Abstract- This paper describes an interactive application that
employs a modular approach to solve the problem of detecting
abandoned and removed objects in a video stream in real time.
The system breaks down this difficult task into a series of simpler
sub-tasks and solves each through a separate module. Since
different modules are independent of each other, each may utilize
several different methods for solving the corresponding sub-
problem. Accordingly, several existing methods have been
implemented for each module with the possibility of adding new
methods with minimum system reprogramming. Additionally, by
switching between these methods in real time, the user can
observe and compare the performance and accuracy of different
methods and find the optimal combination of methods for a
particular scenario. Lastly, the user can also interact with the
system to provide useful feedback and help improve its
performance when it is not up to the mark. This enables the
system to take advantage of the far superior human vision
processing capabilities in very complex scenarios while still being
completely automated most of the time.

Keywords—abandoned object detection, video surveillance,
modular, interactive

I. INTRODUCTION
 Abandoned object detection, from here on referred to as

AOD, is one of the most practically useful areas in computer
vision due to its application in automated video surveillance
systems for the detection of suspicious activities that might
endanger public safety, especially in crowded places like
airports, railway stations, shopping malls, movie theatres and
the like. An abandoned object is usually defined as one that has
been lying stationary at a certain place with no apparent human
attendance for an extended period of time. Detection of
abandoned objects is of prime importance in uncovering and
forestalling terrorist activities since it is a reasonable
supposition that an abandoned object, if left behind on purpose,
may be hiding dangerous items like explosives.

Most existing AOD techniques employ a modular approach
with several independent steps where the output of each step
serves as the input for the next one. Many efficient algorithms
exist for carrying out each of these steps and any single
complete AOD system has to address the problem of finding a
suitable combination of algorithms to suit a specific scenario.
Following is a brief description of these steps and related
methods, in the order they are carried out:

a) Background Modeling and Subtraction (BGS): This
stage creates a dynamic model of the scene background and
subtracts it from each incoming frame to detect the current
foreground regions. The output of this stage is usually a mask
depicting pixels in the current frame that do not match the

current background model. Some popular background
modeling techniques include adaptive medians [1], running
averages [2], mixture of Gaussians [3, 4], kernel density
estimators [5, 6], Eigen-backgrounds [7] and mean-shift based
estimation [8]. There also exist methods that employ dual
backgrounds [9] or dual foregrounds [10] for this purpose.

b) Foreground Analysis: This method detects false or
uninteresting foreground regions produced due to sudden
lighting changes and shadows. Several methods exist for
detecting sudden lighting changes, ranging from simple
gradient and texture based approaches [11, 12] to those that
utilize complex lighting invariant features combined with
binary classifiers like support vector machines [13]. Shadow
detection is usually carried out by performing a pixel-by-pixel
comparison between the current frame and the background
image to evaluate some measure of similarity between them.
These measures include normalized cross correlation [11, 14],
edge-width information and illumination ratio [15]. There are
many other shadow detection methods as enumerated in [16].

c) Blob Extraction: This stage applies a connected
component algorithm to the foreground mask to detect the
foreground blobs while optionally discarding too small blobs
created due to noise. Most existing methods use an efficient
linear time algorithm that was developed in [17]. The
popularity of this method is owing to the fact that it requires
only a single pass over the image to identify and label all the
connected components therein, as opposed to most other
methods that require two passes [18, 19, 20].

d) Blob Tracking: This is often the most critical step in the
AOD process and is concerned with finding a correspondence
between the current foreground blobs and the existing tracked
blobs from the previous frame (if any). Many methods exist for
carrying out this task, including finite state machines [13],
color histogram ratios [21], Markov chain Monte Carlo model
[22, 23], Bayesian inference [24, 25], Hidden Markov models
[26] and Kalman filters [27].

e) Abandonment Analysis: This step classifies a static blobs
detected by the tracking step as abandoned or removed object
or even a very still person. The task of distinguishing between
removed and abandoned objects is generally carried out by
calculating the degree of agreement between the current and
background images around the object’s edges. There exist
several ways to calculate this degree of agreement; two of the
popular methods are based on edge energy [28, 11] and region
growing [29]. There also exist methods [13] that use human
tracking to look for the object’s owner and evaluate the
owner’s activities around the dropping point to decide whether
the object is abandoned or removed.

