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Abstract

We propose a method that makes standard turntable-
based vision acquisition a practical method for recover-
ing models of human geometry. A human subject typi-
cally exhibits some unintended joint motion while rotating
on a turntable. Ignoring such motion causes shape-from-
silhouette to excessively carve the model, resulting in loss
of geometry (especially on limbs). We utilize silhouette
cues with an initial automatically recovered skinned-model
to recover this joint motion, or wobbling. The recovered
joint motion gives the calibration of each rigid body of the
subject, allowing for temporal fusion of image cues (e.g.,
silhouettes and texture) used to refine the geometry. Our
method gives improved results on real data sets when con-
sidering silhouette overlap in novel views. The recovered
geometry is useful in vision tasks such as multi-view image-
based tracking of humans, where the recent trend of using
a priori laser-scanned geometry could be replaced with a
more cost effective vision-based geometry.

1. Introduction
For some time now the benefits of turntable-based vi-

sion acquisition systems for low cost 3D modeling have

been recognized and exploited [5, 14]. Turntables boast the

ability to quickly acquire an image stream about an object

that can quickly be calibrated and easily be foreground seg-

mented for use in both silhouette and stereo reconstruction.

In this work we argue that turntable acquisition is still feasi-

ble for human scale geometry, something that has only been

exploited in few works [8, 10] and, in the case of some, it

was only used for the recovery of appearance [26].

There is no doubt that convenient vision-based acquisi-

tion of static human geometry is useful, with example ap-

plications ranging from gaming to anthropometric studies.

There exist full body laser range finders built exclusively for

the task of recovering dense static human geometry, but this

hardware is expensive (e.g., Cyberware TM’s Whole Body

3D Scanner $200K+). By comparison, a two camera sys-
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Figure 1. Overview of our solution. SFS with no motion compen-

sation illustrates eroded body. Interleaving motion estimation with

SFS gives more accurate results. See website for videos [6].

tem, such as ours, costs on the order of hundreds or a few

thousand dollars. In terms of applications in vision, a recent

trend has seen many of the multi-view human tracking and

deformation recovery methods being formulated around an

initial laser scanned geometry [13, 12, 3]. In fact many

methods in this category go on to recover deformations over

time from vision, but have skipped the application of vision

in the first step by relying on the scanned geometry [12].

One vision-based solution commonly used to capture hu-

man geometry consists of a large set of fixed, pre-calibrated

cameras that observe a moving person [32, 21, 30]. Geom-

etry for each time frame is reconstructed either using the

visual hull [31] or multi-view stereo [21] and then related

to each other either using differential constrains like scene

flow [32], through feature point correspondences [30], or

registered with marker-based motion capture data in the co-

ordinate system of the joint [22]. We take a different ap-

proach and propose a method that acquires human geome-

try using a traditional turntable approach that requires only

two cameras and reconstructs a model of the rotating human

unified in time. Full geometry at each time frame cannot
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be recovered due to the low number of cameras (2) in our

setup.

One limitation in simply extending rigid-object

turntable-based approaches to a human geometry is the

fact that a rotating human is not rigid and will undoubtedly

move over time while rotating. Such motion causes

methods like shape-from-silhouette to excessively carve

the object (Fig. 1) and causes misalignment of any recov-

ered appearance. Since the human is a kinematic chain

containing a hierarchy of coordinate systems, this problem

of registration can not be solved by a simple application of

single rigid body calibration. As silhouettes do not require

a subject to wear textured clothing, we propose to solve

the joint motion calibration problem through an interleaved

tracking and model recovery step. Our contributions are

two-fold:

• using as few as two cameras, the small kinematic hu-

man motion relative to a rotating turntable is tracked by

utilizing silhouette consistency while enforcing kine-

matic constraints.

• recovered joint angles for a kinematic structure are

used to re-compute a unified shape-from-silhouette

model that is the union of the visual hull for each of

the kinematic links.

