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Abstract. Recent advances in pruning of neural networks have made it
possible to remove a large number of filters or weights without any per-
ceptible drop in accuracy. The number of parameters and that of FLOPs
are usually the reported metrics to measure the quality of the pruned
models. However, the gain in speed for these pruned models is often
overlooked in the literature due to the complex nature of latency mea-
surements. In this paper, we show the limitation of filter pruning methods
in terms of latency reduction and propose LayerPrune framework. Layer-
Prune presents a set of layer pruning methods based on different criteria
that achieve higher latency reduction than filter pruning methods on
similar accuracy. The advantage of layer pruning over filter pruning in
terms of latency reduction is a result of the fact that the former is not
constrained by the original model’s depth and thus allows for a larger
range of latency reduction. For each filter pruning method we examined,
we use the same filter importance criterion to calculate a per-layer im-
portance score in one-shot. We then prune the least important layers
and fine-tune the shallower model which obtains comparable or better
accuracy than its filter-based pruning counterpart. This one-shot process
allows to remove layers from single path networks like VGG before fine-
tuning, unlike in iterative filter pruning, a minimum number of filters
per layer is required to allow for data flow which constraint the search
space. To the best of our knowledge, we are the first to examine the ef-
fect of pruning methods on latency metric instead of FLOPs for multiple
networks, datasets and hardware targets. LayerPrune also outperforms
handcrafted architectures such as Shufflenet, MobileNet, MNASNet and
ResNet18 by 7.3%, 4.6%, 2.8% and 0.5% respectively on similar latency
budget on ImageNet dataset. 1
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1 Introduction

Convolutional Neural Networks (CNN) have become the state-of-the-art in var-
ious computer vision tasks, e.g., image classification [1], object detection [2],

1 Code is available at https://github.com/selkerdawy/filter-vs-layer-pruning

https://github.com/selkerdawy/filter-vs-layer-pruning
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Fig. 1: Example of 100 randomly pruned models per boxplot generated from
different architectures. The plot shows layer pruned models have a wider range
of attainable latency reduction consistently across architectures and different
hardware platforms (1080Ti and Xavier). Latency is estimated using 224x224
input image and batch size=1.

depth estimation [3]. These CNN models are designed with deeper [4] and wider
[5] convolutional layers with a large number of parameters and convolutional
operations. These architectures hinder deployment on low-power devices, e.g,
phones, robots, wearable devices as well as real-time critical applications, such
as autonomous driving. As a result, computationally efficient models are be-
coming increasingly important and multiple paradigms have been proposed to
minimize the complexity of CNNs.

A straight forward direction is to manually design networks with a small
footprint from the start such as [6,7,8,9,10]. This direction does not only require
expert knowledge and multiple trials (e.g up to 1000 neural architectures ex-
plored manually [11]), but also does not benefit from available, pre-trained large
models. Quantization [12,13] and distillation [14,15] are two other techniques,
which utilize the pre-trained models to obtain smaller architectures. Quantiza-
tion reduces bit-width of parameters and thus decreases memory footprint, but
requires specialized hardware instructions to achieve latency reduction. While
distillation trains a pre-defined smaller model (student) with guidance from a
larger pre-trained model (teacher) [14]. Finally, model pruning aims to auto-
matically remove the least important filters (or weights) to reduce the number
of parameters or FLOPs (i.e indirect measures). However, prior work [16,17,18]
showed that neither number of pruned parameters nor FLOPs reduction directly
correlate with latency (i.e a direct measure) consumption. Latency reduction, in
that case, depends on various aspects, such as the number of filters per layer
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(signature) and the deployment device. Most GPU programming tools require
careful compute kernels2 tuning for different matrices shapes (e.g., convolution
weights) [19,20]. These aspects introduce non-linearity in modeling latency with
respect to the number of filters per layer. Recognizing the limitations in terms
of latency or energy by simply pruning away filters, recent works [17,21,16] pro-
posed optimizing directly over these direct measures. These methods require per
hardware and architecture latency measurements collection to create lookup-
tables or latency prediction models which can be time-intensive. In addition,
these filter pruned methods are bounded by the model’s depth and can only
reach a limited goal for latency consumption.

