
Depth and Scene Flow from a Single Moving Camera

Neil Birkbeck Dana Cobzaş Martin Jägersand
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Abstract

We show that it is possible to reconstruct scene flow and
depth from a single moving camera whose motion is known.
To do so, we assume that the local scene motion can be ap-
proximated by a constant velocity in a small temporal win-
dow. This assumption makes it possible to unambiguously
reconstruct scene flow and depth using as few as 3 frames
from the sequence. We propose a variational approach to
directly solve for structure and flow, and we demonstrate
the results on challenging real-world data with both rigid
and non-rigid motion. The experiments illustrate that the
inclusion of flow in the case of non-rigid motion allows us
to reconstruct a better geometry than if motion was simply
ignored.

1. Introduction
Reconstructing scene flow, the 3D motion of surfaces in

a scene, has been studied in several contexts in computer
vision (e.g., [16, 21, 15]). In many cases, the scene flow is
reconstructed in two phases: first geometry is reconstructed
and then 2D optic flow in multiple images is used to recover
the 3D scene flow. Both components of this reconstruction
require a multi-camera setup to provide synchronized and
calibrated video streams. In this work, we relax these multi-
camera constraints, and address the problem of recovering
scene flow and scene structure from a monocular camera
sequence with known camera motion.

A great deal of progress has been made on reconstruct-
ing camera motion and scene structure of static scenes from
monocular video streams, but many natural objects are non-
rigid. Scene flow is a useful tool for analyzing such non-
rigid motion, and it can be used for motion analysis, re-
rendering in between time steps [15], and for the prediction
of geometry[12]. Furthermore, the addition of temporal in-
formation (even in the case of non-rigid motion) is known
to improve geometric reconstructions[17, 21, 5, 20]. Unfor-
tunately, these scene flow methods are limited to situations
where reconstruction of geometry at each time frame is pos-

sible(i.e., all surfaces must be viewed by multiple cameras).
Although most existing scene flow methods rely on sev-

eral synchronized, calibrated cameras[10, 16], there are
some implementations specific to a rectified binocular set-
ting [8, 18]. In the monocular case, there has been some
work on recovering the structure of deforming objects, but
in each case assumptions must be made. For example,
some common assumptions are that the deformations are
a linear function of a set of basis shapes [2], follow a sim-
ple Gaussian model [13], or maximize rigidity[14]. All of
these methods reconstruct only sparse geometry and defor-
mations (although some do also recover orthographic cam-
era parameters). In contrast, we make the assumption of
constant velocity (over a short period of time), and use a
variational approach to recover dense geometry and flow.

We illustrate that a simple assumption on the flow,
namely that the flow has a constant velocity over a small
sequence of images, allows the reconstruction of both depth
and the scene flow. Dense reconstructions will only be pos-
sible on sequences that also have sufficient camera motion
and loosely obey the above assumption. However, as we
show, under good circumstances, if correspondences are
known it is straightforward to reconstruct both flow and ge-
ometry (Section 3.1). The brightness constancy constraint
can be augmented with our constant velocity assumption,
which we integrate into a variational algorithm that recovers
both the flow and geometry directly from images without
requiring a-priori correspondences (Section 3.2). In con-
trast to existing variational approaches, our representation,
although image-based, does not require rectified stereo pairs
and can easily integrate information from several views. To
summarize, our contributions are the following:

• We derive a linear algorithm to recover depth and 3D
flow of points undergoing constant velocity over a
short temporal window.

• We formulate a variational energy (based on optic flow
[3] and existing scene flow methods [8]) to reconstruct
the depth and flow. Our image-based representation of
depth and flow easily extends to more than two images.



• We demonstrate the approach on challenging monocu-
lar sequences exhibiting non-rigid motion.

2. Related Work
As mentioned earlier, many applications of scene flow

utilize multi-camera studios to first reconstruct either depth
maps or voxel-based models. Constraints between differen-
tial motion of the surface and its differential motion in the
images links the intra-camera optic flow to the 3D surface
flow[16]. This decoupled reconstruction can be improved
by simultaneously estimating the scene flow with the struc-
ture (e.g., using clustered regions with parametric flow[21],
or by propagating covariances from depth and optic-flow
estimation into the 3D flow estimates [9]). Although it is
possible to derive similar differential constraints, which in
our case would take into account the motion of the camera,
we instead derive a geometric constraint on the flow.

