View Dependent Texturingusing a Linear Basis
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Abstract We present a texturing approach forimage-based modelohgeaaering,
where instead of using one (or a blend of a few) sample imagesyiew dependent
textures are synthesized by modulating a differentialtexbasis. The texture basis
models the first order intensity variation due to image prtoga errors, parallax and
illumination variation. We derive an analytic form for tHiasis and show how to
obtain it from images. Experimentally we compare rendeieds to ground truth
real images and quantify how the texture basis can genemate@accurate render-
ing compared to conventional view dependent textures. lardware accelerated
implementation we achieve frame rate of on regular PC’s amuemer graphics
cards.

1 Introduction

Texture normally means fine scale visual or tactile propsutif a surface. The word
is related to textile, and indeed it was used to describe #ngcplar surface cre-
ated by the the interwoven threads in a fabric. In comput@plgjcs texturing is the
process of endowing a surface with fine scale propertiegerQftis is used to make
the visualization richer and more natural than if only the @ometry had been
rendered. There are a wide range of computer graphics tegtapproaches. Early
texturing involved replicating a small texture elementrobe surface of an object
to enrich its appearance. Commonly this is done by warpingallD texture el-
ement onto the structure but other variations exist inclgdD texturing. Texture
can also be used to model light and reflections by texturingdatwith a specular
highlight texture.

The focus of this chapter is on image texturing. We will stindyv to compose
a texture image suitable for photo-realistic image-basedering. In this case the
texturing element is a comparably large image, and unlikeabove mentioned
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techniques, not repeated over the surface. Hence, we aoent® extent transcend-
ing out of the original domain of texturing by now not only nedicig a repetitive
fine scale structure, but also potentially medium and lacgéeschanges in texture,
including light and geometry aspects not captured by theahétere we will focus
on aspects that are specific to image based modeling andrigdand not treat
standard issues such as implementation of 2-D warps, figemd multi-resolution
texturing. The background on basic texturing is coverechin literature[16] and
recent text books[20].

One purpose of the texture representation is to capturesityevariation on the
pixel level. This includes the view dependency of potehtiabmplex light sur-
face interactions and subpixel surface structure. Angbliepose, for models cap-
tured from images, is to compensate for discrepancies legt@pproximate cap-
tured geometry and true object surfaces. The first purposienigar to that of Bi-
directional Texture Function (BTF) representations [6{ dhe second similar to
view-dependent textures (VDTM) [7].

In a parallel line of research Freeman, Adelson and Heegedrtbat small im-
age motions could be modulated using a fixed spatial imagis[bdk This was
extended to image synthesis of whole motion sequences as#@A basis[17], and
later used to animate stochastic motion [8]. Another viemiedlecomposes the basis
into a multi-linear form, where two or more variations (elight and viewpoint) are
represented separately[26]. The above works all représtenisity variation on the
2D image plane, but others realized that it is more efficiemépresent the intensity
variation on the surface facets of a 3D triangulated modal|$]. Both in spirit and
actual implementation all these representations are giitéar in their use of a set
of basis textures/images to modulate a new texture.

The work presented in this chapter falls inbetweelief texturesandlightfield
approaches in its approach to photorealistic renderintielRextures provides an
explicit geometric solution to adding 3D structure to a platexture[21]. However,
relief textures require a detailed a-priori depth map oftthéure element. This is
normally not available in image-based modeling if only dilwated camera video
is used. Thus, relief textures have been mostly used witticai-graphics models.
The floating texture approach similarly to relief texturesfprms a geometric per-
tubation of the pixels at render time, but instead of a depdbp oses a 2D motion
vector field to drive the pertubation[9].

While initially lightfield (e.g. [18, 13]) and geometry+texe approaches to
image-based rendering were disparate fields, recent wiakpts to close this gap.
Our work is in the intersection of the two, using a relativégnse image sampling
from real-time video, and representing appearance on dicixgometric model.
Most closely related are work in the lightfield area usingrgetric proxies. Here
the lightfield can be represented on a geometry closely epired an object[4].
However, in rendering textures are blended directly fropuinimages, unlike our
approach which uses an intermediate basis with well defirngld geometric and
photometric interpolation capabilities. In surface lifibtds, instead of a geometric
proxy, an accurate object geometry is used. Wood et. al§ff]ies how to effi-
ciently parameterize these light fields to capture compédbectance, but doesn’t
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address the issues arising from geometric misalignmeut&ftead relies on range
scanned precise models being accurately hand-registetieaalibrated imagery.
On the other hand, our approach explicitly addresses thalignisnent issues and
builds in the necessary correction in the texturing.