In this work, we show the limitations of filter pruning methods in terms of
latency reduction. Fig. 1 shows the range of attainable latency reduction on
randomly generated models. Each box bar summarizes the latency reduction
of 100 random models with filter and layer pruning on different network ar-
chitectures and hardware platforms. For each filter pruned model i, a pruning
ratio pi,j per layer j such that 0 ≤ p(i, j) ≤ 0.9 is generated thus models differ
in signature/width. For each layer pruned model, M layers out of total L lay-
ers (dependent on the network) are randomly selected for retention such that
1 ≤M ≤ L thus models differ in depth. As to be expected, layer pruning has a
higher upper bound in latency reduction compared to filter pruning especially on
modern complex architectures with residual blocks. However, we want to high-
light quantitatively in the plot the discrepancy of attainable latency reduction
using both methods. Filter pruning is not only constrained by the depth of the
model but also by the connection dependency in the architecture. An example
of such connection dependency is the element-wise sum operation in the resid-
ual block between identity connection and residual connection. Filter pruning
methods commonly prune in-between convolution layers in a residual to respect
the number of channels and spatial dimensions. BAR [22] proposed an atypical
residual block that allows mixed-connectivity between blocks to tackle the issue.
However, this requires special implementations to leverage the speedup gain. An-
other limitation in filter pruning is the iterative process and thus is constrained
to keep a minimum number of filters per layer during optimization to allow for
data passing. LayerPrune performs a one-shot pruning before fine-tuning and
thus it allows for layer removal even from single path networks.

Motivated by these points, what remains to ask is how well do layer pruned
models perform in terms of accuracy compared to filter pruned methods. Fig. 2
shows accuracy and images per second between our LayerPrune, several state-
of-the-art pruning methods, and handcrafted architectures. In general, pruning
methods tend to find better quality models than handcrafted architectures. It
is worth noting that filter pruning methods such as ThiNet [23] and Taylor [24]
show small speedup gain as more filters are pruned compared to LayerPrune.
That shows the limitation of filter pruning methods on latency reduction.

2 A compute kernel refers to a function such as convolution operation that runs on a
high throughput accelerator such as GPU
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Fig. 2: Evaluation on ImageNet between our LayerPrune framework, handcrafted
architectures (dots) and pruning methods on ResNet50 (crosses). Inference time
is measured on 1080Ti GPU.

2 Related Work

We divide existing pruning methods into four categories: weight pruning, hardware-
agnostic filter pruning, hardware-aware filter pruning and layer pruning.

Weight pruning. An early major category in pruning is individual weight
pruning (unstructured pruning). Weight pruning methods leverage the fact that
some weights have minimal effect on the task accuracy and thus can be zeroed-
out. In [25], weights with small magnitude are removed and in [26], quantization
is further applied to achieve more model compression. Another data-free pruning
is [27] where neurons are removed iteratively from fully connected layers. L0-
regularization based method [28] is proposed to encourage network sparsity in
training. Finally, in lottery ticket hypothesis [29], the authors propose a method
of finding winning tickets which are subnetworks from random initialization that
achieve higher accuracy than the dense model. The limitation of the unstruc-
tured weight pruning is that dedicated hardware and libraries [30] are needed to
achieve speedup from the compression. Given our focus on latency and to keep
the evaluation setup simple, we do not consider these methods in our evaluation.
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Hardware-agnostic filter pruning. Methods in this category (also known
as structured pruning) aim to reduce the footprint of a model by pruning fil-
ters without any knowledge of the inference resource consumption. Examples of
these are [24,31,23,32,33], which focus on removing the least important filters
and obtaining a slimmer model. Earlier filter-pruning methods [23,33] required
layer-wise sensitivity analysis to generate the signature (i.e number of filters per
layer) as a prior and remove filters based on a filter criterion. The sensitivity
analysis is computationally expensive to conduct and becomes even less feasible
for deeper models. Recent methods [24,31,32] learn a global importance mea-
sure removing the need for sensitivity analysis. Molchanov et al. [24] propose
a Taylor approximation on the network’s weights where the filter’s gradients
and norm are used to approximate its global importance score. Liu et al. [31]
and Wen et al. [32] propose sparsity loss for training along with the classifica-
tion’s cross-entropy loss. Filters whose criterion are less than a threshold are
removed and the pruned model is finally fine-tuned. Zhao et al. [34] introduce
channel saliency that is parameterized as Gaussian distribution and optimized in
the training process. After training, channels with small mean and variance are
pruned. In general, methods with sparsity loss lack a simple approach to respect
a resource consumption target and require hyperparameter tuning to balance
different losses.