The variational formulation, popular for both optic-flow
and depth reconstruction, has also been used to recover
scene flow. Pons et al. formulate an energy based on
image warping that is implemented using level sets [10].
Such a scene-based representation could be an alternative
to the image-based representation used in this work. In
contrast, our formulation is similar to the image-based rep-
resentations that operate with images from rectified stereo
pairs [8, 18]. In these works, structure is represented as dis-
parity maps (one for each time step) and flow is represented
as u, v offsets[8]. Data terms in the energy functional estab-
lish pairwise constraints between pairs of the 4 images (e.g.,
left and right at time t and t+1). Again, these methods rely
on multiple cameras to obtain the structure (at each time
frame); we utilize a similar data energy as these formula-
tions and incorporate our geometric constraints directly into
the flow and structure recovery.

Carceroni & Kutulakos used a surfel representation to
reconstruct both scene structure and flow [5]. Each sur-
fel was a small oriented patch with a Phong reflectance
model, an affine motion model, and a bump map. Static
surfels were estimated using an approach similar to voxel-
carving; joint estimation of all surfel parameters (including
motion parameters) between time frames was used to im-
prove this reconstruction. Extensions of this patch-based
approach to longer sequences has been proposed through a
multi-view patch tracking method based on image registra-
tion [6]. If the orientation and position of a patch is known
in the first frame, such patch-based methods could be ap-
plied to monocular sequences [4], but this is a chicken and
egg problem of how to reconstruct the initial pose of a mov-
ing patch from a moving monocular camera.

There has also been some work on recovering the de-
formations (or flow) of an object from a single view when
a template geometry is known (e.g., [11]). In our case,
the structure and its appearance are unknown, so these

techniques are not applicable. Assumptions about maxi-
mizing rigidity have also been used to incrementally im-
prove an approximate sparse geometry undergoing non-
rigid motion[14]. Similarly, non-rigid structure and mo-
tion techniques[13, 2] are capable of recovering the struc-
ture and deformation model (as well as orthographic cam-
era motion), but such techniques rely on correspondences
attained from an external process over several frames. Un-
like these methods, our formulation assumes known camera
motion and incorporates the recovery of correspondences
directly into the reconstruction.

Exploiting flow has been shown to improve reconstruc-
tions, for example, the 6D shape and motion carving of
Vedula et al. [17], which performs a voxel-carving in a 6D
space that links voxels between time steps, illustrated that
using both time frames simultaneously improves the geo-
metric reconstruction. Similar connections between the use
of temporal information (e.g., joint recovery of motion and
flow) and the improved shape estimate have been demon-
strated in other scene flow reconstruction algorithms [5, 21].
Again, although we use a monocular sequence, our primary
objective is to exploit surface motion to reconstruct a better
geometry; in other words, the flow is a by-product used to
aid reconstruction.

Regarding the constant velocity constraint, Avidan and
Shashua show that points undergoing linear motion can be
recovered with as few as five views from a monocular se-
quence from a moving camera[1]. Our constraint is simi-
lar, although we assume constant velocity, which is a sub-
set of linear motion, allowing a reconstruction with as few
as three views. Similarly, some have considered restrict-
ing motion to a scaled piecewise affine model over a larger
time window[21]. As in our case, the constraint over a time
window allows more accurate estimation of the parameters
(e.g., in their case the affine model parameters, and in our
case the velocity). The constant velocity assumption over a
temporal window has been alluded to in earlier scene flow
works (e.g., [5]). In fact all multi-camera methods that com-
pute scene flow using image sets from two adjacent time
frames are essentially assuming constant velocity for the
two frames, but this assumption has not been exploited to
extract structure and flow for more than two consecutive
images from a monocular sequence as it is in our work.