2013 Annual IEEE India Conference (INDICON)

978-1-4799-2275-8/13/$31.00 ©2013 IEEE

II. DESCRIPTION OF THE SYSTEM
This system considers the overall problem of AOD as a

collection of smaller problems, each of which can be solved
independently of the others. Thus it is built using a different
subsystem for solving each of these sub-problems. Similar to
the formulation stated in section I, this system can be divided
into five main modules along with two additional modules for
pre processing and for filtering the final results. A brief
description of the algorithms that have been implemented for
each of them follows.

 1) Pre-processing: This module performs the following
two functions:

 a) Contrast enhancement: This step helps to improve the
quality of low light videos like those taken at night by
normalizing the difference between maximum and minimum
intensities in the image which in turn helps to increase
visibility in darker areas of the scene. It can be carried out
using several methods including histogram normalization,
image filtering and contrast stretching.

 b) Noise Reduction: This step reduces the white noise
present in an input frame by smoothing the frame. It is
particularly useful for low quality or grainy videos and is also
needed to control the amount of noise that becomes visible in
low light videos after applying contrast enhancement.

2) Background Modeling and Subtraction (BGS): The
system currently includes three different BGS algorithms
which are modified to perform object level background
updating rather than the typical pixel level one. This is
accomplished through a mask of currently tracked objects that
is fed back from the blob tracking module (refer section 5.5). A
brief description of the three algorithms is presented below:

a) Gaussian Mixture Model (GMM): This method, first
introduced in [3] and improved significantly in [4], models the
distribution of pixel intensity values over time as a weighted
sum of three Gaussian distributions. For each pixel in the
current frame, the probability of observing the current intensity
is given by:

 ܲሺܺ௧ሻ ൌ ∑ ߱,௧ כ ,൫ܺ௧ߟ ,,௧ߤ Σ୧,୲൯
ୀଵ (1)

Here, K is the no. of distributions; ߱,௧ is the weight
associated with the ݅௧ distribution at time t while ߤ,௧ is the
mean and Σ୧,୲ is the co-variance matrix of this distribution, ߟ is
the exponential Gaussian probability density function given by:

ሺߟ ௧ܺ, ,௧ߤ Σ୲ሻ ൌ ଵ

ሺଶగሻ

మ|ஊ౪|

భ
మ

݁ିభ
మሺ ௧ܺ െ ௧ሻ்Σ୲ߤ

ିଵሺ ௧ܺ െ ௧ሻ (2)ߤ

Here, n is the dimensionality of each pixel’s intensity value
(e.g. n=1 for grayscale image and n=3 for RGB image). Further
details can be found in [3]. In the faster version of this method,
presented in [4], the distributions are ordered simply by their
weights, rather than ߱/ߪ used in [3], thus simplifying the
sorting procedure without any significant impact on
performance.

b) Adaptive Median: This BGS method, described in [1],
works under the assumption that the background is more likely
to appear at any given pixel over a period of time than
foreground objects, i.e. the past history of pixel intensity values
is likely to contain maximum occurrences of the background
intensity at the pixel location. This leads to the reasonable
supposition that the pixel stays in the background for more than
half the values in its history. The median of previous ݊ frames
can therefore be used as the background model.