Hardware-aware filter pruning. To respect a resource consumption bud-
get, recent works [35,17,21,36] have been proposed to take into consideration a
resource target within the optimization process. NetAdapt [17] prunes a model
to meet a target budget using a heuristic greedy search. A lookup table is built
for latency prediction and then multiple candidates are generated at each prun-
ing iteration by pruning a ratio of filters from each layer independently. The
candidate with the highest accuracy is then selected and the process contin-
ues to the next pruning iteration with a progressively increasing ratio. On the
other hand, AMC [36] and ECC [21] propose an end-to-end constrained pruning.
AMC utilizes reinforcement learning to select a model’s signature by trial and
error. ECC simplifies the latency reduction model as a bilinear per-layer model.
The training utilizes the alternating direction method of multipliers (ADMM)
algorithm to perform constrained optimization by alternating between network
weight optimization and dual variables that control the layer-wise pruning ratio.
Although these methods incorporate resource consumption as a constraint in the
training process, the range of attainable budgets is limited by the depth of the
model. Besides, generating data measurements to model resource consumption
per hardware and architecture can be expensive especially on low-end hardware
platforms.

Layer pruning. Unlike filter pruning, little attention is paid to shallow
CNNs in the pruning literature. In SSS [37], the authors propose to train a scal-
ing factor for structure selection such as neurons, blocks, and groups. However,
shallower models are only possible with architectures with residual connections
to allow data flow in the optimization process. Closest to our work for a gen-
eral (unconstrained by architecture type) layer pruning approach is the work



6 S. Elkerdawy et al.

LayerPrune

Fig. 3: Main pipeline illustrates the difference between typical iterative filter
pruning and proposed LayerPrune framework. Filter pruning (top) produces
thinner architecture in an iterative process while LayerPrune (bottom) prunes
whole layers in one-shot. In LayerPrune, layer’s importance is calculated as the
average importance of each filter f in all filters F at that layer.

done by Chen et al. [38]. In their method, linear classifiers probes are utilized
and trained independently per layer for layer-ranking. After the layer-ranking
learning stage, they prune the least important layers and fine-tune the shallower
model. Although [38] requires rank training, it is without any gain in classifi-
cation accuracy compared to our one-shot LayerPrune layer ranking as will be
shown in the experiments section.

3 Methodology

In this section, we describe in detail LayerPrune for layer pruning using existing
filter criteria along with a novel layer-wise accuracy approximation. A typical
filter pruning method follows a three-stage pipeline as illustrated in Figure 3.
Filter importance is iteratively re-evaluated after each pruning step based on a
pruning meta-parameter such as pruning N filters or pruning those ≤ threshold.
In LayerPrune, we remove the need for the iterative pruning step and show that
using the same filter criterion, we can remove layers in a one-shot to respect a
budget. This simplifies the pruning step to a hyper-parameter free process and is
computationally efficient. Layer importance is calculated as the average of filter
importance in this layer.
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3.1 Statistics-based criterion

Although existing filter pruning methods are different in algorithms and opti-
mization used, they focus more on finding the optimal per-layer number of filters
and share common filter criteria. We divide the methods based on the filter cri-
terion used and propose their layer importance counterpart used in LayerPrune.