2. Related Work
In the context of recovering dense static geometric mod-

els of humans from vision-based methods, many of the gen-

eral multi-view stereo methods for static scene reconstruc-

tion are relevant(e.g., [23]). For humans specifically, some

attention has been directed to convenient acquisition of a de-

formable human model with limited hardware assumptions

(e.g, using as few as two or three images to quickly instan-

tiate a deformable human template model [25]). Similarly,

we are also concerned with convenient capture of human

geometry under limited hardware assumptions; therefore,

we focus on methods for recovering the joint motions of a

rotating human so as to utilize all silhouette observations in

the geometry reconstruction.

Classical feature-based correspondences or feature

tracks, such as those used in standard structure from mo-

tion (SFM), offer one route to recover these joint motions.

Articulated structure from motion factorization techniques

decompose such feature tracks into rigid parts and the cor-

responding points, but are often based on restricted camera

models [29, 34]. On the other hand, given that feature tracks

are segmented into corresponding parts, the more recent ap-

plications of SFM that refine Euclidean camera parameters

based on dense matches could also be used to recover the

rigid deformation of individual joints [15]. However, these

feature-based methods may still be prone to failure in re-

gions where few features are available, such as the arms

which tend to be one of the more problematic regions.

As the geometry of these problematic regions is well

classified by silhouettes, it is useful to consider the use of

silhouettes for the purpose of calibration. Calibrating the

relative position of cameras in a multi-view environment

using dynamic silhouettes has been done [24, 7], but in our

case we assume the relative poses of cameras are known.

Alternatively, similar cues such as epipolar tangents, fron-

tier points, or silhouette consistency have also been used

to calibrate the position of cameras viewing a scene under

restricted turntable motion [18, 16]. Again, it is not the

turntable motion given a rigid geometry we are trying to re-

cover, as we assume that the turntable motion is known; we

are instead trying to recover the arbitrary, possibly small,

motion of each joint relative to the turntable.

One of the most relevant methods for combining silhou-

ettes over time utilizes both silhouette and image appear-

ance cues. The shape-from-silhouette over time work of

Cheung et al. [9] recovers the motion of a rigidly moving

object observed by multiple image sequences by the use of

colored surface points (e.g., frontier points with color val-

ues) and a silhouette constraint. The recovered transforma-

tion ensures surface points extracted at time t agree with the

silhouettes extracted at time t+ 1 (and vice-versa) and that

the observed color values at these points is consistent. This

method is also used to fuse images for recovery of human

geometry under turntable motion and perform multi-view

tracking [9, 10]. Unfortunately, the method relies on the

colored surface points which cannot be extracted at each

time frame with only two cameras.

Some integration of silhouettes between time steps is ac-

complished by the spatio-temporal SFS method of Aganj et
al., but the approach seems to be more useful for interpolat-

ing between SFS geometries at independent time steps [1].

The vast assortment of multi-view human tracking methods

attempt to solve the problem of recovering the motion of the

kinematic links [2, 17, 20, 27]. These approaches rely on a

known geometry and often combine multiple cues, such as

stereo, flow and silhouettes, in order to recover the joint an-

gles. A practical use of the silhouette is to minimize the

exclusive-or between input silhouette and model silhouette

[27]; this cost function is closely related to silhouette-based

camera calibration [7, 18]. Our approach leverages the same

strengths as multi-view tracking, but uses them with the in-

tent of recovering a better static geometry.

Many of the multi-view human tracking methods also

try to refine geometries over time [19], deform temporal ge-

ometries between time-steps [30], or ensure that the silhou-

ette of the tracked model is consistent with input silhou-

ettes (e.g., [33]). These dynamic geometries are often re-

constructed each frame (e.g., often 6-8 or more views are

available), meaning they rely mostly on the inter-camera
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Figure 2. Capture setup illustrating the typical position of L and R

cameras.

correspondence between numerous fixed cameras for recon-

structing geometry. In our case, where we have only two

widely separated views, it is not practical to reconstruct an

independent geometry per frame. Instead, we exploit the

intra-camera relationship for geometry reconstruction by re-

covering and compensating for the restricted human motion

that occurs on the turntable.