Due to the high memory requirements of the iterative
version, a recursive version of this algorithm is more
practically feasible. Following is the update equation for the
background model in this approach:

௧ܤ ൌ ቐ
ሺܤ௧ିଵ െ 1ሻ ݂݅ ܤ௧ିଵ ௧ܫ

௧ିଵܤ ݂݅ ௧ିଵܤ ൌ ௧ܫ
ሺܤ௧ିଵ 1ሻ݂݅ ܤ௧ିଵ ൏ ௧ܫ

 (3)

Here, ܤ௧ and ܫ௧ respectively refer to the intensity values in
background model and the current frame at time ݐ.

c) Running Gaussian Average: The basic idea here is to use
the average of the last ݊ frames as the background model.
Since recent frames are more likely to contribute to the current
background than older ones, a weighted average is used with
higher weights attached to more recent frames. When these
weights vary according to the Gaussian distribution, the
running Gaussian average is obtained. The algorithm
implemented in this system is detailed in [2]. The background
model here is updated according to the following equations:

௧ାଵߤ ൌ ௧ܫߙ ሺ1 െ ௧ (4)ߤሻߙ

ଶߪ
௧ାଵ ൌ ௧ܫሺߙ െ ௧ሻଶߤ ሺ1 െ ଶߪሻߙ

௧ (5)

Here, ߤ௧ and ߪଶ
௧ respectively refer to the mean and

variance of the Single Gaussian distribution while ߙ is the
learning rate

3) Foreground Analysis: The noisy portions of the BGS
output may contain false foregrounds produced for example
during sudden lighting changes (a light is switched on or off) as
well as actual foregrounds (like shadows) that are of no interest
to further processing but can complicate it significantly. Thus,
a separate foreground analysis stage is needed to remove such
false and uninteresting foreground pixels from it. This process
is further divided into the following three distinct tasks:

a) Detecting sudden lighting changes: When a new light
source is suddenly introduced into a scene, it creates a patch of
light that is detected as a foreground region since its color
intensity values are significantly different from those of the
existing background model. However, though the actual RGB
values may have changed, the underlying texture of the region
remains unchanged and this fact can be utilized to detect such
regions. A texture difference measure, proposed in [11], is used
for this purpose.

b) Detecting Shadows: Two different shadow detection
methods have been implemented in this system, both utilizing
the normalized cross-correlation (NCC) of intensity values

between the grayscale versions of the current frame and the
background image. The first and more complex one is
described in [11] while the other simpler one in [14].

c) Morphological frame processing: Both lighting change
detection and shadow detection processes are prone to false
classifications and often leave behind ‘holes’ inside valid
foreground objects along with some left behind shadow pixels
that may be detected as small blobs. These are removed by
applying the morphological operations of closing followed by
opening.

4) Blob Extraction: This stage detects connected
components in the foreground mask to extract meaningful
objects while discarding any blobs that are smaller than a
specified threshold. A simple, efficient but fairly accurate
algorithm described in [17] is used for this purpose.

5) Blob Tracking: This stage tracks only the static objects
in the scene using a heavily modified version of the algorithm
used in [9]. Following are the main steps in this process:

a) Establish blob correspondence: The first step is to
compare each blob in the incoming frame with the existing
blobs in the tracking system to find a match based on position
and size. For an existing blob to match a new blob, their areas
and positions must differ by less than a threshold. An
additional constraint is imposed on the matching process that
each existing blob may match at most one new blob and vice
versa

b) Update state variables for existing blobs: Three state
variables are maintained for tacked blobs hit count, miss count
and occluded count. When a match is found for an existing
blob, its hit count is incremented by one while its miss and
occluded counts are set to zero. All new blobs that do not
match any existing blob are added to the tracking system with
their hit counts initialized to one.

An existing blob that does not match any of the new blobs
is considered to be occluded if more than a certain fraction (say
0.8) of the blob’s pixels has been detected as foreground in the
current frame. In this case, both its hit count and occluded
count are incremented by one. If the object is not detected as
occluded, its miss count is incremented by one.

c) Remove non-static objects: An object is discarded from
the tracking system if one of the following conditions is
satisfied:

1. Not detected/matched for several consecutive frames:
This occurs when its miss count exceeds either a user specified
threshold or the current hit count.