3. Monocular Scene Flow
Assume we are given a time sequence of F images Ii

with calibration Pi = Ki[Riti] taken at times ti. The ob-
jective is to reconstruct a dense geometry and 3D velocity
field at each time frame, j, using a small temporal neigh-
borhood of images, N(j), with |N(j)| >= 2. The situation
is illustrated in Figure 1. We first discuss the reconstruction
from a single reference frame assuming known correspon-
dences of points with constant velocity (Section 3.1). These
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Figure 1. Reconstruction in reference view j using neighboring
images, N(j); constant velocity is more likely to hold over a small
temporal window.
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Figure 2. Three view setup with ambiguous reconstruction. Geo-
metrically, the solutions can be obtained by rotating l0 and l2 about
l1 (giving l̂0 and l̂1) for each rotation center (e.g., depth) on l1.

constraints are used to derive a variational energy for recon-
structing geometry and flow directly from images (Section
3.2). Finally, we develop constraints to ensure longer se-
quences will be temporally consistent (Section 3.3).

3.1. Known Correspondences

Given correspondences, aki = [aki, bki]T , of a 3D point
k in the images, the objective is to reconstruct the shape,
xk = [xk, yk, zk, 1]T , and velocity, ok = [uk, vk, wk, 0]T ,
of the point in a reference time frame.

In a two view case where camera motion is known and
the object is slowly moving (or almost rigid), most of the
variation between the two images will be due to depth vari-
ation along the known epipolar geometry. Two dimensional
flow components orthogonal to the epipolar lines are surely
due to 3D flow, but 3D flow can also cause variation along
the epipolar line. In such cases it is impossible to sepa-
rate depth from flow; even when depth is known, the flow
is ambiguous. Constraints on the offset (e.g., the minimal
such offset, or the offset is parallel to the image plane) give
a unique solution, but neither of these are plausible con-
straints.

An unconstrained three frame setup leads to a similar
ill-posed configuration. However, with the extra frame it
is possible to derive more physically plausible constraints.
Assume that the point has a constant velocity through time

ti ∈ {0, 1, 2} and is observed by a moving camera, then
it is often possible to reconstruct a unique solution. Un-
fortunately, some degenerate camera configurations exist:
no camera motion implies infinitely many solutions, and
coplanar backprojected rays give a one parameter family of
solutions (see Figure 2 for a 2D top down example). Note,
in the latter degenerate case, unlike the two-view example,
knowing the depth allows the recovery of correct 3D flow.
Reconstructing the structure and velocity at t1 gives three
non-linear constraints on the 3D point xk and its offset:

Π(P0(xk + (t0 − t1)ok)) = Π(P0(xk − ok)) = aj0 (1)
Π(P1(xk)) = aj1 (2)

Π(P2(xk + (t2 − t1)ok) = Π(P2(xk + o)) = aj2 (3)

where Π is the projective division operator.
Much like triangulation in multi-view stereo [7], this

non-linear problem can be transformed into a linear one:

[Pi]1(xk + ti1ok)− [Pi]3(xk + ti1o)aji = 0 (4)
[Pi]2(xk + ti1ok)− [Pi]3(xk + ti1o)bji = 0 (5)

Where ti1 = ti − t1 (e.g., t01 = −1, t11 = 0, and t21 = 1),
and [Pj ]m is row m of matrix Pj , for a total of 6 equa-
tions in the 6 unknowns. The system of equations is rank
deficient whenever the backprojected rays from the corre-
spondences lie in the same plane.

The above argument suggests that |N(j)| = 2 is suffi-
cient for reconstruction of geometry and flow, but this min-
imal view formulation is sensitive to noise. Non-degenerate
configurations give a unique solution that satisfies the non-
linear system exactly. An obvious way to circumvent noise
is to use more image frames (e.g., increase |N(j)|). Un-
fortunately, given that all the frames are taken at fixed
time intervals, using more frames from the sequence means
that constant velocity must hold over a longer time period,
which may become less likely in a real setting. An alter-
native to using extra image frames is to regularize the re-
construction; we investigate this approach in our variational
formulation.

3.2. Reconstruction from Images

The previous discussion demonstrated that it is possi-
ble to simultaneously reconstruct both scene flow and depth
from a single moving camera with known motion. The algo-
rithms required correspondences between points be known
in advance. Instead of obtaining correspondences from
some procedure that is unaware of the constant velocity as-
sumption (e.g., through optic flow), in this section, we de-
rive a direct estimation process using a variational formula-
tion that encodes the constant velocity assumption.

