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Abstract- This paper describes an interactive application that 
employs a modular approach to solve the problem of detecting 
abandoned and removed objects in a video stream in real time. 
The system breaks down this difficult task into a series of simpler 
sub-tasks and solves each through a separate module. Since 
different modules are independent of each other, each may utilize 
several different methods for solving the corresponding sub-
problem. Accordingly, several existing methods have been 
implemented for each module with the possibility of adding new 
methods with minimum system reprogramming. Additionally, by 
switching between these methods in real time, the user can 
observe and compare the performance and accuracy of different 
methods and find the optimal combination of methods for a 
particular scenario. Lastly, the user can also interact with the 
system to provide useful feedback and help improve its 
performance when it is not up to the mark. This enables the 
system to take advantage of the far superior human vision 
processing capabilities in very complex scenarios while still being 
completely automated most of the time.  

Keywords—abandoned object detection, video surveillance, 
modular, interactive 

I.  INTRODUCTION 
 Abandoned object detection, from here on referred to as 

AOD, is one of the most practically useful areas in computer 
vision due to its application in automated video surveillance 
systems for the detection of suspicious activities that might 
endanger public safety, especially in crowded places like 
airports, railway stations, shopping malls, movie theatres and 
the like. An abandoned object is usually defined as one that has 
been lying stationary at a certain place with no apparent human 
attendance for an extended period of time. Detection of 
abandoned objects is of prime importance in uncovering and 
forestalling terrorist activities since it is a reasonable 
supposition that an abandoned object, if left behind on purpose, 
may be hiding dangerous items like explosives.  

Most existing AOD techniques employ a modular approach 
with several independent steps where the output of each step 
serves as the input for the next one. Many efficient algorithms 
exist for carrying out each of these steps and any single 
complete AOD system has to address the problem of finding a 
suitable combination of algorithms to suit a specific scenario. 
Following is a brief description of these steps and related 
methods, in the order they are carried out: 

a) Background Modeling and Subtraction (BGS): This 
stage creates a dynamic model of the scene background and 
subtracts it from each incoming frame to detect the current 
foreground regions. The output of this stage is usually a mask 
depicting pixels in the current frame that do not match the 

current background model. Some popular background 
modeling techniques include adaptive medians [1], running 
averages [2], mixture of Gaussians [3, 4], kernel density 
estimators [5, 6], Eigen-backgrounds [7] and mean-shift based 
estimation [8]. There also exist methods that employ dual 
backgrounds [9] or dual foregrounds [10] for this purpose.  

b) Foreground Analysis: This method detects false or 
uninteresting foreground regions produced due to sudden 
lighting changes and shadows. Several methods exist for 
detecting sudden lighting changes, ranging from simple 
gradient and texture based approaches [11, 12] to those that 
utilize complex lighting invariant features combined with 
binary classifiers like support vector machines [13]. Shadow 
detection is usually carried out by performing a pixel-by-pixel 
comparison between the current frame and the background 
image to evaluate some measure of similarity between them. 
These measures include normalized cross correlation [11, 14], 
edge-width information and illumination ratio [15]. There are 
many other shadow detection methods as enumerated in [16]. 

c) Blob Extraction: This stage applies a connected 
component algorithm to the foreground mask to detect the 
foreground blobs while optionally discarding too small blobs 
created due to noise. Most existing methods use an efficient 
linear time algorithm that was developed in [17]. The 
popularity of this method is owing to the fact that it requires 
only a single pass over the image to identify and label all the 
connected components therein, as opposed to most other 
methods that require two passes [18, 19, 20]. 

d) Blob Tracking: This is often the most critical step in the 
AOD process and is concerned with  finding a correspondence 
between the current foreground blobs and the existing tracked 
blobs from the previous frame (if any). Many methods exist for 
carrying out this task, including finite state machines [13], 
color histogram ratios [21], Markov chain Monte Carlo model 
[22, 23], Bayesian inference [24, 25], Hidden Markov models 
[26] and Kalman filters [27]. 