2. Occluded for too long: This occurs when the occluded
count exceeds a threshold.

3. Appearance changes significantly: The change in a
blob’s appearance is measured by the mean difference in pixel
intensity between the stored image and the current frame
averaged over all the pixels in the blob’s bounding box. If this
difference exceeds a threshold, the object is immediately
discarded. An exponential moving average of these mean
differences is also maintained for use by the abandonment
analysis module for distinguishing between actual static objects
and very still persons.

d) Change object label: If the hit count of an object exceeds
a user defined threshold, it is labeled as static and its maximum

permissible occluded and miss counts are multiplied by
respective constant factors to make greater allowance for
accidental misses and prolonged occlusions. If it exceeds a
second higher threshold, this object is passed to the
abandonment analysis module to be classified as abandoned or
removed.

e) Provide feedback to the BGS module: To prevent static
objects from being learnt into the background, all the tracked
objects that are detected in the current frame fed back to the
BGS module so that the background model is not updated for
pixels contained in their bounding boxes. An object as a whole
is pushed into the background if it is detected as a state change
or if its alarm timeout has been reached. This feedback enables
the BGS algorithm to perform object-level (as opposed to
pixel-level) background updating and thus helps to avoid
foreground fragmentation.

6) Abandonment analysis: This is the final stage whose
purpose is to prevent false detections of abandoned objects due
to the ‘ghost effect’ created when an object in the background
is removed, leaving behind a false foreground object. It also
checks the blob’s internal variation during the period it has
been tracked to ensure that it is not a very still person. This
system therefore can be divided into two subsystems:

a) Removed object detection: When a background object is
removed from the scene, it is reasonable to assume that the area
thus vacated will now exhibit a higher degree of agreement
with its immediate surroundings than before. This assumption
can be used to classify an object as abandoned or removed by
evaluating, in both the background image and the current
frame, a measure of agreement of the object’s edge (and nearby
interior) pixels with their immediate neighborhood pixels
(outside the object). Following two methods have been
implemented to measure this degree of agreement in this
system:

i) Region Growing: This method was introduced in [29] and
consists of a two step process. In the first step, the blob’s
boundary is eroded to obtain a set of pixels that lie near the
boundary but are completely inside the object. These pixels are
then used as seed points in a standard region growing algorithm
to add all the surrounding pixels that are similar to these. The
object is considered removed if the region growth is
significantly more in the current frame and abandoned
otherwise.

ii) Edge Detection: This method, used in [11, 28] ,works on
the idea that placing an object in front of the background will
introduce more edges to the scene around the object’s
boundaries, provided that the background is not extremely
cluttered. Two methods have been implemented for edge
detection: one is a simple gradient based method that uses
Sobel operator to obtain separate x and y gradient images while
the other one uses Canny edge detection [30].

b) Still Person Detection: An exponential running average
of mean pixel differences between the current frame and the
stored image is maintained for each object in the tracking
system. The basic idea here, introduced in [31] is that while the
appearance of a true static object remains completely
unchanged while a false static object detected due to a very still

person will show some variations in the pixel values within the
constant bounding box. These internal blob variations are
captured by the running average of mean differences and if this
value exceeds a certain threshold, the object is classified as a
still person.

7) Blob Filtering: The abandonment module classifies a
static blob into one of four categories: abandoned, removed,
state change or still person. A blob detected as a state change or
a still person is removed from the tracking system. If a state
change, it is also pushed into the background. An object
detected as abandoned causes an alarm to be raised
immediately while one detected as removed is first passed
through a filtering process where it is compared to each of the
user-specified regions in the scene (provided that any have
been added to the filtering module). An alarm is raised only if
it matches one of them. This matching can be done on the basis
of the blob’s position, size, appearance or any combination of
these, as specified by the user.

