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Abstract

Numerical methods used for solving differential equa-
tions should be chosen with great care. Not consider-
ing numerical aspects such as stability, consistency and
wellposed-ness results in erroneous solutions, which in turn
will result in incorrect judgments. One of the most impor-
tant aspects that should be considered is the stability of the
numerical method.

In this paper, we discuss stability problems of some of
the so far proposed finite difference methods for solving
the anisotropic diffusion equation, a second order parabolic
equation. This equation is used in a variety of applications
in physics and image processing. Here, we focus on its us-
age in formulating brain tumor growth using the Diffusion
Weighted Imaging (DWI) technique. Our study shows that
the commonly used chain rule method to discretize diffu-
sion equation is unstable. We propose a new 3D stable dis-
cretization method with its stability conditions to solve the
diffusion equation. The new method uses directional dis-
cretization and forward differences. We also extend stan-
dard discretization method to 3D. The theoretical and prac-
tical comparisons of the three methods both on synthetic
and real patient data show that while chain rule model
is always unstable and standard discretization is unstable
in theory, our proposed directional discretization is stable
both in theory and practice.

1. Introduction

Partial Diffusion Equations (PDEs) are often used in
medical imaging. A numerical method used to solve a PDE
must be stable. This fact is more important in medical cases
where not considering stability issues of numerical meth-
ods can cause incorrect judgments of medical doctors which
in turn can result in developing incorrect treatment meth-
ods. Here, we discuss the stability issues of the 2nd or-
der diffusion equation. This equation is used in a variety
of applications including image enhancement, segmentation
and filtering. But our application comes from brain tumor

growth modeling. In this paper, we discuss the stability
problems of some of the so far proposed numerical methods
for solving the reaction-diffusion equation in the context of
tumor growth prediction and we propose our new 3D stable
method. Testing all the practical implications of the stability
reveals that, of common finite difference schemes of diffu-
sion models in the literature (considering anisotropy of ten-
sor), one is almost always unstable, one is theoretically un-
stable but might be stable in practice and our method works
on all test cases and only gets unstable if the condition is
not satisfied.

Mathematical modeling of the tumor growth has a long
history. The reaction-diffusion model, introduced by Mur-
ray [11], made a great change in growth modeling. The
two main biological behaviours that are considered in this
model are diffusion and proliferation. Diffusion illustrates
the fact that tumor cells infiltrate into the surrounding brain
tissue. Proliferation is a function representing a reactive be-
haviour that primarily accounts for tumor cell growth and
death. Early works use an isotropic diffusion model that al-
lows tumor cells to diffuse equally in all directions with the
same speed for all tissues [4]. The experimental results of
Giese et al. [1] established that tumor cells move faster in
white matter than in gray matter. Swanson et al. [12], [13]
incorporated this experimental fact to the growth model by
multiplying the tensors in white matter with a scaling fac-
tor. This isotropic model, which results in spherical cell
invasion, only simulates high-grade gliomas. Low-grade
gliomas, which exhibit complex finger-like shapes, are not
well described by an isotropic model. More recent ap-
proaches ([2], [8], [9], [3]) use anisotropic diffusion along
white matter fibers as given by the diffusion tensors (from
Diffusion Tensor Images-DTI) to simulate more complex
tumors.

The two general numerical methods used to solve the
reaction-diffusion equation in the context of tumor growth
are finite elements or finite differences. Examples of models
using finite-elements to solve anisotropic diffusion equation
are [2], [10], [7]. But, the finite difference scheme is easier
to implement and the pixel structure of digital images pro-
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vides a natural regular grid. However, the anisotropic diffu-
sion equation is a complex second order PDE and not any
simple finite difference can solve it properly. In [9] and [3],
this second order PDE is reformulated to simpler first order
PDEs by using the concept of manifolds. But the solution of
the equation is tumor delineation area or geodesic distances
instead of the tumor cell density. In [8], anisotropic diffu-
sion equation chain-rule expansion is directly solved by us-
ing chain rule expansion. In this paper, we prove that chain-
rule expansion is an unstable solution. We compare the sta-
bility issues of three different 2D discretization methods.
We further extend an stable one [14] with its aligned stabil-
ity conditions to 3D to solve the anisotropic tumor growth
diffusion equation and find the tumor cell density. We fi-
nally compare the 3D chain-rule model with our model on
real patient data.