e) Abandonment Analysis: This step classifies a static blobs 
detected by the tracking step as abandoned or removed object 
or even a very still person. The task of distinguishing between 
removed and abandoned objects is generally carried out by 
calculating the degree of agreement between the current and 
background images around the object’s edges. There exist 
several ways to calculate this degree of agreement; two of the 
popular methods are based on edge energy [28, 11] and region 
growing [29]. There also exist methods [13] that use human 
tracking to look for the object’s owner and evaluate the 
owner’s activities around the dropping point to decide whether 
the object is abandoned or removed. 
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II. DESCRIPTION OF THE SYSTEM 
This system considers the overall problem of AOD as a 

collection of smaller problems, each of which can be solved 
independently of the others. Thus it is built using a different 
subsystem for solving each of these sub-problems. Similar to 
the formulation stated in section I, this system can be divided 
into five main modules along with two additional modules for 
pre processing and for filtering the final results. A brief 
description of the algorithms that have been implemented for 
each of them follows. 

  1) Pre-processing: This module performs the following 
two functions: 

   a) Contrast enhancement: This step helps to improve the 
quality of low light videos like those taken at night by 
normalizing the difference between maximum and minimum 
intensities in the image which in turn helps to increase 
visibility in darker areas of the scene. It can be carried out 
using several methods including histogram normalization, 
image filtering and contrast stretching.  

   b) Noise Reduction: This step reduces the white noise 
present in an input frame by smoothing the frame. It is 
particularly useful for low quality or grainy videos and is also 
needed to control the amount of noise that becomes visible in 
low light videos after applying contrast enhancement. 

2) Background Modeling and Subtraction (BGS): The 
system currently includes three different BGS algorithms 
which are modified to perform object level background 
updating rather than the typical pixel level one. This is 
accomplished through a mask of currently tracked objects that 
is fed back from the blob tracking module (refer section 5.5). A 
brief description of the three algorithms is presented below: 

a) Gaussian Mixture Model (GMM): This method, first 
introduced in [3] and improved significantly in [4], models the 
distribution of pixel intensity values over time as a weighted 
sum of three Gaussian distributions. For each pixel in the 
current frame, the probability of observing the current intensity 
is given by: 

             ܲሺܺ௧ሻ ൌ ∑ ߱,௧ כ ,൫ܺ௧ߟ ,,௧ߤ Σ୧,୲൯
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Here, K is the no. of distributions;  ߱,௧ is the weight 
associated with the ݅௧  distribution at time t while ߤ,௧ is the 
mean and Σ୧,୲ is the co-variance matrix of this distribution, ߟ is 
the exponential Gaussian probability density function given by: 

ሺߟ    ௧ܺ, ,௧ߤ Σ୲ሻ ൌ ଵ

ሺଶగሻ

మ|ஊ౪|

భ
మ

݁ିభ
మሺ ௧ܺ െ ௧ሻ்Σ୲ߤ

ିଵሺ ௧ܺ െ  ௧ሻ   (2)ߤ

Here, n is the dimensionality of each pixel’s intensity value 
(e.g. n=1 for grayscale image and n=3 for RGB image). Further 
details can be found in [3]. In the faster version of this method, 
presented in [4], the distributions are ordered simply by their 
weights, rather than ߱/ߪ  used in [3], thus simplifying the 
sorting procedure without any significant impact on 
performance. 

b) Adaptive Median: This BGS method, described in [1], 
works under the assumption that the background is more likely 
to appear at any given pixel over a period of time than 
foreground objects, i.e. the past history of pixel intensity values 
is likely to contain maximum occurrences of the background 
intensity at the pixel location. This leads to the reasonable 
supposition that the pixel stays in the background for more than 
half the values in its history. The median of previous ݊ frames 
can therefore be used as the background model. 