III. TESTING AND RESULTS

A. Setup
Since the system features multiple methods for several of

its modules, it is not possible to provide the results of every
possible combination of these methods. Therefore, some
preliminary testing was done and the following combination of
methods was found to give good results in most cases:

• Pre-processing: Both contrast enhancement and noise
reduction were turned off except in a few night/low light
scenes.

• BGS: modified GMM introduced in [4] (sub-section 2.1 in
section II (A)).

• Shadow detection: Simple NCC based method (sub-section
3.2 in section II (A)).

• Morphological processing: Both closing and opening
operations were enabled (sub-section 3.3 in section II (A)).

• Abandonment analysis: Canny edge detection (sub-section
6.1.2 in section II (A)).

The results presented here have been obtained using this
configuration for all the tests with only a few minor
modifications for specific cases.

B. Datasets
 This system has been tested on 4 different datasets, 3 of

which are publicly available benchmark datasets while one is a
custom prepared dataset with videos of various indoor and
outdoor scenarios featuring both day and night time scenes.
Following is a brief description of these datasets:

1) PETS 2006: This dataset, available at [32], contains
videos of 7 different events each captured from 4 different
viewpoints. The videos depict various left-luggage scenarios of
increasing complexity captured in a train station. A wide range
of items including briefcase, suitcase, rucksack and even a ski
gear carrier constitute the left-luggage in these videos.

2) PETS 2007: This dataset, downloadable from [33],
contains videos of four scenarios: loitering, attended luggage

removal, luggage exchange, and unattended (or abandoned)
luggage. There are two events for each of these scenarios with
each event having been captured from 4 angles. Only the last
two sets of videos (sets 7 and 8) depict abandoned object
events and hence only these have been used for testing.

3) AVSS i-LIDS: This dataset is available at [34] and
consists of CCTV footage of two scenarios: abandoned
baggage (AB) and illegally parked vehicles (PV). There are 3
different videos of increasing difficulty levels for both of these
scenarios with the latter also having a night time video. Testing
was done on both scenarios since a parked vehicle can also be
considered as an abandoned object.

4) Custom dataset: This dataset contains 18 videos out of
which 12 are outdoor scenes while 6 are indoor ones; 13 of
these were shot during in well lit conditions while 5 were shot
at night or in poorly lit interiors. Most videos feature both
abandoned and removed object events.

Videos in the first three datasets have original resolution of
720x576 but have been resized to 360x288 for testing. The
custom dataset videos were shot at 640x480 and then resized to
320x240 for testing.

C. Results
1) Summary: Experiments were carried out on an Intel Core

i5 processor clocked at 2.5 GHz and having 4 GB of RAM.
Processing was carried out at both the original resolution
(360x288 or 320x240) as well as at half the resolution in each
dimension (180x144 or 160x120). The results have been
summarized below in Tables 2 and 3.

Set Actual
events

True
detections

False detections
Still Person Other

objects
PETS2006

1 4 4 0 1
2 4 4 0 0
3 0 0 0 0
4 0 0 1 0
5 4 4 1 1
6 4 4 0 1
7 4 3 0 1

Total 20 19 2 4
PETS2007

7 4 3 0 0
8 4 3 0 0

Total 8 6 0 0
AVSS i-LIDS

AB
Easy 1 1 0 0
Medium 1 1 0 0
Hard 1 1 1 1
Total 3 3 1 0

PV
Easy 1 1 0 0
Medium 1 0 0 1
Hard 1 0 0 1
Night 1 1 0 0
Total 4 2 0 2
Total 7 5 1 3

Custom dataset
1 1 1 0 0
2 1 1 0 0
3 0 0 0 0
4 2 2 0 0
5 2 2 0 0
6 2 1 0 0

7 2 0 0 0
8 2 2 0 0
9 1 0 0 1
10 2 2 0 0
11 2 2 0 0
12 2 2 0 0
13 2 2 0 0
14 2 2 1 0
15 2 0 0 0
16 8 8 0 1
17 1 1 0 0
18 1 0 0 0

Total 35 28 1 2
Overall 70 58 4 9

Table 2 Result summary for all the datasets

Category Actual
events

True
detections

False detections
Still
Person

Other
objects

Outdoor 19 15 0 1
Indoor 16 13 1 1
Daytime / Well
lit

26 22 1 2

Night/Dark 9 6 0 0
Table 3 Category wise result summary for custom dataset.