Preliminary notion. Consider a network with L layers, each layer l has
weight matrix W (l) ∈ RNl×Fl×Kl×Kl with Nl input channels, Fl number of
filters and Kl is the size of the filters at this channel. Evaluated criteria and
methods are:

Weight statistics. [25,33,21] differ in the optimization algorithm but share
weight statistics as a filter ranking. Layer pruning for this criteria is calculated
as:

weights-layer-importance[l] =
1

Fl

Fl∑
i=1

∥∥∥W (l)[:, i, :, :]
∥∥∥
2

(1)

Taylor weights. Taylor method [24] is slightly different from previous cri-
terion in that the gradients are included in the ranking as well. Filter f ranking
is based on

∑
s(gsws)

2 where s iterates over all individual weights in f , g is the
gradient, w is the weight value. Similarly, layer ranking can be expressed as:

taylor-layer-importance[l] =
1

Fl

Fl∑
i=1

∥∥∥G(l)[:, i, :, :]�W (l)[:, i, :, :]
∥∥∥
2

(2)

where � is element-wise product and G(l) ∈ RNl×Fl×Kl×Kl is the gradient of
loss with respect to weights W (l).

Feature map based heuristics. [23,39,40] rank filters based on statistics
from output of layer. In [23], ranking is based on the effect on the next layer
while [39], similar to Taylor weights, utilizes gradients and norm but on feature
maps.

Channel saliency. In this criterion, a scalar is multiplied by the feature
maps and optimized within a typical training cycle with task loss and sparsity
regularization loss to encourage sparsity. Slimming [31] utilizes Batch Normal-
ization scale γ as the channel saliency. Similarly, we use Batch Normalization
scale parameter to calculate layer importance for this criteria, specifically:

BN-layer-importance[l] =
1

Fl

Fl∑
i=1

(γ
(l)
i )2 (3)

Ensemble. We also consider diverse ensemble of layer ranks where the en-
semble rank of each layer is the sum of its rank per method, more specifically:

ensemble-rank[l] =
∑

m∈{1...M}

(LayerRank(m, l)) (4)
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where l is the layer’s index, M is the number of all criteria and LayerRank
indicates the order of layer l in the sorted list for criterion m.

3.2 Efficiency-based criterion

In addition to existing filter criteria, we present a novel layer importance by
layer-wise accuracy approximation. Motivated by the few-shot learning litera-
ture [41,42], we use imprinting to approximate the classification accuracy up to
each layer. Imprinting is used to approximate a classifier’s weight matrix when
only a few training samples are available. Although we have adequate training
samples, we are inspired by the efficiency of imprinting to approximate the ac-
curacy in one pass without the need for training. We create a classifier proxy
for each prunable candidate (e.g convolution layer or residual blocks), and then
the training data is used to imprint the classifier weight matrix for each proxy.
Since each layer has a different output feature shape, we apply adaptive average
pooling to simplify our method and unify the embedding length so that each
layer produces roughly an output of the same size. Specifically, the pooling is
done as follows:

di = round(

√
N

ni
)

Ei = AdaptiveAvgPool(Oi, di),

(5)

where N is the embedding length, ni is layer i’s number of filters, Oi is layer
i’s output feature map, and AdaptiveAvgPool [43] reduces Oi to embedding
Ei ∈ Rdi×di×ni . Finally, embeddings per layer are flattened to be used in im-
printing. Imprinting calculates the proxy classifier’s weights matrix Pi as follows:

Pi[:, c] =
1

Nc

D∑
j=1

I[cj==c]Ej (6)

where c is the class id, cj is sample’s j class id, Nc is the number of samples in
class c, D is the total number of samples, and I[.] denotes the indicator function.

The accuracy at each proxy is then calculated using the imprinted weight
matrices. The prediction for each sample j is calculated for each layer i as:

ŷj = argmax
c∈{1,...,C}

Pi[:, c]
TEj , (7)

where Ej is calculated as shown in Eq.(5). This is equivalent to finding the
nearest class from the imprinted weights in the embedding space. Ranking of
each layer is then calculated as the gain in accuracy from previous pruning
candidate.