3. Model, Tracking & Refinement
We assume that the motion of the human rotating on the

turntable is governed completely by the joint angles of her

kinematic skeleton. The problem is then to recover both

the geometry, G, and these joint angles, Θ, such that the

geometry deformed by the joint angles is consistent with

the two input image streams.1

As input we have two image streams IL,t, IR,t and

silhouette images SL,t, SR,t at time t ∈ {1, . . . , T}.
The projection matrices PL,t = [KL|0]Et and PR,t =
[KR|0]ER,LEt are also available. The relative pose be-

tween the cameras, ER,L, is fixed, and the motion of the

cameras relative to the turntable is characterized only by the

known transformation Et (recovered using a pattern placed

on the turntable - see Section 4).

Based on the observation that multi-view silhouette-

driven human tracking is often successful with an approxi-

mate geometric model, we propose to solve this problem by

interleaving tracking and refinement. The entire procedure

is summarized below:

1. Initialize a geometry, G, and align a kinematic struc-

ture.

• Obtain a geometry, G, from SFS where silhou-

ettes are grown to ensure the model has all ap-

pendages. Align and attach a kinematic structure

to G.

2. Iterate tracking the joint angles and refining the model:

1Our approach easily generalizes to more images.

Figure 3. A rest geometry (e.g., vk(0)), the corresponding un-

posed skeleton, and a geometry posed by the skeleton.

• Joint Tracking: recover smoothly varying joint

angles, Θ, that deform the geometry, G, to sat-

isfy image cues, and keep the feet stationary.

• Refinement: use Θ to register the image observa-

tions in the coordinates of each joint, and then

compute a piece of the SFS geometry, Gb for

each joint, b. Take the union of the piece geome-

tries, G ← ⋃
b Gb, and attach to kinematic

structure.

We first define our geometric model and specify how it is

attached to a posed kinematic structure. This association of

a skeleton with a geometry occurs in both the initialization

when the pose is manually specified and after each refine-

ment step when a new model has been computed.

3.1. Model

Our model follows the standard graphics model for hu-

man skeletons and consists of two parts: a mesh geometry

and a kinematic skeleton (Fig. 3). The geometry, a triangu-

lated mesh, is used to skin the skeleton; the motion of the

geometry is determined solely by the kinematic model–an

assumption we will use during the tracking.

3.1.1 Kinematic Model

The kinematic hierarchy is represented as a tree of transfor-

mations. Each node (or bone), b, is positioned in the coordi-

nate system of its parent node, P (b) with a Euclidean trans-

formation Tb and has a set of rotational freedoms, Rb(θb).
The transformation from a joint to world coordinates is then

Mb([θb,θanc]) =MP (b)(θanc)TbRb(θb) (1)

where the parent transformation is influenced by a set of

ancestor joint angles, θanc. The root is an exception to this

structure as it has no parent and its freedoms are a full Eu-

clidean transformation. For notational convenience we will
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Bone Parent Freedoms

Root nil Rx,Ry ,Rz ,Tx,Ty,Tz

Back Root Rx ∈ [−20, 45] Ry, Rz ∈ [−30, 30]
Thorax Back Rx ∈ [−20, 45] Ry, Rz ∈ [−30, 30]
Clavicle Thorax Ry ∈ [−10, 20] Rz ∈ [−20, 0]
Humerus Clavicle Rx ∈ [−60, 90] Rz ∈ [−90, 90]
Radius Humerus Rx ∈ [0.01, 170]
Femur Root Rx ∈ [−160, 20]Rz ∈ [−70, 60]
Tibia Femur Rx ∈ [0.01, 170]
Foot Tibia –

Table 1. A breakdown of the bone names, their freedoms, and their

parents for a total of 34 freedoms.

treat Mb as a function of all joint angles, θ, although free-

doms of children have no affect on the parent transforma-

tion. Each joint (other than the root) is affected by at most

3 parameters.