Due to the high memory requirements of the iterative 
version, a recursive version of this algorithm is more 
practically feasible. Following is the update equation for the 
background model in this approach: 

௧ܤ ൌ ቐ
ሺܤ௧ିଵ െ 1ሻ ݂݅ ܤ௧ିଵ  ௧ܫ
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                  (3) 

 

Here, ܤ௧ and ܫ௧ respectively refer to the intensity values in 
background model and the current frame at time ݐ.  

c) Running Gaussian Average: The basic idea here is to use 
the average of the last ݊ frames as the background model. 
Since recent frames are more likely to contribute to the current 
background than older ones, a weighted average is used with 
higher weights attached to more recent frames. When these 
weights vary according to the Gaussian distribution, the 
running Gaussian average is obtained. The algorithm 
implemented in this system is detailed in [2]. The background 
model here is updated according to the following equations: 
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Here, ߤ௧ and ߪଶ
௧ respectively refer to the mean and 

variance of the Single Gaussian distribution while ߙ is the 
learning rate 

3) Foreground Analysis: The noisy portions of the BGS 
output may contain false foregrounds produced for example 
during sudden lighting changes (a light is switched on or off) as 
well as actual foregrounds (like shadows) that are of no interest 
to further processing but can complicate it significantly. Thus, 
a separate foreground analysis stage is needed to remove such 
false and uninteresting foreground pixels from it. This process 
is further divided into the following three distinct tasks: 

a) Detecting sudden lighting changes: When a new light 
source is suddenly introduced into a scene, it creates a patch of 
light that is detected as a foreground region since its color 
intensity values are significantly different from those of the 
existing background model. However, though the actual RGB 
values may have changed, the underlying texture of the region 
remains unchanged and this fact can be utilized to detect such 
regions. A texture difference measure, proposed in [11], is used 
for this purpose. 

b) Detecting Shadows: Two different shadow detection 
methods have been implemented in this system, both utilizing 
the normalized cross-correlation (NCC) of intensity values 

between the grayscale versions of the current frame and the 
background image. The first and more complex one is 
described in [11] while the other simpler one in [14].  



c) Morphological frame processing: Both lighting change 
detection and shadow detection processes are prone to false 
classifications and often leave behind ‘holes’ inside valid 
foreground objects along with some left behind shadow pixels 
that may be detected as small blobs. These are removed by 
applying the morphological operations of closing followed by 
opening. 

4) Blob Extraction: This stage detects connected 
components in the foreground mask to extract meaningful 
objects while discarding any blobs that are smaller than a 
specified threshold. A simple, efficient but fairly accurate 
algorithm described in [17] is used for this purpose. 

5) Blob Tracking: This stage tracks only the static objects 
in the scene using a heavily modified version of the algorithm 
used in [9]. Following are the main steps in this process: 

a) Establish blob correspondence: The first step is to 
compare each blob in the incoming frame with the existing 
blobs in the tracking system to find a match based on position 
and size. For an existing blob to match a new blob, their areas 
and positions must differ by less than a threshold. An 
additional constraint is imposed on the matching process that 
each existing blob may match at most one new blob and vice 
versa  

b) Update state variables for existing blobs: Three state 
variables are maintained for tacked blobs hit count, miss count 
and occluded count. When a match is found for an existing 
blob, its hit count is incremented by one while its miss and 
occluded counts are set to zero. All new blobs that do not 
match any existing blob are added to the tracking system with 
their hit counts initialized to one. 

An existing blob that does not match any of the new blobs 
is considered to be occluded if more than a certain fraction (say 
0.8) of the blob’s pixels has been detected as foreground in the 
current frame. In this case, both its hit count and occluded 
count are incremented by one. If the object is not detected as 
occluded, its miss count is incremented by one.  

c) Remove non-static objects: An object is discarded from 
the tracking system if one of the following conditions is 
satisfied: 

1. Not detected/matched for several consecutive frames: 
This occurs when its miss count exceeds either a user specified 
threshold or the current hit count.  