4 Evaluation Results

In this section we present our experimental results comparing state-of-the-art
pruning methods and LayerPrune in terms of accuracy and latency reduction
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on two different hardware platforms. We show latency on high-end GPU 1080Ti
and on NVIDIA Jetson Xavier embedded device, which is used in mobile vi-
sion systems and contains 512-core Volta GPU. We evaluate the methods on
CIFAR10/100 [44] and ImageNet [1] datasets.

4.1 Implementation details

Latency calculation. Latency model is averaged over 1000 forward pass after
10 warm up forward passes for lazy GPU initialization. Latency is calculated
using batch size 1, unless otherwise stated, due to its practical importance in
real-time application as in robotics where we process an online stream of frames.
All pruned architectures are implemented and measured using PyTorch [45]. For
a fair comparison, we compare latency reduction on similar accuracy retention
from baseline and reported by original papers or compare accuracy on similar
latency reduction with methods supporting layer or block pruning.
Handling filter shapes after layer removal. If the pruned layer l with weight
W (l) ∈ RNl×Fl×Kl×Kl has Nl 6= Fl, we replace layer (l+ 1)’s weight matrix from
W (l+1) ∈ RFl×Fl+1×Kl+1×Kl+1 to W (l+1) ∈ RNl×Fl+1×Kl+1×Kl+1 with random
initialization. All other layers are initialized from the pre-trained dense model.

4.2 Results on CIFAR

We evaluate CIFAR-10 and CIFAR-100 on ResNet56 [4] and VGG19-BN [46].

Random filters vs. Random layers Initial hypothesis verification is to gen-
erate random filter and layer pruned models, then train them to compare their
accuracy and latency reduction. Random models generation follows the same
setup as explained in Section (1). Each model is trained with SGD optimiza-
tion for 164 epochs with learning rate 0.1 that decays by 0.1 at epochs 81, 121,
and 151. Figure 4 shows the latency-accuracy plot for both random pruning
methods. Layer pruned models outperform filter pruned ones in accuracy by
7.09% on average and can achieve up to 60% latency reduction. Also, within the
same latency budget, filter pruning shows higher variance in accuracy than layer
pruning. This suggests that latency constrained optimization with filter pruning
is complex and requires careful per layer pruning ratio selection. On the other
hand, layer pruning has small accuracy variation, in general within a budget.

VGG19-BN Results on CIFAR-100 are presented in Table 1. The table is di-
vided based on the previously mentioned filter criterion categorization in Section
3.1. First, we compare with Chen et el. [38] on a similar latency reduction as
both [38] and LayerPrune perform layer pruning. Although [38] requires training
for layer ranking, LayerPrune outperforms it by 1.11%. We achieve up to 56%
latency reduction with 1.52% accuracy increase from baseline. As VGG19-BN is
over-parametrized for CIFAR-100, removing layers act as a regularization and
can find models with better accuracy than the baseline. Unlike with filter pruning
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Fig. 4: Random filter pruned and layer pruned
models generated from VGG19-BN (Top-
1=73.11%). Accuracy mean and standard de-
viation is shown in parentheses.

Fig. 5: Layer-wise accuracy
using imprinting on CIFAR-
100. Red indicates drop in
accuracy.

methods, they are bounded by small accuracy variations around the baseline. It
is worth mentioning that latency reduction of removing the same number of fil-
ters using different filter criteria varies from -0.06% to 40.0%. While layer pruned
models, with the same number of pruned layers, regardless of the criterion range
from 34.3% to 41%. That suggests that latency reduction using filter pruning is
sensitive to environment setup and requires complex optimization to respect a
latency budget.

To further explain the accuracy increase by LayerPrune, Fig. 5 shows layer-
wise accuracy approximation on baseline VGG19-BN using the imprinting method
explained in Section (3.2). Each bar represents the approximated classification
accuracy up to this layer (rounded for visualization). We see a drop in accuracy
followed by an increasing trend from conv10 to conv15. This is likely because the
number of features is the same from conv10 to conv12. We start to observe an
accuracy increase only at conv13 that follows a max-pooling layer and has twice
as many features. That highlights the importance of downsampling and doubling
the number of features at this point in the model. So layer pruning does not only
improve inference speed but can also discover a better regularized shallow model
especially on a small dataset. It is also worth mentioning that both the proxy
classifier from the last layer, conv16, and the actual model classifier, GT, have
the same accuracy, showing how the proxy classifier is a plausible approximation
of the converged classifier.