. 2) Analysis: A modified version of the quantitative metric

introduced in [9] has been used here to measure the overall
performance of this system. This metric evaluates the number
of successfully detected events, penalized by the false
detections, as a fraction of the total number of events. It is
given by:

ܵ ൌ ௧௨ ௗ௧௧௦ିሺ.ହכା.ଶହכ್ሻ
௧௧ . ௩௧௦

 (6)

Here, ݊and ݊ respectively represent the no. of still
persons and other objects falsely detected as abandoned or
removed objects. The performance figures obtained for each of
the datasets are listed in Table 4. As can be seen there, the
performance was worst in the AVSS-PV dataset. The main
reason for this was that the camera that recorded these videos
was moving or shifting slightly every now and then, probably
due to winds, thus leading to small changes in the viewpoint.
Since this system tracks only static objects based on their
precise position in the scene, such shifts caused the system to
lose track of existing static objects and start tracking them all
over again.

Dataset System performance (S) in
percent

PETS2006 85.00
PETS2007 75.00

AVSS
 i-LiDS

AB 83.33
PV 37.50

Overall 45.83

Custom

Outdoor 77.63
Indoor 76.56

Well Lit 80.76
Dark 66.67

Overall 72.72
All datasets combined 76.79
Table 4 Performance summary for different datasets.

3) Comparison with existing methods: Though both

PETS2006 and AVSS i-LiDS datasets have been used for
testing in many contemporary works in literature, very few of

these report sufficiently detailed results for direct comparison
with our results. For example, even though PETS2006 has been
used in [9], [10], [21], [22], [24] and [29], the results for all 4
views have not been reported in even one In addition, some,
like [24] and [21], have provided no information about false
positives.

Combined results for PETS2006 and AVSS-AB datasets
have been reported in [9]. Using a similar but slightly more
relaxed metric, the overall accuracy reported there is 85.20%.
The corresponding figure for our system is 84.78%.though it
must be noted that this has been obtained using a stricter
metric. The results in [10] have been reported for AVSS-AB
dataset with accuracy of 66.67% which is significantly worse
than our result of 83.33%. The results of AVSS-PV and
PETS2006 datasets have also been reported here but only
partially and cannot be compared with our results. The system
presented in [21] has been tested on PETS2006 and PETS2007
datasets but no information has been provided about false
positives or individual views, again rendering it unsuitable for
comparison with our system.

Results in [22], [24] and [29] have been reported for only
one view for each of the 7 scenarios in PETS2006 dataset. In
addition, the actual false positive count has not been reported in
[22] and [24]. The approximate accuracy figures are 80% for
[22] and 91.67% for [24] and 90% for [29]. These are
comparable to our accuracy of 85% obtained over all the 4
views; choosing only the best result for each scenario would
increase it to 100%. The system in [29] has also been tested on
AVSS dataset with accuracy of 58.93% which is only slightly
better than our result of 57.14% in spite our system’s failure to
cope with the shaky nature of AVSS-PV dataset videos.

D. Conclusion and future scope
The application was tested on a large number of publicly

available as well as custom made videos and was found to give
accuracy comparable to most contemporary systems, while still
managing to run in real time on a fairly modest setup. One
particularly noteworthy aspect of its performance was the very
low rate of false positives that was obtained. Also, these results
were obtained by using virtually the same methods and
parameter values across all the videos, with only minor
changes for some cases. Significantly better results can be
obtained if exhaustive testing and adjustments are carried out
for each scenario.