When the correspondences are unknown, we restate our
objective as the recovery of a dense per-pixel mapping of
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structure and flow at a reference frame (e.g., frame j). The
shape in this frame can be represented by a per-pixel map,
the disparity (inverse depth) map. The 3D point correspond-
ing to a 2D point x = [x, y]T with disparity d is

℘(Pj ;x, d) = RT
j (K−1

j [x/d, y/d, 1/d]T − tj)

The constant velocity assumption can now be stated in con-
junction with the brightness constancy constraint (e.g., the
constraint typically used in optic flow), which gives the con-
stant velocity and constant brightness constraint:∑

i∈N(j)

|Ii(Π(Pi(℘(Pj ;x, d) + (ti− tj)o))− Ij(x)|2 (6)

which states the intensities of the flowed point in nearby
temporally adjacent frames, N(j), should minimize the dif-
ference to the brightness/color in frame j. We use the no-
tation, W

j→i
, as the shorthand representation for the backpro-

jection of the 2D point, which is then displaced, and pro-
jected into image i:

W
j→i

(x, d,o) = W
j→i

(x, d, u, v, w) =
[
x̂

ẑ
,

ŷ

ẑ

]T

=

Π(Pi(℘(Pj ;x, d) + (ti − tj)o)) =

Π(Kiti + KiRi(℘(Pj ;x, d) + tij [u v w]T ))

The dense structure and flow, d = [d, u, v, w]T , for a
reference frame j can the be recovered as the minimum of
the following energy functional:

Ej(d) =
∑

i∈N(j)

∫
Ψd(|Ii( W

j→i
(x, d, u, v, w))− Ij(x)|2)dx

+ α

∫
Ψs(|∇d|2)dx

+ β

∫
Ψu(|∇u|2 + |∇v|2 + |∇w|2)dx (7)

where, Ψ∗(x2) are robust functions. This functional is an
extension of the variational optic flow methods to dispar-
ity and scene flow [3]. Similar to these methods, we use
Ψd(x2) = Ψs(x2) = Ψu(x2) =

√
x2 + ε2 for some small

ε. The first term, the data term, measures the consistency
using the constant velocity and brightness constraint; the
other terms regularize the disparity and flow separately.

The minimum of Eq. 7 is an image-based representation
of structure and flow for a single reference frame j that uti-
lizes the constant velocity assumption over a temporal win-
dow N(j). The temporal window should contain a subset
of images where this assumption is likely to hold.

Defining |∇o|2 = |∇u|2 + |∇v|2 + |∇w|2, the Euler-

Lagrange equations of Eq.7 are∑
i∈N(j)

Ψ′
d(I

2
ij)IijIid − α∇ · (Ψ′

s(|∇d|2)∇d) = 0 (8)

∑
i∈N(j)

Ψ′
d(I

2
ij)IijIiu − β∇ · (Ψ′

u(|∇o|2)∇u) = 0 (9)

∑
i∈N(j)

Ψ′
d(I

2
ij)IijIiv − β∇ · (Ψ′

u(|∇o|2)∇v) = 0 (10)

∑
i∈N(j)

Ψ′
d(I

2
ij)IijIiw − β∇ · (Ψ′

u(|∇o|2)∇w) = 0 (11)

Where

Iij = Ii( W
j→i

(x, d, u, v, w))− Ij(x)

Iid =
∂

∂d
Ii( W

j→i
(x, d,o)) = ∇Ii

∂

∂d
W
j→i

(x, d,o)

∂

∂d
W
j→i

=

[
ẑ ∂x̂

∂d−x̂ ∂ẑ
∂d

ẑ2

ẑ ∂ŷ
∂d−ŷ ∂ẑ

∂d

ẑ2

]
∂p
∂d

= KiRiRT
j K−1

j [1 1 1]T
1
d

∂p
∂u

= KiRi [(ti − tj) 0 0]T

with p = [x̂, ŷ, ẑ]T . ∂p
∂v and ∂p

∂w are similar to ∂p
∂u . The

abbreviations, Iiu, Iiv , Iiw, are defined similar to Iid.
We solve the Euler-Lagrange equations similar to the op-

tic flow counterpart[3]. A fixed point iteration is defined
and the data term is linearized (see the Appendix). This lin-
earized equation is solved for several iterations over several
scales of an image pyramid (we perform several lineariza-
tions at each scale) with a multi-grid method that uses a
point coupled Gauss-Seidel method as the basic solver for
pre- and post-smoothing. The dimensions of levels of our
image pyramid differ by a factor of 2 (see Algorithm 1).

