
3D Line Segments Extraction from Semi-dense SLAM

Shida He Xuebin Qin Zichen Zhang Martin Jagersand
University of Alberta

Abstract

Despite the development of Simultaneous Localization
and Mapping (SLAM), there lacks efficient methods for rep-
resenting and processing their large scale point clouds. In
this paper, we propose to simplify the point clouds gener-
ated by the semi-dense SLAM using three-dimensional (3D)
line segments. Specifically, we present a novel approach
for 3D line segments extraction. This approach reduces a
3D line segments fitting problem into two two-dimensional
(2D) line segments fitting problems, which takes advantage
of both image edge segments and depth maps. We first de-
tect edge segments, which are one-pixel-width pixel chains,
from keyframes. We then search 3D line segments of each
keyframe along their detected edge pixel chains by min-
imizing the fitting error on both image plane and depth
plane. By incrementally clustering the detected line seg-
ments, we show that the resulting 3D representation for the
scene achieves a good balance between compactness and
completeness.

1. Introduction

Extracting geometric information from a stream of im-
ages is an important yet challenging topic in computer vi-
sion community. The 3D knowledge of the scene is essen-
tial for a variety of applications, such as photogrammetry,
robot navigation, augmented reality, etc. With the devel-
opment of Structure from Motion (SFM) and Multi-View
Stereo (MVS), one can easily reconstruct a 3D point cloud
from a set of images or a video stream. Alternatively, 3D
point cloud of a scene can also be obtained in real-time us-
ing a monocular Simultaneous Localization and Mapping
(SLAM) system.

However, there are several limitations in representing a
scene using 3D point clouds. First, points in a point cloud
are usually stored independently and present no structural
relationships. Second, point clouds require large storage
space. However, they are redundant in terms of representing
the geometric structure of a scene. For example, it only
takes two 3D points to define a linear structure but there
are usually hundreds or thousands of 3D points along the

structure in a semi-dense or dense point cloud. It severely
reduces the efficiency of post-processing and analysis on
point clouds.

On the contrary, line segments preserve the structural
information of a scene efficiently. Several line segments
based 3D reconstruction algorithm have been proposed
[6, 15]. These methods rely on efficient line segment de-
tection and inter-keyframe matching, which are difficult for
certain scenes. However, with the dense or semi-dense point
clouds available, one can estimate 3D line segments without
explicitly matching and triangulation.

In this paper, we develop a novel method to extract
3D line segments from semi-dense point clouds. Those
detected line segments present structural relations among
points and prove to be a highly efficient form of 3D rep-
resentation. We propose a novel edge aided 3D line seg-
ment fitting algorithm. We first detect edge segments from
keyframes using Edge Drawing [18]. Then 3D line seg-
ments are incrementally fitted along edge segments by min-
imizing the fitting error on both the image and depth plane.
Our method produces accurate 3D line segments with few
outliers.

The rest of this paper is organized as follows. In Section
2, we review some preliminary and related works about 3D
line segment reconstruction. In Section 3, we describe our
proposed algorithm in details. We present our experimental
results in Section 4 and conclude in Section 5.

2. Related Works
Accurate sparse 3D point cloud of a scene can be re-

constructed by SFM methods [20, 10] from a sequence of
images. Feature-based SFM methods extract features from
images and match them across different images. Given the
correspondences of these features, their 3D locations and
camera poses are computed by bundle adjustment. MVS al-
gorithms [5, 4] are usually employed to densify the sparse
point clouds. Although the resulting dense point cloud is
more informative and complete, MVS can take hours or
even days to reconstruct a relatively large scene on a reg-
ular desktop computer.

If fast performance is desired, a monocular SLAM sys-
tem can be used to produce 3D point cloud of the scene

1

*Preprint: submitted to 3DV 2017

in real time. Similar to incremental SFM methods, given a
stream of video frames taken by a moving camera, SLAM
systems can compute the camera poses and the environment
map at the same time. Although SLAM systems are usu-
ally more concerned with the localization accuracy, their
resulting maps are very informative as well. By mapping
and maintaining keyframes, SLAM can achieve great per-
formance in terms of speed and memory usage.