ResNet56 We also compare on the more complex architecture ResNet56 on
CIFAR-10 and CIFAR-100 in Table 2. On a similar latency reduction, Lay-
erPrune outperforms [38] by 0.54% and 1.23% on CIFAR-10 and CIFAR-100
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VGG19 (73.11%)

Method Shallower?
Top1

Acc. (%)
1080Ti LR (%) Xavier LR (%)
bs=8 bs=64 bs=8 bs=64

Chen et al. [38] 3 73.25 56.01 52.86 58.06 49.86
LayerPrune8-Imprint 3 74.36 56.10 53.67 57.79 49.10

Weight norm [25] 7 73.01 -2.044 -0.873 -4.256 -0.06
ECC [21] 7 72.71 16.37 36.70 29.17 36.69
LayerPrune2 3 73.60 17.32 14.57 19.512 10.97
LayerPrune5 3 74.80 39.84 37.85 41.86 34.38

Slimming [31] 7 72.32 16.84 40.08 40.55 39.53
LayerPrune2 3 73.60 17.34 13.86 18.85 10.90
LayerPrune5 3 74.80 39.56 37.30 41.40 34.35

Taylor [24] 7 72.61 15.87 19.77 -4.89 17.45
LayerPrune2 3 73.60 17.12 13.54 18.81 10.89
LayerPrune5 3 74.80 39.36 37.12 41.34 34.44

Table 1: Comparison of different pruning methods on VGG19-BN
CIFAR-100. The accuracy for baseline model is shown in parentheses. LR,
bs stands for latency reduction and batch size respectively. x in LayerPrunex in-
dicates number of layers removed. -ve LR indicates increase in latency. Shallower
indicates whether a method prunes layers. Best is shown in bold.

respectively. On the other hand, within each filter criterion, LayerPrune outper-
forms filter pruning and is on par with the baseline in accuracy. In addition, filter
pruning can result in latency increase (i.e negative LR) with specific hardware
targets and batch sizes [47] as shown with batch size 8. However, LayerPrune
consistently shows latency reduction under different environmental setups. We
also compare with larger batch size to further encourage filter pruned models to
better utilize the resources. Still, we found LayerPrune achieves overall better
latency reduction with a large batch size. Latency reduction variance, LR var,
between different batch sizes within the same hardware platform is shown as
well. Consistent with previous results on VGG, LayerPrune is less sensitive to
changes in criterion, batch size, and hardware than filter pruning. We also show
results up to 2.5x latency reduction with less than 2% accuracy drop.

4.3 Results on ImageNet

We evaluate the methods on ImageNet dataset for classification. For all exper-
iments in this section, PyTorch pre-trained models are used as a starting point
for network pruning. We follow the same setup as in [24] where we prune 100
filters each 30 mini-batches for 10 pruning iterations. The pruned model is then
fine-tuned with learning rate 1e−3 using SGD optimizer and 256 batch size.
Results on ResNet50 are presented in Table 3. In general, LayerPrune models
improve accuracy over the baseline and their counterpart filter pruning meth-
ods. Although feature maps criterion [39] achieves better accuracy by 0.92% over
LayerPrune1, LayerPrune has higher latency reduction that exceeds by 5.7%.
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Method Shallower?
Top1

Acc. (%)
1080Ti LR (%) Xavier LR (%)
bs=8 bs=64 bs=8 bs=64

CIFAR-10 ResNet56 baseline (93.55%)

Chen et al. [38] 3 93.09 26.60 26.31 26.96 25.66
LayerPrune8-Imprint 3 93.63 26.41 26.32 27.30 29.11

Taylor weight [24] 7 93.15 0.31 5.28 -0.11 2.67
LayerPrune1 3 93.49 2.864 3.80 5.97 5.82
LayerPrune2 3 93.35 6.46 8.12 9.33 11.38