2. Numerical Solutions of Anisotropic Diffu-
sion PDEs

The reaction-diffusion equation, proposed by Mur-
ray [11] et al., to model the tumor growth has the following
general format:⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t = div(D∇u)︸ ︷︷ ︸

DiffusionTerm

+ f(u)︸︷︷︸
ProliferationTerm

− T (u)︸ ︷︷ ︸
Treatmentlaw

D∇u.�n∂Ω = 0
(1)

where the second row defines the Neumann boundary
conditions; Ω shows the domain (3D image) and ∂Ω is its
boundary, D is the diffusion tensor and u is the normalized
tumor cell density (u ∈ [0, 1]). The simplest choice for
the proliferation term is the exponential format which uses
constant growth rate of glioma cells (ρ). Here, we use ex-
ponential proliferation and we do not consider the treatment
planning. Therefore, the whole equation is simplified as:⎧⎨

⎩
∂u
∂t = div(D.∇u) + ρu

D∇u.�n∂Ω = 0
(2)

To find the rate of change of tumor cell densities in time,
we need to solve equation 2 using numerical methods.

2.1. Implementing the reaction-diffusion equation,
Numerical issues

According to standard textbook definition (e.g. [ 6], in
studying differential equations, a numerical method is said
to be stable if small perturbations in the input data or the
ones that occur during computation do not cause the re-
sulting numerical solution to diverge away without bound.
In other words, a numerical method is stable if the nu-
merical solution at any arbitrary but fixed time t remains
bounded [6].

To access the stability issues of discretizing the reaction-
diffusion equation, we first consider only the diffusion term.
The diffusion term has the general format of:

∂u
∂t = div(D∇u) = div

([
a b
b c

] [ ∂u
∂x
∂u
∂y

])
= ∂(a ∂u

∂x )

∂x +
∂(b ∂u

∂y )

∂x + ∂(b ∂u
∂x )

∂y +
∂(c ∂u

∂y )

∂y

(3)

Discretization of the right hand side of the diffusion
equation using finite differences results in a semi-discrete
problem. To assess the well-posedness of the semidiscrete
problem, let us first define the semidiscrete class of diffu-
sion problems (Ps) following Weickert [14]:

(Ps)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Let f ∈ �N . Find a function u ∈ C1([0,∞),�N )
that satisfies an initial value problem of type

∂u
∂t = A(u)u,
u(0) = f,

where A = (aij) has the following properties:

(S1) Lipschitz-continuity of A ∈ C(�N ,�N×N)
for every bounded subset of �N

(S2) symmetry:
aij(u) = aji(u) ∀i, j ∈ J, ∀u ∈ �N ,

(S3) vanishing row sums:∑
j∈J aij(u) = 0 ∀i ∈ J, ∀u ∈ �N ,

(S4) nonnegative off-diagonals:
aij(u) ≥ 0 ∀i �= j, ∀u ∈ �N

2.1.1 Theorem of well-posedness, extremum principle
for semidiscrete problems

For every T > 0 the problem (Ps) has a unique solution
u(t) ∈ C1([0, T ],�N). The solution depends continuously
on the initial value and the right-hand side of the ODE sys-
tem, and it satisfies the extremum principle

a ≤ ui(t) ≤ b ∀i ∈ J, ∀t ∈ [0, T ], (4)

where
a := min

j∈J
fj ,

b := max
j∈J

fj
(5)

This theorem is proved in [14]. Based on this theory, if a
semi-discrete problem belongs to (Ps) class, it will have
a unique stable solution. For the diffusion equation, since
D is a positive semidefinite matrix (S1) to (S3) are satis-
fied. The only remained term that needs to be satisfied is
the nonnegativity term (S4). If (S4) is not satisfied, the
numerical method gets unstable. However, satisfying (S4)
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Table 1. Chain-Rule 2D stencil; Discretization with this stencil
is not guaranteed to be stable since all stencil elements can get
negative

is not an easy task that cannot be solved with simple dis-
cretization methods. Here, we explain how three different
2D discretization methods affect the (S4) condition.