Generally, SLAM systems output point clouds as their
mapping result. According to the density of point clouds,
SLAM systems can be categorized into three classes:
sparse, semi-dense and dense. Sparse SLAM systems like
PTAM [8] and ORB-SLAM [11] detect features and match
them across multiple frames. Dense SLAM systems, e.g.
DTAM [14], use the raw pixels instead of extracted fea-
tures. By estimating depth for all the pixels, it can produce
smooth and dense reconstruction of the scene. Semi-dense
SLAM systems, e.g. LSD-SLAM [3] and DSO [2] achieve
great efficiency by using only part of the pixels. The point
clouds produced by these methods are not as dense as those
from DTAM but are generally denser than those from fea-
ture based SLAM methods.

In this paper, we focus on extracting 3D line segments
from keyframe-based semi-dense SLAM systems. It is dif-
ferent to other methods that also attempt to reconstruct 3D
line segments, e.g. Line3D++[6]. Given the result from
SFM and detected line segments on images, Line3D++ con-
struct 3D line hypotheses using weak epipolar constraint.
After filtering out outliers based on mutual support, 3D hy-
potheses are clustered based on their similarity, producing
accurate and consistent result. Line3D++ is highly efficient
due to the fact that it relies on simple geometric constraints
as well as using efficient graph based segment clustering
algorithm. Although it performs well in outdoor urban en-
vironment, it tends to produce outliers in less structured en-
vironment, such as typical indoor environment. In contrast,
our method takes semi-dense point clouds as input and is
able to produce accurate 3D line segments even for indoor
environment.

Line segments are introduced in some recent SLAM sys-
tems to improve the robustness and accuracy. Pumarola et
al. [16] detect the line segments by LSD [19] and match
them across different images using Line Band Descriptor
(LBD) [22]. By using both the correspondences from line
segments and feature points, they achieve better perfor-
mance compared to using only feature points. Similarly,
Yang and Scherer [21] improve the performance of direct
Visual Odometry (VO) by detecting and matching line seg-
ments using LSD and LBD. They operate on pixels instead
of detected features or lines.The matched line segments are
used to regularize the depth of pixels on line segments.
Their 3D line regularization process is quite similar to our
method as they also transform the 3D line fitting problem

Figure 1. Workflow of our method. The input of our method is a
video (image sequence) which is captured by a calibrated moving
camera. The output is a line segment based 3D model of the scene.

into a 2D line fitting problem. The key difference is that
we try to incorporate depth information in the line detection
process, whereas they use the detected 2D line segments
from LSD directly.

3. Method

In order to extract 3D line segments from semi-dense
point cloud, our method mainly performs the following
steps on each new keyframe (shown in Figure 1): (1) Com-
pute semi-dense depth map; (2) Edge aided 3D line segment
fitting; (3) 3D line segment clustering and filtering.

3.1. Key frames and depth maps generation

In this paper, our implementation is based on ORB-
SLAM [11] with semi-dense module [12]. We focus on ex-
tracting 3D line segments from the semi-dense depth map of
keyframes. ORB-SLAM is a feature based SLAM system
which takes the image sequence from a moving camera and
computes the camera poses in real time. By applying ad-
vanced keyframe management, powerful feature descriptor,
local and global bundle adjustment and loop closure detec-
tion, it can robustly track the camera pose and map the en-
vironment. Mur-Artal and Tards [12] present a semi-dense
module which is able to compute a semi-dense depth map
for each keyframe.

Here we briefly describe the process of generating semi-
dense depth maps introduced in [12]. By performing epipo-
lar search on a pair of keyframes based on image intensity

2

*Preprint: submitted to 3DV 2017

Figure 2. Line segments fitting related coordinates. C−XYZ is
the camera coordinates. The X-axis and Y-axis are parallel to the
image coordinates. The Z-axis is the depth direction. {p1...pn}
represent a detected 2D image line segment. C, p1 and pn deter-
mine the plane π. Line segment pixels {p1...pn} and their cor-
responding real-world points are all located on the same plane π.
The x-axis is defined by vector−−→p1pn while z-axis is parallel to the
Z-axis.

and gradient, an inverse depth hypothesis is produced for
each pixel. An uncertainty of this inverse depth hypothesis
is computed and kept throughout the process. Multiple hy-
potheses are generated for a single pixel by searching on dif-
ferent neighboring keyframes. These hypotheses are fused
and the result is kept as the inverse depth of the pixel. The
inverse depth is checked and smoothed with respect to the
neighboring pixels on the same keyframe, and those from
other keyframes. Finally, the inverse depth map is filtered
based on the final uncertainty of the pixels. In our exper-
iment, we filter out inverse depth of a pixel if its standard
deviation σ > 0.02. This threshold is empirically chosen to
give a balance between accuracy and completeness and it is
fixed throughout our experiments.