The main contributions of the chapter are as follows:

1. Theoretically, we derive the analytical form of texturariation under a full
perspective camera, where previous formulations have bieer image-plane
based or using simplified linear camera models. This vanas derived to cap-
ture misalignments between the geometric model and thereeknhages, paral-
lax arising when planar model facets approximate non-placenes, and light
variation occurring naturally in camera-based texturdwap

2. Practically, we show how the actually occurring varidpih a particular texture-
image sequence can be estimated, and provide an identificatithe above
mentioned analytically derived forms in the real data. Tovslthat the method
is practical we present an implementation allowing realetirendering on con-
sumer grade PC’s and graphics cards.

3. Experimentally, we compare rendering results from oudehdo static tex-
tures, traditional view-dependent texturing, and lumpdraay-based rendering.
To compute models we use image sequences from four objeictsrefising dif-
ficulty.

Our texturing method combined with standard geometry atiii using Structure-
From-Motion (SFM) or Shape from Silhouette (SFS) is pattidy suited for the

consumer market. Anyone with any video camera, from a $10Damen to a good
quality digital camera can capture image sequences of s@reobjects, build his
or her own image-based scene models and then generateabksquality render-
ings. To stimulate use by others we provide a downloadalgtica and modeling
system and a renderer[2].

2 Background: image geometry

Given images of a scene or object, the 3D geometry can beessibin a variety of
ways. Classic photogrammetry recovers 3D from 2D pointesgrondences using
calibrated cameras. In the past decade much work was dexead&rrecovery from
uncalibrated images[15]. Despite this, no system can escscurate dense geom-
etry robustly and reliably from general scenes. One of tixedablicly accessible
systems is KU Leuven’s 3Dwebservice[27], for which one cpload image sets
of scenes and get back 3D reconstructions. It sequencesti8ttFrom-Motion
(SFM), auto-calibration, and dense stereo. The proceducemputationally de-
manding and runs in parallel on a computer network. Recoctitns often take
hours to complete. Practically care must be taken in selgtibth scenes and view-
points for the system to work well. Nonetheless, it is a repn¢ative of the state of
the art in SFM based systems.
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Shape-from-silhouettes (SFS)[24], on the other hand isyanabust method to
obtain a visual hull geometry. It only requires the objelti@iette and the calibra-
tion of the cameras. Besides it is quite robust to silhoumttealibration errors. In
our system we implement an efficient algorithm for silhoaetirving using an or-
thogonal ray set and the Marching Intersections[25] athori This decreases stor-
age cost and improves geometric precision (by recordifgpsétte intersections
exactly on the rays) compared of the conventional discrexeepresentation.

For the examples in this chapter, a rough 3D geometry hasdig#amed using
either SFM or SFS as indicated. Independent of how the gegmets obtained,
but central to image-based modeling is that this 3D streatan be reprojected into
a new virtual camera and thus novel views can be renderedingtavith a set of
m imagesl; ...y from different views of a scene, a structurerophysical scene
pointsX; ... X,, andm view projectionsP; ... Pyn. These project onto image points
Xj,ias

Xji=PX icl..njel...m Q)

Practically, the structure is divided inf@ planar facets (triangles or quadrilaterals
are used in our experiments) with the poixtsas node points. For texture mapping,
each one of the model facets are related by a planar pragelstimography to a
texture image; see Fig. 1.

3 Texture basis

In conventional texture mapping, one or more of the real isage used as a source
to extract texture patches from. These patches are therediargo the re-projected
structure in the new view.

Instead of using one image as a source texture, here we stwdyohrelate and
unify all the input sample images into a texture basis. Xygtbe a set of texture
coordinates in one-to-one correspondence to each modwlXand thus also for
each viewj with the image points;; above. A texture warp functioy” translates
the model vertex to texture correspondences into a pixeddae-arrangement (or
warp) between the texture spdggeto screen image coordinatkes

TO) =17 (% p)) (2)

whereu are the warp parameters axdhe image pixel coordinates. For notational
clarity in later derivations, we let the warp function acttbe parameter space, as is
common in the computer vision literature, but less oftemseé&raphics.