Finally, and perhaps most importantly, the methods that
have been presented and tested in this paper are those that are
part of the initial implementation of this system. These were
specifically chosen to be relatively simple methods, both to
implement and to execute, due to limitations of time and
computational resources. However, owing to the modular
nature of this system, it is quite easy to add more sophisticated
methods to any of its module. This system can, therefore, be
considered as the foundation for a truly robust framework that
only requires a bit of calibration to perform well in practically
any scenario.

REFERENCES

[1] N. McFarlane and C. Schofield, “Segmentation and tracking of piglets
in images,” Machine Vision and Applications Vol. 8, Issue 3, pp. 187–
193, 1995.

[2] C.Wren, A. Azarbayejani,T. Darrell, and A. Pentland, “Pfinder: real-
time tracking of the human body,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19 Issue 7, pp. 780-785, July
1997.

[3] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Vol. 2, pp. 246–252, Feb. 1999.

[4] Z. Zivkovic, “Improved adaptive Gausian mixture model for
background subtraction,” in Proc. International Conference on Pattern
Recognition, Vol. 2, pp. 28–31, Aug. 2004.

[5] A. Elgammal., D. Harwood and L.S. Davis, “Nonparametric
background model for background subtraction,” in Proc. 6th European
Conference on Computer Vision, Vol. 2, pp. 751-767, 2000

[6] A. Elgammal, D. Harwood, R. Duraiswami and L.S. Davis,
“Background and Foreground Modeling Using Nonparametric Kernel
Density Estimation for Visual Surveillance,” in Proc. The IEEE, Vol.
90, Issue 7, pp.1151-1163, Jul. 2002.

[7] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian Computer
Vision System for Modeling Human Interactions,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 22, Issue. 8, pp. 831-
843, Aug. 2000

[8] B. Han, D. Comaniciu, and L.S. Davis, "Sequential kernel density
approximation through mode propagation: applications to background
modeling,” in Proc. Asian Conference on Computer Vision, Jan. 2004.

[9] A.Singh, S.Sawan, M.Hanmandlu, V.K.Madasu, B.C.Lovell “An
Abandoned Object Detection System Based On Dual Background
Segmentation,” in Proc. Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance, pp. 352-357, 2009.

[10] Fatih Porikli, Yuri Ivanov and Tetsuji Haga “Robust Abandoned Object
Detection Using Dual Foregrounds,” EURASIP Journal on Advances
in Signal Processing, 2008.

[11] Y. Tian, M. Lu and A. Hapapur, “Robust and efficient foreground
analysis for real-time video surveillance,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 1182-1187, June
2005.

[12] L. Li and M.K.H. Leung, “Integrating intensity and texture differences
for robust change detection,” IEEE Transactions on Image Processing,
Vol. 11, Issue 2, pp. 105-112, Aug. 2002.

[13] Q. Fan and S. Pankanti, “Robust Foreground and Abandonment
Analysis for Large-Scale Abandoned Object Detection in Complex
Surveillance Videos,” in Proc. Ninth IEEE International Conference on
Advanced Video and Signal-Based Surveillance, pp. 58-63, Sept. 2012.

[14] J.C.S. Jacques, C.R. Jung and S.R. Musse, “Background Subtraction and
Shadow Detection in Grayscale Video Sequences,” in Proc 18th
Brazilian Symposium on Computer Graphics and Image Processing, pp.
189-196, Oct. 2005.

[15] J. Stander, R. Mech and J. Ostermann, “Detection of moving cast
shadows for object segmentation,” IEEE Transactions on Multimedia,
Vol. 1, Issue 1, pp. 65-76, Mar. 1999.