In principle, our method is general enough to be applied
to other keyframe-based semi-dense or dense SLAM sys-
tems (e.g. LSD-SLAM [3], DSO [2]).

3.2. Edge aided 3D line segment fitting

Direct 3D line fitting from point clouds are difficult and
time consuming. In this paper, we propose to use 2D image
information on keyframes to help 3D line segment fitting
from semi-dense point clouds.

We first extract edge segments from keyframes using
Edge Drawing (ED) [18]. ED is a linear time edge de-
tector which can produce a set of accurate, contiguous
and clean edge segments represented by one-pixel-width
pixel chains. Then we project the semi-dense depth map
to the corresponding keyframe. Now the detected edge

Algorithm 1 Edge aided 3D line segment fitting
Input: A set of Edge Segments on the k-th keyframe:

ESk={es1, es2, ..., esm}, esi ={pi1,pi2, ...,pit}, pij denotes
the j-th pixel of edge segment esi
Output: Fitted 3D line segments LSk
1: for i = 0; i < n; i++ do
2: fit check = 0, new line = true, line = null
3: for j = 0; j < m; j++ do
4: if new line then
5: for t = 0; t < 5; t++ do
6: line.push back(pij+t) // Save temporary

line segments
7: end for+
8: new line = false
9: end if

10: lim = LEAST SQUARE(line.x,line.y)
11: ldepth = LEAST SQUARE(line.xn,line.Z)
12: if DIST(lim,point(pij.x,p

i
j.y)) < e1

13: and DIST(ldepth,point(pij.xn,p
i
j.Z)) < e2 then

14: line.push back(pij), fit check=0
15: else
16: fit check++
17: end if
18: if fit check>5 then
19: if line.size> 5 then
20: LSk.push back(line)
21: end if
22: line = null, new line = true
23: fit check = 0
24: end if
25: end for
26: if line.size> 5 then
27: LSk.push back(line)
28: end if
29: end for
30: return LSk

segments of the all keyframes can be expressed as ES =
{ES1,ES2, ...,ESn} where ESk denotes the edge segment
set of the k-th keyframe. ESk = {es1, es2, ..., esm} where
esi = {p1,p2, ...,pt} is an edge segment formulated as
a pixel chain. pj represents a pixel which is a vector of
(x, y, Z) where x and y are the image coordinates and Z is
its corresponding depth. The number of key frames, num-
ber of edge segments in a keyframe and number of pixels
in an edge segment are denoted by n, m and t respectively.
It is worth noting that image pixels with high gradient are
more likely to be selected for computing depth value in the
SLAM system. Edge segments are detected based on pixel
intensity gradients. Thus, most of the detected edge pixels
will have depth values projected from the depth map. We
assign infinity to those pixels which have no depth values.

3

*Preprint: submitted to 3DV 2017

Figure 3. Clustering by angle and distance. p1
i p

2
i is fitted from an

existing 3D line segment cluster, p1
j p

2
j is an unclustered 3D line

segment.

3D line segments of a keyframe are extracted from those
detected edge segments by Algorithm 1. The main idea of
this algorithm is to reduce a 3D line fitting problem to two
2D line fitting problems. For each edge segment, the algo-
rithm initially takes its first five pixels to fit two 2D lines
(lim and ldepth) in image coordinate frame and the p1-xz
coordinate frame using least square method. The coordi-
nate frames are defined in Figure. 2. The line lim is fit-
ted based on the pixels’ (x, y) values while ldepth is fitted
based on (xn,Z). Z is the pixel’s depth and xn is the dis-
tance from p1 to the pixel’s projection on axis x. Given the
next pixel in the pixel chain, we compute its distances to
lim and ldepth in their corresponding coordinate frames. It
is worth noting that xn and Z have different units. To have
the same unit with xn, Z is multiplied by the focal length f
before distance computation. If both distances are smaller
than certain thresholds (both are 1.0 in all our experiments),
we will add the pixel to the fitted pixel set to extend the
line. Otherwise the pixel will be considered as an outlier. If
five consecutive pixels are outliers, we stop the current line
segment searching and start a new line segment searching
procedure. After traversing all of the edge segments of the
keyframes, we can achieve one 3D line segment set LSk for
each keyframe.