We extract a default kinematic structure (e.g., the Tb)

complete with joint angle limits from a subject in the CMU

motion capture database [11] (see Table 1 for a listing of the

degrees of freedom and kinematic structure). The lengths

of the kinematic links are optimized to align the structure

to the human subject. The registration is done by locating

approximate joint positions in the initial geometry (detected

through assumptions on body size) and optimizing the kine-

matic parameters and scales such that these joint position

constraints are met using inverse kinematics.

3.1.2 Kinematic & Geometric Surface Coupling

The geometric model is attached to the skeletal model in a

default or rest pose using linear blend skinning (LBS). In

LBS a vertex deforms through a linear combination of a set

of joints it has been associated with

vk(θ) =
∑

b∈B(k)

wk,bHb(θ)v̂k (2)

where v̂k is the vertex in rest position, B(k) is the set of

links to which vertex k is attached, and wk,b is the skinning

weight association of vertex k with bone b. The transforma-

tion matrix Hb(θ) = Mb(θ)M̂−1
b , where M̂b = Mb(0) is

the rest transformation matrix for bone b and Mb(θ) is the

animated pose of bone b. Given a posed kinematic skele-

ton (e.g., as a result of tracking or manual initialization in

the first frame) we extract the vertex skinning weights au-

tomatically using the heat diffusion process of Baran and

Popovic [4].

In our case the geometry is given in the context of a

posed kinematic structure (e.g., the vertices vk(θpose) are

already deformed with joint parameters θpose). The weights

are assigned to the geometry in this posed frame, so the rest

geometry must be obtained through the inverse of the trans-

formation in Eq. 2, i.e., (
∑

b∈B(k) wk,bTb(θpose))−1.

3.2. Joint Tracking

Given a skinned geometric mesh parametrized only with

joint angles, e.g., G(θt), we treat the recovery of all the

joint angles Θ = {θ1,θ2, ...,θT } as the optimization of a

cost function that is a linear combination of several terms:

min
Θ

E = Esil + αkinEkin + αsmoothEsmooth (3)

The silhouette term, Esil, is based on an energy used in

motion tracking [28] and measures agreement of the model

with the input silhouettes. It is computed as a sum of XOR’s

over all input images:

Esil =
T∑

t=1

∑

i∈{L,R}

∑

x

Si,t(x)⊗ Pi,t(G(θt),x)
width(Ii,t) ∗ height(Ii,t)

(4)

where the shorthand Pi,t(G(θt)) denotes the projected sil-

houette of the geometry by Pi,t.

The smoothness term prefers no joint motion from one

frame to the next:

Esmooth =
T∑

t=2

‖θt − θt−1‖2 (5)

Finally, due to the assumption of our input being a hu-

man rotating on a platform, the kinematic term, Ekin, en-

forces the constraint that the feet stay on the ground. As our

kinematic skeleton is naturally rooted at the tailbone, we

use the Ekin term to limit deviations of the feet position,

Xfoot, in frames t > 1 from their position at time t = 1:

Ekin =
T∑

t=2

∑

foot

‖(Xfoot(θt)−Xfoot(θ1))‖2 (6)

Due to the discrete nature of the silhouette XOR term,

we use Powell’s method to optimize the cost function [28].

The parameters are initialized with the pose from the first

frame and all the parameters are optimized simultaneously.

3.3. Refinement

Tracking gives an updated estimate of coordinate trans-

forms of each link at each time of the image sequence.

These transformations are used to integrate all the silhou-

ette observations and create a new, refined geometry. The

geometry is first computed as a number of partially over-

lapping pieces (one for each bone, b) that are subsequently

merged (e.g., Fig. 4). Each bone is assumed to be a rigid

body, and the resulting joint to world transforms (from Θ)

are concatenated with the world to camera transforms to get

all observations in the coordinate frame of a bone. The cam-

era matrices relative to the bone are then
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Figure 4. Overlapping pieces of geometry computed from SFS

(corresponding to the head, shoulder, and elbow) are merged into

a single manifold geometry.

Pb
i,t = Pi,tMb(θt) (7)

The piece of geometry associated with the bone, Gb =
SFS(Pb

i,t, Si,t), is computed from all observations (i.e., all

time frames and both cameras) using SFS with the march-

ing intersections (MI) data structure. The SFS computa-

tion for bone b is bounded by the axis-aligned bounding box

(AABB) of the set of vertices from the previous geometry

whose skinning weights to link b are above a threshold:

boundsb = AABB({M̂−1
b v̂k : wk,b ≥ τ})

The threshold is low (τ = 0.05) to allow for errors in the

previous, approximate geometry. This piece of the mesh,

Gb, is then transformed to the turntable coordinate system

at time t = 1 using Mb(θ1).
We now have pieces of geometries for each part that are

originally disconnected and represented in the turntable co-

ordinate system. A final manifold geometry is then obtained

as the volumetric union of the pieces:

G←
⋃

b

Gb

Subsequently, this posed geometry is attached to the skele-

ton by finding new skinning weights, {wk,b}, and the corre-

sponding rest vertices, v̂k (as in Section 3.1). This refined

mesh is then used in the next iteration of the tracking (start-

ing with the estimated motion parameters from the previous

iteration).

4. Experiments
We have implemented our tracking and refinement algo-

rithm in C++ using OpenGL to render the model for com-

puting the XOR score. In our tracking implementation and

experiments, we perform a few (3-4) iterations of the track-

ing/refinement and use the the following weights to com-

bine the terms in Eq. 3: αkin ≈ 0.4 and αsmooth ≈ 0.25.
An iteration of the tracking takes roughly 16 minutes; the

refinement and merging takes about 2 minutes.2

To evaluate the accuracy of our approach we have used

synthetically generated sequences with a ground truth ref-

erence model. We also demonstrate the strengths of our re-

finement with several real-world sequences. Our approach

2These timings are for an unoptimized implementation running on a

single core of an Intel R©Quad CoreTM2.4GHz machine.

Figure 5. Synthetic data set results. Top: recovered model without

(left) and with motion compensation (right). Bottom: Ground-

truth synthetic model colored with the distance to the recov-

ered model without (left) and after refinement (right). Colormap:

black=0cm, white=10cm.

gives improved geometries on these sequences compared to

simply ignoring the human motion and using shape-from-

silhouette.

First, we demonstrate the accuracy of the method using

a synthetic image sequence generated under similar condi-

tions as our real turntable setup. Thirty images of a skinned

figure rotating on a platform and having small motions in

the back, neck, and arms were rendered from two view-

points (a top-down and side-view). Figure 5 shows views

of the recovered model without registration and with our

registration. The unregistered model is missing portions of

the arm, and the head is carved due to motion in the back.

Coloring the ground-truth model with the distance to the re-

covered model illustrates how our method improves the re-

construction in these regions (bottom right of Fig. 5, notice

small error over the surface).

In our real experiments we have captured several data

sets of human subjects rotating on a turntable. All of the

data sets contain three video streams; two of the streams

were used for reconstruction and the third was used for

comparison. The image sequences consist of 30 images

(with the exception of the Green Sweater data set sequence

which contains 22 images). The images are 800x600 color

images captured from Point Grey grasshopper cameras. The

relative positions of the cameras were calibrated in advance,

and a calibration pattern on the turntable was used to re-

cover the relative pose of the turntable with respect to the

first camera through the sequence.

In each case we bootstrapped our algorithm with a ge-

ometry that was obtained from all of the images in the data

sets using SFS (without correcting for any human motion);

the silhouette boundaries were extended (by roughly 5-6

pixels) to ensure that the extremities were present in the ini-

tial geometry. The Plaid data set contains significant mo-

tion causing the head and arms to be almost entirely eroded

if the human motion is ignored (Fig. 6). From this example,
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Input image Degraded SFS reconstruction Initial geometry Our reconstruction
Figure 6. An input image, the severely degraded SFS reconstruction, the initial geometry, and our reconstruction for the Plaid data set .

Figure 7. The Red Sweater data set had little motion, but SFS ge-

ometry (left) disagrees with the input silhouette (black indicates

regions of input not covered by geometry). Motion recovered sil-

houette matches better (right).

Yel-Shirt Red-Swtr Green Girl Plaid

SFS 0.86 0.84 0.81 0.85 0.71

Ref 0.91 0.89 0.88 0.92 0.86
Table 2. Average Jaccard score in the extra view between silhou-

ette and the uncompensated SFS model and the motion compen-

sated ref ined model.

we see that our method is capable of recovering an accurate

geometry, even when the initial estimate is poor.

The final geometry and the SFS geometry without mo-

tion compensation for the remaining data sets are presented

in Fig. 9. In all cases the original SFS is again eroded,

with parts of the arms missing and the bodies shaved too far

in general. The motion compensation successfully recov-

ers these parts of the geometry. Of these data sets the Red
Sweater data set contained little motion, but the improve-

ment is still evident when inspecting the silhouette agree-

ment between the recovered models and the input images

(Fig. 7).

As we do not have access to ground truth geometry for

the real data, we use the extra video streams that were

not used during reconstruction to perform a quantitative

comparison. The average Jaccard score3 between input

3The Jaccard score between two sets A and B is J =
|A T

B|
|A S

B|

Figure 8. Decreasing cost after interleaved tracking/refinement.

silhouette and rendered silhouette of our motion compen-

sated model is always higher (better) than that of the non-

compensated model in this video stream (Table 2). This

data suggests that the motion compensated model is a better

match to the true visual hull.

Refinement of the geometry only affects the Esil term of

the energy because it does not change joint angles. One may

question the validity of using only SFS in the refinement, as

SFS does not directly minimize the XOR score, meaning

that on successive tracking/refinement iterations the energy

could in fact go up. Although this is possible, in practice

we have found that the Esil term often does go down, and

only in the latter iterations does the cost sometimes increase

slightly. Figure 8 shows the XOR score for several data

sets after subsequent refinement/tracking iterations.

5. Conclusion

We have presented an iterative method that uses as few

as two camera streams (with a wide baseline) to recover

small human motion using silhouette cues. The recovered

motion allows the registration of silhouettes to improve the

geometry using SFS.

One limitation of our model is that it does not incorporate
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Figure 9. Sample input image, reconstruction without motion compensation (e.g., SFS), the refined model, and a textured model (single

average texture).

a texture consistency term, meaning the recovered motion

may not respect texture motion cues. We tried adding a tex-

ture preserving term in the joint angle refinement (Eq. 3) but

the initial geometry is too approximate. We are currently

investigating the use of optic-flow to ensure texture consis-

tency without requiring an accurate model during the mo-

tion recovery. Incorporating feature-based constraints when

available (e.g., as in typical structure and motion) should

also help ensure consistent texture motion.

Another limitation is that our method needs to be boot-

strapped with an initial geometry. We currently based this

geometry on an enveloping SFS geometry that is obtained

by growing the silhouette boundaries. Any appendage

missing in the initial geometry will likely remain missing

throughout the refinement. As such, we would like to ex-

plore the sensitivity of our solution to this initial geometry.
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We would also like to explore using our recovered model

in the context of tracking. Another possible future direction

is to see if refining the model in this manner can be done in

an on-line manner with general motion.
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