2.1.2 Chain-rule discretization method

The simplest way to discretize a second order derivative is
to use Chain-Rule discretization method. In the chain-rule
method, the derivatives of 3 are defined as:

∂

(
a
∂u

∂x

)
=

∂a

∂x

∂u

∂x
+ a

∂2u

∂x2
(6)

and by using the forward and centered finite difference
schemes of the following format, we will end up in a stencil
with the format of Table 1.

∂u
∂x = ui+1,j−ui,j

2h1
∂2u
∂x2 = ui+1,j−2ui,j+ui,j+1

h2
1

(7)

Satisfying (S4) requires that all non-centered elements of
Table 1 be non-negative. Positive semi-definiteness of the
tensor D guarantees that diagonal elements of the tensor (a
and c) are nonnegative. But this fact is not helpful in case of
chain-rule discretization and all the elements of the stencil
of the table 1 can violate the nonnegativity even the ones
containing only a and c coefficients. Subsequently, chain-
rule method violates the stability issues. This method was
extended to 3D in [8]. Obviously the 3D extension is also
unstable.

2.1.3 Standard discretization method

Standard discretization method is another method used by
Weickert [14] in which, forward-backward and mixed term

−bi−1,j−bi,j+1
4h1h2

ci,j+1+ci,j

2h2
2

bi+1,j+bi,j+1
4h1h2

ai−1,j+ai,j

2h2
1

−ai−1,j+2ai,j+ai+1,j

2h2
1

− ci,j−1+2ci,j+ci,j+1

2h2
2

ai+1,j+ai,j

2h2
1

bi−1,j+bi,j−1
4h1h2

ci,j−1+ci,j

2h2
2

−bi+1,j+bi,j−1
4h1h2

Table 2. Standard 2D stencil; Discretization with this stencil is not
guaranteed to be stable since the diagonal boundary elements of
the stencil can become negative

differences are obtained by:

∂(a ∂u
∂x )

∂x =
1
h1

(ai+1,j+ai,j

2
ui+1,j−ui,j

h1
− ai,j+ai−1,j

2
ui,j−ui−1,j

h1
)

∂(b ∂u
∂y )

∂x =
1

2h1
(bi+1,j

ui+1,j+1−ui+1,j−1
2h2

− bi−1,j,k
ui−1,j+1−ui−1,j−1

2h2
)

(8)
This standard discretization results in a stencil of the format
of Table 2. Off-diagonal elements of the stencil are nonneg-
ative, since a and c are nonnegative but the nonnegativity
of the whole stencil cannot be guaranteed since the b values
have undefined sign.

2.1.4 Non-negative discretization method

In standard method, the discretization of the mixed term
derivatives as defined in equation 8 produces negatives
terms in the stencil. To solve this problem, Weickert [14]
suggested calculating the derivatives in some newly defined
directions in addition to the original directions (x, y). In
2D, the new directions are the diagonal directions of the
3 × 3-stencil. The mixed term derivatives in equation 3 are
therefore replaced by directional derivatives. To obtain a
nonnegative stencil, it is enough to find the conditions under
which the stencil weights of the new directions are nonneg-
ative.
Weickert [14] proved the existence of such a nonnegative
second-order FD discretization on a (2m + 1) × (2m + 1)
stencil for div(D∇u). He also calculated the elements of
the stencil and the stability conditions for a 3 × 3 stencil.
We extend this method to 3D case.

2.1.5 3D Non-negative discretization method

In order to solve the tumor growth anisotropic diffusion, we
need to extend one stable discretization method to 3D. Pre-



Figure 1. 2D and 3D Stencil. Left: 2D stencil with the four prin-
cipal directions. Right: Three main planes of the 3D stencil with
the six principal orientations

viously, the chain-rule method was extended to 3D for this
mean [8]. However, as we proved, this method is unstable
even for the 2D case. In this paper, we extend the condition-
ally stable method proposed by Weickert [14] to 3D. For 3D
extension, we consider the 3D stencil as a combination of
three 2D stencils in xy, yz and xz planes. In each plane, we
have a 3×3 stencil. The ”boundary pixels” of this stencil de-
fine four principal orientations βi ∈ (−π

2 , π
2 ] corresponding

to angles
(
− arctan

(
h2
h1

)
, 0, arctan

(
h2
h1

)
, π

2

)
. Fig-

ure 1-left shows a 3×3-stencil with the principal directions.
We can define a partion of (− π

2 , π
2 ] into two subintervals:

(−π

2
,
π

2
] = (−π

2
, 0] ∪ (0,

π

2
] = I1 ∪ I−1

In the 3D coordinate system, each orientation is shown with
three angles θx, θy and θz which define the angles to the
three coordinate axes x, y and z. The directional splitting
of the diffusion equation in 3D results in:

div(D∇u) =
∂eβx(αxeβxu) + ∂eβy(αyeβyu) + ∂eβz(αzeβzu)+
∂eβxy(αxyeβxyu) + ∂eβ−xy(α−xyeβ−xyu)+
∂eβxz(αxzeβxzu) + ∂eβ−xz(α−xzeβ−xzu)+
∂eβyz(αyzeβyz u) + ∂eβ−yz(α−yzeβ−yzu)+

(10)

where eβi denotes the stencil direction and αi shows
the coefficient along the corresponding direction. A non-
negative discrete method is obtained if αi coefficients are
nonnegative. In the rest of this section, we will find condi-
tions under which directional coefficients remain nonnega-
tive. First, for simplicity and also in order to use subsequent
indices, let us define

φ0 := βx, φ1 := βy, φ2 := βz

φ3 := βxy, φ4 := βxz, φ5 := βyz.
γ0 := αx, γ1 := αy, γ2 := αz

γ3 := αxy, γ4 := αxz, γ5 := αyz

(11)

In each plane, there is only one diagonal direction that has
a positive coefficient and the other diagonal direction has a
zero coefficient. For example, in xy plane, if αxy is positive
then α−xy is zero and vise a versa. Hence, for simplicity,
we can keep only one diagonal direction in each plane and
we will keep the one in I1 partition (between (0, π

2 ]). When
the coefficient for one diagonal direction is defined, it will
be easy to find the other one from it. Figure 1-right shows
the three planes of a 3 × 3 × 3-stencil with the defined six
principal directions.
By substituting new coefficients of equation 11 in equation
10, we will obtain equation 9. By solving equation 9, γ
values are defined as:

γ0 = a − c
cosφ4x

cosφ4z
− b

cosφ3x

cosφ3y

γ1 = d − e
cosφ5y

cosφ5z
− b

cosφ3y

cosφ3x

γ2 = f − e
cosφ5z

cosφ5y
− c

cosφ4z

cosφ4x

γ3 =
b

cosφ3x cosφ3y

γ4 =
c

cosφ4x cosφ4z

γ5 =
e

cosφ5y cosφ5z

(12)

To have a nonnegative discretization, the coefficients γ0 to
γ5 must be nonnegative. If the grid sizes are h1, h2 and h3,
the coefficients for all the nine directions are defined as:

γx = a − |c|h1
h3

− |b|h1
h2

≥ 0
γy = d − |e|h2

h3
− |b|h2

h1
≥ 0

γz = f − |e|h3
h2

− |c|h3
h1

≥ 0

γxy = (|b| + b).h2
1+h2

2
h1h2

≥ 0

γ−xy = (|b| − b).h2
1+h2

2
h1h2

≥ 0

γxz = (|c| + c).h2
1+h2

3
h1h3

≥ 0

γ−xz = (|c| − c).h2
1+h2

3
h1h3

≥ 0

γyz = (|e| + e).h2
2+h2

3
h2h3

≥ 0

γ−yz = (|e| − e).h2
2+h2

3
h3h3

≥ 0

(13)

From equation 13 we can define the condition of the tensor
for a nonnegative discretization:

a ≥ |c|h1
h3

+ |b|h1
h2

d ≥ |e|h2
h3

+ |b|h2
h1

f ≥ |e|h3
h2

+ |c|h3
h1

(14)

Finally, we can find the nonnegative weights of the sten-
cil by replacing the coefficients of equation 13 in equa-
tion 10 and by considering the directional step sizes (e.g.√

h2
1 + h2

2 for the xy direction). The final stencil is given



div(D∇U) = div

((
a b c
b d e
c e f

)
∇u

)
=

5∑
i=0

∂

∂eφi

(γi
∂

∂eφi

)

=
∂

∂x

5∑
i=0

cosφix(γi(ux cosφix + uy cosφiy + uz cosφiz))

+
∂

∂y

5∑
i=0

cosφiy(γi(ux cosφix + uy cosφiy + uz cosφiz))

+
∂

∂z

5∑
i=0

cosφiz(γi(ux cosφix + uy cosφiy + uz cosφiz))

= div

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

5∑
i=0

γi cos2 φix

5∑
i=0

γi cosφix cosφiy

5∑
i=0

γi cosφix cosφiz

5∑
i=0

γi cosφiy cosφix

5∑
i=0

γi cos2 φiy

5∑
i=0

γi cosφiy cosφiz

5∑
i=0

γi cosφix cosφiz

5∑
i=0

γi cosφiy cosφiz

5∑
i=0

γi cos2 φiz

⎞
⎟⎟⎟⎟⎟⎟⎠∇u

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

in Table 4 in the Appendix (Section 4). Using this stencil
guarantees a stable spatial discretization assuming equation
14 is satisfied.

3. Experiments

In this section, we evaluate the stability issues of three
different discretization methods for solving the second or-
der parabolic PDE of the anisotropic diffusive tumor growth
model. These models include chain-rule, standard and non-
negative discretization models. To evaluate the stability, we
first test the introduced methods on 2D and 3D synthetic
test cases and then evaluate them on real DTI data of pa-
tients. Finally, we provide visual examples of both stable
and unstable cases.

3.1. Test on Synthetic Data

To test the degree of stability of each method, we made
several 2D examples with different degrees of complexity.
The first example is a 64×64 image with a circle in the mid-
dle corresponding to tumor at initial time as shown in figure
2. The pixel values corresponding to normalized tumor cell
density are 1 inside the circle and 0 outside. The image val-
ues inside the circle remain 1 in all iterations representing
the boundary condition. The strict max-min stability condi-
tion states that the normalized tumor cell density should be
between 0 and 1 in all iterations. A less strict stability con-
dition is to check only the maximum stability. If the prolif-
eration rate is more than zero, we consider a free boundary
problem meaning that once the tumor cell density of a voxel
reaches the value 1, the voxel will be added to the boundary
in subsequent iterations. We also need to make a diffusion
tensor image corresponding to this image. The shape of the
tensors are symbolically shown in figure 2. Diffusion ten-
sor image includes a ribbon of tensors with the anisotropy

parallel to x direction and another ribbon of tensors in the
y direction. The tensors in the middle are the summation
of both ribbons and are isotropic. The rest of the image is
covered with very small isotropic tensors. In choosing the

Figure 2. Tensor template for a 2D sample synthetic model. The
simulation starts from the circle in the middle that is the symbol of
tumor at initial time. Tensor shapes show the size and the degree
of isotropy in different locations

values of the tensors we should always notice that tensors
should be symmetric positive definite. The simplest case is
where b = 0 for all tensors and the tensors satisfy stability
condition (cond(D) > 5.8 as defined in [14]). Even for this
simple model, the chain rule discretization model always
simply becomes unstable. Figure 3 illustrates the result of
applying chain rule and nonnegative models on this simple
test case.
We eventually made the test cases more complicated. We
found out that in most practical applications both standard
and nonnegative discretization methods are maximally sta-
ble. The minimum values decreased below zero but they
remained bounded. So we tried to find an example where
the maximum stability was also ruined with these models.
Finally, by using a complicated model with random tensor
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Figure 3. The results of applying two numerical methods on a simple test case. a and b) 2D and 3D representation of Nonnegative method
results, this stable example nicely shows the diffusive nature of the growth. The pixel values remain in 0-1 range and do not violate the
max-min stability issue c and d) 2D and 3D representation of Chain rule results, the white and black pixels on the edges of the ribbon in (c)
correspond respectively to the pixels with very high and low intensities that destroy the max-min stability which is shown by high peaks
and valleys in (d). Note how the intensity values are far from the 0-1 range in (d)

Figure 4. Synthetic test templates with first eigenvectors of corre-
sponding diffusion tensors plotted on them; Left: a simple model
of 2. This model can only make chain-rule model unstable. Right:
A complicated test model where tensors in the green area are larger
than the rest of the image which produces a high gradient field in
tensor values. Also directions of tensors are completely random
as red arrows show. All discretization models are even maximally
unstable in this example

distribution on a high gradient irregular shape (instead of
rectangular ribbons), we could achieve instability in these
methods with cond(D) > 5.8. Figure 4 shows the two test
models. Note that the cond(D) > 5.8 ruins the stability
condition for the nonnegative model.

3.2. Test on Real Data

We extended all three mentioned discretization models
to 3D to test the glioma growth model on real patient data.
We used MRI and DTI data from clinical scans of patients

with glioma.1 DTI data has a resolution of 128 × 128 × 60
while MRI data has a resolution of 512 × 512 × 21. Typi-
cally at least one or two DTI data is acquired after radiation
and the rest of the scans are conventional MRI images (T2,
T1, FLAIR). For validation, we grow the tumor from time1
(first DTI scan acquired after radiation) to approximately
its size at time2 (3-6 months later) and then compare the re-
sult of our model with the actual growth. The growth starts
from the manually segmented visible high signal on DWI-
b0 (Fig. 5, red contour). We extract diffusion tensors using
ExploreDTI [5] from diffusion weighted images. More de-
tails on data preprocessing steps and real data experiments
can be fined in [3].

For the initial value condition, we chose value u = 1
(corresponding to 100% tumor cells) for the voxels inside
the visible part of the tumor in time1 and u = 0 (corre-
sponding to no tumor cells) for the rest. The free boundary
condition indicates that the voxels with value u = 1 keep
their value u = 1 during all iterations, based on the fact that
once a voxel area of the brain is saturated with tumor cells,
the number of cells cannot add up. We tested these models
on four different real patient data sets, which is a relatively
large number in comparisons with previous attempts in the
literature where at most one real test case is used. The re-

1The data collection protocol was approved by REB and the patients
that have provided an informed consent.



Figure 5. Test of anisotropic diffusive model on real DTI data of
patients with glioma. Red contour shows the starting area of the
growth simulation. Left) Result of applying chain-rule model, the
blue contours show the result of an inhomogeneous growth caused
by an unstable model. Right) Result of applying nonnegative dis-
cretization method. The homogenous contour indicates a stable
growth.

Method Theory In practice
Chain-rule unstabe unstable
Standard unstable Stable (3 of 4 cases)

Nonnegative Conditionally stable Stable (3 of 4 cases)
Table 3. Comparison of the three discusses discretization methods
in theory and in practice

sults show that the chain-rule model becomes unstable very
soon in all cases. Standard and nonnegative methods re-
main stable in three cases if we just consider max stability,
not max-min stability.

Fig. 5-right shows a sample of nonnegative method that
remains stable through the simulation process. The tumor
starts its growth from the red margin and keeps growing
to a certain volume. The growth area remains homogenous.
Fig. 5-left shows the result of applying chain-rule method to
the same data. The instability results in a non-homogenous
area that is seen as irregular blue contours. We conclude
that, if we only take into account the max stability and not
the max-min stability, Weickert’s methods remain stable on
real data without post processing on tensors. But a post
processing that increases the degree of anisotropy will con-
sequently increase the tensor condition number and destroy
the stability condition defined in equation 14. The com-
parison results is concluded in Table 3. The reason that in
practice the nonnegative model becomes unstable in one of
the four real test cases is that the condition 14 is not satisfied
in that case.

4. Conclusion

In this paper, we proposed a new 3D finite differences
method for discretization of the anisotropic diffusion equa-
tion, a second order hyperbolic PDE. We proposed this
model to tackle the instability problem of the previously
used state of the art numerical methods in the context of
tumor growth. Although we used anisotropic diffusion to
model the infiltration of tumor cells into surrounding brain
tissue, this equation has many other applications in physics

and image processing. Therefore, a 3D stable numerical
solution for this PDE is also very helpful for other applica-
tions. In this paper, after defining the general stability term,
we proved that a simple chain rule method and also standard
discretization methods violates this term. Instead, we pro-
posed the extension of directional discretization to 3D and
proved that it satisfies the stability term under certain condi-
tions. We evaluated all three methods on synthetic and real
patients’ DWI data. We can conclude that in practice, chain
rule method easily gets unstable. Standard discretization is
mostly maximally stable though it is theoretically unstable.
And the directional discretization (nonnegative) method is
both theoretically and practically stable if the condition is
satisfied.
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Table 4. 3D Non-negative Stencil; This stencil is obtained by extending Weickert’s 2D non-negative stencil to 3D. The stencil elements are
non-negative as long as conditions of Equation 14 are satisfied, which results in a stable discretization.