Common such warp functions are affine, bi-linear and prjegtarps. The warp
functionW acts by translating, rotating and stretching the paransgace of the
image, and hence for discrete images a re-sampling andrfitstep is needed
between the image and texture spaces. Details of theségaldiets can be found in
Moller and Haines [20].
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Input images Re-projected geometry  Texture image

Fig. 1 Textures generated from two different images using an apeate and coarse geometry
are usually different. Common problems are misalignmenéxtiure coordinates, as visible on the
right house edge, and parallax visible on windows and door.

Now if for each sample vievy, we warp the real imaglg from image to texture
coordinates into a texture imagdg, we would find that in general the two texture
images are not identical # Ty, j # kas illustrated in Fig. 1. Typically, the closer
view | is tok, the smaller the difference is betwegnandT. This is the rationale
for view-dependent texturing, where a new view is textumednfone to three (by
blending) closest sample images|[7].

In this chapter we will develop a more principled approachere we seek a
texture basi® such that for each sample view:

Tij=Byj, jel...m 3)

Here, and in the followingT is aq x g texture image flattened intogg x 1 column
vector.B is ag? x r matrix, where normally < m, andy is a modulation vector.
The texture basi8 needs to capture geometric and photometric texture vamiati
over the sample sequence, and correctly interpolate négtineen views. We first
derive a first order geometric model and then add the phot@netriation. For
clarity, we derive these for a single texture warp (as in Fjgwhereas in practical
applications a scene will be composed by texturing seveoaeahfacets (as in Fig.
1).
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3.1 Geometric texture variation

The starting point for developing a spatial texture basfgesenting small geo-
metric variations is the well known optic flow constraint, ialn for small image
plane translations relates texture intensity chahigje= T; — Ty to spatial derivatives
%T, %T with respect to texture coordinates= [u,v]" under an image constancy
assumption[14].

oT oT

AT = %AU'F WAV 4)

Note that given one reference textiigwe can now build a basis for small image
plane translation® = [To, %, ‘f,—\T,] and from this generate any slightly translated
textureT (Au,Av) = B[1,Au,Av]" = By

In a real situation, a texture patch is deforms in a more cermplay than just
translation. This deformation is captured by the warp patens. Given a warp
functionx’ = % (x, 1) we study the residual image variability introduced by the im
perfect stabilization achieved by a perturbed wafpx; 1), AT =T (# (x;[1),]) —
T(# (x;u)). Let I = u+Au and rewrite as an approximate image variability to
the first order (dropping):

AT =TV (X u+AW) —Tw
=T/ () + 0T FrAp—Tw

_ T
=T or A (5)
T aT ;_u"';_u T
:[mam} DN | Al
opr Ol

The above equation expresses an optic flow type constraimt iabstract formu-
lation without committing to a particular form or paramézation of #'(u). The
main purpose in the following is that Eq. 5 lets us expressa(Brexture pertuba-
tion due to a geometric shifty u, without the explicit pixel shifting used in [21, 9],
but rather using a basis of derivative images, namely theadputerivatives of the
image textureAT multiplied by the Jacobian of the warp functi%. In practice,
the function”” is usually discretized using e.g., triangular or quadgilatmesh el-
ements. Next we give examples of how to concretely expreagémariability from
these discrete representations.

For image-based modeling and rendering we warp real sooragds into new
views given an estimated scene structure. Errors betweeedtimated and true
scene geometry cause these warps to generate imperfeetireged We divide these
up into two categoriesmage planexndout of planeerrors. The planar errors cause
the texture to be sourced with an incorrect wArphe out of plane errors arise
when piecewise planar facets in the model are not true plendse scene, and

1 Errors in tracking and point correspondences when comguain SFM geometry, as well as
projection errors due to differences between the estimegetkera model and real camera (SFM
and SFS) both cause model points to be reprojected inclyriadmages.
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when rewarped into new views under a false planarity assompill not correctly
represent parallax. This can be due to the geometry beingegaommon when
using SFM) and/or inaccurate (e.g. a visual hull from SFS).