Initialization: One approach to compute a suitable initial-
ization would be to compute optic flow between the ref-
erence image and its neighbors and then use techniques in
Section 3.1 to extract an initial disparity and flow. However,
we found it sufficient to obtain a coarse initial disparity from
stereo on lower resolution images, which implicity assumes
zero flow. The lower resolution images help account for
some of the flow. Disparity is first estimated in a discrete
framework (e.g., similar to Zhang et al. [19]). These dis-
parities are refined using a variational disparity estimation
(e.g., Eq. 7 with no flow components). As the coupled flow
and disparity refinement is initialized on a low resolution,
we found it sufficient to initialize the 3D flow to zero.

3.3. Longer temporal constraints

It is unlikely that the constant velocity assumption will
hold over a long range of frames, so it is desirable to have a
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Algorithm 1: disp flow(Ij , N(j))
Data: d0 = {d0, v0, u0, w0} (e.g., d0 from stereo,

u0, v0, w0 zero). Reference image Ij and
neighbors N(j), α, β

Result: The disparity and flow for Ij , d = {d, u, v, w}
d = d0 // Solve on image pyramid;
for l← lmaxto 0 do

d = resample solution for level(l, d);
for h← 1 to nlin do

// Solve linearized problem using multi-grid;
d = solve Ej(d, α, β);
// update d in place, e.g., k = k + 1;

x(d)

I1 I0

x
x̂

I1 I0

xo0

x̂
o1

Figure 3. Left: a simple disparity map consistency constraint
where the disparity for point x is penalized by the distance to the
point x̂. Right: a flow constraint penalizing the distance in 3D.

formulation that will allow for changes in velocity. A possi-
ble image-based method is to solve the variational problem
for each image using a close set of neighboring images and
then to enforce constraints between these independent solu-
tions.

First, consider how a depth consistency constraint could
be encoded in the variational approach. If the problem is to
only recover depth from each view (e.g., flow is regularized
to be zero), it is straightforward to incorporate a constraint
that links the shape in each image. Motivated by the ge-
ometric consistency used by Zhang et al.[19], which uses
neighboring disparity maps to penalize the matching score,
we can define an image-based penalizer on disparity.

For example, given the geometry of the cameras, a dis-
parity d for a point x in image 0 will map the point to some
location in image 1. The disparity in image 1 is used to map
the point back to image 0, giving a point x̂. Inconsistent
disparity maps can be penalized by minimizing |x̂ − x|2.
The situation is illustrated in Figure 3.

Similar constraints can be defined when each image con-
tains independent estimates of both structure and flow (see
Fig. 3). Using image j as a reference, the constraints can be
incorporated into the variational problem as the following:

Cji(d) =
∫ ∫

κΨd(|hi( W
j→i

(x,d))− ℘j(x,d))|2)dx

(12)

Algorithm 2: disp flow many({Ii})
Result: {dj}, disparity and flow for all images.
// Solve for each view independently;
for j ← 1 to F do

d = basic stereo(j, N(j));
dj = {d,0,0,0};
dj = disp flow(j, N(j), dj);

// Solve again with constraints;
for l← lmaxto 0 do

for j ← 1 to F do
dj = resample solution for level(l, dj);
for h← 1 to niters do

D = {dk|k ∈ N(j)};
// Linearize and minimize Eq. 13 w.r.t dj;
dj = solve cons(j, N(j), dj , D);

where ℘j(., .) is the backprojection function for image j.
The function hi is the backproject-and-offset function and
uses the current estimates of structure and flow from image
i. Using this formulation, the structure and flow for all im-
ages can be extracted in a manner that ensures consistency
and allows deviations from constant velocity.

