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ABSTRACT

We propose a novel template-based multi-region segmentation

method using a finite element method (FEM) deformation model

with diffusion-based regularization. Our proposed method is com-

putationally more efficient than the traditional template-based seg-

mentation methods that use non-parametric or B-spline based defor-

mation models, as it significantly reduces the number of degrees of

freedom (DOF) associated with the energy minimization that arises

in template-based segmentation. Further, like all template-based

segmentation approaches our method is able to preserve topology of

the initial regions of interest (ROIs) defined in the template, which

is very useful for segmentation of anatomical structures. Segmen-

tation results on medical images with various anatomical structures

show that the proposed method improves computational efficiency

without compromising segmentation accuracy.

Index Terms— Template-based segmentation, FEM model

1. INTRODUCTION

The segmentation of anatomical structures is a fundamental and

challenging problem in medical image analysis. It often involves

the simultaneous segmentation of multiple non-overlapping anatom-

ical regions with weak boundaries. To further complicate matters

the anatomical regions might share common boundaries. Over the

years, the popular trend in medical image segmentation has been

to use region-based energies within a level set based optimization

framework [1]. But, the most desired feature of level sets, which

is their ability to freely allow topological changes is actually a dis-

advantage in the case of medical images where the topology of the

anatomical regions of interest (ROIs) is already known and needs

to be maintained throughout the segmentation process. Besides,

it is not trivial to extend the level set framework for multi-region

segmentation (which is often required in medical images), as the

evolving level sets corresponding to different regions might overlap

with each other. Although, there exist level set based multi-region

segmentation methods that solve this overlap problem, they still

cannot prevent the undesired topology changes [2], [3]. Shape prior

methods can be used to impose strict topological constraints on the

evolving level set but they only assume a single ROI [4]. Recently,

Fan et al. designed a multi-region homeomorphic segmentation

approach by imposing topological constraints on a compact repre-

sentation of the level set function [5].

Alternatively, we consider the template-based approach for

topology preserving multi-region segmentation. In this approach, a

template which is a label image defining the topology of the ROIs is

smoothly deformed in a non-rigid registration framework such that a

region-based energy is minimized to match the actual ROIs in the in-

put image. The desired segmentation boundaries are then implicitly

given by the contours of the initial ROIs defined in the template and

the deformation field estimated between the template and the input

image. Existing methods for template-based segmentation represent

the deformation field using either a non-parametric deformation

model [6] or the popular cubic B-splines based free form deforma-

tion (FFD) model [7], [8]. Consequently, these methods are forced

to use a uniform discretization of the problem domain, which is

inefficient because the deformation field is computed with the same

accuracy everywhere even though detailed deformations are only

needed along the contours of the ROIs. To address this issue, we

propose a finite element method (FEM) deformation model, which

parametrizes the deformation field on a non-uniform mesh well

adapted to the contours of the ROIs in the template. This leads to a

more computationally efficient solution as it involves minimization

over a far fewer number of degrees of freedom (DOF) compared to

the non-parametric and FFD deformation models. Further, we show

that the use of a FEM model on a non-uniform mesh allows us to

define the region-based energy directly on the input image domain.

This is in contrast to the FFD model based methods [7], [8] that

instead formulate the region-based energy on the template domain

using the deformed input image, resulting in a “more non-convex”

region-based energy which is undesirable. Another salient aspect of

our FEMmodel is that the deformation field is explicitly regularized

by solving the diffusion equation using the Galerkin FEM method.

Shen et al. also used the FEM mesh in a segmentation framework

but their method is only designed for a single object that is dis-

ambiguated from the background [9]. An older FEM edge-based

segmentation method was proposed by Ferrant et al. but no region

terms were defined in their case and therefore it would only work

for objects with sharp boundaries [10].

To summarize, we make the following contributions:

(1) An efficient FEM-based solution to the template-based multi-

region segmentation problem is presented.

(2) We designed a non-uniform FEMmesh with adaptive resolution

on the template in order to obtain a low DOF parametrization of

the deformation field.