Planar texture variability. First we will consider geometric errors in the texture
image plane. In most IBR (as well as conventional rendetiexfures are warped
onto the rendered view from a source textlirby means of a projective homogra-
phy. / .
u hiu+hzv+ hg
= "(Xp,h) = ————— 6
|:V'] h( h, ) 1+h7u—|—h8V[h2U+h4V+h6 (6)

Rewrite Eq. 5 with the partial derivatives @f;, for the parameters; ... hg into
a Jacobian matrix. Let; = 1+ hyu+ hgv, ¢, = hju+ hgv+ hs, andcz = hou+
hav+ hg. The resulting texture image variability due to variatiomshe estimated
homography is (to the first order) spanned by the followiratis basis:

ATh(u,v)

_uy  _vgq [Ahg
_id_Td_TUOVOlOC% & _ -
T c | du’ av O u O v 0 1 _ UG _ V& :

¢ a1 |ahg

= [B1...Bg][y1,--..Ys]" = Bnyn

Where here and thoughout the papgeis used for the texture modulation coeffi-
cients. Examples of thB; . .. Bg derivative images can be seen in Figure 3. Similar
expressions can be derived for other warps. For exampl@pdrg the two last
columns of the above Jacobian gives the variability for tfiee@awarp.

Non-planar parallax variation In image-based modeling a scene is represented as
piecewise planar model facets, but the real world scenddeseperfectly repre-
sented by and aligned with these model planes. In rendériagives rise to paral-
lax errors. Figure 2 illustrates how the texture plane imagdanges for different
scene camera centeZs Given a depth mag(u,v) representing the offset between
the scene and texture plane, relief texturing [21] can b& stsecompute the re-
arrangement (pre-warp) of the texture plane before the finalography renders
the new view. In image-based methods, an accurate depthssadiom available.
However, we can still develop the analytic form of the tegtimensity variation as
above. For a point on the model facet, |et 3] be the angles between the normal
vector and the ray pointing to the camera cefgalong theu andv axis (e.qg., if
V=Cj—P| = (%W, V)T, a =tant(¥), andB = tan *({)). The pre-warp rear-
rangement needed on the texture plane to correctly rendexdbne using a standard
homography warp is then:

tana

[5“} — #plx.d) = d(uv) 1o

ov

(8)

As before, taking the derivatives of the warp function wigspect to a camera angle
change and inserting into Eq.5 we get:
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1
AT p(u,v) =d(u,v) [dT 6—T} l“’g“ (1) 1

Aa
AB

U’ v =Bpyp ()]

coZ B

|
' Texture plane

Fig. 2 Texture parallax between two views (planar representation

3.2 Photometric variation

In image-based rendering real images are re-warped intwvigsvg, hence the com-
posite of both reflectance and lighting is used. If the ligitditions are the same for
all sample images, there is no additional intensity valigtintroduced. However,
commonly the light will vary at least somewhat. In the pastatke, both empiri-
cal studies and theoretical motivations have shown thawvallmensional intensity
subspace of dimension 5-9 is sufficient for representindigfme variation of most
natural scenes. Recently, Barsi and Jacobs [3] and Ramé#mand Hanrahan [22]
have independently derived an analytic formula for irrad& (and reflected radi-
ance from a convex Lambertian object) under distant illation, explicitly consid-
ering attached shadows. They express the irradiance irs @frapherical harmonics
coefficients of the illumination. An important result of theork is that Lambertian
reflections acts as a low-pass filter so the irradiance ligsalese to a 9D subspace.

Let(a, 3) be the spherical coordinates of the distant light sourcadndf3, 6, )
the intensity of the image at a point with surface normal vergggherical coordinates
are(6, ). Assuming a Lambertian surface and ignoring albéda, 3, 6, ¢) can
be thought as the irradiance at orientatié) @) due to a unit directional source at
(a,B). The analytical formula fof is then [3]:

o |

T(G,B,Q,(D) = % Z A|L|k(a,B)Y|k(9,(P) (10)
|=

k=1
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Z) z ALi(a,B)Yik(6,9) (11)
k=—1

whereY (8, @) are the spherical harmonic, is a constant that vanishes for odd
| > 1andL(a,B) are the spherical harmonic coefficients of the incideninila-
tion.