Weight norm [25] 7 92.95 -0.90 5.22 1.49 3.87
L1 norm [33] 7 93.30 -1.09 -0.48 2.31 1.64
LayerPrune1 3 93.50 2.72 3.88 7.08 5.67
LayerPrune2 3 93.39 5.84 7.94 10.63 11.45

Feature maps [39] 7 92.7 -0.79 6.17 1.09 8.38
LayerPrune1 3 92.61 3.29 2.40 7.77 2.76
LayerPrune2 3 92.28 6.68 5.63 11.11 5.05

Batch Normalization [31] 7 93.00 0.6 3.85 2.26 1.42
LayerPrune1 3 93.49 2.86 3.88 7.08 5.67
LayerPrune2 3 93.35 6.46 7.94 10.63 11.31

LayerPrune18-Imprint 3 92.49 57.31 55.14 57.57 63.27

CIFAR-100 ResNet56 baseline (71.2%)

Chen et al. [38] 3 69.77 38.30 34.31 38.53 39.38
LayerPrune11-Imprint 3 71.00 38.68 35.83 39.52 54.29

Taylor weight [24] 7 71.03 2.13 5.23 -1.1 3.75
LayerPrune1 3 71.15 3.07 3.74 3.66 5.50
LayerPrune2 3 70.82 6.44 7.18 7.30 11.00

Weight norm [25] 7 71.00 2.52 6.46 -0.3 3.86
L1 norm [33] 7 70.65 -1.04 4.06 0.58 1.34
LayerPrune1 3 71.26 3.10 3.68 4.22 5.47
LayerPrune2 3 71.01 6.59 7.03 8.00 10.94

Feature maps [39] 7 70.00 1.22 9.49 -1.27 7.94
LayerPrune1 3 71.10 2.81 3.24 4.46 5.56
LayerPrune2 3 70.36 6.06 6.70 7.72 7.85

Batch Normalization [31] 7 70.71 0.37 2.26 -1.02 2.89
LayerPrune1 3 71.26 3.10 3.68 4.22 5.47
LayerPrune2 3 70.97 6.36 6.78 7.59 10.94

LayerPrune18-Imprint 3 68.45 60.69 57.15 61.32 71.65

Table 2: Comparison of different pruning methods on ResNet56
CIFAR-10/100. The accuracy for baseline model is shown in parentheses. LR
and bs stands for latency reduction and batch size respectively. subscript x in
LayerPrunex indicates number of blocks removed.

It is worth mentioning that the latency aware optimization ECC has an up-
per bound latency reduction of 11.56%, on 1080Ti, with accuracy 16.3%. This
stems from the fact that iterative filter pruning is bounded by the network’s
depth and structure dependency within the network, thus not all layers are con-
sidered for pruning such as the gates at residual blocks. Besides, ECC builds a
layer-wise bilinear model to approximate the latency of a model given the num-
ber of input channels and output filters per layer. This simplifies the non-linear
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relationship between the number of filters per layer and latency. We show the
latency reduction on Xavier for an ECC pruned model optimized for 1080Ti, and
this pruned model results in a latency increase on batch size 1 and the lowest
latency reduction on batch size 64. This suggests that a hardware-aware filter
pruned model for one hardware architecture might perform worse on another
hardware than even a hardware-agnostic filter pruning method. It is worth not-
ing that the filter pruning HRank [40] with 2.6x FLOPs reduction shows large
accuracy degradation compared to LayerPrune (71.98 vs 74.31). Even with ag-
gressive filter pruning, speed up is noticeable with large batch size but shows
small speed gain with small batch size. Within shallower models, LayerPrune
outperforms SSS on the same latency budget even when SSS supports block
pruning for ResNet50, which shows the effectiveness of accuracy approximation
as layer importance.