2. Occluded for too long: This occurs when the occluded 
count exceeds a threshold. 

3. Appearance changes significantly: The change in a 
blob’s appearance is measured by the mean difference in pixel 
intensity between the stored image and the current frame 
averaged over all the pixels in the blob’s bounding box. If this 
difference exceeds a threshold, the object is immediately 
discarded. An exponential moving average of these mean 
differences is also maintained for use by the abandonment 
analysis module for distinguishing between actual static objects 
and very still persons. 

d) Change object label: If the hit count of an object exceeds 
a user defined threshold, it is labeled as static and its maximum 

permissible occluded and miss counts are multiplied by 
respective constant factors to make greater allowance for 
accidental misses and prolonged occlusions. If it exceeds a 
second higher threshold, this object is passed to the 
abandonment analysis module to be classified as abandoned or 
removed. 

e) Provide feedback to the BGS module: To prevent static 
objects from being learnt into the background, all the tracked 
objects that are detected in the current frame fed back to the 
BGS module so that the background model is not updated for 
pixels contained in their bounding boxes. An object as a whole 
is pushed into the background if it is detected as a state change 
or if its alarm timeout has been reached. This feedback enables 
the BGS algorithm to perform object-level (as opposed to 
pixel-level) background updating and thus helps to avoid 
foreground fragmentation. 

6) Abandonment analysis: This is the final stage whose 
purpose is to prevent false detections of abandoned objects due 
to the ‘ghost effect’ created when an object in the background 
is removed, leaving behind a false foreground object. It also 
checks the blob’s internal variation during the period it has 
been tracked to ensure that it is not a very still person. This 
system therefore can be divided into two subsystems: 

a) Removed object detection: When a background object is 
removed from the scene, it is reasonable to assume that the area 
thus vacated will now exhibit a higher degree of agreement 
with its immediate surroundings than before. This assumption 
can be used to classify an object as abandoned or removed by 
evaluating, in both the background image and the current 
frame, a measure of agreement of the object’s edge (and nearby 
interior) pixels with their immediate neighborhood pixels 
(outside the object). Following two methods have been 
implemented to measure this degree of agreement in this 
system: 

i) Region Growing: This method was introduced in [29] and 
consists of a two step process. In the first step, the blob’s 
boundary is eroded to obtain a set of pixels that lie near the 
boundary but are completely inside the object. These pixels are 
then used as seed points in a standard region growing algorithm 
to add all the surrounding pixels that are similar to these. The 
object is considered removed if the region growth is 
significantly more in the current frame and abandoned 
otherwise. 

ii) Edge Detection: This method, used in [11, 28] ,works on 
the idea that placing an object in front of the background will 
introduce more edges to the scene around the object’s 
boundaries, provided that the background is not extremely 
cluttered. Two methods have been implemented for edge 
detection: one is a simple gradient based method that uses 
Sobel operator to obtain separate x and y gradient images while 
the other one uses Canny edge detection [30].  

b) Still Person Detection: An exponential running average 
of mean pixel differences between the current frame and the 
stored image is maintained for each object in the tracking 
system. The basic idea here, introduced in [31] is that while the 
appearance of a true static object remains completely 
unchanged while a false static object detected due to a very still 



person will show some variations in the pixel values within the 
constant bounding box. These internal blob variations are 
captured by the running average of mean differences and if this 
value exceeds a certain threshold, the object is classified as a 
still person.  

7) Blob Filtering: The abandonment module classifies a 
static blob into one of four categories: abandoned, removed, 
state change or still person. A blob detected as a state change or 
a still person is removed from the tracking system. If a state 
change, it is also pushed into the background. An object 
detected as abandoned causes an alarm to be raised 
immediately while one detected as removed is first passed 
through a filtering process where it is compared to each of the 
user-specified regions in the scene (provided that any have 
been added to the filtering module). An alarm is raised only if 
it matches one of them. This matching can be done on the basis 
of the blob’s position, size, appearance or any combination of 
these, as specified by the user. 

III. TESTING AND RESULTS 

A. Setup 
Since the system features multiple methods for several of 

its modules, it is not possible to provide the results of every 
possible combination of these methods. Therefore, some 
preliminary testing was done and the following combination of 
methods was found to give good results in most cases: 

• Pre-processing: Both contrast enhancement and noise 
reduction were turned off except in a few night/low light 
scenes. 

• BGS: modified GMM introduced in [4] (sub-section 2.1 in 
section II (A)). 

• Shadow detection: Simple NCC based method (sub-section 
3.2 in section II (A)). 

• Morphological processing: Both closing and opening 
operations were enabled (sub-section 3.3 in section II (A)). 