The first nine spherical harmonics and constants:

(X,y,2) = (cosesin(p,sinesinqo,cosqo)

Yoo(6,9) = /(4
4— V:zx)

(Y1-1;Y10;Y11) (6, @) =

(Yo_2;Y2-1;Y21) (6, ¢) = \/;(XYYZXZ)

5
Y20(6,9) = 4/ ET(SZZ_ 1), Y2(6 16n (@~

21T T
Ao T 1 3 2 2

Using single index notation

Y1,Y2,Y3,Y4 = Yoo, Y1-1, Y10, Y11
Y5,Y6,Y7, Y8, Yo = Yo_2,Y2_1,Y20, Y21, Y22

) Ay if j=1
A= (A ifje234
Ay ifjeb...9

and definingB;(0,¢) = AJYJ-(G,(p),j =1...9, we can rewrite Eq. 10 for all the
pixels in the images as:

T=[B;1...BgJ[L1...Lg]" (12)
The image difference caused by light change can be thenssqutas:

AT) = [B1...Bg]ly1...yo]" =By, (13)

3.3 Estimating composite variability

In textures sampled from a real scene using an estimatedeggorstructure we
expect that the observed texture variability is the comtjosdf the above derived
planar, parallax and light variation plus other unmodeledrs. Hence we can write
the texture for any sample view, and find a corresponding texture modulation
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VeCtoryk:
Tk: [TOthaprB|][1’ylv'~'aylg] = Byk (14)

whereTy is the reference texture. Textures for new views are syitbedy inter-
polating the modulation vectors from the nearest samplewiato a newy, and
computing the new texturg,ew = By

Since this basis was derived as a first order representai®ralid for (reason-
ably) small changes only. In practical image-based modelie geometric point
misalignments and parallax errors are typically within ®i%el, which is small
enough.

Often in IBR neither dense depth maps nor light is availadence analytically
Bp, andB; cannot be directly analytically computed using Eq’s 9 anddstead the
only available source of information are the sample imdges |y, from different
views of the scene, and from these, the computed correspoptekturesr ;... .

However, from the above derivation we expect that the dffecank of the sam-
ple texture set is the same as of the texture &sis. @ankT1,..., Tm| ~ 20. Hence,
from m> 20 (typically 100-200) sample images we can estimate thefibéan-
der some criterion) rank 20 subspace using e.g. PCA, SVDBCAr This yields an
estimated texture basiand corresponding space of modulation vecfars. . ym
in one-to-one correspondence with tinesample views. From the derivation of the
basis vectors iB we know this variation will be present and dominating in tams
pled real images. Hence, the analytiBahnd the estimat® span the same space
and just as before, new view dependent textures can now belated from the
estimated basis by interpolating thiefrom y corresponding to the closest sample
views and modulating a new textufe= By.

3.4 Experimental comparison for analytical and PCA basis

For validating the equivalence between the analytical tdation of the texture ba-
sis (Sections 3.1,3.2) and the statistically estimated(8eetion 3.3) we perform
several experiments where we isolated different typesxtfite variability (planar,
parallax, light) and show that the analytical basis is cioeizin the estimated PCA
subspace.

Planar texture variation. The planar variation is usually caused by tracking in-
accuracies that are about 1-5 pixels. For replicating thisability we selected a
planar region from a toy house (Fig. 3 (a)) and warped it uasihgmography warp
to a 128x 128 texture (Fig. 3 (b)). We then perturbed the corners rartgavith
1-5 pixels and generated another 200 textures. We caldulageanalytical texture
basis using Eq. 7 with the initial texture (see Fig. 3 (cled)), and the PCA ba-
sis for the perturbed textures. We projected the analybeais in a subspace of
PCA basis. Fig. 3 (c2,d2,e2) illustrates the recoveredydinal textures from the
PCA subspace. The average intensity pixel error betweeorigi@al and recovered
basis was 0.5%.
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(b) (c2) (d2) (e2)

Fig. 3 Comparison of analytical and PCA basis for planar varighi{a) original quadrilateral; (b)
warped texture; (cl),(d1),(el) analytical basis (1stAthfrom Eq. 7); (c2),(d2),(e2) correspond-
ing recovered basis using PCA subspace

Non-planar texture variation (parallax). The parallax variability is caused by a
non-planar facet in the geometric model. For simulating trariability we cap-
tured 90 images from different pan angles of a non-planakfiah the same toy
house while tracking four corners of a quadrilateral regidme corners are used to
warp each quad into a standard shape for generating thedartages. Choosing
a reference texture (see Fig. 4 (a)), we manually inputedémeh map (see Fig. 4
(b)) and calculated the analytical texture basis using Egr@&m the other sample
textures we estimated a PCA subspace and projected thetieaabbasis into this
space. Fig. 4 (c1) shows the original analytical basis (Bit)Fig. 4 (c2) shows the
recovered basis from the PCA subspace.