3.3. 3D line segment clustering and filtering

To obtain a consistent reconstruction of the environment,
3D line segments LS = {LS1,LS2, ...,LSn} extracted from
different keyframes are first registered to the same world
coordinate system. The registered 3D line segments are de-
noted as ls = {ls1, ls2, ..., lsw}. w denotes the total number
of 3D line segments on all keyframes. Directly registering
all of 3D line segments of each keyframe will produce re-
dundant and slightly misaligned 3D line segments. We ad-
dress this problem by proposing a simple incremental merg-
ing method.

The main idea of our merging method is clustering
closely located 3D line segments and fitting those cluster
sets with new 3D line segments. As illustrated in Figure 3,
the angle and distance measures are used for clustering. The

angle measure α is defined as:

α = acos(

−−→
p1jp

2
j ·
−−→
p1i p

2
i

|
−−→
p1jp

2
j ||
−−→
p1i p

2
i |
) (1)

The distance measure d is computed as:

d = min(d1, d2) (2)

d1 = |
−−→
p1jp

1
i |+ |

−−→
p1jp

2
i | − |

−−→
p1i p

2
i | (3)

d2 = |
−−→
p2jp

1
i |+ |

−−→
p2jp

2
i | − |

−−→
p1i p

2
i | (4)

Specifically, we take the first 3D line segment ls1 as the ini-
tial cluster C1. Then, we compute the angle and distance
measure between the initial cluster (single line segment)
and the next 3D line segment ls2. If the angle α and distance
d are smaller than certain thresholds (e.g. 10.0 and 0.02 re-
spectively in all our experiments), we add ls2 to the cluster
C1. Otherwise, we create a new cluster C2. For each cluster,
if it contains more than one 3D line segments, we will fit a
new 3D line segment to represent the cluster. The direction
of the new line segment is determined by performing Singu-
lar Value Decomposition (SVD) on the matrix consisting of
all the end points Xep of line segments in the cluster. A new
3D infinite line is then determined by the direction together
with the centroid of Xep. Our objective is to obtain a 3D
line segment from this infinite line. We project end points
Xep onto the newly generated infinite 3D line and compute
the furthest projections with respect to the centroid in both
directions. The 3D line segment between these two furthest
projection points is taken as the fitted line segment of the
cluster. This process is repeated until all the line segments
in ls are clustered. Clusters with small size (num(Ci) < 3)
are filtered out in the end. In this way, we can merge a large
number of line segments into fewer clusters and generate
new 3D line segments with higher quality.

4. Experimental results

In this section, we test our 3D line segment extraction
method on four sequences from the TUM RGB-D dataset
[17] and estimate its performance in terms of compactness
and completeness.

4.1. Implementation

The experiments in this section are performed on a desk-
top computer with an 8-core Intel i7-6700k CPU. We use
the open source ORB-SLAM2 [13] as our base system. We
implement the semi-dense module in C++ as described in
[12]. The parameters in ORB-SLAM are kept as default,
and the parameters for semi-dense module are set as pre-
sented in [12].

4

*Preprint: submitted to 3DV 2017

4.2. Decoupled 3D line segment fitting

To further demonstrate the capability of our method, we
compare it to a decoupled 3D line segment fitting method
using 2D line segments given by EDLines [1]. Given de-
tected line segments and the depth information on some of
the pixels along the line segments, we can easily estimate
the 3D line segment position by performing a single 2D line
fitting. In this case, we have a fixed number of pixels on the
line segment since we do not need to iteratively search along
pixel chains and extend line segments. Therefore we can ef-
ficiently perform RANSAC to remove outliers in one shot
before the line fitting process. With the fitted line, we can
compute the 3D location of the endpoints and reconstruct
the 3D line segment.

4.3. Comparison

The results of our 3D line segment extraction method on
the test sequences are illustrated in the last two rows of Fig-
ure 5. Our results accurately fit the semi-dense point clouds
shown in the second row of Figure 5. They still capture the
major structures of the scene while reducing the number of
3D elements greatly.

4.3.1 Accuracy and Completeness

First, we compare our results with those from Line3D++.
The results of Line3D++ [6] on the test sequences is shown
in the third row of Figure 5. In our experiments, Line3D++
uses line segments detected by EDLines together with the
keyframe images and camera poses output by ORB-SLAM
to construct 3D line segments. However, it is fragile in
some cases, such as complex indoor environment or scenes
without long, straight line segments. Therefore, Line3D++
tends to produce a large number of outliers due to the am-
biguity of geometric line matching in such cases. On the
contrary, our method utilizes the accurate semi-dense depth
map. Since the depth maps are checked multiple times
and filtered to produce confident points, the results of our
method have fewer outliers.