• Abandonment analysis: Canny edge detection (sub-section 
6.1.2 in section II (A)). 

The results presented here have been obtained using this 
configuration for all the tests with only a few minor 
modifications for specific cases. 

B. Datasets 
 This system has been tested on 4 different datasets, 3 of 

which are publicly available benchmark datasets while one is a 
custom prepared dataset with videos of various indoor and 
outdoor scenarios featuring both day and night time scenes. 
Following is a brief description of these datasets: 

1) PETS 2006: This dataset, available at [32], contains 
videos of 7 different events each captured from 4 different 
viewpoints. The videos depict various left-luggage scenarios of 
increasing complexity captured in a train station. A wide range 
of items including briefcase, suitcase, rucksack and even a ski 
gear carrier constitute the left-luggage in these videos.  

2) PETS 2007: This dataset, downloadable from [33], 
contains videos of four scenarios: loitering, attended luggage 

removal, luggage exchange, and unattended (or abandoned) 
luggage. There are two events for each of these scenarios with 
each event having been captured from 4 angles. Only the last 
two sets of videos (sets 7 and 8) depict abandoned object 
events and hence only these have been used for testing.  

3) AVSS i-LIDS: This dataset is available at [34] and 
consists of CCTV footage of two scenarios: abandoned 
baggage (AB) and illegally parked vehicles (PV). There are 3 
different videos of increasing difficulty levels for both of these 
scenarios with the latter also having a night time video. Testing 
was done on both scenarios since a parked vehicle can also be 
considered as an abandoned object.  

4) Custom dataset: This dataset contains 18 videos out of 
which 12 are outdoor scenes while 6 are indoor ones; 13 of 
these were shot during in well lit conditions while 5 were shot 
at night or in poorly lit interiors. Most videos feature both 
abandoned and removed object events.  

Videos in the first three datasets have original resolution of 
720x576 but have been resized to 360x288 for testing. The 
custom dataset videos were shot at 640x480 and then resized to 
320x240 for testing. 

C. Results 
1) Summary: Experiments were carried out on an Intel Core 

i5 processor clocked at 2.5 GHz and having 4 GB of RAM. 
Processing was carried out at both the original resolution 
(360x288 or 320x240) as well as at half the resolution in each 
dimension (180x144 or 160x120). The results have been 
summarized below in Tables 2 and 3. 

Set Actual 
events 

True 
detections 

False detections
Still Person Other 

objects
PETS2006 

1 4 4 0 1
2 4 4 0 0
3 0 0 0 0
4 0 0 1 0
5 4 4 1 1
6 4 4 0 1
7 4 3 0 1

Total 20 19 2 4
PETS2007 

7 4 3 0 0
8 4 3 0 0

Total 8 6 0 0
AVSS i-LIDS 

AB 
Easy 1 1 0 0
Medium 1 1 0 0
Hard 1 1 1 1
Total 3 3 1 0

PV 
Easy 1 1 0 0
Medium 1 0 0 1
Hard 1 0 0 1
Night 1 1 0 0
Total 4 2 0 2
Total 7 5 1 3

Custom dataset 
1 1 1 0 0
2 1 1 0 0
3 0 0 0 0
4 2 2 0 0
5 2 2 0 0
6 2 1 0 0



7 2 0 0 0
8 2 2 0 0
9 1 0 0 1
10 2 2 0 0
11 2 2 0 0
12 2 2 0 0
13 2 2 0 0
14 2 2 1 0
15 2 0 0 0
16 8 8 0 1
17 1 1 0 0
18 1 0 0 0

Total 35 28 1 2
Overall 70 58 4 9

Table 2 Result summary for all the datasets 
 

Category Actual 
events 

True 
detections 

False detections
Still 
Person 

Other 
objects 

Outdoor 19 15 0 1
Indoor 16 13 1 1
Daytime / Well 
lit 

26 22 1 2

Night/Dark 9 6 0 0
Table 3 Category wise result summary for custom dataset. 