Photometric texture variation Photometric variation is caused by changing light
conditions or object rotation relative to the light sourdée simulated this variabil-
ity by moving a toy house on a pivot rig relative to incomingnsght. Other forms
of variation were avoided by attaching the camera to thetpigdi.e., the projection
of the house in the sequence is fixed). A laser-scanned madahen aligned to the
image sets, and the spherical harmonic functions were ctadfor this geometry.
Figure 5 shows the first few of these analytical sphericainuaric basis functions
and their reconstruction from a PCA basis that was computad the image se-
quence. The similarity of the harmonics reconstructed ftbenPCA basis to the
analytic harmonic functions illustrate that the emperlzasis sufficiently encodes
light variation.
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| 1

Image patch Depth map Analytin PCAD,

Fig. 4 Comparison of analytical form (Eq. 9) &f and the estimated PCA bads for parallax
variability. Image patch is from the right side wall of theuse, see Fig. 1 top row.

4 Rendering system implementation

Computing the texture basis involves reprojecting inpuages using the object
or scene geometry. The geometry is usually computed fronsdhee images, but
could be obtained in some other way. We developed a softwaggrating the steps
from images to model into a procedure taking only a few migiienost cases, see
Video 1[1] . The software is downloadable; see [2]. To quiatdpture views from
all sides of an object we use a rotating platform (Radio Skfatstand). Our SW
can take live video from an IEEE1394 camera, (we use a Umilwaib cam and
PtGrey Scorpion 20SO) or import digital image files from # samera. Camera
calibration is obtained with a pattern, and object silhtegethrough bluescreening.
Light variation can be implicitly captured with viewpoinirection in a lit texture,
or light direction can be separately parameterized usiagrttage of the specular
ping-pong ball in Fig. 6. The geometry is then computed a®tt.2. Alternatively,

a separately obtained geometry can be imported. To staythétlcamera-based
paradigm we have used KU Leuven’s 3D Webservice[27].

Texture coordinates While in computer vision it is common to texture directly
from images, in applications a unified texture space is ddsind often necessary.
To automatically compute texture coordinates, the objechetry is first split along
high curvature regions, then each region is flattened ustogiBormal mapping[19],
and packed into an OpenGL texture square (the GUI screemmskd. 6 illustrates
an example of this mapping). In the dynamic texture basispegation, all input
images are transformed into and processed in this space.

Texture basis generation The projection of the estimated structure into the sample
imagesxj, is divided into planar facets (triangles). Practicallging HW acceler-
ated OpenGL each franigis loaded into texture memory and warped to a standard
shape texturdj based on the texture coordinate atlas. We next estimatetiaréex
basisB and a set of texture coefficiers by performing PCA on the set of zero
mean textureflj — T], je 1...m.

Final model. The DynTex basis is the largest component of a model. Howiever
compresses well using jpeg, and model storage sizes of 50kB-are typical.
(size is proportional to size and number of basisvectorsg domplete model of
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bi1 (Albedo) b2 bis b4

Fig. 5 Comparison of analytical form (Eq. 9) bf and the estimated PCA badisfor light vari-
ability. Top row: Angular map of the spherical harmonics.dille: Analytic spherical harmonic
basis. Bottom: Corresponding light basis computed by PCA.

geometry and texture basis can be exported, either forsimiun Maya or Blender,
for which we have written a dynamic texture rendering plugindirect real-time
rendering. An example of several object and people captepdrately using our
capture system and incorporated into a scene from Edmolotcation near Muttart
conservatory) can be seen in using a cylindrical panoransaitfy as backdrop,
Fig. 8, Video 1[1].

Rendering. A desired view is given by the projection matikwith the camera
directionv. For calculating the texture blendiygwe first apply 2-dimensional De-
launay triangulation over the camera viewing directionthmtraining set. Then we
determine which simplex the new camera direction is costhin, and estimate the
new texture modulation coefficients by linearly interpigtthe coefficients associ-
ated with the corner points of the containing simplex. The texture is generated
from the basis textures and then the geometric m@dslrendered into the desired
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Fig. 6 Left: experimental capture-setup. Right: GUI for our captsystem. the screenshot shows
the texture coordinate step.
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pose. The most computationally demanding part of rendésibgnding the texture
basis. Hardware accelerated blending helps to achievémeatendering. Depend-
ing on the graphics hardware capabilities one of severahoastare choosen. On
old, modest graphics cards, multipass rendering is usekktallthe basis textures.
On newer graphics hardware a shader program is used tolginéend the textures.
If graphics hardware acceleration is unavailable, a SIMD X1Mutine performs
the texture blending. Rendering our textures on midrange Wit shader pro-
grams, single objects render at well over 100Hz using 205322 resolution basis
textures per object. Ten dynamically textured objects inems still render at over
30Hz.