In contrast to Line3D++, semi-dense points can cover
regions with large image gradient, such as boundaries, con-
tours, where straight lines may be absent. Since our method
takes both intensity and depth information into considera-
tion, it is robust to outliers caused by intensity noise so that
it can extract shorter line segments than EDLines. Thus,
our results fit curves better and captures finer details than
Line3D++. As shown in Figure 5, the completeness of our
method is also better than Line3D++.

The results of decoupled line segment fitting are pre-
sented in the forth row in Figure 5. Compared to the edge
aided 3D line fitting which tries to utilize pixel position and
depth simultaneously, the decoupled fitting essentially fits

lines in image plane and depth plane in two steps. The er-
ror from line fitting in the image plane will be propagated
to the error of 3D line segment position, which result in
an inaccurate reconstruction compared to our method, as
shown in Figure 4. Worth mentioning is that the decou-
pled fitting tends to generate longer segments since only the
pixel position is considered in the image plane line fitting
process. Longer segments will make the error propagation
even worse because the total error of line segments in im-
age space might be larger. Another source of error is that
the EDLines may detect a long line segment which is not a
continuous line in 3D space. Trying to fit a single 3D line
segment onto the 2D segment in this case will result in a
large error of the estimated 3D line segment. On the other
hand, in our method, if any of the two errors of line fitting
grows higher than the threshold, we stop the line fitting and
start a new line fitting process. In this way, the error accu-
mulated from image plane and depth are bounded, therefore
prevent the line segment to being far away from the points.

4.3.2 Compactness

As shown in Table 1, the point clouds are greatly simpli-
fied with our edge aided 3D line fitting algorithm. The re-
sults are simplified further to present a clean structure of
the scene using our 3D line segments clustering process.
Note that although Line3D++ produces the fewest number
of vertices in the reconstruction, the completeness of recon-
struction is generally worse than our method as shown in
Figure 5. For example, in the third sequence, Line3D++
completely missed the structure in the background while
our method captures the environment in a compact man-
ner. In conclusion, our method achieves a better balance
between completeness and compactness.

4.3.3 Running Time

We present the average running time of the edge aided 3D
line segment fitting in Table 2. Our line segment fitting
method runs fast and efficiently while utilizing large amount
of depth information. Compared to the running time of edge
aided 3D fitting, decoupled 3D fitting need additional com-
putation time for performing RANSAC. Because the seg-
ments are usually much longer in decoupled 3D line seg-
ment fitting, RANSAC is necessary in order to obtain a
good fit for the larger pixel set on the line segments.

5. Conclusions and discussions
In this paper, we present a 3D line segment based method

to simplify semi-dense point cloud output by keyframe-base
SLAM system. The main contribution lies in the novel edge
aided 3D line segment extraction algorithm which solely re-
lies on the image and the semi-dense depth map for individ-

5

*Preprint: submitted to 3DV 2017

Figure 4. Comparison of detail in sequence fr3-structure-texture-near sequence. Left to right: decoupled 3D line segment fitting, edge
aided 3D fitting without (w/o) clustering, edge aided 3D fitting with (w/) clustering

Method fr3-nostructure-texture-near fr3-structure-texture-near fr3-large-cabinet fr1-room
Semi-dense point cloud 437629 351882 263637 1044752
Line3D++ 1346 506 124 330
Decoupled 3D fitting 3710 3686 1106 9966
Edge aided w/o clustering 31772 18674 15760 42624
Edge aided w/ clustering 2296 1546 1304 3334

Table 1. Number of vertices in the reconstruction

Method Average Time (ms)
Decoupled 3D fitting 17.63
Edge aided 3D fitting 9.42

Table 2. Running time per keyframe

ual keyframes. Our method tries to minimize the line fitting
error on both image plane and depth plane simultaneously
as the line segment grows. By incrementally clustering the
line segments detected on each keyframe, we can obtain a
compact and complete 3D line segment reconstruction for
the scene. Compared to using the line segments produced
by line segment detectors and minimizing the line fitting
error on the depth plane afterwards, our method achieves
better accuracy with respect to the point cloud.