The combined problem of estimating the disparity and
flow from all frames with constraints can be thought of as
finding the minimum to the following expression:

Etotal({di}) =
F∑

j=1

(Ej(dj) +
∑

i∈N(j)

Cji(dj)) (13)

We obtain an approximate solution to this equation by
first solving for the disparity and flow at each image inde-
pendently (e.g., minimize Ej), and then in a second pass
introduce the constraints, Cji and solve again for Ej hold-
ing all the other disparity and flow constant (Algorithm 2).

4. Experiments
We first consider a synthetic example where the motion

obeys our constant velocity assumption. The setup consists
of three views roughly 4 units from a planar object that de-
forms into a bumpy surface with some shifting (Fig. 4). The
object is 2 units wide and has flows of 10% of this size.

To test the sensitivity of our estimate to perturbations in
camera baseline, we have run our algorithm on varying pro-
portions of the full camera baseline (which is roughly 1.3
and 1.9 units for left and right cameras respectively).

Figure 5 shows the distance to ground truth for the initial
disparity estimation and for the refined disparity and flow
estimations (these are computed as average difference in
depth for the disparity values and average vector difference
for the flows). The figure shows that our method outper-
forms the initial disparity, which is ignorant of the flow.
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Figure 4. Top: the moving camera setup (full baseline depicted
here). Middle: shaded and textured (side-views) of the deform-
ing object. Bottom: the initial disparity estimate (e.g, zero flow),
which averages the deformations.
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Figure 5. Distance to ground truth for initial disparity estimate
(Init) and recovered disparity (Disp) and flow on synthetic plane
sequence.
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Figure 6. Top: the recovered geometry for each time step (and
the flowed geometry from time 1) are similar to the ground truth
(Fig. 4). Bottom right: recovered u and w components beside the
ground truth (t = 1, α = 0.83).

Figure 7. Top: cropped input views. Bottom: this novel viewpoint
illustrates that the geometry was accurately reconstructed for each
of the time sequences (notice the rightward motion of the right
house and the rotation of the left house).

Figure 8. Top: 3D views of the overlaid flow (red is in front of
object, green is behind). Bottom: novel viewpoint of the geometry.

Also, as expected the estimation degrades with too small
baseline, and the reconstructed flow degrades with too large
of a baseline (possibly due to increased occlusions).

Figure 6 illustrates our results for the full baseline case.
Notice that this geometry looks like the recovered (and
ground truth) geometry in the neighboring frames. This
similarity is evident in the image representations of the u
and w components compared to the ground truth. The av-
erage depth error is 0.007 (∼ 0.35% of the object size) and
average flow error of 0.0029 (∼ 1.5% of the flow size).

4.1. Real sequences

The first sequence has three views of two houses: the
left house is rotating counter clockwise (from top), the right
house translates to the right and is draped with a shirt that
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Sequence F size α β κ lmax niters

Two house 3 800x600 8 4.8 0.02 4 10
Mouth 3 800x600 6.25 5.63 0.18 4 20
Table 1. Information and parameters for the real sequences

Figure 9. Top: input views. Middle & Bottom: textured and
shaded results from a novel viewpoint.

moves non-rigidly, and the background is stationary (pa-
rameters are in Table 1). Camera motion is extracted rel-
ative to the background using a calibration pattern. Fig-
ure 7 shows the input views and the reconstructed geometry
at each time from a novel viewpoint; Figure 8 shows the
3D flow and another viewpoint. The geometry is consis-
tent through the 3 frames, and the flow (Fig. 8) represents
the rigid house motion, the non-rigid cloth motion, and the
stationary ground.

The second real data set was three views of a person
opening his mouth. Camera motion was again extracted
with a calibration pattern and is relative to the subjects skull.
Figure 9 shows the input views and the resulting geomet-
ric reconstructions. In this case there is some motion in
the z-coordinate not present in the sequence. Notice that
the motion of the camera is significant enough to make this
sequence challenging for strict optic flow; the addition of
depth and flow allows successful recovery. See Figure 10
for the images warped to time frame 1.

Figure 10. Images 0 (left) and 2 (right) warped to image 1 (middle)
using the recovered depth and flow.