Examplerenderings. The first example illustrates the difference between a mod-
ulated texture and standard image texturing. A wreath mécatoral straw and
flowers was captured and processed into a texture basisgli7 &irotating quadri-
lateral is textured with the image of the wreath. Using ontg image, the texture
appears unnatural from all but the capture direction astiited in the top row.
On the other hand, modulating the view dependent textuecfitie scale variabil-
ity from the wreath physical geometric texture as well astphwtric properties is
realistically reproduced (bottom row).

As mentioned, we are not limited to small objects. We can imhgeometries
from 3Dwebservice[27]. In Video 3[1] and Fig. 9, we show agufeers chair cap-
tured in situ from the Seefeld church.

5 Experiments

Rendering quality of textures can be judged subjectivelyibyers and evaluated
numerically by comparing to ground truth images. Unlike pamsons of geometry
alone, numeric errors are not indicative of perceptualiggu®urthermore, a static
image does not show how light and specularities move. Toegafe rely mainly

on the video renderings to argue photo-realistic resultsfak as we know there
is no commonly accepted standard for a perceptually retevamerical measure.
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Fig. 7 Texturing a rotating quadrilateral with a wreath. Top: byrpiag a flat texture image. Bot-
tom: by modulating the texture basis B and generating agoatisly varying texture which is then
warped onto the same quad.

Fig. 8 Several objects and persons composed in Blehddego 1
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_

Fig. 9 Seefeld Kanzel: input image, geometry, static and dynaexitute rendering

We use just the mean pixel intensity difference betweené¢hdered model and a
real image (from a pose not used in the capture data to contipeitenodel). For
each experiment, a set of input images were acquired usingithtable setup. Half
were used to compute the model, and the other half (fromrdifiteviewpoints) were
used as reference in the comparison videos and intensiy @mputation. For the
three sequences below captured in our lab (house, elephdntjreath) a PtGrey
Scorpion camera at 800x600 resolution was used. Due to fiiation pattern
taking up image space, the effective object texture resolis however closer to
web-cam VGA (640x480) resolution.

Four algorithms compared To evaluate the subspace-based dynamic texture we
compared it to several other popular texturing methodsérnlitarature. As a base
case we use standard single texturing with the pixel valtiggeingle texture com-
puted to minimize the reprojection error in all trainingwie Next we choose the
popular view dependent texturing (VDTM)[7], and our finahgoarison is against
ray-based “Untructured Lumigraph” rendering[4]. While maanethods have been
published, many are variations or combinations of the foara@mpare. To put
the methods on an equal footing we use 20 basis vectors inythentc texture.
The VDTM texturing by blending textures sourced from 20 inpoages. In the
lumigraph, for each texturespace pixel a list of ray colat ajv index is stored. The
lumigraph is then computed on the geometry by picking thea® per texture pixel
that minimize the reprojection error over all input imag@&®te: Unlike the VDTM
and DynTex basis, jpeg compression does not work for thendiges yielding in
practice a larger data representation).
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Selection of four test data sets. Depending on the complexity of the scene or object
to be captured and rendered, different texturing method$eaised. In the follow-
ing evaluation we choose four data sets of increasing cofitpl® challenge the
texturing methods.

For a comparison to existing literature, we start with thevdloadable temple
scene from[23] (Fig. 10, I.) A close approximation to theetgeometry is computed
using SFS by our system, with 90% reconstructed within 1. &hground truth, a
further geometry refinement improves this to 1.1mm. Our ga&oyris not quite as
good as Hernandez et al. (0.5mm)[10], but comparing textemelerings for the
initial SFS model with those of the refined model, there istiiexno perceptual
difference. Likewise for this simple BRDF we find little peptual or numerical
error difference between using just a conventional statigls texture or any of the
view dependent textures (see Video 5[1] ).

Input Static VDTM Lumigr DynTex Refined geom

Fig. 10 Renderings of the temple from Middelbury multiview steremge set. Texture is simple,
and renders well with any texturing method.