(3) We are able to formulate the region-based energy on the origi-

nal input image and estimate optimal deformations through it-

erative minimization with diffusion-based smoothing using the

Galerkin FEM method.

(4) Validation on medical images containing various anatomical

structures shows that the FEM deformation model obtains sim-

ilar or better segmentation accuracies while using significantly

lesser number of DOFs when compared to the existing works

on template-based segmentation.

2. THEORY

2.1. FEM deformation model

We formulate the segmentation problem as the task of estimating a

dense deformation field U : ΩT → Ω that defines optimal smooth
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Fig. 1: Illustration of the deformable FEMmesh. The dashed closed

curve in the template image (IT ) represents the boundary of the re-

gion of interest. The solid closed curve in the input image I repre-

sents the actual object boundary.

deformations of a template IT : ΩT → {1, 2, . . . , R} onto the im-

age space I : Ω → R such that a region-based segmentation en-

ergy (defined in the next section) is minimized. Following the FEM

formulation [11] , we approximate the deformation field as a linear

combination of a set of piecewise-linear nodal basis functions (hat

functions) {φn}
N
n=1:

U(x) ≈

N
∑

n=1

Unφn(x;M) ∀x ∈ ΩT (1)

The hat functions basis is defined on a discrete tesselation M =
({Pn}

N
n=1,∆) of the template domain ΩT , where{Pn}

N
n=1 denotes

the nodes of the mesh and∆ is the set of simplexes (triangles in 2D,

tetrahedra in 3D) (see Figure 1).

Typically, in FFD deformation model based methods [7], [8] the

energy is defined on the template domain ΩT using the deformed

input image I(U(x)) induced by the warp U: x
′

= x + U(x).
However, as mentioned earlier this makes the energy “more non-

convex”. Therefore, we define the region-based segmentation energy

on the input image domain Ω by warping the template regions IT

with an inverse warp defined by U
−1 : x = x

′

+ U
−1(x

′

) (see
Eq. (4)). Similar to the above, we can approximate U−1(x) on the

deformed FEM meshM
′

= ({P
′

n}
N
n=1,∆) as:

U
−1(x

′

) ≈

N
∑

n=1

U
−1
n φn(x

′

;M
′

) ∀x
′

∈ Ω (2)

where U
−1
n ≡ U

−1(P
′

n) is the value of the inverse deformation

field at the node P
′

n. It is easy to show that U−1
n = −Un, meaning

that the value of the inverse deformation field at the nodal points of

the deformed mesh M
′

is the negative of the deformation field at

the nodal points of the original meshM. Thus, we can now re-write

Eq. 2 as:

U
−1(x

′

) ≈ −

N
∑

n=1

Unφn(x
′

;M
′

) (3)

2.2. Multi-region segmentation using FEM deform. model

We now show how the FEM deformable model is used in the context

of segmentation. Similar to a demons-like registration method [12],

we decouple the data and regularization terms of an active region

segmentation [13] model. We define the segmentation energy asso-

ciated with the data term as:

ED[U] = −
R
∑

r=1

∫

Ω

ITr(x
′

+U
−1) log(pr(I(x

′

))) dx
′

(4)

where U−1 ≡ U
−1(x

′

), the probability density pr(I(x
′

)) defines
the intensity statistics for region r in Ω and ITr : ΩT → {0, 1}
is a binary “region template” corresponding to each of the sepa-

rate regions r ∈ {1, 2, . . . , R} defined in the template image IT .

For regularizing the deformation field we solve a diffusion equation:
∂U
∂t

= div(∇U). Both the energy minimization and the diffusion

equations are solved using the FEM framework. Incorporating the

FEMmodel (see Section 2.1) into the multi-region segmentation en-

ergy (4) we obtain:

ED({Un}
N
n=1) = −

R
∑

r=1

∫

Ω

ITr(x
′

−
N
∑

n=1

Unφn(x
′

;M
′

))

log(pr(I(x
′

))) dx
′

(5)

To compute the set of nodal deformation field values {Un}
N
n=1

that minimize the above energy, we use a gradient descent approach

where the gradient is defined by:

∂ED

∂Un

=

R
∑

r=1

∫

Ω

wn(x
′

)∇ITr log(pr(I(x
′

))) dx
′

, (6)

where ∇ITr ≡ ∇ITr(x
′

−
N
∑

m=1

Umφm(x
′

;M
′

)) and wn(x
′

) =

N
∑

m=1

∂φm(x
′

;M
′

)
∂Un

Um + φn(x
′

;M
′

).

2.3. Demons-like approach for energy minimization

Following a demons-type framework [12], we iteratively solve for

the final nodal deformation fieldUn by composing the current esti-

mates of the nodal deformation field U
k
n with a small nodal update

fielduk
n, i.e,U

k+1
n = U

k
n◦u

k
n. Further, at each step the nodal defor-

mation field is smoothed using diffusion-like regularization. Nodal

updates are computed based on the gradient of the energy (6):

u
k
n = −ǫ

R
∑

r=1

∫

Ω
wk

n(x
′

)∇IkTr log(p
k
r(I(x

′

))) dx
′

∫

Ω
wk

n(x
′)dx′

(7)

where ǫ is a small step size. The value of the update field u
k
n at a

node Pn of the original mesh M can be interpreted as the negative

of the weighted average of the region forces∇IkTr log(p
k
r(I(x

′

))) at
the pixels in the input image I that neighbor the corresponding node

(P
′

n)
k of the deformed mesh (M

′

)k. The set of weights given by

{wk
n(x

′

)}Nn=1 are independent of the information in the input image

I and only depend on the deformed mesh (M
′

)k characteristics (the

nodal basis functions {(φn(x
′

;M
′

))k}Nn=1) and the estimate of the

nodal deformation fieldUk
n.

Note that the weighted averaging implicitly acts as a viscous

fluid-like regularization and thus our method does not require the

expensive separate step for smoothing the update field. But we do

need the diffusion-based regularization of the nodal deformation

field U
k+1
n at each iteration that is performed by solving the dif-

fusion equation ∂U
∂t

= div(∇U). Following the Galerkin’s FEM



Algorithm 1 FEM deform. model based multi-region segmentation

Input: I , IT , M({Pn}
N
n=1,∆)

Output: U(Pn)

1: At iteration k = 0, initializeU0
n

2: while k <= max iter and convergence not reached do

3: Compute region forces∇IkTr log(p
k
r (I(x

′

)) ∀ pixels x
′

∈ Ω

4: Compute the weights wk
n(x

′

) ∀ pixels x
′

∈ Ω
5: Compute the nodal updates according to Eq. 7

6: Update Uk+1
n = U

k
n ◦ uk

n

7: Smooth deformation fieldUk+1
n by solving a diffusion equa-

tion on a non-uniform mesh via FEM framework (see Eq. 9)

8: end while

framework, we consider the integral form of the diffusion equation:

ES[U
∗] =

1

2

∫

Ω

[

(U∗ −U)2 + α(|∇U
∗|2)

]

dx (8)

where U
∗ is the regularized deformation field we wish to estimate

using the initial non-smooth deformation fieldU and α is the diffu-

sion time. By vanishing its first variation at each node Pn and re-

stricting the minimization to a finite dimensional subspace spanned

by the nodal basis functions {φn}
N
n=1 , we obtain a set of N linear

equations form ∈ {1, 2, . . . , N} as [11]:

N
∑

n=1

[
∫

Ω

[φnφm + α∇φn.∇φm] dx

]

U
∗

n = Un

∫

Ω

φnφm dx (9)

where U
∗
n is the smoothed nodal deformation field. The above

system of linear equations is very sparse, and the nodal integrals
∫

Ω
φnφm,

∫

Ω
∇φn∇φm can be precomputed as they are indepen-

dent of the nodal deformations Un. This greatly improves the

overall computational speed of our proposed method. We summa-

rize our proposed FEM-based segmentation in Algorithm 1.

2.4. Generation of the non-uniform mesh

The generation of a non-uniform mesh that is well adapted to the

contours of the ROIs defined in the template is important for a good

performance of our FEM-based segmentation methodology. For this

purpose, we implemented the image-adaptive mesh generation strat-

egy proposed by Yang et al. [14]. The basic idea of this method is

to place mesh nodes in the image domain so that their spatial density

varies according to the local image features. In our case, we place

more points near the contours of the ROIs defined in the template.

The subsequent Delaunay triangulation and the refinement steps au-

tomatically ensure that the fine triangular elements are placed around

the contours while the coarse elements are used elsewhere (see col-

umn 2, Figure 2).

3. EXPERIMENTS

In this section, we evaluate our proposed FEM deformation model

based multi-region segmentation method on real 2D medical images

containing various anatomical structures of interest. We performed

two sets of experiments corresponding to the binary and multi-region

segmentation cases respectively. In the following experiments, the

template images were obtained from available manual segmentations

of the corresponding anatomical structures. Further, the region in-
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Region 1 Region 2
α ǫ Jaccard (%) Jaccard (%)

WM (1) + Ventricle (2) 1.0 2.0 79.51 73.53

WM (1) + Brain stem (2) 1.0 2.0 72.03 76.91

Fig. 3: Multi-region segmentation results. Ground truth (green), es-

timated contours (red), overlap (yellow) - see colored figures.

tensity statistics in the input image were modeled using the Parzen

probability density.

3.1. Binary segmentation

We considered the segmentation of three different anatomical struc-

tures from 2D abdominal CT images namely the liver, spleen and

muscle. We compared the results of our proposed FEM-based

method with two other template-based segmentation methods which

use the non-parametric [6] and FFD [8] deformation models respec-

tively. All the template-based segmentation methods (including our

proposed method) were implemented in a multi-resolution frame-

work with three levels. The DOF corresponding to each of the

template-based methods was computed as twice the sum of the

number of nodes used in the mesh at each multi-resolution level.

In Figure 2 we show the segmentation results obtained on the three

different CT images using the three template-based segmentation

methods. In addition we also show the results obtained using the

classic level set based Chan-Vese segmentation method [1]. We

initialized all the methods with the same template. Clearly, on

all the three images our proposed method outperforms the Chan-

Vese segmentation method. This is because our proposed method

was successful in preserving the initial topology of the anatomical

structures defined in the template. But, the simple region based

Chan-Vese segmentation method “leaked” into neighboring struc-

tures with overlapping intensities disturbing the initial topology.

More importantly, our proposed method achieves the highest com-

putational efficiency among all the template-based methods as it

uses a deformation model with a significantly lower DOF (1− 2 or-

ders of magnitude lower) compared to the FFD and non-parametric

deformation models. Further, our method also obtains the highest

Jaccard scores among all the template-based methods, except on

the “spleen” image, where it performs only slightly worse than the

non-parametric deformation model based method.
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α ǫ DOF Jaccard (%) DOF Jaccard (%) DOF Jaccard (%) Jaccard (%)

Liver 0.25 1.0 942 93.23 43008 83.63 172032 89.07 83.65

Spleen 0.25 1.0 774 89.95 43008 80.80 172032 92.47 87.28

Muscle 1.0 1.0 3310 85.92 43008 74.60 172032 78.02 60.70

Fig. 2: Binary segmentation results. Ground truth (green), estimated contours (red), overlap (yellow) - see colored figures

3.2. Multi-region segmentation

We performed a combined segmentation of the cerebral white mat-

ter along with the ventricle and cerebral white matter along with the

brain stem from 2D brain MRI images using our proposed method.

The corresponding segmentation results and the Jaccard scores are

shown in Figure 3. We see that the cerebral white matter and the

ventricle share a common boundary, whereas the brain stem has sep-

arate boundaries from the cerebral white matter. In both cases, our

proposed method achieves good segmentation results.

4. CONCLUSIONS

We presented an efficient template-based segmentation framework

which employs an adaptive non-uniform deformable FEMmesh, that

is particularly useful for segmentation of anatomical structures.
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