5. Conclusions

We have proposed a variational method to estimate scene
flow and geometry from a moving monocular camera with
known motion. Assuming a constant velocity over a small
temporal window in such circumstances allows for recon-
struction of both geometry and structure; this assumption is
embedded in our estimation.

Our approach does have some limitations. The primary
limitation is that the monocular camera motion must be
known. We intend to use this technique to recover the
dense deformations from a multi-view human capture stu-
dio where there is little overlap in views. Motion of the
human’s articulated links (extracted through multi-camera
tracking) would give the relative motion of the camera, from
which our method could be applied. Although we have ad-
dressed the problem primarily for the monocular case, we
expect that aspects of our approach could be adapted to the
multi-view case where input views have little overlapping
regions; this integration could take advantage of other cues,
such as the bounds of the visual hull or stereo constraints in
the regions with sufficient overlap.

Another limitation is the flow should be well approxi-
mated by constant velocity over a short time frame. A worst
case scenario is when the surface motion reverses direc-
tions. Clearly, surface motion in an infinitely small time
window can be well approximated as constant velocity. But
we rely on the motion of the camera relative to the object
in order to reconstruct the depth, so there is a trade-off be-
tween being able to reconstruct depth (e.g., enough base-
line) and the approximation of constant velocity holding.

The current representation is completely image-based.
This representation has made it necessary to link recon-
structions over longer sequences (e.g., using constraints on
the flow). Our current constraints (and energy) do not take
into account occlusions. Perhaps a scene-based representa-
tion (e.g., [10]) would be more natural to link constraints
through longer sequences.
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A. Linearization of the Euler-Lagrange
Our solution to Eqs 8-11 follows the derivation for optic

flow[3]. First, a fixed point iteration is defined:∑
i∈N(j)

Ψ′
d((I

k+1
ij )2)Ik+1

ij Ik
id

− α∇ · (Ψ′
s(|∇dk+1|2)∇dk+1) = 0∑

i∈N(j)

Ψ′
d((I

k+1
ij )2)Ik+1

ij Ik
iu

− β∇ · (Ψ′
u(|∇ok+1|2)∇uk+1) = 0

|∇ok+1|2 := |∇uk+1|2 + |∇vk+1|2 + |∇wk+1|2

The equations for v and w are similar to u.
Letting dk+1 = dk + δdk, uk+1 = uk + δuk, vk+1 =

vk + δvk, and, wk+1 = wk + δwk, the data term can be
linearized as

Ik+1
ij =Ii( W

j→i
(dk+1))− Ij

≈Ii( W
j→i

(dk))− Ij+

Iidδd
k + Iiuδuk + Iivδvk + Iiwδwk

=Ik
ij + Iidδd

k + Iiuδuk + Iivδvk + Iiwδwk

Letting
∇Ik

i = [Ik
id Ik

iu Ik
iv Ik

iw Ik
ij ]

T ,

and
δdk = [δdk δuk δvk δwk 1]T ,

we have Ik+1
ij ≈ (∇Ik

i )T δdk. Defining, Sk
i =

∇Ik
i (∇Ik

i )T , the Euler-Lagrange equations become:∑
i∈N(j)

Ψ′
d(·)[Sk

i ]1δdk − α∇ · (Ψ′k
s (·)∇dk+1) = 0

∑
i∈N(j)

Ψ′
d(·)[Sk

i ]2δdk − β∇ · (Ψ′k
u (·)∇uk+1) = 0

∑
i∈N(j)

Ψ′
d(·)[Sk

i ]3δdk − β∇ · (Ψ′k
u (·)∇vk+1) = 0

∑
i∈N(j)

Ψ′
d(·)[Sk

i ]4δdk − β∇ · (Ψ′k
u (·)∇wk+1) = 0

Ψ′k
d (·) := Ψ′

d((δd
k)T Sk

i δdk)

Ψ′k
s (·) := Ψ′

s(|∇(dk + δdk)|2)
Ψ′k

u (·) := Ψ′
u(|∇uk+1|2 + |∇vk+1|2 + |∇wk+1|2)

where [Sk
i ]n is the n−th row of Sk

i . After discretization the
above system is solved with multi-grid methods[3].
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