 
. 2) Analysis: A modified version of the quantitative metric 

introduced in [9] has been used here to measure the overall 
performance of this system. This metric evaluates the number 
of successfully detected events, penalized by the false 
detections, as a fraction of the total number of events. It is 
given by: 

ܵ ൌ ௧௨ ௗ௧௧௦ିሺ.ହכା.ଶହכ್ሻ
௧௧ . ௩௧௦

                 (6) 
 

Here, ݊and ݊ respectively represent the no. of still 
persons and other objects falsely detected as abandoned or 
removed objects. The performance figures obtained for each of 
the datasets are listed in Table 4. As can be seen there, the 
performance was worst in the AVSS-PV dataset. The main 
reason for this was that the camera that recorded these videos 
was moving or shifting slightly every now and then, probably 
due to winds, thus leading to small changes in the viewpoint. 
Since this system tracks only static objects based on their 
precise position in the scene, such shifts caused the system to 
lose track of existing static objects and start tracking them all 
over again. 

Dataset System performance (S) in 
percent 

PETS2006 85.00 
PETS2007 75.00 

AVSS 
 i-LiDS 

AB 83.33 
PV 37.50 

Overall 45.83 
 
 

Custom 

Outdoor 77.63 
Indoor 76.56 

Well Lit 80.76 
Dark 66.67 

Overall 72.72 
All datasets combined 76.79 
Table 4 Performance summary for different datasets. 

 
3) Comparison with existing methods: Though both 

PETS2006 and AVSS i-LiDS datasets have been used for 
testing in many contemporary works in literature, very few of 

these report sufficiently detailed results for direct comparison 
with our results. For example, even though PETS2006 has been 
used in [9], [10], [21], [22], [24] and [29], the results for all 4 
views have not been reported in even one In addition, some, 
like [24] and [21], have provided no information about false 
positives.  

Combined results for PETS2006 and AVSS-AB datasets 
have been reported in [9]. Using a similar but slightly more 
relaxed metric, the overall accuracy reported there is 85.20%. 
The corresponding figure for our system is 84.78%.though it 
must be noted that this has been obtained using a stricter 
metric. The results in [10] have been reported for AVSS-AB 
dataset with accuracy of 66.67% which is significantly worse 
than our result of 83.33%. The results of AVSS-PV and 
PETS2006 datasets have also been reported here but only 
partially and cannot be compared with our results. The system 
presented in [21] has been tested on PETS2006 and PETS2007 
datasets but no information has been provided about false 
positives or individual views, again rendering it unsuitable for 
comparison with our system. 

Results in [22], [24] and [29] have been reported for only 
one view for each of the 7 scenarios in PETS2006 dataset. In 
addition, the actual false positive count has not been reported in 
[22] and [24]. The approximate accuracy figures are 80% for 
[22] and 91.67% for [24] and 90% for [29]. These are 
comparable to our accuracy of 85% obtained over all the 4 
views; choosing only the best result for each scenario would 
increase it to 100%. The system in [29] has also been tested on 
AVSS dataset with accuracy of 58.93% which is only slightly 
better than our result of 57.14% in spite our system’s failure to 
cope with the shaky nature of AVSS-PV dataset videos. 

D. Conclusion and future scope 
The application was tested on a large number of publicly 

available as well as custom made videos and was found to give 
accuracy comparable to most contemporary systems, while still 
managing to run in real time on a fairly modest setup. One 
particularly noteworthy aspect of its performance was the very 
low rate of false positives that was obtained. Also, these results 
were obtained by using virtually the same methods and 
parameter values across all the videos, with only minor 
changes for some cases. Significantly better results can be 
obtained if exhaustive testing and adjustments are carried out 
for each scenario.  

Finally, and perhaps most importantly, the methods that 
have been presented and tested in this paper are those that are 
part of the initial implementation of this system. These were 
specifically chosen to be relatively simple methods, both to 
implement and to execute, due to limitations of time and 
computational resources. However, owing to the modular 
nature of this system, it is quite easy to add more sophisticated 
methods to any of its module. This system can, therefore, be 
considered as the foundation for a truly robust framework that 
only requires a bit of calibration to perform well in practically 
any scenario. 
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