There are several limitations of our method: 1. Our
method relies on the accuracy and completeness of the
semi-dense point cloud output by SLAM. Although the line
segment fitting method is robust to individual outliers in the
depth map, the reconstructed line segments will be affected
if the point cloud is not well reconstructed. 2. The current
implementation is not real-time due to the clustering pro-
cess. We will improve it in the future. 3. ORB-SLAM is a
feature based SLAM system and originally designed to pro-
duce sparse feature point cloud. Although the semi-dense
module outputs accurate point cloud, the semi-dense depth
map is generated with a delay of a few keyframes. Using
a direct method which can generate semi-dense depth map
without delay will enable our method to detect 3D line seg-
ments in real-time.

One possible application of our method is to improve the

efficiency of surface extraction [9, 7] by simplifying semi-
dense point cloud with structural geometric information.
This will make real-time surface extraction possible when
using semi-dense point cloud. In the future, we plan to im-
prove our algorithm in order to reconstruct a consistent and
compact line segment based surface model in real-time.

References
[1] C. Akinlar and C. Topal. Edlines: A real-time line segment

detector with a false detection control. Pattern Recognition
Letters, 32(13):1633–1642, 2011. 5

[2] J. Engel, V. Koltun, and D. Cremers. Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017. 2, 3

[3] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale
direct monocular slam. In European Conference on Com-
puter Vision, pages 834–849. Springer, 2014. 2, 3

[4] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-
tiview stereopsis. IEEE transactions on pattern analysis and
machine intelligence, 32(8):1362–1376, 2010. 1

[5] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M.
Seitz. Multi-view stereo for community photo collections. In
Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007. 1

[6] M. Hofer, M. Maurer, and H. Bischof. Efficient 3d scene
abstraction using line segments. Computer Vision and Image
Understanding, 157:167–178, 2017. 1, 2, 5

[7] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof.
Incremental surface extraction from sparse structure-from-
motion point clouds. In BMVC, pages 94–1, 2013. 6

[8] G. Klein and D. Murray. Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007.

6

*Preprint: submitted to 3DV 2017

Figure 5. Experimental results. Top to bottom: sample image from the sequence, semi-dense point cloud, results of Line3d++, results
of decoupled 3D fitting using EDLines, results of our edge-aided 3D fitting without clustering, results of our edge-aided 3D fitting with
clustering. Left to right (four sequences): fr3-nostructure-textrue-near, fr3-structure-texture-near, fr3-large-cabinet, fr1-room.

7

*Preprint: submitted to 3DV 2017

ISMAR 2007. 6th IEEE and ACM International Symposium
on, pages 225–234. IEEE, 2007. 2

[9] D. I. Lovi. Incremental free-space carving for real-time 3d
reconstruction. 2011. 6

[10] P. Moulon, P. Monasse, R. Marlet, and Others. Openmvg. an
open multiple view geometry library. https://github.
com/openMVG/openMVG. 1

[11] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam:
a versatile and accurate monocular slam system. IEEE Trans-
actions on Robotics, 31(5):1147–1163, 2015. 2

[12] R. Mur-Artal and J. D. Tardós. Probabilistic semi-dense
mapping from highly accurate feature-based monocular
slam. 2, 4

[13] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE
Transactions on Robotics, 2017. 4

[14] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:
Dense tracking and mapping in real-time. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages
2320–2327. IEEE, 2011. 2

[15] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and
F. Moreno-Noguer. PL-SLAM: Real-Time Monocular Vi-
sual SLAM with Points and Lines. In International Confer-
ence in Robotics and Automation, 2017. 1

[16] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and
F. Moreno-Noguer. Pl-slam: Real-time monocular visual
slam with points and lines. In Proc. International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2017. 2

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 4

[18] C. Topal and C. Akinlar. Edge drawing: A combined real-
time edge and segment detector. J. Visual Communication
and Image Representation, 23(6):862–872, 2012. 1, 3

[19] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Ran-
dall. Lsd: A fast line segment detector with a false detection
control. IEEE transactions on pattern analysis and machine
intelligence, 32(4):722–732, 2010. 2

[20] C. Wu et al. Visualsfm: A visual structure from motion sys-
tem. 2011. 1

[21] S. Yang and S. Scherer. Direct monocular odometry using
points and lines. arXiv preprint arXiv:1703.06380, 2017. 2

[22] L. Zhang and R. Koch. An efficient and robust line segment
matching approach based on lbd descriptor and pairwise ge-
ometric consistency. Journal of Visual Communication and
Image Representation, 24(7):794–805, 2013. 2

8

*Preprint: submitted to 3DV 2017

https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG

