
Incremental Free-Space Carving for Real-Time 3D Reconstruction

David Lovi, Neil Birkbeck, Dana Cobzaş, Martin Jägersand
University of Alberta

Edmonton AB., Canada, T6G 2E1
{dlovi,birkbeck,dana,jag}@cs.ualberta.ca

Abstract

Almost all current multi-view methods are slow, and thus
suited to offline reconstruction. This paper presents a set of
heuristic space-carving algorithms with a focus on speed
over detail. The algorithms discretize space via the 3D De-
launay triangulation, and they carve away the volumes that
violate free-space or visibility constraints. Whereas similar
methods exist, our algorithms are fast and fully incremental.
They encompass a dynamic event-driven approach to recon-
struction that is suitable for integration with online SLAM
or Structure-from-Motion.

We integrate our algorithms with PTAM [12], and we re-
alize a complete system that reconstructs 3D geometry from
video in real-time. Experiments on typical real-world inputs
demonstrate online performance with modest hardware. We
provide run-time complexity analysis and show that the per-
event processing time is independent of the number of im-
ages previously processed: a requirement for real-time op-
eration on lengthy image sequences.

1. Introduction

Reconstructing 3D geometry from multiple images is
well studied. The accuracy of recent algorithms based on
offline batch-processing of images is impressive [20]. How-
ever, comparably little work is published on incremental
real-time 3D reconstruction from video. Yet this is useful
in many applications in robotics, where continuous input
video is processed, but on-board CPU power is limited.

Typically, real-time reconstruction proceeds in two
stages. First, cameras and 3D points (or patches) are in-
crementally computed for each new video frame. Second,
a triangulated 3D model is computed from the geometric
primitives. For the first step, powerful SLAM [4, 6] and
SFM-based systems (e.g. PTAM [12]) have been published.
We focus on the second step, 3D real-time model construc-
tion, and we use either mono-SLAM or PTAM as inputs.

Incremental model reconstruction can be done by merg-
ing partial geometry (e.g. depth maps from video frames).

Merrell et al. and Pollefeyset al. published a real-time
method based on fusing quick and noisy depth maps to-
gether into a free-space consistent mesh [16, 18]. The re-
sults are impressive, and the quality is competitive with of-
fline methods [20]. However, extensive hardware was used
including an inertial navigation system (for camera calibra-
tion) and a powerful CPU and GPU. In contrast, we use only
a moderate mobile (laptop) CPU.

Hilton describes a method that incrementally recon-
structs a 3D model from sparse features with strong run-
time guarantees [10]. His algorithm performs a 2D De-
launay triangulation in each view, and it back-projects and
merges the triangulations into a free-space consistent mesh.
Hilton proves that its run time is practically constant per
frame. However, his method only considers keyframe addi-
tion. Our algorithms handle a superset of events (including
keyframe addition, outlier deletion, geometric refinement,
etc.). Thus, our event-driven approach is more dynamic and
can integrate with more SLAM and SLAM-like systems.

An alternative to merging partial geometries is volumet-
ric carving. Related 3D volumetric methods are that of
Faugeraset al. [8] and Gargallo [9]. They compute a model
from a set of sparse or quasi-dense features via the De-
launay triangulation and free-space carving. Our proposed
method builds on these works. Recently, Lababtutet al. de-
veloped methods that combine, via graph cuts, the 3D De-
launay triangulation and free space with photo-consistency
and regularization [13, 23]. They achieve impressive re-
sults. Unfortunately however, all of these related methods
are for offline batch use. Our algorithms achieve real-time
performance by exploiting the incremental structure of the
Delaunay algorithm to complement it with fully incremen-
tal carving.

Independently and very recently, Panet al. developed
ProFORMA, a system for online reconstruction [17], with
similar goals as ours. ProFORMA constructs a 3D Delau-
nay triangulation, and it carves free-space via a probabilistic
voting scheme which obtains a smoother mesh. Our sys-
tem, however, has at least two key advantages. First, Pro-
FORMA is only capable of reconstructing isolated objects;

we support complex scenes. Second and most notably,
ProFORMA’s reconstruction is not incremental; they start
over at every keyframe. We remark in Section3 that, un-
like our method, ProFORMA’s run-time complexity suffers
from free-space constraint accumulation and scales poorly
in the number of keyframes. Thus it is not suited for online
operation on long image-sequences.

In this work, we present three main contributions:

1. Efficient incremental algorithms for online 3D recon-
struction via event handling for adding views, adding
or deleting visibility information, and adjusting the
model in response to adjusted geometry.

2. Complexity analysis characterizing the method’s run-
time properties.

3. A complete real-time system showcasing our algo-
rithms: the result of integrating them with PTAM, a
SLAM-like system [12].

Our method discretizes space via the 3D Delaunay trian-
gulation of sparsely reconstructed point features, and it ex-
ploits free-space constraints: If a camera with optic center
O observes a 3D featureP , then the tetrahedra on the line
betweenO andP are carved away. This yields an approxi-
mate model, but it is adequate for many applications where
view-dependent texturing is used to provide detail. Coarse
geometry proxies are in fact often used for image-based
modeling and rendering [7, 14, 15, 19]. A target use for
our models is photo-realistic predictive display for robotics
[3, 19]

Our algorithms are incremental in the following sense.
Having computed a Delaunay-discretization and a carving,
we handle an incremental change to the input data not by
starting over, but by reconciling the previous result to agree
with the change. Such a change comes from the underlying
process that produces the inputs,e.g. from online SLAM or
Structure-from-Motion. It can be thought of as one of a set
of events, be it keyframe addition or outlier deletion.

The incremental nature alone is not enough to guaran-
tee suitability for online use. As the number of images in-
creases, the number of free-space constraints increases; a
naive algorithm will swiftly get bogged down. We prove
that real-time performance can be attained by selectively
forgetting redundant free-space constraints (Section3), and
we integrate our algorithms with PTAM [12] to produce a
complete real-time modeling system (Section4).

2. Algorithms

Given as input a set of reconstructed 3D point features
{P}, camera estimates{O}, and visibility lists describing
which pointsP are visible in each viewO, our method con-
nects and interpolates the point set to produce a triangulated
mesh that approximates the scene. We assume the inputs

are readily available from online SLAM [4, 6] or Structure-
from-Motion [12]. Therefore, the estimates of{P}, {O},
and the visibility lists are continuously changing.

This implies two requirements for any real-time recon-
struction method that utilizes this information. First, the
method itself must produce intermediate outputs. Specifi-
cally, our approach should be fully incremental and generate
new meshes in real-time. Second, the method must support
fine-grained event handling. Different types of updates to
the input data trigger different algorithms for tailored pro-
cessing.

In this section, we present a set of algorithms that satisfy
these requirements. They handle five main events that are
common to SLAM and SLAM-like systems:

1. New-keyframe events, where newly initialized features
are also added to{P}

2. Data-association events, entailing the addition of new
visibility information

3. Data-dissociation events, entailing the deletion of er-
roneous visibility information

4. Deletion events, where outliers are removed from{P}

5. Refinement events, where subsets of{P} and{O} are
reestimated and moved

Because the algorithms all operate on the same data
structures, we first discuss their commonalities. What fol-
lows is a description of each event handler. Finally, we pro-
pose a heuristic that brings our method to real time.

2.1. Preliminaries / Commonalities

Our algorithms encompass a volumetric approach: we
adaptively [8] discretize space via the 3D Delaunay trian-
gulation of the input point set{P}. A triangulation of{P}
is a partition of the convex hull of{P} into a connected set
of tetrahedra. A Delaunay triangulation is one that satisfies
the empty circumsphere property,i.e. the interior of every
tetrahedron’s circumsphere contains no vertices [22].

Each event handlers’ goal is to maintain and update a
carving of this discretized space. The algorithms prune en-
tire tetrahedra by marking them as empty if they intersect a
free-space constraint, as illustrated in Figure1.

Given a current carving, it is straightforward to output
the reconstruction as a triangulated mesh (since tetrahedral
facets are triangles): we simply extract the isosurface as the
facets between the carved and uncarved volumes.

When an event updates a subset of the point set{P}, the
Delaunay descritization of a related subset of space changes
in turn. Some tetrahedra are deleted, holes are thus created,
and new tetrahedra fill the holes and take their place. There-
fore, our algorithms must efficiently determine which of the
newly created tetrahedra to mark as free space.

2

O

P

Figure 1. A free-space constraint. The camera,O, observes a point
P . The tetrahedron is carved by the constraint: it intersectsOP

and thus would occlude the point.

For this purpose, we associate with each tetrahedron a
set of all the free-space constraints that intersect it. Thesets
from the old tetrahedra that span the hole(s) determine the
minimal constraint set that we must test against. In contrast
to a batch method that would redo the triangulation from
scratch and then retest all constraints, our algorithms save
time by minimally processing only the new tetrahedra and
relevant constraints.

However, this minimal processing is not enough to en-
sure real-time operation. As views are processed, free-space
constraints quickly accumulate in the tetrahedra’s constraint
sets. The size of these sets balloon, and so does memory
consumption and computation time. Thus, in Section2.6,
we propose a heuristic for keeping the size in check.

2.2. Keyframe Insertion

Upon insertion of a new keyframe, we must handle two
changes. First, any point features that are initialized in this
keyframe add to{P} and thus change the discretization.
Second, this keyframe’s visibility list carves the resulting
discretization.

To preserve the empty circumsphere property, when a
new point is inserted, the triangulation algorithm deletesall
tetrahedra that contain the point within their circumspheres
and then retriangulates the resulting hole. The hole is al-
ways a connected set of tetrahedra, and a valid retriangu-
lation can be performed by staring off the hole [22]; see
Figure2.

After retriangulating holes, our algorithm determines
which of the new tetrahedra to mark as free space. The
minimal constraint set to test against is the union of the con-
straint sets from the old tetrahedra that spanned the holes.

Finally, the free-space constraints induced by the current
view are applied. The entire process is summarized in Fig-
ure2 and in Algorithm1.

2.3. Data Association and Dissociation

Data association and dissociation events only change vis-
ibility information. Association events add visibility rays,
and dissociation events remove them. For example, if a
point is initialized in some keyframe and then later matched
to an earlier keyframe, this raises an association event. If,
e.g. after a refinement event, a point’s reprojection error in

Algorithm 1 New-Keyframe Event Handler

U ← ∅, the empty constraint set
for all Q ∈ {P}.NewPoints do

C ← {Cells whose circumspheres conflict withQ}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

InsertQ into the triangulation and star off the hole
Apply all constraints∈ U as described in§ 2.3
Apply constraints from the current visibility list

Figure 3. The traversal algorithm for processing a free-space con-
straint (dashed line). First, the cells adjacent to the highlighted
vertex are tested for intersection with the constraint. Then, the al-
gorithm hops from cell to adjacent cell via the red facets (bolded)
until the camera center is reached. The carved cells are shaded.

some keyframe is large, the corresponding visibility ray is
likely erroneous. This may raise a dissociation event: that
ray’s carving must then be undone.

To handle an association event, we only need to carve.
To carve via a given free-space constraintOP with optic
centerO and feature pointP , we adopt Gargallo’s algo-
rithm [9]. (This is our only event handler that is not novel.)

The algorithm is depicted in Figure3. The line segment
OP stabs a connected set of tetrahedra through their shared
facets (red and bolded in the figure). This makes traver-
sal possible: begin at vertexP , and perform a series of
facet-segment intersection tests to determine which adja-
cent tetrahedron to traverse to. To find the initial tetrahe-
dron, iterate over all the tetrahedra incident toP , testing
only the facet opposite toP for intersection withOP . If
at any time the current tetrahedron contains pointO in its
interior, the traversal is complete.

We addOP to all the crossed tetrahedra’s constraint sets.
To initially find vertexP , we maintain a vector of vertex

pointers as we construct the triangulation. We representOP

as a pair of indices, and index the vector to find the vertex
(in O(1) time).

To ensure that the optic center is contained inside some
tetrahedron in the triangulation, eight artificial vertices are
initially inserted before all events. These vertices represent
a loose bounding cube on the features and optic centers.

For dissociation events, our event handler simply tra-
verses all tetrahedra in the triangulation to erase the selected

3

(a) Initial (b) Conflicts (c) Retriangulation (d) Final Carving

Figure 2. A 2D illustration of Algorithm1 (keyframe insertion). (a) The initial triangulation. The blue dashed lines are free-space
constraints currently in the triangulation. Shaded aquamarine cells have not yet been carved. (b) An incoming point (red cross). The
yellow cells are in conflict with the point because it falls inside their circumcircles. (c) The yellow cells were deleted, and the hole stared
off. The red free-space constraints (bolded) belonged to the deleted tetrahedra; they are now used to carve away two of the four new
tetrahedra. (d) Finally, the new free-space constraint(s)from the current view are applied.

constraint from their intersection sets. See Algorithm2.

Algorithm 2 Dissociation Event Handler

OP ← The free-space constraint to remove
for all TetrahedraT do

T.ConstraintSet ← T.ConstraintSet \ {OP}

2.4. Outlier Deletion

When a pointQ is marked for deletion, we must remove
it from both {P} and the triangulation, but we must also
undo the carving of all visibility rays induced by it.

Therefore, Algorithm3 first traverses all tetrahedra to
remove any constraints incident toQ from their intersection
sets.

Deletion of Q from a Delaunay triangulation redis-
cretizes space: a hole is formed and retriangulated. The
hole is precisely the set of tetrahedra adjacent toQ [5]. This
is because point removal is the inverse operation of point
addition; a stared off hole aroundQ forms the set of tetra-
hedra adjacent toQ (c.f. Figure2 and assume thatQ was
inserted last). A robust procedure for retriangulating the
hole is given in [5].

Algorithm 3 therefore collects a set of free-space con-
straints from incident cells before removingQ, to apply this
set afterwards.

2.5. Refinement

The refinement event handler is invoked whenever a set
of points and cameras are moved. This happens continu-
ously in SLAM, and it corresponds to partial or full bundle
adjustments in online Structure-from-Motion.

Algorithm 4 summarizes. It is essentially a series of
point deletions and insertions (akin to Sections2.2and2.4),
with free-space constraints collected and applied only when
necessary.

Algorithm 3 Outlier-Deletion Event Handler
U ← ∅, the empty constraint set
Q← Point marked for deletion
// Remove all constraints that referenceQ
for all TetrahedraT do

T.ConstraintSet ← T.ConstraintSet \ {OP | P =
Q}

// Collect constraints from incident cells
C ← {Cells incident toQ}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

DeleteQ from the triangulation (this retriangulates)
Apply all constraints∈ U as described in§ 2.3

For efficiency, we implement this handler slightly incor-
rectly: we partially ignore the movement of keyframes, and
thus of some visibility constraints. This works due to two
realistic assumptions. First, we assume that keyframes are
initialized accurately such that they only move slightly. Sec-
ond, we rely on future events to re-discretize the remain-
der of space; constraints then will be reprocessed using the
moved optic centers. This implementation choice allows
for a better run-time complexity that is independent of the
number of keyframes in{O}; see Section3.

2.6. Forgetting Heuristic

The heuristic is simple: retain theK least similar con-
straints in each tetrahedron’s constraint set. As shown in
Sections3 and5, the efficiency greatly improves with in-
significant impact on reconstruction quality.

We define the similarity measure by (the inverse of) the
sum of the areas spanned between the two constraints; see
Figure4. By retaining theK most spatially distinct con-
straints that intersect each tetrahedron, we hope to cover as
much volume as possible so that, when a hole is retriangu-

4

Algorithm 4 Refinement Event Handler
// Collect constraints from incident cells
U ← ∅, the empty constraint set
for all Q ∈ {P}.MovedPoints do

C ← {Cells incident toQ}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

// Remove the vertices (this retriangulates)
for all Q ∈ {P}.MovedPoints do

DeleteQ from the triangulation
// Insert moved vertices while collecting constraints
for all Q ∈ {P}.MovedPoints do

// Qmoved refers to Q’s new coordinates.
C ← {Cells Delaunay-conflicting withQmoved}
for all T ∈ C do

U ← U ∪ T.ConstraintSet

InsertQmoved into the triangulation
Remove all constraints from the triangulation that refer-
ence moved points, like in Algorithm3
Apply all constraints∈ U as described in§ 2.3, using
moved point and camera locations

Figure 4. The similarity of the left-hand segment w.r.t. theright-
hand segment is equal to1 over the sum of areas spanned by the
gray triangles.

lated, space is sampled well enough that the new tetrahedra
can be carved.

This is not a true similarity measure as it is asymmetric,
but it is only a heuristic. The asymmetry arises because
the areas depend on the base segment’s length||OP ||. This
weights longer segments as more different, which usually is
desirable.

When a set is full, an incoming constraint is inserted iff
it is less similar to all the constraints than their most similar
constraint in the set. This knocks out the constraint with the
highest (asymmetric) similarity score.

In the caseK = 1, we simply retain the first inserted
constraint and reject all others. ForK =∞, the set is never
full, so no similarity measures need to be computed.

3. Complexity

The run-time bounds derived in this section are not in-
tended to be tight. Instead, in conjunction with the exper-
iments in Section5, they serve to illustrate the real-time

quality of our algorithms.
First, we analyze the version that employs the forgetting

heuristic (K < ∞). Let N be the number of input points,
andM the number of views.

Theorem 1. The worst-case run-time complexity of Algo-
rithm 1 is O(N4), for K <∞.

Proof. First, we cite some relevant properties of the 3D De-
launay triangulation. In the worst case, the number of tetra-
hedra in the triangulation, as well as the number of tetra-
hedra that a line can intersect, is of orderO(N2) [11, 21].
Because we have a structured point set, these bounds are
loose. (Several papers suggest or prove tighter bounds for
point sets sampled from smooth surfaces [2, 8].)

The algorithm can be split into two phases: point inser-
tions plus retriangulation with recarving, and carving via
the current view’s free-space constraints.

For the first phase, there are at mostN vertices to insert.
For each insertion, at worst allO(N2) tetrahedra conflict,
and thus are deleted and stared off inO(N2) time. Locating
the conflicting cells takes no more thanO(N2) time, since
even a naive enumeration of allO(N2) tetrahedra suffices.
Thus, inserting all the vertices takesO(N3) time.

To recarve the new tetrahedra, the constraints from the
old tetrahedra are collected into a single set and then ap-
plied. SinceK <∞ and since the number of deleted tetra-
hedra isO(N2), the number of constraints to reprocess is
O(N2). Therefore, inserting them into a set can be done in
O(N2 log(N2)) = O(N2 log(N)) time using a red-black
tree. Theorem2 shows that applying a single constraint
takesO(N2) time. Since there areO(N2) constraints, the
total time for the first phase of an iteration isO(N4).

For the second phase of an iteration, because at mostN

points can be observed in a single view, there are at mostN

free-space constraints to apply. Therefore, the second phase
takesO(N3) time.

Thus, the complete algorithm takesO(N4 + N3) =
O(N4) time per iteration.

Theorem 2. The worst-case run-time complexity of carving
a free-space constraintOP (§ 2.3) is O(N2), for K <∞.

Proof. Because segmentOP can intersect at mostO(N2)
tetrahedra [21], and because the number of tetrahedra inci-
dent toP is bounded byO(N2) [11], the traversal takes
O(CN2) time. HereC refers to the cost of inserting a
free-space constraint into a tetrahedron’s constraint set. C

depends onK, and becauseK is a constant,O(C) =
O(f(K)) = O(1). Thus a single traversal takesO(N2)
time.

The worst-case complexities of Algorithms2, 3, and4
areO(N2), O(N4), andO(N4) respectively, forK <∞.

5

Video

PTAM

Tracking

Mapping

Map Updates Isosufrace

Extraction

Visualization

KF Insertion

Association

Dissociation

Deletion

Refinement Handler

Handler

Handler

Handler

Handler

Carving

Figure 5. Reconstruction System.

Proofs for these bounds are very similar, straightforward,
and therefore omitted. We cite one used fact: deletion of
a pointQ from a Delaunay triangulation takesO(fd) →
O(N3) time, wheref is the number of tetrahedra that retri-
angulate the hole, andd is the degree of vertexQ [5].

For a closed bounded scene, we can assume that the av-
erage number of features observed in a given view,Navg, is
proportional toN [10]. Therefore, the average case com-
plexity of all our event handlers isO(Navg

4). Because
Navg depends on system properties such as the camera’s
field of view and the spatial density of the tracked point set,
the per-event time complexity is practically constant [10],
which is desirable for an online algorithm.

Without the forgetting heuristic (K = ∞), the situation
is worse. In this case, there are at mostN ∗M constraints
in the triangulation. If, upon a point insertion, all tetrahedra
are deleted and retriangulated, then just collecting the con-
straints into a set takesO(NM log(NM)) time, which is
superlinear inM .

We do not provide a complete analysis forK = ∞. It
suffices to show that the complexity is dependent onM , and
thus not suitable for online use. Our experimental results
support this.

We remark that ProFORMA [17], a similar free-
space carving system, processesO(NM) constraints ev-
ery keyframe. Therefore their per-frame processing time is
Ω(NM). This dependence onM shows that ProFORMA
must eventually slow below real-time capability.

4. System Description

By integrating our algorithms with PTAM [12], we have
devised a complete system that reconstructs 3D meshes
from video.

Figure5 shows the system’s components and the flow of
data. PTAM consists of two main threads: the tracker and
the mapper. The mapper is responsible for producing the
information that our algorithms operate on. Our routines
accept this information in the form of events.

The current integration is far from optimized; event han-
dlers operate in the mapper thread, and they parse argument

strings to extract the event type and data. Ideally, the han-
dlers should operate in their own thread to benefit frome.g.
quad-core processors. The string parsing is a relic from
logging and offline testing. In spite of this, we still attain
real-time tracking, mapping, modeling, and rendering on a
two-year-old laptop (Intel Core2 Duo 1.83 GHz processor
and 3 GB of RAM).

The visualization is also preliminary. It only projects and
blends textures from the four most recent keyframes onto
the model for rendering.

Our implementation makes use of the CGAL software
package for Delaunay triangulations [1]. CGAL is numeri-
cally robust and fast, and it provides all the necessary oper-
ations, such as point insertion and efficient traversals.

5. Experiments

Our method was tested on numerous datasets; we present
three different results in Figure6. Sample input images
along with shaded and textured output models are shown.
We refer to the datasets in the figure, from top to bottom, as
“Shelves”, “Fireplace”, and “House” respectively. These
results were generated in real-time using the system de-
scribed in Section4, and the heuristic parameterK = 1.

The results are promising. Even a complex cluttered
scene like “Shelves” reconstructs well. “Fireplace” contains
specular surfaces to no detriment,e.g. the metal fireplace
door and glass-framed portraits. This demonstrates the ro-
bustness of our feature-based approach. Even though our
method carves the convex hull of the features using sparse
visibility information, the recovered geometries closelyre-
semble the highly concave scenes,e.g. “House”.

Reconstruction quality is however not perfect. As our
method employs no noise model and no regularization, the
meshes are noisy and include some stray uncarved tetrahe-
dra. However, the method is intended for fast, approximate
reconstruction. We accomplish this goal: the meshes are
adequate geometry proxies for image-based rendering.

Figure7 compares timings, and the number of free-space
constraints retained, forK = 1, 5, and∞ on a typical
dataset from our system. ForK = ∞, as the number

6

Figure 6. Our algorithm’s results on three data sets. Top row: “Shelves” dataset. Middle row: “Fireplace.” Bottom row: “House.” Left: A
sample input image from the dataset. Middle: Shaded final models. Right: Offline view-dependent texture rendering.

0 50 100 150 200
0

10

20

30

40

of Keyframes

T
im

e
(s

)

Cumulative−Mean Per−KF Processing Time

K = 1
K = 5
K = ∞

0 50 100 150 200
0

2

4

6

8
x 10

4

of Keyframes

T
ot

al
 C

on
st

ra
in

ts

Constraint Growth

K = 1
K = 5
K = ∞

Figure 7. Efficiency forK = 1, 5, and∞ on a representative
dataset. Left: Mean per-keyframe processing time as a function of
the number of views processed. Right: Number of free-space con-
straints in the triangulation (a function of the same). Our heuristic
effectively bounds computation time and memory usage.

of views increases, the per-keyframe processing time and
memory consumption grow. For finiteK however (i.e. the
forgetting heuristic), they are tightly bounded and quickly
level off, which supports the complexity results of Sec-
tion 3. We conclude that with finiteK, our algorithms can
operate in real time on image sequences of arbitrary length.

All timings were collected by running our algorithms
offline on an event log. The per-keyframe times count
the time spent handling all events raised between adjacent
keyframes. We average over30 independent runs before
computing the means, exceptK = ∞ was averaged over
only 10 due to lengthy run-time. The challenging dataset
contained2887 points in178 keyframes. This is large com-
pared to typical output of SLAM-type systems [4, 6].

Finally, Figure8 shows that the outputs forK = 1
andK = ∞ are almost identical. Thus the difference in
carving-quality when using the forgetting heuristic is almost
negligible. Note that this result compares old datasets pro-
duced by offline Structure-from-Motion: we artifically sim-
ulated a set of new-keyframe events to feed to our method.
Online results, however, support the conclusion: carving is
effective withK = 1 for all event-types, see Figure6.

6. Conclusions

This paper presented a novel incremental method for 3D
scene reconstruction by free-space carving, along with a
complete real-time system that implements it. Experiments

7

Figure 8. Results forK = ∞ (left) andK = 1 (right) on different data sets. The meshes are similar for extremely differentK.

demonstrate that the system generates approximate models
that well resemble the scene. Texturing with input-imagery
provides novel-view visualization, both online and offline.

There are several directions for future work. First,
we plan to apply our work to predictive display for tele-
robotics, and also to simultaneous capture and visualiza-
tion. We will assess the benefits that our method provides
in both of these contexts. Second, we will investigate ways
to improve the mesh quality. Our isosurface extraction is
minimal; combining it with regularization will improve re-
sults. Yet another direction is to see if our outputs can be
used to initialize geometric refinement algorithms,e.g. vari-
ational multi-view stereo. Often, good initializations for
open scenes are not available—our algorithms might pro-
vide them at low expense.

Acknowledgements

The authors wish to acknowledge funding and in-kind
support from NSERC, CFI, CSA and Barrett. We also thank
Adam Rachmielowski for data and for helpful discussions.

References

[1] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.6

[2] D. Attali, J. Boissonnat, and A. Lieutier. Complexity of
the delaunay triangulation of points on surfaces the smooth
case. InACM Symposium on Computational Geometry,
pages 201–210, 2003.5

[3] T. Burkert, J. Leupold, and G. Passig. A Photorealistic Pre-
dictive Display.Presence: Teleoperators & Virtual Environ-
ments, 13(1):22–43, 2004.2

[4] A. Davison. Real-time simultaneous localisation and map-
ping with a single camera. InICCV, pages 1403–1410, 2003.
1, 2, 7

[5] O. Devillers and M. Teillaud. Perturbations and vertex re-
moval in a 3D Delaunay triangulation. InACM-SIAM Sym-
posium on Discrete algorithms, pages 313–319, 2003.4, 6

[6] E. Eade and T. Drummond. Scalable Monocular SLAM. In
CVPR, volume 1, pages 469–476, 2006.1, 2, 7

[7] M. Eisemann, B. D. Decker, M. Magnor, P. Bekaert,
E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Float-

ing Textures.Computer Graphics Forum (Proc. Eurograph-
ics EG’08), 27(2):409–418, 4 2008.2

[8] O. Faugeras, E. Le Bras-Mehlman, and J. Boissonnat. Rep-
resenting Stereo Data with the Delaunay Triangulation.Ar-
tificial Intelligence, 44(1-2):41–87, July 1990.1, 2, 5

[9] P. Gargallo. Modélisation de Surfaces en Vision 3D. Mas-
ter’s thesis, INRIA Grenoble Rhône-Alpes, 2003.1, 3

[10] A. Hilton. Scene modelling from sparse 3D data.Image and
Vision Computing, 23(10):900–920, 2005.1, 6

[11] V. Klee. On the complexity of d-dimensional Voronoi dia-
grams.Archiv der Mathematik, 34(1):75–80, 1980.5

[12] G. Klein and D. Murray. Parallel Tracking and Mapping for
Small AR Workspaces. InISMAR, pages 1–10, 2007.1, 2, 6

[13] P. Labatut, J. Pons, and R. Keriven. Efficient Multi-View
Reconstruction of Large-Scale Scenes using Interest Points,
Delaunay Triangulation and Graph Cuts. InICCV, 2007.1

[14] M. Levoy and P. Hanrahan. Light Field Rendering.SIG-
GRAPH, pages 31–42, 1996.2

[15] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-
lan. Image-Based Visual Hulls.SIGGRAPH, pages 369–374,
2000.2

[16] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J. Frahm,
R. Yang, D. Nistér, and M. Pollefeys. Real-Time Visibility-
Based Fusion of Depth Maps. InICCV, 2007.1

[17] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Prob-
abilistic Feature-based On-line Rapid Model Acquisition.In
BMVC, London, September 2009.1, 6

[18] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mor-
dohai, B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell,
et al. Detailed real-time urban 3d reconstruction from video.
IJCV, 78(2):143–167, 2008.1

[19] A. Rachmielowski. Concurrent acquisition, reconstruction,
and visualization with monocular video. Master’s thesis,
University of Alberta, 2009.2

[20] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A Comparison and Evaluation of Multi-View Stereo Recon-
struction Algorithms. InCVPR, pages 519–526, 2006.1

[21] J. Shewchuk. Stabbing Delaunay Tetrahedralizations.Dis-
crete and Computational Geometry, 32(3):339–343, 2004.5

[22] K. Sugihara and H. Inagaki. Why is the 3D Delaunay tri-
angulation difficult to construct? Information Processing
Letters, 54(5):275–280, 1995.2, 3

[23] H. Vu, R. Keriven, P. Labatut, and J.-P. Pons. Towards high-
resolution large-scale multi-view stereo. InCVPR, 2009.1

8