ResNet50 baseline (76.14)

Method Shallower?
Top1

Acc. (%)
1080Ti LR (%) Xavier LR (%)
bs=1 bs=64 bs=1 bs=64

Batch Normalization 7 75.23 2.49 1.61 -2.79 4.13
LayerPrune1 3 76.70 15.95 4.81 21.38 6.01
LayerPrune2 3 76.52 20.41 8.36 25.11 9.96

Taylor [24] 7 76.4 2.73 3.6 -1.97 6.60
LayerPrune1 3 76.48 15.79 3.01 21.52 4.85
LayerPrune2 3 75.61 21.35 6.18 27.33 8.42

Feature maps [39] 7 75.92 10.86 3.86 20.25 8.74
Channel pruning* [48] 7 72.26 3.54 6.13 2.70 7.42
ThiNet* [23] 7 72.05 10.76 10.96 15.52 17.06
LayerPrune1 3 75.00 16.56 2.54 23.82 4.49
LayerPrune2 3 71.90 22.15 5.73 29.66 8.03

SSS-ResNet41 [37] 3 75.50 25.58 24.17 31.39 21.76
LayerPrune3-Imprint 3 76.40 22.63 25.73 30.44 20.38
LayerPrune4-Imprint 3 75.82 30.75 27.64 33.93 25.43

SSS-ResNet32 [37] 3 74.20 41.16 29.69 42.05 29.59
LayerPrune6-Imprint 3 74.74 40.02 36.59 41.22 34.50

HRank-2.6x-FLOPs* [40] 7 71.98 11.89 36.09 20.63 40.09
LayerPrune7-Imprint 3 74.31 44.26 41.01 41.01 38.39

Table 3: Comparison of different pruning methods on ResNet50 Ima-
geNet. * manual pre-defined signatures. ** same pruned model optimized for
1080Ti latency consumption model in ECC optimization

4.4 Layer pruning comparison

In this section, we analyze different criteria for layer pruning under the same
latency budget as presented in Table 4. Our imprinting method consistently
outperforms other methods, especially on higher latency reduction rates. Im-
printing is able to get 30% latency reduction with only 0.36% accuracy loss from
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ResNet50 (76.14)

1 block
(LR≈ 15%)

2 blocks
(LR≈ 20%)

3 blocks
(LR≈ 25%)

4 blocks
(LR≈ 30%)

LayerPrune-Imprint 76.72 76.53 76.40 75.82

LayerPrune-Taylor 76.48 75.61 75.34 75.28

LayerPrune-Feature map 75.00 71.9 70.84 69.05

LayerPrune-Weight magnitude 76.70 76.52 76.12 74.33

LayerPrune-Batch Normalization 76.70 76.22 75.84 75.03

LayerPrune-Ensemble 76.70 76.11 75.76 75.01

Table 4: Comparison of different layer pruning methods supported by
LayerPrune on ResNet50 ImageNet. Latency reduction is calculated on
1080Ti with batch size 1.

baseline. The ensemble method, although has better accuracy than the average
accuracy, is still sensitive to individual errors. We further compare layer prun-
ing by imprinting on a similar latency budget with smaller ResNet variants. We
outperform ResNet34 by 1.44% (LR=39%) and ResNet18 by 0.56% (LR=65%)
in accuracy showing the effectiveness of incorporating accuracy in block impor-
tance. Detailed numerical evaluation can be found in supplementary.

5 Conclusion

We presented LayerPrune framework which includes a set of layer pruning meth-
ods. We show the benefits of LayerPrune on latency reduction compared to filter
pruning. The key findings of this paper are the following:

– For a filter criterion, training a LayerPrune model based on this criterion
achieves the same, if not better, accuracy as the filter pruned model obtained
by using the same criterion.

– Filter pruning compresses the number of convolution operations per layer
and thus latency reduction depends on hardware architecture, while Layer-
Prune removes the whole layer. As result, filter pruned models might pro-
duce non-optimal matrix shapes for the compute kernels that can lead even
to latency increase on some hardware targets and batch sizes.

– Filter pruned models within a latency budget have a larger variance in ac-
curacy than LayerPrune. This stems from the fact that the relation between
latency and number of filters is non-linear and optimization constrained by
a resource budget requires complex per-layer pruning ratios selection.

– We also showed the importance of incorporating accuracy approximation in
layer ranking by imprinting.
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