Our second data set is of a house, with wood, bark and mossiaisitand a more
complex structure. For the house there a significantly difiee between the SFS
visual hull geometry and the underlying true geometry {palarly in the middle
inside corner). Also can be seen in Video 6[1] and Fig. 11 riostatic texture on
compares badly to the view dependent ones, while therdlésdifference between.

Input Geometry Static VDTM Lumigr DynTex

Fig. 11 Renderings of a textured SFS house model. The static teitinlarreddue to averaging
colors on different rays, while the other textures are shdtp indistinguishable quality differ-
ences.

Third we try an elephant carved in jade. This object has a ¢exmeflectance
with both specularities and subsurface scattering. Heneggestexture gives a dull
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flat appearance. VDTM is perceptually better, but a closéyaisashows that some
specularities are missing (e.g. on ears in Fig.12), andreth&ve incorrect gradi-
ents. The DynTex and unstructured lumigraph show betteltegsoth visually and

numerically for difficult (particularly specular) views,jtlv a max intensity error of
6% compared to 10% for the standard view dependent texturd& @%b for a static

texture, Fig. 12 (Video 7[1] ).

Input Static VDTM Lumigr DynTex

Fig. 12 A Jade elephant with complex reflectance. Static and VDTNutes are dull and com-
pletely miss the specularity on the ear. DynTex and Lumigicgpture the light and material more
faithfully.

Finally, we show an example of a straw wreath, where obtginigood geom-
etry is very difficult (Fig. 13 1V, Video 8[1] ). Here, a purelynage-based method
can represent a dense sample of the rayset, but at a hugges{gigabytes) cost.
We used a rough visual hull proxy geometry. The static textsiblurred out. The
VDTM looks sharper because input images are used directtyalziose inspec-
tion shows somewhat jumpy transitions in the video, andrduthese transitions
two input images are blended on top, creating a wreath witteramaws. Both the
DynTex and Unstructured Lumigraph code view dependen@xitute space in dif-
ferent ways. These instead blur detail somewhat but givevaratl lower error as
explained below.

Inpuf Image static VDTM Lumi DynTex

Fig. 13 Detail crops showing results for the Wreath with complexnmigeometry rendered on a
rough proxy geometry.
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error (variance) templg  house elephant wreath
Static textur¢10.8 (1.5)11.8 (1.2)19.0 (1.4)28.4 (2.8
VDTM| 8.3(1.9) 9.8 (1.3)10.1(1.9)21.4 (3.5
Lumigraph10.8 (2.5) 9.8 (1.2] 5.9(0.7)14.3 (1.3
DynTex 7.3 (1.0) 9.4 (1.0] 6.6 (0.7)13.4 (1.2

Table1 Numerical texture intensity errors and (variance). %+scal

Summarizing the experiments we find that for simple reflexeand geometry,
any texturing method works well, while for more complex sasgew-dependent
appearance modeling helps, and for the two most complex ¢hseDynTex has a
better performance than VDTM. Both of these can be renderdégidware using
simple texture blending. The unstructured lumigraph hadlai performance to the
DynTex, but at a much higher storage cost, and would requa@ngplicated plu-
gin to render in Maya or Blender. The maximum image errorsemadr variance
are summarized in Tablel. The variance indicates smoatlofeexture modula-
tion over viewpoint changes. Perceptually a high value feats itself as a jumpy
appearance change. An example of viewpoint error variai@gornbe seen in Fig. 14.
The jumpy appearance of the VDTM is due to it working betteewlclose to an
image in the reference set.

80 T T T T T T LIS T
Static
A View-Dependent
70 | / \Unstructured Lumigraph ——— 1
[ Dynamic Texture ———

Residual

10 + || | -

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Image

Fig. 14 Viewpoint variation of rendering error for the wreath
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6 Discussion

We have presented a texturing method where for each new viemicaue view-
dependent texture is modulated from a texture basis. Thie Isadesigned so that
it encodes a texture intensity spatial derivatives witlpees to warp and parallax
parameters in a set of basis textures. In a rendered seqteniaxture modulation
plays a small movie on each model facet, which correctlyasgnts the underlying
true scene structure to a first order. This effectively conspées for small (up to a
few pixels) geometric errors between the true scene streiaiud captured model.

The strength of our method lies in its ability to capture aedder scenes with
reasonable quality from images alone. Hence, neitheraipriodels, expensive
laser scanners nor tedious manual modeling is requireq. ®BIC computer and a
camerais needed. This can potentially enable applicatibm®deling from images
such as virtualized and augmented reality in the consumekaha
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