[16] N. Al-Najdawi, H. E. Bez, J. Singhai and E. A. Edirisinghe “A survey of
cast shadow detection algorithms,” Pattern Recognition Letters, Vol. 33,
Issue 6, pp. 752-764, April 2012.

[17] F. Chang, C. Chen and C. Lu, “A linear-time component labeling
algorithm using contour tracing technique,” Computer Vision and Image
Understanding, Vol. 93, Issue 2, pp. 206-220, Feb. 2004.

[18] A. Rosenfeld and P. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the Association for Computing Machinery, Vol.
13, Issue 4, pp. 471-494, Oct. 1966.

[19] C. Fiorio and J. Gustedt, “Two linear time Union-Find strategies for
image processing,” Theoretical Computer Science, Vol. 152, Issue 2, pp.
165-181, Feb. 1996.

[20] R. Lumia, L. Shapiro and O. Zuniga, “A new connected components
algorithm for virtual memory computers,” Computer Vision, Graphics,
and Image Processing, Vol. 22, Issue 2, pp. 287-300, May 1983.

[21] Xuli Li, Chao Zhang, Duo Zhang “Abandoned Objects Detection Using
Double Illumination Invariant Foreground Masks,” in Proc. 20th
International Conference on Pattern Recognition, pp. 436-439, Aug.
2010.

[22] Smith, K., Quelhas, P. and Gatica-Perez, D, “Detecting Abandoned
Luggage Items in a Public Space,” in Proc. Ninth IEEE
International Workshop on Performance Evaluation of Tracking and
Surveillance, pp. 75 – 82, June 2006.

[23] Z. Khan, T. Balch and F. Dellaert, “MCMC-based particle filtering for
tracking a variable number of interacting targets,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 27, Issue 11, pp. 1805-
1819, Nov. 2005.

[24] F. Lv, X. Song, X., B. Wu, V. Kumar and R. Singh, “Left Luggage
Detection using Bayesian Inference,” in Proc 9th IEEE
International Workshop on Performance Evaluation of Tracking and
Surveillance, pp. 83—90, June 2006.

[25] R. Singh, S. Vishwakarma, A. Agrawal and M. D. Tiwari, “Unusual
activity detection for video surveillance,” in Proc. 1st International
Conference on Intelligent Interactive Technologies and Multimedia, pp.
297-305, Dec. 2010.

[26] D. W. Park, J. Kwon and K. M. Lee, “Robust visual tracking using
autoregressive hidden Markov Model,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1964-1971, June 2012.

[27] Z. Han, Q. Ye and J. Jiao, “Online feature evaluation for object tracking
using Kalman Filter,” in Proc. 19th International Conference on Pattern
Recognition, pp. 1-4, Dec. 2008.

[28] J. Connell, A.W. Senior, A. Hampapur, Y.-L. Tian, L. Brown and S.
Pankanti, “Detection and Tracking in the IBM PeopleVision System,” in
Proc. IEEE Conference on Multimedia and Expo, Vol. 2, pp. 1403-1406,
June 2004.

[29] Y. Tian, R. Feris and A. Hampapur “Real-time detection of abandoned
and removed objects in complex environments,” in Proc. IEEE
International Workshop Visual Surveillance (in conjunction with
ECCV’08), Marseille, France, 2008.

[30] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 8,
Issue 6, pp. 679-698, Nov. 1986.

[31] N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud and N.
Papanikolopoulos, “Real Time, Online Detection of Abandoned
Objects in Public Areas,” in Proc. IEEE International Conference on
Robotics and Automation, pp. 3775-3780, May 2006.

[32] “PETS 2006 Benchmark Data,”
http://www.cvg.rdg.ac.uk/PETS2006/data.html, June 2013.

[33] “PETS 2007 Benchmark Data,”
http://www.cvg.rdg.ac.uk/PETS2007/data.html, June 2013.

[34] "2007 IEEE International Conference on Advanced Video and Signal
based Surveillance (AVSS 2007),”
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html, June 2013
.

